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ACTION RECOGNITION USING SALIENT NEIGHBORING HISTOGRAMS

Huamin Ren, Thomas B. Moeslund

Visual Analysis of People Lab, Aalborg University, Denmark

ABSTRACT

Combining spatio-temporal interest points with Bag-of-
Words models achieves state-of-the-art performance in action
recognition. However, existing methods based on “bag-of-
words” models either are too local to capture the variance in
space/time or fail to solve the ambiguity problem in spatial
and temporal dimensions. Instead, we propose a salient vo-
cabulary construction algorithm to select visual words from a
global point of view, and form compact descriptors to repre-
sent discriminative histograms in the neighborhoods. Those
salient neighboring histograms are then trained to model dif-
ferent actions. Our approach yields a competitive result on
the KTH dataset compare to state-of-the-art methods. On
the more challenging UCF Sports dataset, we obtain 95.21%,
which is approximately 4% better than the current best pub-
lished results.

Index Terms— Salient visual words, neighboring his-
tograms, action recognition

1. INTRODUCTION

Automatic action recognition is helpful in applications such
as video surveillance, content-based video summarization, in-
teractive computer applications etc. It gains more and more
attention in recent years with the advance and prevalence of
low-cost low-power sensors, computing devices and networks
[1] [2]. The goal of human action recognition is to auto-
matically analyze ongoing activities from an unknown video.
Researchers from different application domains have investi-
gated action recognition for the past decades and developed
a diversity of approaches and techniques: some researchers
seek ways to monitor the actor’s movements in the suited en-
vironment directly by tracking, body pose estimation etc [3]
[4], while others try to categorize actions based on the over-
all pattern in the video [5] [6] [7] [8]. Among them, spatio-
temporal interest points, combined with bag-of-words models
have achieved state-of-the-art results for action recognition
[6] [9] [10].

Extracting spatio-temporal local features and then quan-
tizing them into bag-of-words representations have several
advantages: background substraction is not required, the
descriptors are scale and rotation invariant in most cases,
which are particularly suitable for recognizing periodic ac-

tions. Cuboid was first proposed in [5] as a spatio-temporal
feature detector for human action recognition. They ob-
tained a sparse distribution of interest points from a video,
then associated a small 3-D volume (cuboid) to each interest
point, which captured pixel appearance values of the inter-
est point’s neighborhood in the space and time. A library
of cuboid prototypes was constructed by clustering cuboids
appearance with K-means clustering. As a result, each ac-
tion was modeled as a histogram of cuboid types detected
in 3-D space-time volume. Due to the success of cuboids,
various spatio-temporal feature extractors have been devel-
oped based on cuboids. Liu et al. presented a methodology
to prune cuboid features to choose important and meaningful
features [6]. Bregonzio et al. later proposed an improved
detector for extracting cuboid features [11]. Despite of the
success these approaches have achieved, there is also a key
limitation which has been pointed out by several researchers:
these spatio-temporal local interest point representations can
be too local and fail to capture adequate spatial or temporal
relationships [8].

Trajectory-based methodologies track features according
to their spatial and temporal variations, which are capable
of incorporating temporal information of the same feature in
a certain period. In [12], the authors extracted feature tra-
jectories by tracking Harris3D interest points [13] with the
KLT tracker [14], and represented trajectories as sequences
of log-polar quantized velocities. Sun et al. [15] extracted
trajectories by matching SIFT descriptors between consecu-
tive frames. Wang et al. [16] proposed an efficient method
to extract dense trajectories by using dense sampling [17],
which showed promising results over sparse interest points
for action recognition in a recent evaluation [17]. Despite
of the progress, the computation cost in tracking features
is always expensive and therefore infeasible for large video
datasets. Comparatively, matching features by modeling
spatio-temporal relationships, or creating descriptors from
neighboring spatio-temporal features can be good solutions.
Ryoo and Aggarwal [18] introduced a novel spatio-temporal
relationship matching to measure structural similarity be-
tween sets of features from two videos, which was thereby
able to detect and localize complex non-periodic activities.
Zhang et al. [19] proposed an approach called “spatio-
temporal phrase”, which encoded rich temporal ordering
and spatial geometry information of local words. Kovashka
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Fig. 1. Overview of the proposed system.

[8] proposed an algorithm to learn the shapes of space-time
feature neighborhoods that were discriminative for a given
action category. However, only creating visual words in a
local space or time neighborhood cannot capture the long-
term interactions of different body parts, which has a risk
of incapability in recognizing the same action performed by
different individuals. Moreover, the 2D space domain and
1D time domain in videos have very different characteristics,
which put forward a new challenge: how to handle scal-
ing ambiguity between the spatial and temporal dimensions
when identifying nearest features to form trajectories or build
space-time feature neighborhoods?

To address this problem, we propose a salient neighboring
description algorithm, which builds a salient vocabulary from
a global point of view in the temporal domain, and generates
discriminative histograms from a neighboring point of view in
the spatial domain. Our system for human action recognition
can be explained explicitly in Figure 1. We apply salient vi-
sual words selection in Section 2 to choose representative vi-
sual words by tracing their variations across the video. These
visual words turn out to have a high relationship with changes
among consecutive frames in human actions. To address the
“locality” problem in neighborhoods based algorithm, we en-
large the size of vocabulary by adding visual words existing
in a predefined time window. Then we aggregate the neigh-
boring frames into one group and represent each group as a
discriminative neighboring histogram in Section 3. Finally,
we regard these salient histograms as descriptors and train a
multi-class support vector machine (SVM) to recognize ac-
tions.

2. GLOBALLY SALIENT VOCABULARY

An original vocabulary with the size of K is built after local
features in videos are extracted. Then all the visual words are
traversed to form histograms of the video V :

H(V ) = H0(V ), H1(V ), ...Hm(V ), ...,HM (V ), (1)

where M is the number of frames in the video, Hm(V ) is
the histogram descriptor of the mth frame using Bag-of-
Words models, which is a K-dimensional vector composed
of [Hm

1 , H
m
2 , ...,H

m
i , ...H

m
K ].

Visual vocabulary, normally built by K-means clustering,
always neglect the spatial or temporal relationship between
local features in different frames. In action recognition where
periodic behaviors are performed, temporal information gives
an essential clue in action categories, e.g., the appearance of
visual words representing the elbow joint in the human body
is different in running compared to those in boxing. Accord-
ingly, we adopt the salient visual words selection algorithm,
which traces the variation of visual words in the entire video.
Suppose we represent the trajectory of the ith visual word
as H0

i (V ), H1
i (V ), ...,Hm

i (V )..., HM
i (V ), where m denotes

the frame number. The variance of points (the ith coordinate
of the histogram representation) has a locally asymptotically
stable property, mainly due to the facts that representative and
consecutive visual information tend to draw close to specific
extremes. Locally asymptotically stable points are defined as
follows:

Definition 1: Suppose the ith trajectory of the video V is
represented as {H0

i (V ), H1
i (V )...}. A point Ht∗

i (V ) is lo-
cally asymptotically stable at t = t∗ if it satisfies:

• Ht∗

i (V ) is stable and;

• Ht∗

i (V ) is locally attractive, e.g. there exists a δ such
that:

‖t− t∗‖ < δ ⇒ lim
t→t∗

Ht
i (V ) = Ht∗

i (V ) (2)

The current visual word is regarded as “salient” if its
trajectory contains locally asymptotically stable points. Ac-
cording to the second method of Lyapunov and Lyapunov’s
stability theory [20][21], the original system is locally asymp-
totically stable if we can find a Lyapunov-candidate-function.
What we are doing here is somewhat the opposite, namely



given the assumption that the trajectory of a salient vi-
sual word is locally asymptotically stable and a Lyapunov-
candidate-function exists, how to find out locally asymptot-
ically stable points? A practical solution is to approximate
the Lyapunov-candidate-function by using gradient function
of the trajectory and detect local and stable points in it. Local
points can be found by detecing extremes, stable points can
be approximated by threshold filtering (δS), as defined in
Eq. 3. If locally asymptotically stable points are detected in
the gradient function, then the visual word is considered as
“salient” and put into the salient vocabulary: VSalient.

δS = |Hm+1
i (V ) +Hm−1

i (V )− 2 ·Hm
i (V )|. (3)

However, the quantity of salient visual words is limited, thus
histogram descriptors representing salient visual words fre-
quency are very sparse, which leads to underfitting in clas-
sification. This problem can be addressed by tracking visual
words from a time window and supplementing current salient
vocabulary with those appearing in consecutive frames within
the time window. However, determining the size of the time
window is difficult, since automatic scene recognition is still
a challenging field. For simplicity, we therefore use a fixed
time window δT , and partition the video into scenarios. Vi-
sual words appearing continually in the current time window
are appended into the vocabulary VSalient. The new vocab-
ulary is denoted as VSalient+TimeWindow, and has the size:
KS (KS <= K). Salient histograms of the video V can now
be represented in Eq. 4, each element is a KS-dimensional
vector.

HS(V ) = H0
S(V ), H1

S(V ), ...Hm
S (V ), ...,HM

S (V ). (4)

3. DISCRIMINATIVE NEIGHBORING
HISTOGRAMS

After selecting salient visual words, histogram descriptors of
the video V - represented as HS(V ) - are capable of indi-
cating critical features in actions. But they are still not “dis-
criminative” enough, which means histogram descriptors in
consecutive frames may be too similar and affect the perfor-
mance of the classification. To come up with discriminative
descriptors, we generate neighboring histograms by partition-
ing frames with similar content into one group and generating
a representative histogram description for the group.

By defining a parameter δN , which controls the chang-
ing range among consecutive frames, we can divide salient
histograms of the video V into groups of neighboring his-
tograms:

Groupm = [...Hm−1
S (V ), Hm

S (V ), Hm+1
S (V )...]. (5)

The simplest way to calculate the descriptor for the neigh-
borhood is by averaging, nevertheless, this approach doesn’t
perform well in our experiments. The variation within the

group is normalized after averaging, which suppresses differ-
entiation in the group. Correspondingly, we select the his-
togram with the largest variance as the representative descrip-
tor. Thereafter, a video is represented as discriminative neigh-
boring histograms, see Eq. 6 (M ′ < M ).

HN (V ) = H0
S(V ), H1

S(V ), ...Hm
S (V ), ...,HM ′

S (V ). (6)

In the final step, we train action models by using discrimi-
native neighboring histograms and adopt a multi-class SVM
with fast Intersection Kernels provided by [22] to classify dif-
ferent actions.

4. EXPERIMENTAL RESULTS

4.1. Datasets and Evaluation Details

We evaluate our approach on two benchmark datasets for hu-
man action recognition: the KTH dataset [23] and the UCF
Sports dataset [24]. The KTH dataset contains a varied set of
challenges including scale changes, variation in the speed of
execution of an action, and indoor and outdoor illumination
variations. The UCF Sports dataset includes a wide range of
variations in viewpoint and scene background.

For the KTH dataset, we use the standard partition, di-
viding samples into training set (8+8 people) and test set (9
people). For the UCF Sports dataset, we test on each origi-
nal sequence while training on all other sequences, following
[23]. We train multi-class classifiers in two datasets and re-
port the average accuaracy over all classes and compare our
approach with the state-of-the-art.

4.2. Comparison to the state-of-the-art

KTH Dataset: We first compare our confusion matrix with
the approach in [23], which introduced a template-based
method to handle the locality problem in spatio-temporal
interest points - based action recognition approaches. Di-
agonal elements in Fig. 2 with shadows indicate the action
type in which our approach outperforms theirs. Our approach
performs well in actions with obvious changes or fast move-
ments, e.g., handclapping and boxing. Then we calculate the
mean Average Precision (mAP) of our approach. We achieve
a mAP of 94.78%, which is comparable to the approaches in
[8] (94.53% as reported), the best accuracy we are aware of
following the same setting as in [24].

UCF Sports Dataset: The advantage of our methods
is even more obvious on UCF sports dataset, see Tab. 1.
As far as we know, the accuracy of our method achieves the
best result in per-class average recognition accuracy. Further-
more, we have observed that our discriminative neighboring
descriptors perform well in fast moving action, e.g., skate-
boarding, as well as actions that last for a period. This is
mainly due to the saliency of the vocabulary - visual words in
a salient vocabulary represent visual information in the video
either changing apparently, or lasting for a long period.
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Fig. 2. Confusion matrix on KTH dataset.

Approach Year Accuracy/Class
Rodriguez et al. [23] 2008 69.2%

Varma et al. [25] 2009 85.2%
Wang et al. [17] 2009 85.6%

Kovashka et al. [8] 2010 87.27%
Kläser et al.[26] 2010 86.7%
Wang et al. [16] 2011 88.2%
Wu et al. [27] 2011 91.3%

Hara et al. [28] 2012 91.3%
Our method 2013 95.21%

Table 1. Comparative results on UCF Sports dataset.

4.3. Influencing Factors and Evaluations

First, we calculate the mAP over all action categories on
KTH dataset, and compare the result on two vocabularies:
VSalient and VSalient+TimeWindow. The mAP for VSalient

is 0.6043, while by tuning the value of δT , the mAP for
VSalient+TimeWindow can be achieved as high as 0.9512.
Here, the size of vocabulary K is set to 2000, and a ran-
domly selection of 100,000 SIFT features are used to build
the codebook on KTH. The success of complementing visual
words lies in the fact that these visual information are help-
ful in classifying behaviors from different categories. For
example, features representing thigh keep relatively stable
in walking. When training models to classify features from
walking to boxing, although these features are not salient
in their respective videos, they are salient among different
action categories. Thus adding these words as saliency helps
to improve the performance.

Next, we change δN from a wide range to see the per-
formance of neighboring histograms. Precision per class is
calculated by adjusting δN . As can be seen from Fig. 3, the
size of the time window can control the extent of “compact-
ness” of neighboring histograms. The best result is achieved
when δN is set to 150.

At last, we report the impact of vocabulary size on KTH
dataset. We change the value of K from 500 to 5000, the
best result is gained when K is set to 2000. We show some
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Fig. 3. Mean precision per class with different δN .

representative precision curves in Fig. 4. As can be seen,
small vocabularies perform well in slow motion, while large
ones are superior in fast movements.

Fig. 4. Precision per class with different vocabularies.

5. CONCLUSIONS

We propose salient neighboring histogram representation to
recognize actions in videos. Specifically, we introduced a
globally salient vocabulary construction algorithm to pick
out both representative visual words in the current video and
discriminate information in the current action category. Ad-
ditionally, we generated compact neighboring descriptions
based on our salient vocabulary.

Our experiments on KTH and UCF Sports datasets
demonstrate the success of introducing discriminative neigh-
boring histograms into the already successful bag-of-words
representation. In future work, we intend to combine spatio-
temporal template matching with our salient neighboring his-
tograms to classify activities from complicated backgrounds.
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