Aalborg Universitet AALBORG

UNIVERSITY

Bounds on information combining for parity-check equations

Land, Ingmar; Hoeher, A.; Huber, Johannes

Published in:
2004 International Seminar on Communications

DOl (link to publication from Publisher):
10.1109/1Z2S.2004.1287390

Publication date:
2004

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Land, I., Hoeher, A., & Huber, J. (2004). Bounds on information combining for parity-check equations. In 2004
International Seminar on Communications (pp. 68-71). IEEE Signal Processing Society.
https://doi.org/10.1109/1Z2S.2004.1287390

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025


https://doi.org/10.1109/IZS.2004.1287390
https://vbn.aau.dk/en/publications/4ec6d6c0-cd85-11db-b8b8-000ea68e967b
https://doi.org/10.1109/IZS.2004.1287390

Bounds on Information Combining
for Parity-Check Equations

Ingmar Land and Peter A. Hoeher Johannes Huber
Information and Coding Theory Lab Chair of Information Transmission
University of Kiel, Germany University Erlangen-Nrnberg, Germany
{il,ph} @tf.uni-kiel.de huber@Int.de
www.tf.uni-kiel.de/ict www.Int.de/lit

Abstract—When several independent channels are coupled by [11] for design and analysis of parallel concatenated coding
a parity check constraint on their inputs, the mutual information  schemes. Since not all statistical properties of the channels
between the input of one channel and the outputs of all other 4.6 taken into account, but only their mutual information, only

channels can be expressed as a combination of the mutual . . - -
information between the input and the output of each individual bounds on the combined information can be given.

channel. This concept is denoted as information combining. For I [12], bounds on information combining were presented
binary-input symmetric discrete memoryless channels, we present for the case that a binary symbol is transmitted over two

bounds on the combined information which are only based on independent channels. It was shown that these bounds cannot
the mutual information of the channels. Furthermore, we show be further improved, and that the lower bound corresponds
that these bounds cannot be further improved. Exact expressions . .
are provided for the case that all channels are binary symmetric to the case that both channels are binary symmetric channels
channels and for the case that all channels are binary erasure (BSCs), and that the upper bound corresponds to the case that
channels. both channels are binary erasure channels (BECs).

Two independent channels having the same input can be
interpreted as two independent channels with a parity-check

Consider coded transmission over one discrete memorylessistraint on their inputs. In this paper, this concept is gen-
channel or over multiple parallel discrete memoryless chagralized to the case of an arbitrary number of independent
nels. Each noisy observation of a code bit contains informatichannels with their inputs fulfilling a parity-check equation;
on this code bit. Furthermore, each observation also contathe inputs can be regarded as the code bits of a parity check
information on other code bits and information bits (or focode. This scenario can also be regarded as decoding on a local
short, info bits) due to the code constraints. Accordingly, thgarity check constraint in a graph, as mentioned above. The
overall information on a certain code bit or info bit is achannels under consideration are binary-input symmetric dis-
combination of the information on code bits. (In this papecrete memoryless channels (BISDMC). Bounds are presented
we will use the term “info bit” instead of “information bit” to for the mutual information between a certain code bit and the
avoid confusion with “mutual information”.) observations of the other code bits; this information is denoted

This combining of information under code constraints ias extrinsic information on this code bit.
used in every decoder, but the way code constraints are take#lere is an outline of the paper: In Section Il, some def-
into account may differ. Whereas an APP decoder, e.g. [Idjtions and properties for BISDMCs are given. Section Il
considers all constraints at once, iterative decoding algorithmddresses information combining “across” the parity check
consider only a subset of all code constraints in each decodeguation. Bounds for the general case and exact expressions
step. An iterative decoder for parallel and serially concatenatieat the only-BSC case and for the only-BEC case are given.
codes (turbo codes), e.g. [2], [3], [4], takes into account onfinally, conclusions are drawn in Section V.
the constraints of the constituent codes. An iterative decoder
for low-density parity-check codes, e.g. [5], [6], or in general,”'
any iterative decoder operating on graphs, e.g. [7], [8], [9],
takes into account only local code constraints. Such a basidet X; — Y; denote a binary-input symmetric discrete
local constraint between code bits is given by a parity checkemoryless channel (BISDMC) with inputX; € X :=
equation. {-1,41} and outputsY; € Y; C R, whereX andY; denote

If the information on the code bits is represented by prolhe input and the output alphabet of the channel, respectively.
abilities, log-likelihood ratios, or similar measures, then th€he transition probabilities are given by, x, (y|=), denoting
combined information on one code bit can easily be computdte probability density function for continuous output alpha-
by an appropriate operation as given, e.g., in [9]. bets and denoting the probability mass function for discrete

In this paper, “information combining” is used in a veryoutput alphabets. Since the channel is symmetric, we can
strict sense, namely only faombining of mutual information assume
This notion of information combining was introduced in [10], Py;|x: (Y]T) = Py, x, (—y| — 2)

I. INTRODUCTION

BINARY-INPUT DISCRETEMEMORYLESSCHANNELS:
DEFINITIONS AND PROPERTIES



for all z € X andy € Y; without significant loss of generality. Cr=a X, - Y
The mutual information (MI) of the channel is defined as
Cy=- X9 —» Y,

I = I(X;;Y5). @
Let define the random variablg € J; ;= {y € Y; : y > 0}
as the magnitude of;, Cy=e- Xy—»Yy
Ji = \Yl| Fig. 1. N independent channels concatenated by a parity-check constraint

on the inputs.
Using J;, the elements of the output alphab®t can be
partitioned into the subsets

o ) The notion ofextrinsic probabilityplays an important role
Yi(j) i= {+4, =} forjeJi\{0}, in the context of iterative decoding, see e.g. [2], [13]. The
{0,0} for j = 0. extrinsic probability of a bit is defined as the probability of

With th definiti indi hich 5 th this bit given all observations except for its direct observation.
ith these definitions/; indicates which output séf;(j) the  gjmjarly, anextrinsic informationon a bit can be defined (as

output symbolY; be]ongs to. ) Iso done in [14]). In the following, the short hand notation
The random variable/; separates the symmetric channel; .

X; — Y; into strongly symmetric sub-channel§ — Y;|J; = ° [@i; @i, a5-1,0,] 1S used for subsequences.
j; it is therefore denoted as sub-channel indicator. The St@éfinition 1 The extrinsic informationl.; on bit X;
channels are binary symmetric channels. Their conditiormed as

crossover probabilities;(j) are defined as Ly = I(X1: YY),

is de-

e:(j) = {pmxi,ﬁ(—j +1,5) forj € J;:\{0}, i.e., all channel outputs except the direct observatignare
% for j = 0. taken into account. The extrinsic information fof;, i =
2,3,..., N, is defined analogous.
Let h(z) := —zldz— (1 —2)1d (1 —2), = € [0, 1], denote
the binary entropy function, and lét"!(y), y € [0,1], denote  The following class of functions will show to be useful.
its inverse forz € [0, 3]. Then, the MI of sub-channel is
given as Definition 2 For x1,xs,...,2, € [0,1], n > 2, the function

LG) = I(XaY V= ) = 1 - ha(). (@ (e s defnedas

(Note that for.J; = 0, the BEC with zero Ml is transformed ~ f2(71,22) == 1 — h([l —h' A —z)] RN (L~ 2)
into an equivalent BSC with zero MI, so that all sub-channels _ _
are BSCs.) AT (L) Lk 1(1_362)})’

Using the above definitions, the MI of the channel can bgg the functionf, (21, zs,...,2,), n > 2, is recursively
written as the expected value of the MI of its sub-channelsgefined as e

I’i :751{12(])} (3) fn(.%‘]_,.%‘g,...7l‘n) = fg(ml,fn,1($27x3,...7Z‘n)).
The separation of a BISDMC into sub-channels which are An interpretation of these functions is as follows. Consider
BSCs is exploited in the following. n BSCs S, — R;, S;,R; € {-1,+1}, having Ml I; :=
I(Si; R;), i = 1,2,...,n. These BSCs are serially concate-
[1l. EXTRINSIC INFORMATION FORPARITY CHECK nated such tha; = S;,; for i = 1,2,...,n — 1. Then, the
EQUATIONS end-to-end Ml is given ag(Sy; Ry) = fu(l1, Io, ..., I).

Let C1,Cs,...,Cy € {0,1} =: F, denoteN binary code Using the above definitions, the main theorem of this paper
bits, which are uniformly distributed and independent excepan be stated as follows:
for the parity-check constraint
Theorem 1 (Bounds on extrinsic information) If the chan-
C1eC2® 80y =0 4 nels X; — Y; are BISDMCs having MIJ; = I(X;:Y)),
The code bits are mapped to the channel inpttsaccording @ = 2,3, -, N, then the extrinsic information on code B,
to the one-to-one mapping — +1, 1 — —1. (For the sake le1 :=I(X1;Y3"), is bounded as

of convenience, alsd(? will be_ de_noted as code bit when LIy Iy < In < fyoi(ls,Is,...,In).
possible without causing ambiguity.) The code hiks are
transmitted over independent BISDMG§ — Y; having Mi The upper bound is achieved if all channels are BSCs, as

I, .= I(X;;Y;),i=1,2,...,N. Note that this includes alsowill be shown in Theorem 2, and the lower bound is achieved
the special case that all code bits are transmitted over the safhad channels are BECs, as will be shown in Theorem 3. Since
channel, as we consider memoryless channels. The relatisreshave examples achieving the bounds, these bounds cannot
are depicted in Figure 1. be further improved.



The bounds are illustrated for the caselpf= I3 =--- = It follows from the definitions that allZ; are uniformly
Iy in Figure 2. Note that this corresponds to the case that tlistributed and that
code bits are transmitted over channels which have the same

MI but may differ in other statistical properties. I(X1; YNYY ™Y = 1(Zy; Zn Y ). (5)
ey For the time being, assumg ! = y2' !, wherey)
4 N=3 / denotes an arbitrary but fixed reaIizationlOf“l. Then, the
o N=5 /I random variablesZ; form a chain of BSCs,
0.8f th
v N=9 // 11
Ay W — Ly — 23— > IN-o— ZN-1— ZN.
Uy
0.6 g i _
ot /// ' Consider now the MI of each BSC:
= /! o))/ Zy — Zy: Since Cy represents the error bit, the crossover
0.4} ASNYS WS probability is given by
// ,/ 1 L
/. A &2 = min{pc, v, (11y5)} = b1 (1 - I).
0.2} . // / | Y2
. // 7 , y - - - -
- gt e Thus, the MI for this channel is simply given ly— h(es) =
= = -7 I,, which is independent fronp,.
00 0.2 0.4 0.6 0.8 1 Zi — Ziy1,1=2,3,...,N —2: Similarly to Z; — Z, the
L= I(X:Y)) Ml is given by I;, respectively.

Zn—_1 — Zn: This channel is equal to the chandély — Yy,
and thus the Ml isly.
%‘sing the interpretation of Definition 2, we immediately get

Fig. 2. Bounds on extrinsic informatiof,; = I(XI;YZN) vs Iy = I3 =
... = In. The lower bounds (dashed lines) correspond to the case of BE
the upper bounds (solid lines) correspond to the case of BSCs.

In the following, first the extrinsic information for two H(Z;ZnlYs =y ) = fnoa(la, I, o, D).
special cases is computed: (a) all channels are BSCs; (b) all _ .
channels are BECs. Then, these results are used to prove tHaue to the independence fropd’ !, we have

bounds for the general case, i.e., to prove Theorem 1.

A. Only Binary Symmetric Channels

If all channelsX; — Y; are BSCs, then the extrinsic in-
formation can be expressed using functitriz,, z2, ..., x,)
according to Definition 2.

I(Zy;Zy|Y Y = EB{I(Zy; 2y =yl )}
= fy-1(I2, I5,...,IN).

Together with (5), this concludes the proof. ]

Theorem 2 (BSC case)lf the channelsX; — Y; are BSCs B. Only Binary Erasure Channels
having MII; := I(X;;Y;),i=2,3,..., N, then the extrinsic
information on code bitXy, I.; := I(X;;Y5Y), is given as

It = fno1(I2, I3, ... IN).

Proof: Using the chain rule of mutual information, the
extrinsic information can be written as Theorem 3 (BEC case)lf the channelsX; — Y; are BECs
(X1 YN) = I(Xl;YQN_l) +I(X1;YN\Y2N‘1). having MIIi = I(Xi;if,»), 1=2,3,..., N, then_ thg extrinsic
] information on code bitXy, I.; := I(X;;Y5Y), is given as
Due to the independence ofy, Xo,..

I(X; Y5 ) =0,
Let binary random variableg; € Fy, i = 1,2, ...
defined as

In this subsection, it is assumed that all chann€|s— Y;
are BECs. In this case, the extrinsic information can be derived
using a simple combinatorial approach.

., Xn_1, We have

N be Iy =Dz In.

Proof: Let §; = Pr(Y; = A) denote the erasure
o) 71, probability of channelX; — Y;. X can be recovered froi;¥
a0 = Zy only if no erasure occurred, due to the independenc& of
P P ’ and the parity check constraint. This happens with probability
203 3 (1—62)(1—463)---(1—4dy), and the corresponding Ml is then
equal tol. In all other cases, the Ml is equal to zero. Thus,
ZN—2DCn_1 ZN-1, we have
Zn-1 = Ow, I(X1:Y3) = (1= 82)(1 = 8a) - (1 = o).
Zy = Yn.

Regardingd; = 1 — I; concludes the proof.



C. General Symmetric Memoryless Channels each channel were presented. For the cases that all BISDMCs

If the channelsX; — Y; are only assumed to be BISDMCs@ré BSCs or BECs, respectively, the extrinsic information was
without further restrictions, the extrinsic information canndtomputed exactly. Since these two cases correspond to the two
be computed exactly. Nevertheless, bounds can be giRfHNds, the given bounds cannot be further improved.

according to Theorem 1. In this section, the proof of this N this paper, we focused on the case that the channels are
theorem is given. coupled by a parity-check constraint on their inputs. But the

First, two properties of the functions according to Defini@PPlied techniques may be used or extended to yield similar
tion 2 are needed. results for other constraints. Of special interest is certainly the
case that all channels have the same inputs, which may be
denoted as equality constraint [12].
In [11], the concept of information combining and the
corresponding bounds were applied to analysis and design of
tsconcatenated codes. Using the bounds for the parity-check
constraint, presented in this paper, and the bounds for the
equality constraint, mentioned above, the iterative decoder
for low-density parity-check codes can be analyzed without

. . , the commonly used Gaussian approximation for the a-priori
The proof follows immediately from Lemma 2 in [12] or yistribution.

Lemma 2 in [15].
Using the above lemma, Theorem 1 can be proved as
follows. [
Proof: The extrinsic information does not change if it is
written conditional on the sub-channel indicatokf as

Lemma 1 The functionf,,(z1,z2,...,2n), T1,T2,..., T, €
[0,1], n > 2, has the following two properties:

@) fn(x1,a,...,x,) is convexA in eachz;, i =1,2,...,n;
(b) fn(z1,za,...,z,) is not less than the product of i

arguments:

folz1, 22, ... 2n) > T122 -+ - Ty
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