Aalborg Universitet

A Selection Metric for Backup Group Creation in Inter-Vehicular Networks

A step in the way of distributed ad-hoc group statesharing Matthiesen, Erling Vestergaard; Schwefel, Hans-Peter; Renier, Thibault Julien

Publication date: 2007

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA): Matthiesen, E. V., Schwefel, H.-P., & Renier, T. J. (2007). A Selection Metric for Backup Group Creation in Inter-Vehicular Networks: A step in the way of distributed ad-hoc group statesharing. Poster presented at IST Mobile and Wireless Communications Summit, Budapest, Hungary.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal -

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

A Selection Metric for Backup Group Creation in Inter-Vehicular Networks

A step in the way of distributed ad-hoc group statesharing

Erling Vestergaard Matthiesen, Thibault Renier and Hans-Peter Schwefel

Aalborg University, Denmark

Introduction

Reliable service provisioning in car-to-car networks is challenging
The environment is very dynamic

Results

The two road sections in Figure 3 and 4 show the same topology when the delay

- and network topologies are changing rapidly
- communication is unreliable
- For service-level fault-tolerance, the service needs to be replicated onto several vehicles.
- For state-full services a careful choice of the replica servers is necessary

Approach:

- Investigate methods for group forming based on different metrics
- Compare performance of end-to-end delay metric with geography based metric
- Groups used to form clusters for service provisioning
- Groups must adapt to topological changes in car-to-car network
- Adaption requires much effort, keep number of group changes as low as possible
- Utilize that cars movement is limited by road infrastructure

- metric has been used for grouping the nodes and when the geography based mteric is used.
- Results show that geography based metrics group cars moving in the same direction
- The number of circles on the plots in Figure 5 shows that the number of times the group configuration has changed during a simulation is lower if the geographical metric is used
- The application performs equally well as if the end-to-end delay metric is used for group division

•

Figure 3: Topology with groups created by using the delay metric as input for the heuristic algorithm.

Figure 4: The same topology with groups created by geo-cost.

Figure 1: The scenario is car-to-car networking in urban environment with dense traffic

Methods

Different methods are used to evaluate the performance of the heuristic geo-cost metric.

- Simulation, simulating detailed behavior of an application
- Performance is measured with respect to inconsistency in the shared state variables
- Performance is measured with repsect to the number of times the group configurations change

Metrics

Geo-cost metric based on geographic position of nodes, speed and direction
Compared to end-to-end delay metric

Figure 5: Results from an experiment where the grouping algorithm was used in the beginning of the experiment to see how well the

Figure 6: *Results from the same experiment as Figure 4 but this time the group creation algorithm was used at each time step. The circles indicate that a new group configuration was found.*

Conclusions

- It has been shown that the new Geo-cost metric performs as well as end-to-end delays while being easier to obtain.
- Geo-cost provides a reasonable compromise between keeping inconsistency in the groups low.
- Geo-cost takes advantage of the structured movements of cars (restricted to roads)

in creating backup groups.

• The short term predictions of car positions saves reconfiguration efforts.

Acknowledgements: This work was done with support of the FP6 -project HI-DENETS.

