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Abstract — A novel approach is presented for assess-
ing the quality of transmission systems, comprising
quantized source signals and APP source decoders,
via Monte-Carlo simulation. A-posteriori probabili-
ties are exploited in order to obtain an unbiased esti-
mate of both the symbol error probability and the ex-
pected distortion for the transmission system; knowl-
edge of the transmitted source signal is not necessary.
Compared to the conventional method this blind qual-
ity estimation has a smaller estimation variance.

Summary

The bit error rate estimation based on a-posteriori probabili-
ties (APPs) was shown to be superior to the conventional one
based on hard decisions [1]. In this paper this method is ex-
tended to symbol error rate (SER) and distortion estimation.

Let us assume a simplified transmission model, where a
real-valued source signal1 U is quantized to quantization in-
dices I, i ∈ I, which are transmitted over a communication
channel. Based on the channel observations Y the receiver
generates APPs Pr(I = i|y) [2], which are exploited to obtain

estimates Û and Î of U and I.
Typically quality evaluation via Monte-Carlo simulation

is based on a comparison of the transmitted source data
(u, i) to their reconstructed versions (û, î) with respect
to appropriate quality measures, such as the symbol error

rate Ps or distortion D, defined as Ps := Pr(I 6= Î) and

D :=E{(U − Û )2}. Accordingly the conventional approach
for measuring Ps and D can be summarized as follows:

Method H: Let us define the hard SER sample

zH := Pr(I 6= Î|I = i, Î = î), zH ∈ {0, 1}, indicating whether
a symbol error occurred or not, and let us define the hard

distortion sample dH := (u − û)2, taking into account the
contribution to the reconstruction error due to estimate û.
For a transmission of K source symbols, the corresponding
quality samples can be used to compute the hard SER

estimate z
(K)
H

and hard distortion estimate d
(K)
H

as

z
(K)
H

:=
1

K

K
X

k=1

zHk and d
(K)
H

:=
1

K

K
X

k=1

dHk.

Obviously, z
(K)
H

and d
(K)
H

rely on the knowledge of u and
i, from which it follows that the conventional Method H is
not suitable for application in practical transmission systems.

Thus, we consider now the case, where knowledge of u and
i is not available. I.e., only the source statistics, the estimates
û and î, and the set of APPs pAk

= {Pr(Ik = i|y) | i ∈ I}
may be used for quality estimation. These restrictions lead
to a novel approach for the evaluation of Ps and D, referred
to as Method S in the following:

Method S: We define the soft SER sample as
zS := Pr(I 6= Î|I = î, PA = pA), which can be com-

puted as zS = 1 − Pr(I = î|y), and we define the soft

distortion sample dS := E{(U−Û)2|PA = pA}, which is given
by the a-posteriori expectation of the mean-squared error
according to dS =

P

i∈I
E{(u − û)2|I = i} · Pr(I = i|y) for

1Random variables are denoted by uppercase letters, their real-
izations by lowercase letters. Indices are omitted for convenience,
whenever this can be done without ambiguity.

a given û. Considering again the transmission of K source

symbols, the soft SER estimate z
(K)
S

and the soft distortion

estimate d
(K)
S

for Method S are given by

z
(K)
S

:=
1

K

K
X

k=1

zSk and d
(K)
S

:=
1

K

K
X

k=1

dSk.

For comparison of both methods we regard the hard and
the soft SER and distortion samples as random variables ZH ,
ZS and DH , DS . From their definitions and since the es-
timates are sample means, it follows that µZ = E{ZH} =
E{ZS} = Ps and µD = E{DH} = E{DS} = D. Thus, both
estimates are unbiased for both the SER and the distortion
estimation.

An appropriate figure-of-merit is the estimation variance.
The variance of the hard SER sample ZH can be written as

σ
2
ZH

= E{Z2
H} − µ

2
Z = E{ZH} − µ

2
Z = µZ(1 − µZ), (1)

where the identity Z2
H = ZH was applied. The variance of

the soft SER sample ZS , respectively, can be written as

σ
2
ZS

= E{Z2
S} − µ

2
Z ≤ E{ZS} − µ

2
Z = µZ(1 − µZ) (2)

and is upper bounded by µZ(1 − µZ), since from ZS ∈ [0, 1]
it follows that Z2

S ≤ ZS , and thus E{Z2
S} ≤ E{ZS}. Equality

holds for the uninteresting cases ZS =0 and ZS =1 (σ2
ZS

=0).
For all other cases we have a lower bound on the ratio of
variances σ2

ZH
and σ2

ZS
of the SER samples:

σ2
ZH

σ2
ZS

> 1, (3)

resulting directly from (1) and (2).
A similar bound on the ratio of variances σ2

DH
and σ2

DS

of the distortion samples can be derived by applying Jensen’s
inequality to the a-posteriori expectation of D2

H :

E{D2
H |PA = pA} ≥ E{DH |PA = pA}

2 = D
2
S , (4)

where the identity DH = (u − û)2 and the definition of the
soft distortion sample DS is exploited. It follows from (4) that
E{D2

H} ≥ E{D2
S}, where again equality holds for σ2

DS
= 0

(see above), and otherwise
σ2

DH

σ2
DS

> 1, (5)

which represents a lower bound on the ratio of variances σ2
DH

and σ2
DS

of the distortion samples.
The bounds in (3) and (5) prove that the hard SER sample

as well as the hard distortion sample have always (except for
Ps = 0) a larger variance than the soft SER sample and the
soft distortion sample, respectively. This reveals the superior-
ity of the proposed Method S to the conventional Method H.
In numerical results for Gauss-Markov sources the gain with
respect to the estimation variance turned out to be even larger
than predicted.
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