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Abstract— When several independent channels are coupled by
a parity check constraint on their inputs, the mutual information
between the input of one channel and the outputs of all other
channels can be expressed as a combination of the mutual
information between the input and the output of each individual
channel. This concept is denoted as information combining. For
binary-input symmetric discrete memoryless channels, we present
bounds on the combined information which are only based on
the mutual information of the channels. Furthermore, we show
that these bounds cannot be further improved. Exact expressions
are provided for the case that all channels are binary symmetric
channels and for the case that all channels are binary erasure
channels.

I. I NTRODUCTION

Consider coded transmission over one discrete memoryless
channel or over multiple parallel discrete memoryless chan-
nels. Each noisy observation of a code bit contains information
on this code bit. Furthermore, each observation also contains
information on other code bits and information bits (or for
short, info bits) due to the code constraints. Accordingly, the
overall information on a certain code bit or info bit is a
combination of the information on code bits. (In this paper,
we will use the term “info bit” instead of “information bit” to
avoid confusion with “mutual information”.)

This combining of information under code constraints is
used in every decoder, but the way code constraints are taken
into account may differ. Whereas an APP decoder, e.g. [1],
considers all constraints at once, iterative decoding algorithms
consider only a subset of all code constraints in each decoding
step. An iterative decoder for parallel and serially concatenated
codes (turbo codes), e.g. [2], [3], [4], takes into account only
the constraints of the constituent codes. An iterative decoder
for low-density parity-check codes, e.g. [5], [6], or in general,
any iterative decoder operating on graphs, e.g. [7], [8], [9],
takes into account only local code constraints. Such a basic
local constraint between code bits is given by a parity check
equation.

If the information on the code bits is represented by prob-
abilities, log-likelihood ratios, or similar measures, then the
combined information on one code bit can easily be computed
by an appropriate operation as given, e.g., in [9].

In this paper, “information combining” is used in a very
strict sense, namely only forcombining of mutual information.
This notion of information combining was introduced in [10],

[11] for design and analysis of parallel concatenated coding
schemes. Since not all statistical properties of the channels
are taken into account, but only their mutual information, only
bounds on the combined information can be given.

In [12], bounds on information combining were presented
for the case that a binary symbol is transmitted over two
independent channels. It was shown that these bounds cannot
be further improved, and that the lower bound corresponds
to the case that both channels are binary symmetric channels
(BSCs), and that the upper bound corresponds to the case that
both channels are binary erasure channels (BECs).

Two independent channels having the same input can be
interpreted as two independent channels with a parity-check
constraint on their inputs. In this paper, this concept is gen-
eralized to the case of an arbitrary number of independent
channels with their inputs fulfilling a parity-check equation;
the inputs can be regarded as the code bits of a parity check
code. This scenario can also be regarded as decoding on a local
parity check constraint in a graph, as mentioned above. The
channels under consideration are binary-input symmetric dis-
crete memoryless channels (BISDMC). Bounds are presented
for the mutual information between a certain code bit and the
observations of the other code bits; this information is denoted
as extrinsic information on this code bit.

Here is an outline of the paper: In Section II, some def-
initions and properties for BISDMCs are given. Section III
addresses information combining “across” the parity check
equation. Bounds for the general case and exact expressions
for the only-BSC case and for the only-BEC case are given.
Finally, conclusions are drawn in Section IV.

II. B INARY-INPUT DISCRETEMEMORYLESSCHANNELS:
DEFINITIONS AND PROPERTIES

Let Xi → Yi denote a binary-input symmetric discrete
memoryless channel (BISDMC) with inputsXi ∈ X :=
{−1,+1} and outputsYi ∈ Yi ⊂ R, whereX andYi denote
the input and the output alphabet of the channel, respectively.
The transition probabilities are given bypYi|Xi

(y|x), denoting
the probability density function for continuous output alpha-
bets and denoting the probability mass function for discrete
output alphabets. Since the channel is symmetric, we can
assume

pYi|Xi
(y|x) = pYi|Xi

(−y| − x)



for all x ∈ X andy ∈ Yi without significant loss of generality.
The mutual information (MI) of the channel is defined as

Ii := I(Xi;Yi). (1)

Let define the random variableJi ∈ Ji := {y ∈ Yi : y ≥ 0}
as the magnitude ofYi,

Ji := |Yi|.

Using Ji, the elements of the output alphabetYi can be
partitioned into the subsets

Yi(j) :=

{
{+j,−j} for j ∈ Ji\{0},
{0, 0} for j = 0.

With these definitions,Ji indicates which output setYi(j) the
output symbolYi belongs to.

The random variableJi separates the symmetric channel
Xi → Yi into strongly symmetric sub-channelsXi → Yi|Ji =
j; it is therefore denoted as sub-channel indicator. The sub-
channels are binary symmetric channels. Their conditional
crossover probabilitiesεi(j) are defined as

εi(j) :=

{
pYi|Xi,Ji

(−j|+ 1, j) for j ∈ Ji\{0},
1
2 for j = 0.

Let h(x) := −x ldx− (1− x) ld (1− x), x ∈ [0, 1], denote
the binary entropy function, and leth−1(y), y ∈ [0, 1], denote
its inverse forx ∈ [0, 1

2 ]. Then, the MI of sub-channelj is
given as

Ii(j) := I(Xi;Y |Ji = j) = 1− h(εi(j)). (2)

(Note that forJi = 0, the BEC with zero MI is transformed
into an equivalent BSC with zero MI, so that all sub-channels
are BSCs.)

Using the above definitions, the MI of the channel can be
written as the expected value of the MI of its sub-channels,

Ii = E
j∈Ji

{Ii(j)}. (3)

The separation of a BISDMC into sub-channels which are
BSCs is exploited in the following.

III. E XTRINSIC INFORMATION FORPARITY CHECK

EQUATIONS

Let C1, C2, . . . , CN ∈ {0, 1} =: F2 denoteN binary code
bits, which are uniformly distributed and independent except
for the parity-check constraint

C1 ⊕ C2 ⊕ · · · ⊕ CN = 0. (4)

The code bits are mapped to the channel inputsXi according
to the one-to-one mapping0 7→ +1, 1 7→ −1. (For the sake
of convenience, alsoXi will be denoted as code bit when
possible without causing ambiguity.) The code bitsXi are
transmitted over independent BISDMCsXi → Yi having MI
Ii := I(Xi;Yi), i = 1, 2, . . . , N . Note that this includes also
the special case that all code bits are transmitted over the same
channel, as we consider memoryless channels. The relations
are depicted in Figure 1.
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Fig. 1. N independent channels concatenated by a parity-check constraint
on the inputs.

The notion ofextrinsic probabilityplays an important role
in the context of iterative decoding, see e.g. [2], [13]. The
extrinsic probability of a bit is defined as the probability of
this bit given all observations except for its direct observation.
Similarly, anextrinsic informationon a bit can be defined (as
also done in [14]). In the following, the short hand notation
aj

i := [ai, ai+1, . . . , aj−1, aj ] is used for subsequences.

Definition 1 The extrinsic informationIe1 on bit X1 is de-
fined as

Ie1 := I(X1;Y N
2 ),

i.e., all channel outputs except the direct observationY1 are
taken into account. The extrinsic information forXi, i =
2, 3, . . . , N , is defined analogous.

The following class of functions will show to be useful.

Definition 2 For x1, x2, . . . , xn ∈ [0, 1], n ≥ 2, the function
f2(x1, x2) is defined as

f2(x1, x2) := 1− h
(
[1− h−1(1− x1)] · h−1(1− x2)

+ h−1(1− x1) · [1− h−1(1− x2)]
)
,

and the functionfn(x1, x2, . . . , xn), n > 2, is recursively
defined as

fn(x1, x2, . . . , xn) := f2

(
x1, fn−1(x2, x3, . . . , xn)

)
.

An interpretation of these functions is as follows. Consider
n BSCs Si → Ri, Si, Ri ∈ {−1,+1}, having MI Ii :=
I(Si;Ri), i = 1, 2, . . . , n. These BSCs are serially concate-
nated such thatRi = Si+1 for i = 1, 2, . . . , n − 1. Then, the
end-to-end MI is given asI(S1;Rn) = fn(I1, I2, . . . , In).

Using the above definitions, the main theorem of this paper
can be stated as follows:

Theorem 1 (Bounds on extrinsic information) If the chan-
nels Xi → Yi are BISDMCs having MIIi := I(Xi;Yi),
i = 2, 3, . . . , N , then the extrinsic information on code bitX1,
Ie1 := I(X1;Y N

2 ), is bounded as

I2I3 · · · IN ≤ Ie1 ≤ fN−1(I2, I3, . . . , IN ).

The upper bound is achieved if all channels are BSCs, as
will be shown in Theorem 2, and the lower bound is achieved
if all channels are BECs, as will be shown in Theorem 3. Since
we have examples achieving the bounds, these bounds cannot
be further improved.



The bounds are illustrated for the case ofI2 = I3 = · · · =
IN in Figure 2. Note that this corresponds to the case that the
code bits are transmitted over channels which have the same
MI but may differ in other statistical properties.
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Fig. 2. Bounds on extrinsic informationIe1 = I(X1; Y N
2 ) vs I2 = I3 =

· · · = IN . The lower bounds (dashed lines) correspond to the case of BECs,
the upper bounds (solid lines) correspond to the case of BSCs.

In the following, first the extrinsic information for two
special cases is computed: (a) all channels are BSCs; (b) all
channels are BECs. Then, these results are used to prove the
bounds for the general case, i.e., to prove Theorem 1.

A. Only Binary Symmetric Channels

If all channelsXi → Yi are BSCs, then the extrinsic in-
formation can be expressed using functionfn(x1, x2, . . . , xn)
according to Definition 2.

Theorem 2 (BSC case)If the channelsXi → Yi are BSCs
having MI Ii := I(Xi;Yi), i = 2, 3, . . . , N , then the extrinsic
information on code bitX1, Ie1 := I(X1;Y N

2 ), is given as

Ie1 = fN−1(I2, I3, . . . , IN ).

Proof: Using the chain rule of mutual information, the
extrinsic information can be written as

I(X1;Y N
2 ) = I(X1;Y N−1

2 ) + I(X1;YN |Y N−1
2 ).

Due to the independence ofX1, X2, . . . , XN−1, we have
I(X1;Y N−1

2 ) = 0.
Let binary random variablesZi ∈ F2, i = 1, 2, . . . , N , be

defined as

C1 = Z1,

Z1 ⊕ C2 = Z2,

Z2 ⊕ C3 = Z3,

. . .

ZN−2 ⊕ CN−1 = ZN−1,

ZN−1 = CN ,

ZN = YN .

It follows from the definitions that allZi are uniformly
distributed and that

I(X1;YN |Y N−1
2 ) = I(Z1;ZN |Y N−1

2 ). (5)

For the time being, assumeY N−1
2 = yN−1

2 , whereyN−1
2

denotes an arbitrary but fixed realization ofY N−1
2 . Then, the

random variablesZi form a chain of BSCs,

Z1 → Z2 → Z3 → · · · → ZN−2 → ZN−1 → ZN .

Consider now the MI of each BSC:
Z1 → Z2: Since C2 represents the error bit, the crossover
probability is given by

ε2 := min
y′
2

{
pC2|Y2(1|y

′
2)

}
= h−1(1− I2).

Thus, the MI for this channel is simply given by1− h(ε2) =
I2, which is independent fromy2.
Zi → Zi+1, i = 2, 3, . . . , N − 2: Similarly to Z1 → Z2, the
MI is given by Ii, respectively.
ZN−1 → ZN : This channel is equal to the channelXN → YN ,
and thus the MI isIN .
Using the interpretation of Definition 2, we immediately get

I(Z1;ZN |Y N−1
2 = yN−1

2 ) = fN−1(I2, I3, . . . , IN ).

Due to the independence fromyN−1
2 , we have

I(Z1;ZN |Y N−1
2 ) = E

{
I(Z1;ZN |Y N−1

2 = yN−1
2 )

}
= fN−1(I2, I3, . . . , IN ).

Together with (5), this concludes the proof.

B. Only Binary Erasure Channels

In this subsection, it is assumed that all channelsXi → Yi

are BECs. In this case, the extrinsic information can be derived
using a simple combinatorial approach.

Theorem 3 (BEC case)If the channelsXi → Yi are BECs
having MI Ii := I(Xi;Yi), i = 2, 3, . . . , N , then the extrinsic
information on code bitX1, Ie1 := I(X1;Y N

2 ), is given as

Ie1 = I2I3 · · · IN .

Proof: Let δi = Pr(Yi = ∆) denote the erasure
probability of channelXi → Yi. X can be recovered fromY N

2

only if no erasure occurred, due to the independence ofXi

and the parity check constraint. This happens with probability
(1−δ2)(1−δ3) · · · (1−δN ), and the corresponding MI is then
equal to1. In all other cases, the MI is equal to zero. Thus,
we have

I(X1;Y N
2 ) = (1− δ2)(1− δ3) · · · (1− δN ).

Regardingδi = 1− Ii concludes the proof.



C. General Symmetric Memoryless Channels

If the channelsXi → Yi are only assumed to be BISDMCs
without further restrictions, the extrinsic information cannot
be computed exactly. Nevertheless, bounds can be given
according to Theorem 1. In this section, the proof of this
theorem is given.

First, two properties of the functions according to Defini-
tion 2 are needed.

Lemma 1 The functionfn(x1, x2, . . . , xn), x1, x2, . . . , xn ∈
[0, 1], n ≥ 2, has the following two properties:
(a) fn(x1, x2, . . . , xn) is convex-∩ in eachxi, i = 1, 2, . . . , n;
(b) fn(x1, x2, . . . , xn) is not less than the product of its
arguments:

fn(x1, x2, . . . , xn) ≥ x1x2 · · ·xn.

The proof follows immediately from Lemma 2 in [12] or
Lemma 2 in [15].

Using the above lemma, Theorem 1 can be proved as
follows.

Proof: The extrinsic information does not change if it is
written conditional on the sub-channel indicatorsJN

2 as

I(X1;Y N
2 ) = I(X1;Y N

2 |JN
2 )

= E
jN
2

{I(X1;Y N
2 |JN

2 = jN
2 )}

= E
jN
2

{
fN−1

(
I2(j2), I3(j3), . . . , IN (jN )

)}
. (6)

The argument in the second line corresponds to the case,
where all channels are BSCs, due to the conditions. Therefore,
this expression can be replaced by the functionfN−1(. . .)
according to Theorem 2.

In the next step, the two properties of functionfN−1(. . .)
given in Lemma 1 are exploited. First, using the lower bound
for this function in (6), we get

E
jN
2

{
fN−1

(
I2(j2), I3(j3), . . . , IN (jN )

)}
≥

≥ E
jN
2

{
I2(j2)I3(j3) · · · IN (jN )

}
=

= I2I3 · · · IN ,

where in the last line, (3) was used. Second, since the function
fN−1(. . .) is convex-∩, Jensen’s inequality can be applied
in (6), and we get

E
jN
2

{
fN−1

(
I2(j2), I3(j3), . . . , IN (jN )

)}
≤

≤ fN−1

(
E
j2
{I2(j2)}, E

j3
{I3(j3)}, . . . , E

jN

{IN (jN )}
)

=

= fN−1(I2, I3, . . . , IN ).

IV. CONCLUSIONS

In this paper, binary-input symmetric discrete memoryless
channels connected by a parity-check constraint on their
inputs were considered. Bounds on the combined extrinsic
information on one bit based on the mutual information of

each channel were presented. For the cases that all BISDMCs
are BSCs or BECs, respectively, the extrinsic information was
computed exactly. Since these two cases correspond to the two
bounds, the given bounds cannot be further improved.

In this paper, we focused on the case that the channels are
coupled by a parity-check constraint on their inputs. But the
applied techniques may be used or extended to yield similar
results for other constraints. Of special interest is certainly the
case that all channels have the same inputs, which may be
denoted as equality constraint [12].

In [11], the concept of information combining and the
corresponding bounds were applied to analysis and design of
concatenated codes. Using the bounds for the parity-check
constraint, presented in this paper, and the bounds for the
equality constraint, mentioned above, the iterative decoder
for low-density parity-check codes can be analyzed without
the commonly used Gaussian approximation for the a-priori
distribution.
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