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Abstract

Consider coded transmission over a binary-input symmetric memory-
less channel. The channel decoder uses the noisy observations of the
code symbols to reproduce the transmitted code symbols. Thus, it com-
bines the information about individual code symbols to obtain an over-
all information about each code symbol, which may be the reproduced
code symbol or its a-posteriori probability. This tutorial addresses the
problem of “information combining” from an information-theory point
of view: the decoder combines the mutual information between channel
input symbols and channel output symbols (observations) to the mutual
information between one transmitted symbol and all channel output
symbols. The actual value of the combined information depends on the
statistical structure of the channels. However, it can be upper and lower
bounded for the assumed class of channels. This book first introduces
the concept of mutual information profiles and revisits the well-known
Jensen’s inequality. Using these tools, the bounds on information com-
bining are derived for single parity-check codes and for repetition codes.
The application of the bounds is illustrated in four examples: informa-
tion processing characteristics of coding schemes, including extrinsic
information transfer (EXIT) functions; design of multiple turbo codes;
bounds for the decoding threshold of low-density parity-check codes;
EXIT function of the accumulator.



1
Introduction

In digital communications, the transmitter adds redundancy to the
data to be transmitted, and the receiver exploits this redundancy to
perform error correction. In this book, we restrict ourselves to binary
linear channel codes and transmission over memoryless communica-
tion channels. The transmitter can thus be identified with the chan-
nel encoder and the receiver with the channel decoder. Because of the
assumed channel model, the receiver obtains one noisy observation for
each code symbol.

Each of these observations carries information about the corre-
sponding code symbol at the channel input, of course. In addition
to that, due to the code constraints that couple the code symbols,
each observation also carries information about other code symbols. To
exploit the redundancy in the code, the decoder combines all available
information to estimate the value of each code symbol. In this chapter,
the focus will be on optimal combining, i.e. combining such that all
information about individual code symbols is retained.

This process of information combining can also be seen from an
information theory point of view when the asymptotic case of codes of

227



228 Introduction

infinite length1 is considered. For each code symbol, there is a mutual
information between the code symbol and the noisy observation. These
values of mutual information are “combined” to obtain a value of the
mutual information between a code symbol (or an information symbol)
and all observations. The decoder is thus interpreted as a processor for
mutual information. This is done in the information processing charac-
teristic (IPC) method [1–3].

Some classes of channel codes, e.g., low-density parity-check
(LDPC) codes [4, 5], are iteratively decoded: two constituent decoders
exchange extrinsic values, called messages, until they agree on a certain
estimated codeword, the maximum number of iterations is reached, or
another stopping criterion is fulfilled. (The term “extrinsic” will be
introduced later.) These constituent decoders can also be interpreted
as processors for mutual information, in this case of extrinsic mutual
information. This is done in the extrinsic information transfer (EXIT)
chart method [6, 7]

The mutual information resulting from the combining operation can
be computed exactly if exact models of the channels between the code
symbols and the observations (or messages) are assumed to be known,
as in the IPC method and the EXIT chart method. Thus, the combined
mutual information depends on the “input” mutual information and
the channel models. These models (e.g. the Gaussian noise model),
however, do not apply exactly.

This chapter addresses a generalization of these ideas. The channels
are only assumed to be symmetric and memoryless. Thus, the exact
value of the combined mutual information cannot be determined, but
an upper and a lower bound can be given. This is referred to as bounds
on information combining [8,9]. These bounds depend then only on the
values of the “input” mutual information but not on the specific channel
model. This basic problem is interesting from a pure information-theory
point of view. The results can, however, also be used to analyze coding
schemes and iterative decoders; they can even be used to design codes
for the whole class of memoryless symmetric channels [10–15]. A closer

1 To be precise, ensembles of codes are considered and the code length tends to infinity.
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look at these references as well as at references to similar or extended
combining concepts are provided at the end of this chapter.

This book gives an introduction to the principles of information
combining. The concept is described, the bounds for repetition codes
and for single parity-check codes are proved, and some applications are
provided. As we focus on the basic principles, we consider a binary sym-
metric source, binary linear channel codes, and binary-input symmetric
memoryless channels.

Throughout this book, we use the following notation. Upper-case
letters denote random variables, and lower-case letters denote realiza-
tions. Vectors and matrices are both written in boldface. The meaning
of boldface upper-case letters becomes clear from the context.

1.1 Combining of Probabilities

To achieve very closely the information-theoretic performance bounds
of digital communication systems, joint processing of information over
long blocks of symbols is necessary. Within such blocks, information
has to be combined in some sense, e.g., parity symbols are generated in
a channel encoder by forming check sums over distinct subsets of the
information symbols, which are fed into the encoder. For a linear block
code C with lengthN of symbols taken from the binary field F2 = {0,1},
these check sums are specified by the rows of a (N − K) × N parity
check matrix H, where K denotes the number of dimensions of the
linear subspace in F

N
2 forming the code.

Consider a binary codeword X = (X0,X1, . . . ,XN−1) of length N

that is generated from K binary information symbols; the information
symbols are assumed to be independent and uniformly distributed.
Each code symbol Xi ∈ {0,1} is transmitted over a binary-input
communication channel, which we assume to be symmetric, time-
invariant, memoryless, and without feedback throughout this book.
This binary input symmetric memoryless channel (BISMC) maps the
input symbols Xi into output symbols Yi taken from an M -ary set
Y = {0,1, . . . ,M − 1} in a random way according to the transition
probabilities Pr(Y = j|X = x), see Fig. 1.1. A channel is said to be
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Fig. 1.1 Characterization of a BISMC by means of transition probabilities.

symmetric if it can be decomposed into strongly symmetric subchan-
nels [16]; this is addressed in detail in Section 2.2.

If the a-priori probability Pr(Xi = 0) and the channel transition
probabilities Pr(Yi = yi|Xi = xi) are known, a-posteriori probabilities

pi := Pr(Xi = 0|Yi = yi)

=
Pr(Xi = 0)Pr(Yi = yi|Xi = 0)

Pr(Xi = 0)Pr(Yi = yi|Xi = 0) + (1 − Pr(Xi = 0))Pr(Yi = yi|Xi = 1)
(1.1)

are available after observing Yi = yi for each individual code symbol.
Usually, the vector p = (p0, . . . ,pN−1) of these probabilities after trans-
mission, but before decoding, is referred to as the intrinsic probabilities
for the code symbols obtained from the communication channel [17].

Without any restriction of generality, we specify a probability on a
binary variable X ∈ {0,1} with respect to the value 0, i.e., Pr(X = 0|.)
throughout the book. Of course, probability ratios Pr(X = 0|.)/(1 −
Pr(X = 0|.)) or their logarithms, the so-called L-value ln

(
Pr(X =

0|.)/(1 − Pr(X = 0|.))) are synonymous to this notation, but in con-
trast to the mainstream in technical literature in the field of communi-
cations, we think that for theoretical derivations pure probabilities are
more convenient than other types of probability specifications: A lot
of nonlinear functions can be avoided, some equations are much more
evident and easier to handle, and many readers may be more famil-
iar with the language of basic probability theory than with specialized
notation popular only in the coding and communications communities.
Of course, for implementation of a decoder in hard- or software, prob-
ability ratios or, more pronounced, L-value notation may offer a lot of
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advantages. But the intentions of this tutorial book are quite different;
here, the development and understanding of the basic theory is the
main focus.

Seen from a general point of view, values of information for indi-
vidual symbols have to be combined in some way for exploiting the
constraints within a sequence of symbols. Information combining hap-
pens in source encoding for extraction of redundancy from a source
sequence or in channel decoding for improvement of data reliability.
But there are many further fields where data processing essentially is
some sort of information combining. To illustrate what we mean by
information combining, we use the example of decoding a linear block
code. Without loss of generality, the processing for code symbol X0 will
be further addressed in this example.

In a linear code, each parity check equation (e.g., Qth row of the
parity check matrix H) that includes X0 provides further information
on the code symbol X0 by means of the other symbols Xil due to the
check constraint

X0 = Xi1 ⊕ Xi2 ⊕ Xi3 ⊕ ·· · ⊕ XiL . (1.2)

Based on the intrinsic probabilities pi = Pr(Xi = 0|yi) of the residual
symbols in a check sum, the extrinsic probability of code symbol X0,

Pext,0 = Pr(X0 = 0|yi1 ,yi2 , . . . ,yiL), (1.3)

is computed. This probability on a code symbol is called extrinsic
because it is calculated using only the channel outputs corresponding
to the other code symbols but not the channel output corresponding
to the symbol itself (see e.g. [18]).

In the case of a memoryless channel, the extrinsic probability Pext,0

results in

Pext,0 =
1
2

L∏
l=1

(2pil − 1) +
1
2
. (1.4)

(Remember that the codewords are assumed to be equiprobable.) This
famous equation [4] can easily be derived from the case where only three



232 Introduction

symbols are involved (X0 = 0 if both symbols X1 and X2 are 0 or 1)

Pext = Pr(X1 ⊕ X2 = 0|y1,y2)

= p1p2 + (1 − p1)(1 − p2)

=
1
2
(2p1 − 1)(2p2 − 1) +

1
2

(1.5)

and by induction from L − 1 to L. Notice that (1.4) also corresponds
to the probability of observation of symbol 0 at the output of a chain
(series) of L binary symmetric channels (BSCs) with crossover prob-
abilities εi = 1 − pi when symbol 0 is fed to its input, see Fig. 1.2.
Therefore, we refer to (1.4) as the basic formula for serial combining of
information.

Intrinsic and several extrinsic probabilities on a certain code sym-
bol X are independent as long as the exploited check equations do not
contain further code symbols in common and the channel is memory-
less, as a memoryless channel acts independently on each of the code
symbols. The task, to merge intrinsic and extrinsic probabilities on
one symbol into a combined information is equivalent to the situation
when a binary code symbol is transmitted over L parallel and inde-
pendent channels or to the application of a repetition code of rate 1/L
and transmission of the code symbols over a memoryless channel, see
Fig. 1.3.

Thus, the second basic operation of information combining in chan-
nel decoding is to merge different, independent messages on individual
code symbols and referring to Fig. 1.3, we denominate this operation as
parallel information combining. Without loss of generality, a uniform
a-priori distribution of X can be assumed because one of those “chan-
nels” may also be used to specify an a-priori probability on the variable
X: a-priori knowledge is nothing else but a further independent source
of extrinsic information. Basic probability calculation yields for two

Fig. 1.2 Interpretation of Eq. (1.4) by a chain of BSCs with crossover probabilities εi =
1 − pi: serial information combining.
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Fig. 1.3 Parallel information combining.

parallel channels (uniform a-priori distribution, cf. Fig. 1.3, too)

Pr(X = 0|y1,y2) =
p1p2

p1p2 + (1 − p1)(1 − p2)
=: p1 ⊗ p2 . (1.6)

In the same way, the corresponding result for L parallel channels is
obtained:

Pr(X = 0|y1,y2, . . . ,yL) = p1 ⊗ p2 ⊗ ·· · ⊗ pL ,

=
∏L

l=1 pl∏L
l=1 pl +

∏L
l=1(1 − pl)

. (1.7)

Equation (1.6) is one of the reasons why probability ratios or L-
values are very popular in this context: Combining independent a-
posteriori probabilities on a binary symbol corresponds to the product
of probability ratios or the sum of L-values, respectively. The binary
operation “⊗” induces an Abelian group G = {⊗, [0,1]} onto the set
[0,1] of probabilities and by calculating the L-values, i.e., by the func-
tion L : [0,1] → IR : ln(x/(1 − x)), an isomorphic mapping of the group
G to {+, IR} is established [19]. (Notice that for the basic combin-
ing equation (1.4) for check equations (serial information combining),
such a nice accordance to L-values does not exist. Unfortunately, the
corresponding formulas are rather involved when L-values are used,
see (4.3).)

1.2 Combining of Mutual Information

The parallel and serial combination of probabilities on binary variables,
i.e., Equations (1.4) and (1.6), are the basic operations for (iterative)
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soft-decision decoding of linear binary codes. They also form the two
key operations for iterative decoding of LDPC codes (details for LDPC
codes are provided in Section 6.3). Therefore, we intend to analyze
these basic information combining operations in a more general con-
text, looking rather on averages than on individual channel actions and
observations as it is usually done in information theory.

One of the key concepts in iterative decoding is the use of extrinsic
probabilities (or extrinsic L-values). Correspondingly, the basic prob-
lem that we will address in the following sections is to find tight bounds
on the mutual information I(X0;Y1, . . . ,YL−1) for the serial and paral-
lel combination of information solely based on the mutual information
I(Xi;Yi) provided by the channels for transmission of the individual
symbols. Notice that this is an extrinsic mutual information (e.g., [6])
with respect to X0 as it is the mutual information between the code
symbol X0 and the observations of only other code symbols; the direct
observation of X0 is omitted.

An introductory example is serial or parallel information combining
for binary erasure channels (BECs) with erasure probabilities γi and
capacities Ii = 1 − γi, cf. Fig. 1.4, which really is the simplest one.

The combination of L received symbols in a check equation leads to
an erasure if at least one of the transmitted symbols is erased; other-
wise, we get a surely correct extrinsic information. Therefore, the era-
sure probability of the combined channel reads γ = 1 −∏L

i=1(1 − γi),
which is equivalent to the formula

I =
L∏

i=1

Ii (1.8)

for serial information combining.

Fig. 1.4 Binary erasure channel (BEC) with erasure probability γ. The erasure is denoted
by “?”.
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Transmission of binary symbol over L parallel BECs yields perfect
knowledge at the receiver side if at least one of these channels does not
deliver an erasure. Thus, the erasure probability of L parallel BECs is
γ =

∏L
i=1 γi, and the overall mutual information (or capacity) reads

I = 1 −
L∏

i=1

(1 − Ii) . (1.9)

Unfortunately, such explicit solutions do not exist in general, but we
are able to derive rather tight bounds on information combining, if the
individual binary input symmetric channels are only specified by their
mutual information (or capacity).

1.3 Outline and Related Work

The bounds on information combining will enable us to analyze vari-
ous properties of coding schemes and iterative decoding procedures in
a very general way. “Mutual information” has proven to be a very use-
ful and relevant measure to characterize a channel by a single param-
eter only. Correspondingly, applying it leads to easy tools to derive
fairly tight performance bounds or to optimize coding schemes (e.g.,
the design of multiple turbo codes, see Section 6.2).

For that purpose, we will recapitulate the basic properties of
BISMCs in Chapter 2 and define a new tool to fully specify channels
of that type, called the mutual information profile (MIP) of a BISMC.
In Chapter 3, Jensen’s well-known formula is revisited and extended
to a pair of inequalities, i.e., to a lower and an upper bound on the
expectation of a real random variable after processing by a convex
function; we will identify the probability density functions (pdfs) for
real random variables for which those bounds are tight, irrespective of
the actual convex function.

Equipped with these prearrangements, the central theorems of this
book, i.e., bounds on mutual information for serial and parallel combi-
nation of information on binary variables, are derived in a straightfor-
ward way in Chapters 4 and 5. Chapter 6 is dedicated to examples and
applications of information combining: information processing charac-
teristic of coding schemes, design of multiple turbo codes, and bounds
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on EXIT functions and bounds on thresholds for convergence of itera-
tive decoding of LDPC codes, and EXIT functions for RA codes.

The problem of information combining for parallel channels has
been addressed in [2, 20] for the first time. Here, the so-called infor-
mation processing characteristic (IPC) for a coding scheme has been
introduced, too, cf. Section 6.1. In [21] an example has been given on
how to use an IPC and information combining for a coarse estima-
tion of bit error probability (BEP) and BEP-curves for concatenated
coding schemes. In [22, 23] the analysis and optimization of multiple
turbo codes by means of information combining was proposed. Sur-
prisingly, tight bounds on the combined extrinsic information from
several constituent codes in a so-called extended serial setup decoder
leads to an analysis of the iterative decoding process, which is as
simple as EXIT charts for the concatenation of only two constituent
codes.

A more rigorous mathematical background to information combin-
ing has been introduced in [8] by finding the proof that there are simple
tight bounds on parallel information combining for the case of two chan-
nels. Initiated by that, the results were generalized and applied to code
design by two groups. In [9,10,12,13], the proofs are explicitly based on
the decomposition of symmetric channels into binary symmetric sub-
channels and the concept of mutual information profiles, which may
give a more intuitive access to this subject. Furthermore, these authors
address only the basic case of binary symmetric sources and channels
without memory, and the optimization with respect to all channels
involved. In [14, 15], the proofs are based on [24], which is a gener-
alization of Mrs Gerber’s lemma [25], and thus have a more abstract
character. These authors also address the question of a uniform source
with memory and the role of the symmetry of the source. Furthermore,
they show that the optimization can also be done with respect to the
individual channels involved.

The present book is mainly based on [13] and the slides to [26]
where the material was presented in a way that emphasizes the tuto-
rial aspect. This is the main focus of this book as well. Therefore,
we will follow the approaches of the first research group mentioned
above.
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Even though the present book focuses on pure combining of mutual
information, references to similar or extended concepts should be given
in the following. Mutual information is probably one the most success-
fully applied parameter of a memoryless channel. However, such a chan-
nel can also be characterized by other parameters, of course, like the
expectation of the conditional bit probabilities (expected “soft-bit”),
the Bhattacharyya noise parameter, the mean-square error (MSE),
see [27–31]. Instead of using only one parameter to describe a chan-
nel, two such parameters may be used, as considered in [28, 32]. Since
more parameters may characterize a channel more precisely than a sin-
gle parameter, the resulting bounds may be tighter.



2
Binary-Input Symmetric Memoryless Channel

The channel is often defined as the part of the communication system
that cannot be changed or should not be changed. In this chapter,
a certain class of channels is discussed, namely, channels that have a
binary input, and that are symmetric and memoryless; in addition to
that, it is assumed that the channel is time-invariant, and that there is
no feedback from the output of the channel to its input. These channels
can be decomposed into binary symmetric subchannels, and they can be
characterized by their mutual information profile. These two concepts
are discussed in the following. The basics about symmetric channels
are shortly revised within the text; for more details, we refer the reader
to standard textbooks, e.g. [16].

2.1 Binary-Input Memoryless Channels

A binary-input, time-invariant, memoryless channel (BISMC) is fully
characterized by the input alphabet X = {0,1}, the output alphabet1

1 The output alphabet may also be continuous-valued. In this case, the transition probabil-
ities have to be replaced by transition probability density functions. The concepts of this
chapter apply in the same way as for discrete output alphabets by considering M → ∞.

238



2.2. Decomposition into Binary Symmetric Channels 239

Y = {0,1, . . . ,M − 1}, and the conditional probabilities

k0,j = Pr(Y = j|X = 0),
k1,j = Pr(Y = j|X = 1),

(2.1)

j = 0,1, . . . ,M − 1, for observing the output variable Y ∈ Y for given
binary input variable X ∈ X . These conditional probabilities are called
the channel transition probabilities.

Usually, these conditional probabilities are collected into the (2 ×
M) channel transition matrix K

K =
(
k0,0 . . . k0,M−1

k1,0 . . . k1,M−1

)
.

This matrix is a stochastic matrix with row sum 1. For simplicity, the
subsequent derivations are restricted to time-invariant and memoryless
channels; the generalization to other channels is possible.

2.2 Decomposition into Binary Symmetric Channels

A channel is called symmetric [16] if the columns of the channel
matrix K can be reordered in a way such that the resulting channel
matrix K′ (after reordering) can be partitioned into Na submatrices
Ka of dimension (2 × Ma),

∑Na
a=1Ma = M ,

K′ =

(
K1︸︷︷︸

submatrix 1

K2︸︷︷︸
submatrix 2

. . . KNa︸ ︷︷ ︸
submatrix Na

)
, (2.2)

where any submatrix Ka is uniform in rows and columns (double uni-
formity), i.e., any row (column) of Ka is found by permutation of the
elements of the first row (column).

If all elements of the submatrix Ka are divided by the sum wa

of elements of an arbitrary row (all sums are equal because of unifor-
mity!), this submatrix is a stochastic matrix again and corresponds to a
so-called strongly symmetric subchannel [16]. Thus by definition, a sym-
metric channel is partitionable into Na strongly symmetric subchannels
Ka,a = 1,2, . . . ,Na. The row sums wa with

Na∑
a=1

wa = 1 (2.3)
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Fig. 2.1 Decomposition of a symmetric channel into strongly symmetric subchannels.

describe the probabilities for the random selection of the ath subchan-
nel for mapping the input variable X into the output variable Y . Notice
that the selection of the actually applied strongly symmetric subchan-
nel is independent of the actual input symbol. The partitioning of a
symmetric channel into strongly symmetric subchannels is illustrated
in Fig. 2.1.

To identify the strongly symmetric subchannels of the channel tran-
sition matrix K, the set Y of M output symbols is partitioned into
disjoint subsets Ya, each subset corresponding to a specific subchan-
nel Ka. This index can be considered as a random variable A with
realizations a, and it is referred to as the subchannel indicator [13].

Definition 2.1 The random variable A is called a subchannel indi-
cator of a binary-input symmetric memoryless channel K if there is a
one-to-one correspondence between the values a of A and the strongly
symmetric subchannels Ka of K that cannot be further decomposed.2

2 See also Lemma 2.2.
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Resulting from this, A is a function of the channel output and it is
statistically independent of the channel input.

According to the definition, we have the properties

I(X;A) = 0, (2.4)

H(A|Y ) = 0. (2.5)

Thus, we obtain the relation

I(X;Y ) = I(X;Y,A) = I(X;A) + I(X;Y |A)

= I(X;Y |A), (2.6)

where we first use that A is a function of Y , according to Definition 2.1,
and then the chain rule for mutual information [33]. This relation shows
that the mutual information between channel input and channel output
does not change if it is conditioned on the subchannel indicator. This
fact will often be exploited throughout this book.

In the following, we refer to a subchannel simply by the value of
its subchannel indicator. Each subchannel A = a has a certain value
of mutual information, namely I(X;Y |A = a) = I(X;Ya), with Ya ∈
Ya ⊂ Y. The capacity of the channel is, of course, achieved by a uniform
input distribution, as is the capacity of all of the subchannels. Thus,
the capacity can be expressed by the average of the capacities Ca of
the strongly symmetric subchannels Ka:

C =
Na∑
a=1

waCa, (2.7)

Ca = I(X;Ya) for Pr(X = 0) = 1/2. (2.8)

Notice that this is the same approach to compute the capacity of a
symmetric channel as proposed by Gallager [16].

Even though the mutual information of a symmetric channel with
uniformly distributed input is equal to its capacity, we will preferably
use the term “mutual information,” as the focus in this book is on
“information combining”; accordingly, we will usually write “I” instead
of “C.” In the following, we will always assume uniformly distributed
input symbols when not stated otherwise.
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In the case of a BISMC, the situation is extremely simple: all sub-
channels are binary symmetric channels (BSCs). This is proved in the
following theorem. Let the binary entropy function be defined as

h(x) := −x log2(x) − (1 − x) log2(1 − x), (2.9)

x ∈ (0,1), and h(0) = h(1) := 0. Let further x = h−1(y) denote the
inverse of y = h(x) for 0 ≤ x ≤ 0.5. Since for a BSC, there is a one-to-
one relation between the error probability and the mutual information
for uniformly distributed input (or capacity), there is an error proba-
bility εa and a mutual information

Ia = 1 − h(εa) (2.10)

associated to each subchannel.

Theorem 2.1 Any BISMC can be decomposed into binary symmetric
channels.

For the proof of Theorem 2.1, Lemma 2.2 is useful:

Lemma 2.2 A strongly symmetric binary-input channel, which is not
further decomposable into strongly symmetric subchannels, at most has
two output symbols.

Proof. In a double uniform stochastic 2 × M matrix S, there exist
only two different types of columns, namely type I:

(
e
f

)
, and type II:(

f
e

)
, where e,f ∈ [0,1] denote probabilities. For example,

S =

(
e f f e f f · · ·
f e e f e e · · ·

)
(2.11)

Type I II II I II II

In both rows, nIe + nIIf = nIf + nIIe = 1 holds, where nI denotes the
number of type I columns and nII the number of type II columns.
Therefore, we have

(nI − nII) · (e − f) ≡ 0, (2.12)

and thus one of the following two cases holds.
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Case A: e = f . S is decomposable into M(2 × 1) (double uniform)
matrices/vectors(

e e e · · ·
e e e · · ·

)
=

((
e

e

)(
e

e

)(
e

e

)
· · ·
)
. (2.13)

For each subchannel, both input symbols are mapped to a single output
symbol, which corresponds to a binary erasure channel (BEC) with
erasure probability 1 and capacity 0. Notice that such a strict erasure
channel is fully equivalent to a binary symmetric channel (BSC) with
bit error probability ε = 0.5.

Case B : nI = nII. By rearranging columns, we obtain(
e f f f e e · · ·
f e e e f f · · ·

)
=

((
e f

f e

)(
e f

f e

)(
e f

f e

)
· · ·
)
.

(2.14)
The strongly symmetric channel can be decomposed into M/2 iden-
tical BSCs with crossover probability f/(e + f) and capacity 1 −
h(f/(e + f)).

Proof of Theorem 2.1. This directly follows from Lemma 2.2, because
columns with identical elements correspond to strict erasure channels,
which are replaced by equivalent BSCs with crossover probability 0.5
by the introduction of further dummy output symbols. Columns with
different elements can always be grouped in pairs such that each pair
forms a BSC. �

For the discussions above, we focused on channels with a discrete
output alphabet. However, these concepts are valid for channels with a
continuous output alphabet in the same way. As an example, consider
an AWGN channel with input Z ∈ {−1,+1} and output Y ∈ IR with
BPSK mapping X �→ Z at the input, X ∈ {0,1} as usual. The channel
from X to Y is then a symmetric channel in the sense defined above.
As Y is continuous, we have an infinite number of strongly symmetric
subchannels with channel matrices

Ka =
(
pY |X(+a|0) pY |X(−a|0)
pY |X(+a|1) pY |X(−a|1)

)
,
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a ∈ IR, a ≥ 0. The value A = a is the subchannel indicator, which is con-
tinuous in this case. Notice that the subchannels are BSCs, as claimed
in the theorem above. This binary-input AWGN channel will be further
discussed in Section 2.4.3.

2.3 Mutual Information Profile

Each subchannel A = a has a certain value of mutual information,
namely I(X;Y |A = a), where a uniform input distribution is assumed
(cf. remark below (2.7)). Similar to the subchannel indicator, this value
also can be regarded as a random variable. It is called the subchannel
mutual information indicator and formally defined as follows [13]:

Definition 2.2 Consider a BISMC with input X, output Y , and the
subchannel indicatorA. The input symbols are assumed to be uniformly
distributed. Using the mapping

fJ(a) := I(X;Y |A = a)

from a subchannel to its mutual information, the random variable

J := fJ(A)

is defined as the mutual information indicator of this channel. The
probability distribution pJ(j) of J is called the mutual information
profile (MIP) of the channel.

For channels with a finite discrete output alphabet, the MIP reads

pJ(j) =
Na∑
a=1

wa · δ(j − fJ(a)
)
.

The function δ(·) denotes the Dirac δ-function.3

Using the mutual information indicator J and its distribution pJ(j),
the mutual information of a BISMC can be written as

I(X;Y ) = E{J} =
∫
pJ(j) · j dj. (2.15)

3 The Dirac δ-function is defined via
∫

R δ(z)dz = 1 if the interval R includes the point 0,
and

∫
R δ(z)dz = 0 otherwise.
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Fig. 2.2 Mutual information profile of a BISMC.

Thus, the mutual information is the first moment of the mutual infor-
mation profile. An example for an MIP is depicted in Fig. 2.2. Notice
that (2.15) corresponds to (2.7).

If the BISMC delivers a continuously distributed real output vari-
able Y ∈ IR, e.g., a binary bipolar input additive white Gaussian noise
channel (BIAWGN channel), an infinite number of subchannels may
appear, and thus also an infinite number of values of the subchannel
mutual information. Also in this case, the above definitions and the
above theorem apply.

As a BISMC can be decomposed into BSCs according to Theo-
rem 2.1, and as for a BSC, there is a one-to-one correspondence between
the crossover probability and the mutual information4, we have the fol-
lowing important result: The mutual information profile uniquely char-
acterizes a BISMC. Of course, an MIP does not specify the alphabet,
but this is also not relevant for the probabilistic characterization.

For pJ(j) 
= 0, j corresponds to a BSC with crossover probability ε =
h−1(1 − j) and pJ(j)dj to the differential probability of its selection.
(The function h−1(·) is defined in (2.9).)

2.4 Examples of Mutual Information Profiles

The concept of mutual information profiles (MIPs) is illustrated with
some examples in the following. The mutual information of the chan-
nel is denoted by I = I(X;Y ). Remember that J is the random vari-
able denoting the subchannel mutual information, and I = E{J} is its
first moment (mean value). Thus, the mutual information profile pJ(j)

4 As mentioned above, uniformly distributed input symbols are assumed.
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indicates the distribution of the overall mutual information I over the
values J ∈ [0,1] of the subchannel mutual information.

2.4.1 Binary Symmetric Channel

The binary symmetric channel (BSC) with crossover probability ε con-
sists only of one subchannel, of course; namely the one with mutual
information

j = 1 − h(ε) = I.

Accordingly, its mutual information profile is

pJ(j) = 1 · δ(1 − I). (2.16)

This is depicted in Fig. 2.3. Obviously, for a given mutual information I,
the BSC has the MIP with the smallest variance possible, as the mutual
information is concentrated in a single point.

2.4.2 Binary Erasure Channel

The binary erasure channel (BEC) with erasure probability γ com-
prises two subchannels. The first one has subchannel mutual informa-
tion j1 = 0 and probability γ; it is a complete erasure channel. The
second one has subchannel mutual information j2 = 1 and probabil-
ity 1 − γ; it is an error-free channel. The mutual information profile is

pJ(j) = γ · δ(j) + (1 − γ) · δ(1 − j). (2.17)

Fig. 2.3 Mutual information profiles (MIPs) of the binary symmetric channel (BSC) and
the binary erasure channel (BEC).
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Fig. 2.4 BIAWGN channel with quantized output.

This is depicted in Fig. 2.3. Obviously, for a given mutual information I,
the BEC has the MIP with the largest variance possible because the
distribution is concentrated at the two ends of the interval [0,1] for j.

The interesting fact that the BSC and the BEC represent the
extremes with respect to the variance of J will be of importance when
looking for bounds in Chapters 4 and 5.

2.4.3 Binary-Input Additive White Gaussian Noise
Channel

Consider now the BIAWGN channel with quantized output, see
Fig. 2.4. The symbols X ∈ {0,1} are first BPSK-mapped to the sym-
bols Z ∈ {−1,+1}. These are corrupted by white Gaussian noise N

with variance σ2
n. The output Yc (label “c” for continuous) is then

quantized to

Y = quantization(Yc).

The signal-to-noise ratio (SNR) is specified by the usual quotient signal
energy per channel symbol Es to one-sided power spectral density N0

of noise: Es/N0 = 1/(2σ2
n).

In the following, different numbers of quantization levels are
considered.

Binary Quantization

Assume the binary quantization

Y =
{

+1 for Yc ≥ 0,
−1 for Yc < 0.
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This transforms the channel into a BSC with crossover probability5

ε = Q(1/σn),

cf. Section 2.4.1.

Ternary Quantization

Assume the ternary quantization

Y =




0 for r ≤ Yc,

? for − r ≤ Yc < r,

1 for Yc ≤ −r.

for some nonnegative r ∈ IR+. This transforms the channel into a binary
symmetric error and erasure channel (BSEC) with erasure probability γ
and crossover probability ε:

γ = Q((1 − r)/σn) − Q((1 + r)/σn), (2.18)

ε = Q((1 + r)/σn). (2.19)

This channel can be decomposed into two subchannels. The first
subchannel is a complete erasure channel with mutual information
j1 = 0. The second subchannel is a BSC with error probability

ε2 =
ε

1 − γ

and mutual information

j2 = 1 − h

(
ε

1 − γ

)
.

The mutual information profile is thus

pJ(j) = γ · δ(j) + (1 − γ) · δ(j − j2).

This decomposition and the mutual information profile are depicted in
Fig. 2.5.

5 The complementary Gaussian error integral is defined as Q(x) := 1/
√

2π · ∫ ∞
x e−t2/2dt.
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Fig. 2.5 Decomposition of a BIAWGN-channel with ternary quantization of the output
variable, which is equivalent to a BSEC, into BSCs and the mutual information profile.

Quaternary Quantization

Assume the quaternary quantization

Y =




+ for r ≤ Yc,

+ for 0 ≤ Yc < r,

− for −r ≤ Yc < 0,

− for Yc ≤ −r.

for some positive r ∈ IR. This corresponds to a weak decision for |Y | ≤ r

and a strong decision for |Y | > r. The resulting channel can be decom-
posed into two BSCs, as depicted in Fig. 2.6. The probability of the
first subchannel (weak decision) is

w1 = Q

(
1 − r

σn

)
− Q

(
1 + r

σn

)
,

and the corresponding probability for weak errors is

ε1 = Q(1/σ) − ε2.

Fig. 2.6 Decomposition of a BIAWGN-channel with quaternary quantization of the output
variable and the mutual information profile.
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The probability of the second subchannel (strong decision) is w2 =
1 − w1, and the corresponding probability for strong errors is

ε2 = Q
(1 + r

σn

)
.

The mutual information profile is thus

pJ(j) = w1 · δ
(
j −

(
1 − h

(
ε1
w1

)))

+(1 − w1) · δ
(
j −

(
1 − h

(
ε2

1 − w1

)))
, (2.20)

as shown in Fig. 2.6.

No Quantization

Consider now the case without quantization of Yc, i.e., Y ≡ Yc. We first
define the subchannel indicator

A := |Y |.
Thus the channel outputs Y = a and Y = −a, a ≥ 0, form the pair of
binary output symbols for the binary symmetric subchannel for A = a.

Obviously, the probability density function of the continuous, real,
and nonnegative subchannel indicator A is given by

pA(a) =




1√
2πσn

(
e
− (a+1)2

2σ2
n + e

− (a−1)2

2σ2
n

)
for a ≥ 0,

0 for a < 0.
(2.21)

Together with the crossover probability

ε(a) = 1/(1 + e2a/σ2
n) (2.22)

of the subchannel for A = a, MIP of the BIAWGN with equiprobable
input variables is given by

pJ(j) =
1

ln(2)
4ae2a/σ2

n

σ2
n (1 + e2a/σ2

n)
(2.23)

with

a =
σ2

n

2
ln(1/h−1(1 − j) − 1). (2.24)
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Fig. 2.7 Mutual information profiles of the BIAWGN (without quantization) at various
SNRs.

Figure 2.7 shows the MIPs for the BIAWGN channel at different
SNRs. Remember that the first moments of the MIP curves are the
mutual information for equiprobable input symbols (or the channel
capacity C). These values are marked by the corresponding symbols.

Notice that for SNR ≥ 1 (0 dB), the MIP starts to exhibit two poles,
at j = 0 and j = 1, while the probability density for values in between
decreases. Thus, for a moderately high SNR, i.e., 10 log10(Es/N0) ≥
4 dB or I ≥ 0.95, the MIP of the BIAWGN channel may be well approx-
imated by two Dirac δ-functions at 0 and 1, i.e., by the MIP of a BEC
of the same mutual information (capacity). This approximation may
facilitate a lot the analysis of high-rate coding schemes operating at
moderately high SNRs. For SNR → ∞, a single peak at j = 1 remains,
pJ(j) = δ(j − 1), and the BIAWGNC, the BEC, and the BSC coincide,
of course.



3
Jensen’s Inequality Revisited

In this chapter we extend Jensen’s well-known inequality to a simple
two-sided bound on the expected value of a convex function of a ran-
dom variable. Both the upper and the lower bound are tight. First the
theorem is revisited, and then the application to mutual information
profiles is addressed.

Theorem 3.1 Let X be a real random variable defined on some inter-
val [A,B], A < B, with pdf pX(x), i.e., pX(x) = 0 for x 
= [A,B]. Let
f(x) be a real-valued function f : [A,B] → IR which is1 convex-∪ in
[A,B]. Then we have the following properties:

(a) The expectation of f(X) is bounded by

f (E{X}) ≤ E{f(X)} ≤ f(A) +
f(B) − f(A)

B − A
(E{X} − A) .

(b) For any convex-∪ function f(x), the left inequality holds
with equality if the “random variable” X is a constant,

1 We follow Gallager’s approach and use the terms “convex-∪” and “convex-∩” instead of
“convex” and “concave” [16]. The interested reader may look for the corresponding foonote
in Gallager’s textbook.
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i.e., if2

pX(x) = δ(x − E{X}), (3.1)

or equivalently, if X ≡ E{X}.
(c) For any convex-∪ function f(x), the right inequality holds

with equality if the random variable X is only distributed
to the ends A and B of the interval, i.e., if

pX(x) = ε · δ(x − A) + (1 − ε) · δ(x − B), (3.2)

ε ∈ [0,1]. Notice that E{X} = εA + (1 − ε)B.

The lower and the upper bound are tight as they are achieved by the
distributions given in (3.1) and (3.2). Of course, this theorem holds in
opposite direction for functions that are convex-∩ (concave) in [A,B].

Proof. Let hL(x) and hU(x) be two straight lines with

hL(x) ≤ f(x) ≤ hU(x), for all x ∈ [A,B], (3.3)

cf. Fig. 3.1.
Since x ∈ [A,B], E{hL(X)} ≤ E{f(X)} ≤ E{hU(X)} holds. But for

a straight line h(x), E{h(X)} = h(E{X}) is true and we have

E{hL(X)} = hL(E{X}) ≤ E{f(X)}. (3.4)

Fig. 3.1 pdf of a real random variable, a convex function, and bounding straight lines.

2 The function δ(·) denotes the Dirac δ-function, cf. Footnote 3 on p. 244.
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Fig. 3.2 pdf of a real random variable, a convex function, and tightest bounding straight
lines.

From this inequality we find the tightest lower bound of this type by
using for hL(x) the tangent on f(x) in E{X}, i.e., f(E{X}) ≤ E{f(X)},
which corresponds to the well-known Jensen’s inequality, cf. Fig. 3.2.
The tightness of this bound for concentration of pX(x) on E{X} imme-
diately follows from Fig. 3.2, regardless of the function f(x), as long as
it is convex-∪.

The tightest upper bound of this type follows from the lowest
straight line hU(x) which satisfies (3.3). Obviously, this is the secant
through (A,f(A)) and (B,f(B)) to f(x), see Fig. 3.2 and it is given by

hU(x) = f(A) +
f(B) − f(A)

B − A
(x − A) . (3.5)

From this equation, the upper bound of Theorem 3.1 immediately fol-
lows. If the random variable X only exists in the two points A and
B, where the convex function f(x) and the straight line hU(x) inter-
sect, both expectations are equal E{f(X)} = E{hU(X)}, i.e., the right
inequality is tight if X is distributed to the two values A and B only,
irrespectively of the specific convex-∪ function.

Impact on Mutual Information Profiles

Theorem 3.1 gives rise to an interesting interpretation of mutual infor-
mation profiles (MIPs) of BISMCs. The two pdfs for which these two-
sided Jensen’s inequalities are tight, correspond to the MIPs of the
BSC (one-point distribution) and the BEC (two-point distribution at
the boundaries). Thus, the BSC and the BEC may be regarded as the
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Fig. 3.3 Inverse binary entropy function and secant for upper bound.

extreme cases of a BISMC for a fixed capacity. To support these inter-
pretation, we give a very simple example of an application of MIPs and
these two-sided Jensen’s inequalities: the upper bound and the lower
bound on the bit error probability of a BISMC with fixed mutual infor-
mation. As before, a uniformly distributed input is assumed such that
this mutual information is equal to the channel capacity C.

Consider an arbitrary BISMC with capacity C. The channel output
is given to a binary slicer to estimate the input variable of the chan-
nel. The BISMC is decomposable into BSCs with respect to a specific
MIP pJ(j), E{J} = C. The bit error probability of the subchannel with
mutual information J = j is given by

ε(j) = h−1(1 − j).

Thus, the average bit error probability results as

BEP = E
{
h−1(1 − J)

}
=
∫ 1

0
pJ(j) h−1(1 − j)dj. (3.6)

Notice that h−1(1 − j) is convex-∪ in j ∈ [0,1], see Fig. 3.3.
From Theorem 3.1, the following inequalities result:

h−1(1 − C) ≤ BEP ≤ 1
2(1 − C). (3.7)

On the left-hand side, we have the well-known Fano inequality, which
is tight if the BISMC is a BSC. On the right-hand side, we have the
inequality of Raviv and Hellman [34], which is tight if the BISMC is a
BEC. (On average, half of the erased symbols are estimated correctly
by the receiver by means of arbitrary choices.)



4
Information Combining for SPC Codes

This chapter describes the combining of mutual information for the
case where the channel inputs are required to fulfill a parity-check con-
straint; i.e., the input symbols form a codeword of a single parity-check
(SPC) code. To start with, the ideas outlined in the introduction are
revised and confined to the addressed situation, and the notation is
introduced. After describing the problem, first the two cases are con-
sidered where the channels are all BECs and where the channels are all
BSCs. Then, this is generalized to arbitrary BISMCs. Based on this,
the bounds on the combined information (the extrinsic information)
are derived and discussed.

4.1 Problem Description

The problem of information combining for a single-parity-check (SPC)
code is depicted in Fig. 4.1. The binary symbols X0,X1, . . . ,XN−1 ∈ F2

are required to fulfill the parity-check constraint

X0 ⊕ X1 ⊕ ·· · ⊕ XN−1 = 0 (4.1)

and thus form a codeword of length N . All codewords are assumed to
have the same a-priori probability, and thus also each code symbol

256



4.1. Problem Description 257

Fig. 4.1 Optimal information combining for a single-parity-check code.

is uniformly distributed. The code symbols X1,X2, . . . ,XN−1 are
transmitted over independent BISMCs. The channel output values
Y1,Y2, . . . ,YN−1 are combined by a decoder to a value V0. Notice that
the observations Y1,Y2, . . . ,YN−1 contain information about X0 due to
the code constraints on the channel input symbols X0,X1, . . . ,XN−1.

The value V0 is an extrinsic value with respect to X0 as it does not
depend on a direct observation of X0. As mentioned in Chapter 1, the
motivation for looking at extrinsic values is twofold. On the one hand,
extrinsic values are usually employed in iterative decoding schemes and
thus are of high relevance and importance. On the other hand, the
extrinsic value of a symbol (independent of the direct observation of
this symbol) and the intrinsic value (dependent on only the direct obser-
vation) can be combined to obtain an a-posteriori value (depending on
all observations), as also discussed in Chapter 1.

The combining operation to obtain the extrinsic value implies no
loss of information if and only if

I(X0;Y [1,N−1]) = I(X0;V0). (4.2)

(The notation Y [1,N−1] = [Y1,Y2, . . . ,YN−1] is used to denote partial
vectors.) If this condition is fulfilled, the combining operation is called
optimal combining with respect to X0. In the following, we con-
sider only optimal combining. Following the discussion from above,
I(X0;Y [1,N−1]) denotes an extrinsic mutual information, or for short,
extrinsic information on code symbol X0.

One optimal way of combining is the computation of the extrinsic
probabilities according to Eq. (1.5). Notice that these extrinsic prob-
abilities are special a-posteriori probabilities. Another optimal way of
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combining is the computation of the extrinsic a-posteriori L-value

v0 := L(X0|y[1,N−1]).

With li := L(Xi|yi), the operation may be performed by [35]

v0 = 2tanh−1
(
tanh

l1
2

· tanh
l2
2

· · ·tanh
lN−1

2

)
. (4.3)

Notice that v0 is the extrinsic L-value for X0.

Combining of Mutual Information

The decoder is now interpreted as a processor for mutual information.
Each channel output Yi conveys information about the corresponding
channel input Xi,

Ii := I(Xi;Yi),

i = 1,2, . . . ,N − 1. This information is used by the decoder to compute
extrinsic information on X0,

Iext,0 := I(X0;V0) = I(X0;Y [1,N−1]).

(The last equality holds as optimal combining is assumed.) Thus, the
decoder combines I1, I2, . . . , IN−1 to Iext,0. This is referred to as com-
bining of mutual information, or simply as information combining. The
value Ii is referred to as the intrinsic information on code symbol Xi,
and the value Iext,0 is referred to as the extrinsic information on code
symbol X0 [17]. This nomenclature follows the one that is commonly
used for probabilities and L-values.

The question is now as follows: For given values I1, I2, . . . , IN−1,
what is the value of Iext,0? The actual value of Iext,0 turns out to depend
on the distinct mutual information profiles of the individual channels.
However, the maximum and the minimum value of Iext,0 can be deter-
mined, and surprisingly, they are achieved if the individual channels are
BECs or BSCs, respectively. These properties are proved using the con-
cept of mutual information profiles (cf. Chapter 2) and the extension
of Jensen’s inequality (cf. Chapter 3).
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4.2 Binary Erasure Channels

The case where the individual channels are all BECs was already dis-
cussed in detail in Chapter 1. For a BEC, the mutual information I and
the erasure probability γ are related by I = 1 − γ. Using this and (1.8),
the extrinsic information on X0 and the values of intrinsic information
are related by

IBEC
ext,0 = I1 · I2 · · ·IN−1. (4.4)

This equation represents the information combining for SPC codes
when the channels are all BECs.

4.3 Binary Symmetric Channels

Consider now the case where the individual channels are all BSCs. The
binary entropy function and its inverse are defined in (2.9). For a BSC,
the mutual information I and the crossover probability ε are related by

I = 1 − h(ε). (4.5)

To determine analytically the mutual information on X0, Iext,0, the
following approach is used [10, 13–15]: Iext,0 is interpreted as the end-
to-end mutual information of a serial concatenation of BSCs, where
the mutual information of these BSCs are I1, I2, . . . , IN−1 (cf. Fig. 1.2).
Thus, the channelX0 → V0 is a BSC, too. Notice the similarity with the
BEC-case mentioned earlier. The details of this approach are as follows.

The overall check equation can be split up into a series of small
check equations, each comprising only three symbols. This is done by
introducing “intermediate” symbols Zi ∈ F2, i = 1, . . . ,N − 3:

Z1 := X0 ⊕ X1,

Z2 := Z1 ⊕ X2,

Z3 := Z2 ⊕ X3,
...

ZN−3 := ZN−4 ⊕ XN−3,

XN−1 = ZN−3 ⊕ XN−2.
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Fig. 4.2 Splitting up the parity-check equation leads to a serial concatenation of BSCs.

The last line is not a definition but “only” an equality; it results from
the previous definitions and the parity-check equation (4.1). Because
of their definitions, all Zi are uniformly distributed. For the sake of a
nice description, the error symbol

EN−1 := XN−1 ⊕ YN−1

is introduced for the BSC XN−1 → YN−1. The relations resulting from
the equations above are depicted in Fig. 4.2.

Consider now the extrinsic information on code symbol X0. Using
the chain rule of mutual information [33], it can be written as

Iext,0 = I(X0;Y [1,N−1])

= I(X0;Y [1,N−2],YN−1)

= I(X0;Y [1,N−2])︸ ︷︷ ︸
=0

+I(X0;YN−1|Y [1,N−2]). (4.6)

The first term is equal to zero, as X0 and Y [1,N−2] are independent if
neither XN−1 nor YN−1 are known.

For the time being, assume Y [1,N−2] = y[1,N−2], where y[1,N−2] ∈
F

N−2
2 denotes an arbitrary but fixed realization of Y [1,N−2]. Then,

the random variables X0, Zi, i = 1, . . . ,N − 3, XN−1, YN−1 form the
Markov chain,

X0 → Z1 → Z2 → ·· · → ZN−3 → XN−1 → YN−1,

and each neighboring pair can be interpreted as a BSC (cf. Fig. 4.2).
The mutual information of each BSC is as follows:

• X0 → Z1: For this BSC, the code symbol X1 represents the
error symbol, and the probability of {X1 = 1} represents
the crossover probability. For a given observation Y1 = y1,
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the crossover probability of the channel X0 → Z1 is

ε1 ∈ {pX1|Y1(1|0),pX1|Y1(1|1)
}

=
{
h−1(1 − I1),1 − h−1(1 − I1)

}
and thus a function of the mutual information I1 of the
channelX1 → Y1. Accordingly, the mutual information of the
channel X0 → Z1 is given by

I(X0;Z1) = 1 − h(ε1) = I1.

Notice that both possible values of ε1 lead to the same mutual
information.

• Zi → Zi+1, i = 1,2, . . . ,N − 3: Similar to X0 → Z1, the
mutual information is given by

I(Zi;Zi+1) = 1 − h(εi+1) = Ii+1.

• XN−1 → YN−1: By definition, the mutual information is
given by

I(XN−1;YN−1) = IN−1.

Notice that the mutual information of each BSC in this chain is inde-
pendent of the actual value of y[1,N−2].

According to these considerations, computing the mutual
information

I(X0;YN−1|Y [1,N−2] = y[1,N−2])

for some arbitrary but fixed y[1,N−2] ∈ F
N−2
2 corresponds to computing

the end-to-end mutual information of a chain of serially concatenated
BSCs. This end-to-end mutual information depends only on the mutual
information values of the individual channels, as shown in Appendix A.
For convenience, the following function is introduced (cf. (1.4)).

Definition 4.1 Let I0, I1, . . . , IN−1 ∈ [0,1], N ≥ 1. The functions

f ser
1 (I0) := I0,

f ser
2 (I0, I1) := 1 − h

(
(1 − ε0)ε1 + ε0(1 − ε1)

)
,

f ser
N (I0, I1, . . . , IN−1) := f ser

2
(
f ser

N−1(I0, I1, . . . , IN−2), IN−1
)
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with ε0 := h−1(1 − I0) and ε1 := h−1(1 − I1) are called binary infor-
mation functions for serial concatenation.

The case N = 1 is included in the definition above to allow for a
convenient and compact notation in the following.

The meaning of this function is as follows: Consider a serial concate-
nation ofN BSCs, where the first BSC has a uniform input distribution.
Let I0, I1, . . . , IN−1 denote the mutual information values of these BSCs.
Then, the end-to-end mutual information of the serially concatenated
BSC, i.e., the mutual information between the input of the first BSC
and the output of the last BSC, is given by f ser

N (I0, I1, . . . , IN−1). (See
also Appendix A.)

Using the function f ser
N (·) and the above interpretation as serially

concatenated BSCs, we obtain

I(X0;YN−1|Y [1,N−2] = y[1,N−2]) = f ser
N−1(I1, I2, . . . , IN−1).

This mutual information is independent of y[1,N−2], as mentioned
above. Thus the expected value with respect to y[1,N−2] is given by

I(X0;YN−1|Y [1,N−2]) = E
{
f ser

N−1(I1, I2, . . . , IN−1)
}

= f ser
N−1(I1, I2, . . . , IN−1). (4.7)

Finally, using (4.7) in (4.6), we obtain

IBSC
ext,0 = f ser

N−1(I1, I2, . . . , IN−1), (4.8)

i.e., the extrinsic information on code symbol X0 for the case where
the channels are all BSCs.

4.4 Binary-Input Symmetric Memoryless Channels

Also for the case where the individual channels are all arbitrary
BISMCs, an analytical expression for the combined information can
be derived. To do so, the following concept is applied:

(a) the individual channels are decomposed into BSCs;
(b) the extrinsic information is computed for each set of BSCs;
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(c) the average extrinsic information is obtained by averag-
ing over the mutual information profiles of the individual
channels.

Thus, the problem is solved by using the result for the all-BSC case
and the concept of mutual information profiles.

All channels are assumed to be BISMCs. Therefore we may
define a subchannel indicator Ai and a mutual information indi-
cator Ji for each channel Xi → Yi (cf. Chapter 2). Remember
that the expectation of the mutual information indicator is equal
to the mutual information of the channel, i.e., E{Ji} = I(Xi;
Yi) = Ii.

The extrinsic information does not change if it is written conditioned
on the subchannel indicators A[1,N−1]:

Iext,0 = I(X0;Y [1,N−1]) = I(X0;Y [1,N−1],A[1,N−1])

= I(X0;A[1,N−1])︸ ︷︷ ︸
=0

+I(X0;Y [1,N−1]|A[1,N−1])

= I(X0;Y [1,N−1]|A[1,N−1]).

Here we use (2.4) and the same approach as for deriving (2.6): A[1,N−1]
is independent of X0 by Definition 2.1. For a given realization a[1,N−1]
of subchannel indicators, we have the case where the channels are
all BSCs, and we can apply the function f ser

N−1(·) according to Defi-
nition 4.1, as done in the BSC case:

I(X0;Y [1,N−1]|A[1,N−1] = a[1,N−1]) = f ser
N−1(j1, j2, . . . , jN−1).

Notice that ji = I(Xi;Yi|Ai = ai) is the mutual information corre-
sponding to the subchannel Ai = ai of channel Xi → Yi.

Taking the expectation, we obtain the desired closed form
expression:

Iext,0 = I(X0;Y [1,N−1])

= E
{
f ser

N−1(J1,J2, . . . ,JN−1)
}
. (4.9)
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For continuous-valued mutual information profiles pJi(ji), this expec-
tation is evaluated as

Iext,0 =
∫

j1

· · ·
∫

jN−1

pJ1(j1) · · ·pJN−1(jN−1)︸ ︷︷ ︸
mutual information profiles

·

· f ser
N−1(j1, . . . , jN−1)︸ ︷︷ ︸

information combining for BSCs

dj1 · · ·djN−1. (4.10)

Thus, the exact value of the combined mutual information can be
computed via the mutual information profiles of the individual chan-
nels, i.e., the mutual information profiles are sufficient to characterize
the decoding operation from an information-theory point of view.

4.5 Information Bounds

The previous three sections discussed the cases where the individual
channels are known, i.e., where the complete mutual information pro-
files of the channels are known. In this section, it is only assumed that
the individual channels are BISMCs and that their mutual information
values are known, i.e., that the mean values of their mutual information
profiles are known. Based on this knowledge only, tight bounds on the
combined information can be given. These bounds are achieved by the
cases where the individual channels are all BECs or all BSCs [10,12–15].
Notice that these cases correspond to the minimum-variance and to
the maximum-variance mutual information profiles, cf. Sections 2.4.1
and 2.4.2 [26,36].

Theorem 4.1 Let X0,X1, . . . ,XN−1 ∈ F2 denote the code symbols of
a single parity check code of length N . Let Xi → Yi, i = 1,2, . . . ,N − 1,
denote N − 1 independent BISMCs having mutual information Ii :=
I(Xi;Yi). Let the extrinsic information on code symbol X0 be defined
by Iext,0 := I(X0;Y [1,N−1]). Then, the following tight bounds hold:

Iext,0 ≥ I1I2 · · ·IN−1,

Iext,0 ≤ f ser
N−1(I1, I2, . . . , IN−1).

The lower bound is achieved if the channels are all BECs, and the upper
bound is achieved if the channels are all BSCs.
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To prove this theorem, we make use of the following property:

Lemma 4.2 The binary information functions for serial concatena-
tion, f ser

N (I0, I1, . . . , IN−1) (see Definition 4.1) are convex-∩ in each argu-
ment Ii, i = 0,1, . . . ,N − 1.

Proof. The case N = 1 is trivial. The proof for N = 2, i.e., for f ser
2 (·),

is provided in Appendix B. The generalization for N > 2 follows from
the recursive definition of f ser

N (·) in Definition 4.1. Since

f ser
N (I0, I1, . . . , IN−1) = f ser

2
(
f ser

N−1(I0, I1, . . . , IN−2), IN−1
)

and f ser
2 (·) is convex-∩ in its second argument, f ser

N (·) is convex-∩ in
its last argument. As f ser

N (·) is symmetric in all its arguments1, this
reasoning holds for all arguments, and we have the proof.

Lemma 4.2 is now used to prove Theorem 4.1:

Proof. According to (4.9), the combined information can be written as

Iext,0 = E
{
f ser

N−1(J1,J2, . . . ,JN−1)
}
.

The function f ser
N−1(·) is convex-∩, and therefore, the extension

of Jensen’s inequality, Theorem 3.1, can be applied. Notice that
Theorem 3.1 is formulated for convex-∪ functions, whereas the given
function is convex-∩, such that the lower and the upper bound from
Theorem 3.1 have to be swapped. Furthermore, Theorem 3.1 addresses
only a function with one argument, whereas the given function has mul-
tiple arguments. Therefore, we have to apply this theorem successively
with respect to each argument. Notice that the mutual information
indicators Ji are confined to the interval [0,1].

Consider first the expectation with respect to J1 and let the other
mutual information indicators be fixed, Ji = ji, i = 2, . . . ,N − 1. Then,
the upper bound results as

E
{
f ser

N−1(J1, j2, . . . , jN−1)
}

≤ f ser
N−1

(
E{J1}, j2, . . . , jN−1)

)
= f ser

N−1(I1, j2, . . . , jN−1).

1 The symmetry of f ser
N (·) in its arguments can immediately be seen when looking at its

interpretation.
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The lower bound results as

E
{
f ser

N−1(J1, j2, . . . , jN−1)
}

≥ f ser
N−1(0, j2, . . . , jN−1)

+
f ser

N−1(1, j2, . . . , jN−1) − f ser
N−1(0, j2, . . . , jN−1)

1 − 0
· (E{J1} − 0

)
= f ser

N−2(j2, . . . , jN−1) · I1.
It was used that

f ser
N−1(0, j2, . . . , jN−1) = 0,

f ser
N−1(1, j2, . . . , jN−1) = f ser

N−2(j2, . . . , jN−1)

(cf. interpretation of this function), and E{J1} = I1. Continuing in this
way for J2, . . . ,JN−1 proves the bounds.

According to Theorem 3.1, the lower bound is achieved if the ran-
dom variable is a constant. Therefore, the upper bound for the given
function is achieved if Ji = E{Ji} = Ii, i.e., if the channel Xi → Yi is a
BSC.

On the other hand, the upper bound in Theorem 3.1 is achieved if
the probability of the random variable is concentrated at the ends of the
interval. Therefore, the lower bound of the given function is achieved
if pJi(ji) is different from zero only for ji = 0 and for ji = 1, i.e., if the
channel Xi → Yi is a BEC.

As there are actually channels achieving the bounds, the bounds
are tight. This completes the proof.

From the above proof, another interesting property becomes obvi-
ous, that was first addressed in [14,15]: Also if only one of the channels
is varied, the combined mutual information becomes maximal if this
channel is a BSC, and it becomes minimal if this channel is a BEC.

For illustrating examples of this theorem, we refer the reader to the
applications in Chapter 6.



5
Information Combining for Repetition Codes

This section addresses the combining of mutual information for the case
where the channel inputs are required to have the same values, i.e., the
input symbols form a codeword of a repetition code. This is done in
a similar way as for single parity-check codes in the previous chapter.
First the ideas from the introduction are recapitulated and confined to
the situation addressed here, the problem is defined and the notation
is introduced. Then the two cases are considered where the channels
are all BECs and where the channels are all BSCs. Subsequently, this
is generalized to arbitrary BISMCs. Based on this, the bounds on the
combined information are derived and discussed. As opposed to the case
with the SPC codes, not the extrinsic information but the complete
information is addressed.

5.1 Problem Description

The Problem of information combining for a repetition code is depicted
in Fig. 5.1. The binary symbols X0,X1, . . . ,XN−1 ∈ F2 are required to
fulfill the equality constraint

X0 = X1 = · · · = XN−1 (5.1)

267
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Fig. 5.1 Optimal information combining for a repetition code (parallel information
combining).

and thus form a codeword of length N . All codewords are assumed
to have the same a-priori probability, and thus also each code symbol
is uniformly distributed. The code symbols X0,X1, . . . ,XN−1 (i.e., all
code symbols) are transmitted over independent parallel BISMCs. The
channel output values Y0,Y1, . . . ,YN−1 are combined by a decoder to the
value V0. As before, optimal combining with respect to X0 is assumed,
such that1

I(X0;Y [0,N−1]) = I(X0;V0). (5.2)

As opposed to the case of SPC codes in the previous chapter, the
value V0 is not extrinsic with respect to X0, as the direct observation
of X0 is also used for its computation. (Cf. the corresponding discussion
in Chapter 4.) Correspondingly, this chapter deals with the complete
information I(X0;Y [0,N−1]) (not extrinsic). The motivation for doing
so is: for repetition codes, the bounds for the extrinsic information are
just a special case of the bounds for the complete information, as will be
shown. (This is not the case for SPC codes.) Therefore, this approach
gives us more general results.

One optimal way of combining is the computation of a-posteriori
probabilities according to Eq. (1.7). Another optimal way of combining
is computing the a-posteriori L-value

v0 := L(X0|y[0,N−1]).

With li := L(Xi|yi), the operation may be performed by [35]

v0 = l0 + l1 + · · · + lN−1.

1 As before, the notation Y [0,N−1] := [Y0,Y1, . . . ,YN−1] is employed for vectors of symbols.
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Combining of Mutual Information

As for the SPC code, the decoder is interpreted as a processor of mutual
information. Each channel output Yi conveys information about the
corresponding channel input Xi,

Ii := I(Xi;Yi),

i = 0,1, . . . ,N − 1. This information is used by the decoder to compute
the (complete) information about X0,

Icmp,0 := I(X0;V0) = I(X0;Y [0,N−1]).

(The last equality holds as optimal combining is assumed.) Thus, the
decoder combines I0, I1, . . . , IN−1 to Icmp,0. This is referred to as com-
bining of mutual information, or simply as information combining. The
value Ii is referred to as the intrinsic information on code symbol Xi,
and the value Icmp,0 is referred to as the complete information on code
symbol X0 [10, 13,17].

The question is now as follows: For given values I0, I1, . . . , IN−1,
what is the value of Icmp,0? The actual value of Icmp,0 depends on
the distinct mutual information profiles of the individual channels; the
maximum and the minimum value, however, can be determined, and
they are achieved if the individual channels are BECs or BSCs. As
opposed the the SPC code, the maximum value is obtained with BECs,
and the minimum value with BSCs. Again, these properties are proved
using the concept of mutual information profiles (cf. Chapter 2) and
the extension of Jensen’s inequality (cf. Chapter 3).

5.2 Binary Erasure Channels

The case where the individual channels are all BECs was already dis-
cussed in detail in Chapter 1. For a BEC, the mutual information I and
the erasure probability γ are related by I = 1 − γ. Using this and (1.9),
the complete information on X0 and the values of intrinsic information
are related by

IBEC
cmp,0 = 1 − (1 − I0)(1 − I1) · · ·(1 − IN−1). (5.3)

This equation represents the information combining for repetition codes
when the channels are all BECs.
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5.3 Binary Symmetric Channels

Consider now the case where the individual channels are all BSCs.
Remember the one-to-one relation between the mutual information I

and the crossover probability ε for BSCs: I = 1 − h(ε). The complete
mutual information can be computed by a combinatorial approach.

Starting with

I(X0;Y [0,N−1]) = H(Y [0,N−1]) − H(Y [0,N−1]|X0),

the first term requires the distribution of the vector of channel outputs
using the crossover probabilities of the individual channels. The second
term can be written as

H(Y [0,N−1]|X0) =
N−1∑
i=0

H(Yi|X0),

using the conditional independence of the channel outputs. (Remember
that the channels are assumed to be independent and memoryless.) For
convenience, the following function is introduced.

Definition 5.1 Let I0, I1, . . . , IN−1 ∈ [0,1], N ≥ 1. The functions

fpar
N (I0, I1, . . . , IN−1) := −

∑
b∈F

N
2

ψ(b) ldψ(b) −
N−1∑
i=0

(1 − Ii)

are called binary information functions for parallel concatenation with

ψ(b) :=
1
2

(N−1∏
i=0

ϕi(bi) +
N−1∏
i=0

(
1 − ϕi(bi)

))
and

ϕi(bi) :=
{

1 − εi for bi = 0,
εi for bi = 1,

where εi := h−1(1 − Ii) for i = 0,1, . . . ,N − 1.

Similar to Definition 4.1, the case N = 1 is included, so that the fol-
lowing formulas can be written in a more compact form. Appendix A
provides some further details.
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Using this function, the complete information on code symbol X0

can be written as

IBSC
cmp,0 = fpar

N (I0, I1, . . . , IN−1). (5.4)

5.4 Binary-Input Symmetric Memoryless Channels

Consider now the case where the individual channels are only required
to be BISMCs. To compute the complete mutual information, the same
method as for SPC codes is used:

(a) the individual channels are decomposed into BSCs;
(b) the complete information is computed for each set of BSCs;
(c) the average complete information is obtained by averag-

ing over the mutual information profiles of the individual
channels.

Thus, the problem is solved by using the result for the all-BSC case
and the concept of mutual information profiles.

All channels are assumed to be BISMCs. Therefore, we may define
a subchannel indicator Ai and a mutual information indicator Ji for
each channel Xi → Yi (cf. Chapter 2). Remember that the expectation
of the mutual information indicator is equal to the mutual information
of the channel, i.e., E{Ji} = I(Xi;Yi) = Ii.

The mutual information does not change if it is written conditioned
on the subchannel indicators A[0,N−1]:

Icmp,0 = I(X0;Y [0,N−1]) = I(X0;Y [0,N−1],A[0,N−1])

= I(X0;A[0,N−1])︸ ︷︷ ︸
=0

+I(X0;Y [0,N−1]|A[0,N−1])

= I(X0;Y [0,N−1]|A[0,N−1]).

This holds because A[0,N−1] is independent of X0 by Definition 2.1.
For a given realization a[0,N−1] of subchannel indicators, we have the
case where the channels are all BSCs, and we can apply the function
fpar

N−1(·) according to Definition 5.1, as done in the all-BSC case:

I(X0;Y [0,N−1]|A[0,N−1] = a[0,N−1]) = fpar
N−1(j0, j1, . . . , jN−1).
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Notice that ji = I(Xi;Yi|Ai = ai) is the mutual information corre-
sponding to the subchannel Ai = ai of channel Xi → Yi.

Taking the expectation, we obtain the desired closed form
expression:

Icmp,0 = I(X0;Y [0,N−1])

= E
{
fpar

N−1(J0,J1, . . . ,JN−1)
}
. (5.5)

For continuous-valued mutual information profiles pJi(ji), this expec-
tation is evaluated as

Icmp,0 =
∫

j0

· · ·
∫

jN−1

pJ0(j0) · · ·pJN−1(jN−1)︸ ︷︷ ︸
mutual information profiles

·

· f ser
N (j0, . . . , jN−1)︸ ︷︷ ︸

information combining for BSCs

dj0 · · ·djN−1. (5.6)

As for the SPC codes, the exact value of the combined mutual infor-
mation can be computed via the mutual information profiles of the indi-
vidual channels, i.e., the mutual information profiles are sufficient to
characterize the decoding operation from an information-theory point
of view.

5.5 Information Bounds

The previous three sections discussed the cases where the individual
channels are known, i.e., where the complete mutual information pro-
files of the channels are known. In this section, it is assumed that the
individual channels are BISMCs and that only their mutual information
values are known, i.e., that the mean values of their mutual information
profiles are known. Based on this knowledge only, tight bounds on the
combined information can be given. These bounds are achieved by the
cases where the individual channels are all BECs or all BSCs [10,13–15].
Notice that these cases correspond to the minimum-variance and to the
maximum-variance mutual information profiles [26,36].
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Theorem 5.1 Let X0,X1, . . . ,XN−1 ∈ F2 denote the code symbols of
a repetition code of length N . Let Xi → Yi, i = 0,1, . . . ,N − 1, denote
N independent BISMCs having mutual information I(Xi;Yi). Let the
intrinsic information on code symbol Xi be defined by Ii := I(Xi;Yi),
i = 0,1, . . . ,N − 1, and let the complete information on code sym-
bolX0 be defined by Icmp,0 := I(X0;Y [0,N−1]). Then, the following tight
bounds hold:

Icmp,0 ≥ fpar
N (I0, I1, . . . , IN−1),

Icmp,0 ≤ 1 − (1 − I0)(1 − I1) · · ·(1 − IN−1).

The lower bound is achieved if the channels are all BSCs, and the upper
bound is achieved if the channels are all BECs.

Note that BSCs achieve the lower bound for repetition codes, but the
upper bound for single parity-check codes; the reverse holds for BECs.

To prove this theorem, we use the following lemma.

Lemma 5.2 The binary information functions for parallel concate-
nation, fpar

N (I0, I1, . . . , IN−1) (see Definition 5.1) are convex-∪ in each
argument Ii, i = 0,1, . . . ,N − 1.

Proof. For the proof, the interpretation of the function fpar
N (·) is used,

namely that it gives the mutual information of N parallel BSCs X → Yi

that have mutual information Ii, respectively, and that have the same
equiprobable input X, i = 0,1, . . . ,N − 1.

Consider first the case N = 2. The function fpar
2 (·) and the func-

tion f ser
2 (·) are related as

fpar
2 (I0, I1) = I0 + I1 − f ser

2 (I0, I1). (5.7)

The proof can be found in [8,9]. As this is very important at this point,
we repeat it here.

Consider the situation depicted in Fig. 5.2: the two BSCs X →
Y0 and X → Y1, having the mutual information I0 = I(X;Y0) and
I1 = I(X;Y1), and having the same input X, which is assumed to be
equiprobable. Then the relation

I(X;Y0,Y1) = I(X;Y0) + I(X;Y1) − I(Y0;Y1) (5.8)
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Fig. 5.2 Illustration of the channels from (5.8).

holds. By definition, we have I(X;Y0,Y1) = fpar
2 (I0, I1). According to

the given situation, the three random variables form the Markov chain
Y0 ↔ X ↔ Y1. Thus the channel Y0 → Y1 is the serial concatenation of
the two channels Y0 → X (which is equivalent to the channel X → Y0)
and X → Y1. Therefore, its mutual information can be expressed as
I(Y0;Y1) = f ser

2 (I0, I1). This proves (5.8).
Notice that this relation holds only for N = 2. Equation (5.8)

together with Lemma 4.2 prove the convexity for N = 2.
Consider now the case N > 2. The vector Y [0,N−1] is partitioned2

into Y0 and Y ′ := Y [1,N−1]. The superchannelX0 → Y ′ is also a BISMC
as the individual channels Xi → Yi, i = 1, . . . ,N − 1, are BISMCs.
Therefore, there is a subchannel indicator A′ and a mutual informa-
tion indicator J ′ for this channel.3 Furthermore, each subchannel of the
superchannel X0 → Y ′ is a BSC. Notice that E{J ′} = I(X;Y [1,N−1]).

Using this superchannel, the mutual information of the N parallel
BSCs and thus function fpar

N (·) can be written as

I(X;Y [0,N−1]) = fpar
N (I0, I1, . . . , IN−1) = E

{
fpar
2 (I0,J ′)

}
. (5.9)

The function fpar
2 (I0,J ′) is convex-∪ in I0 for any J ′ = j′, as shown

above. Furthermore, fpar
N (I0, I0, . . . , IN−1) is a weighted sum of such

functions according to (5.9). Therefore, fpar
N (I0, I1, . . . , IN−1) is convex-

∪ in I1.
The same reasoning can be applied for I1, I2, . . . , IN−1, which com-

pletes the proof.

Lemma 5.2 is now used to prove Theorem 5.1:

Proof. According to (5.5), the combined information can be written as

Icmp,0 = E
{
fpar

N (J0,J1, . . . ,JN−1)
}
.

2 The choice of this particular partioning is arbitrary and without loss of generality.
3 Notice that the BSCs into which the superchannel X0 → Y ′ is decomposed are quite
different from the N − 1 BSCs which form this superchannel.
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The function fpar
N (·) is convex-∪, and therefore, the extension of

Jensen’s inequality, Theorem 3.1, can be applied. As Theorem 3.1
addresses only a function with one argument, whereas the given func-
tion has multiple arguments, the theorem has to be applied successively
with respect to each argument. Notice that the mutual information
indicators Ji are confined to the interval [0,1].

Consider first the lower bound. For the time being, let only J0 be
a random variable and let the other mutual information indicators be
fixed, Ji = ji, i = 1, . . . ,N − 1. Then, the lower bound results as

E
{
fpar

N (J0, j1, . . . , jN−1)
}

≥ fpar
N

(
E{J0}, j1, . . . , jN−1)

)
= fpar

N (I0, j1, . . . , jN−1).

Evaluating the expected values with respect to J1, . . . ,JN−1 in an analog
way, the overall lower bound is obtained.

Consider now the upper bound. For the time being, let only J0 be
a random variable and let the other mutual information indicators be
fixed, Ji = ji, i = 1, . . . ,N − 1. Then, according to Theorem 3.1, the
upper bound results as

E
{
fpar

N (J0, j1, . . . , jN−1)
}

≤ fpar
N (0, j1, . . . , jN−1)

+
fpar

N (1, j1, . . . , jN−1) − fpar
N (0, j1, . . . , jN−1)

1 − 0
· (E{J0} − 0

)
= fpar

N−1(j1, . . . , jN−1) + I0 − fpar
N−1(j1, . . . , jN−1) · I0

= 1 − (1 − I0)
(
1 − fpar

N−1(j1, . . . , jN−1)
)
.

It was used that

fpar
N (0, j1, . . . , jN−1) = fpar

N−1(j1, . . . , jN−1),

fpar
N (1, j1, . . . , jN−1) = 1

(cf. interpretation of this function) and E{J0} = I0. Notice that
fpar
1 (j) = j. Evaluating the expected values with respect to J1, . . . ,JN−1

in an analog way, the overall upper bound is obtained.
As there are actually channels achieving the bounds, the bounds

are tight. This completes the proof.
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If only one of the channels is varied, the combined mutual informa-
tion becomes maximal if this channel is a BEC, and it becomes minimal
if this channel is a BSC, as first addressed in [14,15]; this is similar to
the case of SPC codes. On the other hand, the above proof shows that
the upper bound is achieved only if all channels are BECs, as opposed
to the case of SPC codes.

If not the complete information but the extrinsic information on a
code symbol is of interest, Theorem 5.1 can directly be applied; the
only difference is that the direct observation of this code symbol has to
be omitted. To make it easier to refer to these bounds on the extrinsic
information for repetition codes, the following theorem is added.

Theorem 5.3 Let X0,X1, . . . ,XN−1 ∈ F2 denote the code symbols of
a repetition code of length N . Let Xi → Yi, i = 1,2, . . . ,N − 1, denote
N − 1 independent BISMCs having mutual information I(Xi;Yi). Let
the intrinsic information on code symbol Xi be defined by Ii :=
I(Xi;Yi), i = 1,2, . . . ,N − 1, and let the extrinsic information on code
symbol X0 be defined by Iext,0 := I(X0;Y [1,N−1]). Then, the following
tight bounds hold:

Iext,0 ≥ fpar
N−1(I1, I2, . . . , IN−1),

Iext,0 ≤ 1 − (1 − I1)(1 − I2) · · ·(1 − IN−1).

The lower bound is achieved if the channels are all BSCs, and the upper
bound is achieved if the channels are all BECs.



6
Applications and Examples

The earlier chapters addressed the information-theoretic bounds on
information combining, in particular for single parity-check codes and
for repetition codes. These bounds are now applied in several ways.
First, the information processing characteristic (IPC) and the extrin-
sic information transfer (EXIT) functions are bounded. Then it is
shown how these functions can be used to design multiple turbo codes.
The bounds on the EXIT functions are applied to derive bounds
on the decoding thresholds of LDPC codes. Finally, the bounds on
information combining are used to bound the EXIT function of the
accumulator.

6.1 Information Processing Characteristic

The performance of a channel coding scheme is usually visualized using
plots of the bit or frame error probability curves versus one or more
parameter(s) specifying the communication channel. The channel cod-
ing scheme comprises a code, an encoding rule and a decoding method;
the communication channel is the model used for the channel between
the encoder and the decoder.

277
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The quality of the decisions in favor of the estimated codeword or of
individual information symbols, however, is not adequately expressible
by means of this method. It is well known that for concatenation of data
processors (e.g. source and channel coding or concatenated channel
coding), the propagation of reliability estimates together with data
estimates (soft output decoding) for frames or individual symbols from
a constituent decoder to a subsequent data processor yields high gains
over hard output decoding (hard decision decoding).

Especially in the area of unreliable decisions, e.g., when the code
rate exceeds the channel capacity, the decoder output sequence is char-
acterized rather insufficiently by the error rates of the hard decisions.
But exactly this situation usually is present for the constituent codes
in iteratively decodable schemes as long as no or only little extrinsic
information is available from further data processors.

To provide a very general framework of the specification of the qual-
ity of a coding scheme, the concept of information processing charac-
teristics (IPC) was suggested in [20]. Consider the typical transmission
system depicted in Fig. 6.1, consisting of a binary linear encoder, a
binary-input symmetric memoryless channel (BISMC), and a decoder.
Without restriction of generality, we assume that the input symbols Ui

of the encoder are binary, and independent and uniformly distributed,
and thus have entropy H(U) = 1 bit/symbol. As the focus in this book
is restricted to binary-input channels, the code symbols are assumed to
be binary. The encoder of rate R = K/N encodes K information sym-
bols U into N code symbols X and forwards them to the communica-
tion channel. Notice that the individual code symbols are equiprobable,
and that R is also the average entropy per code symbol. The channel
is assumed to have channel capacity C. The channel output symbols

Fig. 6.1 Transmission system with binary linear encoder, binary-input symmetric memory-
less channel (BISMC), and decoder.
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are given to a decoder, which processes them to the values V . These
outputs of the channel decoder may be hard decisions, soft-decisions,
or any other values.

In [20], it is suggested to visualize the mutual information I(U;V)
between the encoder input sequence U and the decoder output sequence
V versus the capacity C of the communication channel; to be more
precise, the mutual information per information symbol is used. As
already mentioned in Chapter 1, the mutual information corresponds
to the channel capacity, as only symmetric channels and uniformly
distributed channel inputs are considered. Depending on what is more
appropriate in the context, we may use the term “information” or the
term “capacity.”

We call the curves I(U;V) versus C the IPC of the coding scheme,
IPC(C), because it expresses concisely how the coding scheme with
rate R = K/N is able to exploit N uses of the communication channel
for recovery of K binary information symbols by means of the decoder
output sequence V.

6.1.1 Types of IPCs

We distinguish four types of IPCs, cf. [20], according to different decod-
ing processes.

IPC for Sequence Decoding

The IPC for sequence decoding is defined as

IPC(C) :=
1
K
I(U;V), (6.1)

where K denotes the length of encoder input sequence U per codeword
(frame), and N denotes the length of encoder output sequence X per
codeword (frame). In the function IPC(C), the memory within the
output sequence V due to the code constraints and decoding procedure
is taken into account.

An optimum sequence decoder is a lossless data processor on a chan-
nel output sequence Y of length N . An example for such an optimal
sequence decoder is one that calculates and delivers a complete list of
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the a-posteriori probabilities of all 2K codewords xl; i.e., the output vec-
tor v is the vector with the elements vl = Pr(xl | Y), l = 1,2, . . . ,2K .
Since a-posteriori probabilities are sufficient statistics, the inequality
(data processing theorem) I(U;Y) ≥ I(U;V) holds with equality. A
detailed proof can be found in [20].

IPC for Symbol-by-Symbol Decoding

In symbol-by-symbol decoding, the individual a-posteriori probabilities
Pr(Ui | Y) for the information symbols are computed (e.g., using the
BCJR-algorithm [37] for codes which can be represented in a trellis
with a manageable number of states). Any memory within the decoder
output sequence is disregarded.

The IPC for symbol-by-symbol decoding is defined as

IPCI(C) :=
1
K

K∑
i=1

I(Ui;Vi). (6.2)

This situation corresponds to the application of a sufficiently large
interleaver (subscript “I”) in front of the encoder, an appertaining
deinterleaver after the decoder, and a these devices for further data
processing. If a-posteriori a-posteriori probabilities are forwarded to
the user, i.e., Vi := Pr(Ui | Y), we denote a symbol-by-symbol decoder
to be optimum. In this case, the inequality I(Ui;Y) ≥ I(Ui;Vi) holds
with equality.

IPC for Application of a Specific Decoder

The previous two cases were for optimal decoding, in the sense
described above. But in the same, the IPC for any specific decoder
can be defined:

IPCDEC(C) :=
1
K
I(U;V). (6.3)

Examples for suboptimal decoders are those employing the
MaxLogAPP algorithm [38,39] or sequential search algorithms [40–42].
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IPC for Extrinsic-Output Decoding

In the case of systematic encoding, the information symbols Ui are also
transmitted over the channel. Therefore, the end-to-end mutual infor-
mation I(Ui,Y) may be decomposed into an intrinsic part I(Ui,Yi) = C

and an extrinsic part

IPCEXT(C) :=
1
K

K∑
i=1

I(Ui,Y\i), (6.4)

where Y\i = [Y0, . . . ,Yi−1,Yi+1, . . . ,YN−1] denotes the vector of received
values excluding Yi. The extrinsic part is identical to the famous extrin-
sic information transfer (EXIT) characteristic of a coding scheme, see
e.g., [6, 43,44].

6.1.2 Properties and Applications of IPCs

Information processing characteristics have several interesting proper-
ties and they may be applied in several ways. Some properties and
applications are discussed in the following.

Sequence Decoding Versus Symbol-by-Symbol Decoding

Application of the chain rule for mutual information yields the following
inequality:

I(U;V) = I(U1;Y) + I(U2;Y | U1) + · · · + I(UK ;Y | U1 · · ·UK−1)

≥ I(U1;Y) + I(U2;Y) + · · · + I(UK ;Y), (6.5)

because of I(Ui;Y | Z) ≥ I(U ;Y) for any Z that is a partial vector of U
and does not contain Ui, see e.g. [33]. Thus, for optimum decoding, the
inequality IPC(C) ≥ IPCI(C) holds because in IPC(C), the memory in
the decoder output sequence is taken into account whereas it is not for
IPCI(C) (memory increases capacity).

IPC of an Ideal Coding Scheme

We define a coding scheme with rate R to be ideal if the end-to-end bit
error probability BEP does not exceed the minimum achievable value



282 Applications and Examples

BEPT (index “T” for “tolerated”) that has to be tolerated at all, i.e.,
for a scheme which achieves the rate-distortion bound [33] with equality

BEP = BEPT =
{
h−1(1 − C/R) for C < R,

0 for C ≥ R.
(6.6)

cf. Fano’s inequality (3.7). In [20], we proved that for such an ideal
coding scheme, the functions IPC(C) and IPCI(C) are identical, and
that they are represented by

IPC(C) = IPCI(C) = min(1,C/R). (6.7)

Notice that this equation corresponds to two straight lines.
Together with (6.5), the following inequalities hold for any coding

scheme:

IPCI(C) ≤ IPC(C) ≤ min(1,C/R). (6.8)

For an ideal coding scheme, the end-to-end channel corresponds to a
BSC with BEP = BEPT, i.e., all decoder output symbols show identical
reliabilities and there is neither difference between hard and soft output
decoding nor in sequence and symbol-by-symbol decoding. The IPC of
an ideal coding scheme is depicted in Fig. 6.2, right-hand side.

Fig. 6.2 EXIT chart for a rate-1/2 repeat-accumulate code (parallel representation) trans-
mitted over the BIAWGN channel, and bounds on the information processing characteristic
IPCI(C).
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Bound on Code-Symbol Information

No subset of K binary code symbols Xli out of the N code symbols
provides more information on the transmitted codeword than the K
binary information symbols [45]:

1
K

K∑
i=1

I(Xli ;Y) ≤ 1
K
I(U;Y) ≤ min(1,C/R). (6.9)

Taking the average over all possible subsets of K out of N code symbols
yields

1
N

N∑
i=1

I(Xi;Y) ≤ min(1,C/R), (6.10)

see [45]. This inequality advises to define an IPCI(C) for non-systematic
encoding together with optimum symbol-by-symbol decoding:

IPCI(C) :=
1
N

N∑
i=1

I(Xi;Y). (6.11)

For systematic encoding and optimum symbol-by-symbol decoding, the
definition in (6.11) coincides with the definition in (6.2). Therefore, the
same notation is applied.

Decomposition of the IPC

The end-to-end mutual information IPCI(C) may be decomposed into
intrinsic and extrinsic mutual information. The intrinsic part exactly
corresponds to channel capacity. Thus, IPCI(C) follows from the par-
allel information combining of the abscissa value C and the ordinate
value IPCEXT(C) of the EXIT-curve for serial concatenation of coding
schemes. Using the results of Chapter 5, the following bounds hold:

fpar
2 (C, IPCEXT(C)) ≤ IPCI(C)

≤ 1 − (1 − C)(1 − IPCEXT(C)) (6.12)

or
IPCI(C) − C

1 − C
≤ IPCEXT(C) ≤ fpar,−1

2 (C, IPCEXT(C)) (6.13)
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with the definition of fpar,−1
2 (., .) by means of

fpar,−1
2

(
fpar
2 (α,β),β

)
= α, (6.14)

α,β ∈ [0,1].
The inequalities (6.12) may be used to estimate IPCI(C) for a lim-

ited number of iterations from the vertices of the ZIG-ZAG trajectory
in the EXIT chart for a concatenated coding scheme. An example for
the construction of bounds on IPCI(C) from the intersection points of
EXIT trajectories is given in Fig. 6.2 for the rate 1/2 repeat-accumulate
(RA-) code. (In Fig. 6.2, the interpretation of an RA-code as a parallel
concatenation is used because here only half the number of iterations
is necessary, cf. [1].) One can observe that the bounds constructed in
this way are rather tight.

On the other hand, the EXIT curves of constituent codes in con-
catenated schemes can be approximated within a small interval from
IPCI(C) using the inequalities (6.13). Together with (6.10) and (6.11),
we are also able to express an upper bound on EXIT curves for con-
stituent codes with rate R in serial concatenation, see [3, 13]:

IPCEXT(C) ≤ fpar,−1
2 (min(1,C/R),C). (6.15)

Estimation of Bit Error Probability

From (3.7), bounds on the bit error probability (inequalities of Fano and
Raviv/Hellman) result from IPCI(C) for symbol-by-symbol decoding,
cf. [1], and via inequality (6.12) directly from vertices of the ZIG-ZAG
trajectory in the EXIT chart analysis. Thus, by means of parallel infor-
mation combining, we find bounds for the parametrization of the EXIT-
chart with curves for equal bit error probability, which so far were
known only in an approximative manner using the Gaussian approxi-
mation for pdfs of L-values [6].

Figure 6.3 shows bounds on the bit error probability for the rate-
1/2 repeat-accumulate (RA) code that are derived from the bounds in
IPCI(C) of Fig. 6.3. (Notice that the bounds on the IPC are computed
based on EXIT curves that were determined by simulation.) In addition
to the bounds, actual simulation results for the bit error probability are
also provided.
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Fig. 6.3 Bounds on the bit error probability derived from the EXIT chart in Fig. 6.2 via
bounds on IPCI(C) for the rate-1/2 RA code (BIAWGN channel). Dashed line: Simulation
result for codeword length 2 × 105, 8 iterations.

6.1.3 Bounds on IPC for Repetition Code

For the (N,1) binary repetition code, the information processing char-
acteristics IPC(C) and IPCI(C) are identical, of course, and they are
identical to the curves for parallel information combining, cf. Chap-
ter 5. Notice that both bounds corresponding to BSCs (lower bound)
and BECs (upper bound) are surprisingly close together, see Fig. 6.4.
The usually applied Gaussian approximation is close to the BEC curve
for 0.8 < C < 1 because the MIP of the AWGN channel is well approx-
imated by the BEC model in this case (cf. Fig. 2.7).

In Fig. 6.4, these bounds are compared with the IPC of an ideal cod-
ing scheme with the same rate, R = 1/N , but infinite codeword length.
The plot shows that such simple repetition codes operate surprisingly
close at the optimum in the area C < R. The high performance of
repeat accumulate codes is based on this effect.

Notice that the extrinsic information IPCEXT(C) for the (N,1) rep-
etition code corresponds to the IPC(C) for the (N − 1,1) repetition
code.
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Fig. 6.4 Comparison of bounds on IPCs and Gaussian approximation (dashed line) of repe-
tition codes with rates 1/4, 1/3, 1/2, 1 (from left to right) with IPCs of ideal coding schemes
(dash-dotted lines).

6.1.4 Bounds on IPCs for Single Parity-Check Code

For optimum symbol-by-symbol decoding of an (N,N − 1) single
parity-check (SPC) code, bounds on IPCI(C) simply result from
parallel information combining of extrinsic and intrinsic information
[13]. To be precise, the following procedure is applied: The intrinsic
information, C, and the upper bound on the extrinsic information,
f ser

N−1(C,C, . . . ,C), are inserted into the upper bound on parallel infor-
mation combining; this results in an upper bound on the overall mutual
information IPCI(C). In a similar way, the lower bound is derived. The
resulting bounds are:

IPCI(C) ≤ IU[N ] := 1 − (1 − C)
(
1 − f ser

N−1(C,C, . . . ,C)
)
, (6.16)

IPCI(C) ≥ IL[N ] := fpar
2
(
C,CN−1) . (6.17)

These bounds are valid for any BISMC but they are not tight because
both extreme channels w.r.t. information combining are used in a mixed
way. For example, the upper bound on the extrinsic information for
SPC codes is obtained by BECs; the upper bound for parallel combin-
ing, however, is obtained by BSCs. In spite of this effect, these bounds
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Fig. 6.5 Bounds on IPCs for rate-3/4 SPC code.

are rather close to each other, as can be seen in Fig. 6.5. At very low
channel capacity, C � R, both curves follow the diagonal straight line
with slope 1, i.e. no reliability is gained from decoding of extrinsic
information, respectively.

Consider now bounds on the IPC for optimum sequence decoding.
We first apply the chain rule of mutual information, cf. (6.5):

I(U;Y) = I(U1;Y) + I(U2;Y | U1)

+ · · · + I(UK ;Y | U1, . . . ,UK−1)

:= ISPC[N ] + ISPC[N − 1] + · · · + ISPC[2] (6.18)

with

ISPC[n] := IPCI(C), (6.19)

denoting the IPC for symbol-by-symbol decoding of the (n,n − 1) SPC
code. The value I(U1;Y) corresponds to the IPC for symbol-by-symbol
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decoding for a SPC code of length N , of course. Consider now I(U2;Y |
U1). If the information symbol U1 is known, the code is equivalent
to an SPC code of length N − 1. Therefore, the value I(U2;Y | U1)
corresponds to the IPC for symbol-by-symbol decoding for an SPC
code of lengthN − 1. In the general case, the decoding of an (N,N − 1)
SPC code, where L symbols are known, degrades to the decoding of an
(N − L,N − L − 1) SPC code. This gives the above formulas.

Each term in (6.18) is now bounded using the expressions from
(6.16) and (6.17). This gives bounds on the IPC for optimal sequence
decoding:

N∑
n=2

IL[n] ≤ IPC(C) ≤
N∑

n=2

IU[n]. (6.20)

These bounds of IPC for sequence decoding are depicted in Fig. 6.5
too. Again, these bounds are not tight because of the mixture of
extreme channels. Therefore, the upper bound slightly crosses the
straight line for the ideal coding scheme. In this area, this straight
line for the ideal coding scheme is obviously a tighter upper bound. In
contrast to IPCI(C), both bounds follow the optimum line with slope
1/R for C � R; i.e., a list of a-posteriori probabilities of all codewords
makes available substantially more information than a-posteriori sym-
bol probabilities because of preserving the memory in the decoder out-
put sequence. For C < R/2, these simple codes perform almost as good
as possible, whereas the well-known high losses have only to be taken
into account if reliable communication, i.e. IPC(C) = 1, is desired.

6.2 Analysis and Design of Multiple Turbo Codes

The extension of the original turbo codes [18, 46] to more than two
branches is called multiple turbo codes (see [3] and the references
therein). An example for such an encoder is shown in Fig. 6.6.

It is difficult to visualize the convergence of the iterative decoding
process for multiple turbo codes by means of regular EXIT charts. In
a so-called extended serial setup decoder, extrinsic information from
all other constituent codes are combined to have best possible a-priori
information for the decoding procedure of the current constituent code,
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Fig. 6.6 Block diagram of the best multiple turbo code of rate 1/4 with memory ≤ 3
constituent codes designed by means of EXIT curves and parallel information combining,
see [3, 22].

Fig. 6.7 Extended serial setup decoding for a multiple turbo code.

i.e., the sum of extrinsic L-values is applied for representing extrinsic
information, see Fig. 6.7.

In terms of EXIT chart analysis (based on simulations of the con-
stituent codes and the Gaussian approximation, as usual, [47]), the
extrinsic information from the EXIT curves of all other constituent
codes yields the abscissa value for the usual two-dimensional EXIT
curve of the actual constituent code to be decoded. Thus, parallel
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information combining makes possible to analyze the convergence
behavior of an M-ary turbo code based on the usual well-known two-
dimensional EXIT curves of the individual constituent codes in a cir-
cular serial way [3,22]: The abscissa value at the actual chart is formed
from the actual values of the ordinates of all other charts by means of
parallel information combining. Convergence is given if at least in one
chart the point (1,1) is achieved very closely during the iterative pro-
cess. For this analysis, the usual EXIT curves of the constituent codes
are sufficient in the same way as it is for the classic parallel or serial
concatenation of two encoders.

The iterative process going from vertex to vertex in a series ofM − 1
EXIT charts may be performed in a twofold way, one for the lower
and one for the upper bound for parallel information combining of the
extrinsic information from the other constituent codes (worst case and
best case analysis). Many tests have shown that the results for both
versions usually differ only slightly and results with sufficient reliability
are obtained using the simple formula for parallel information combin-
ing valid for the BEC (best case analysis), see Eq. (1.9).

An optimization process for multiple turbo codes using parallel
information combining, as proposed in [1], works as follows: Two dimen-
sional EXIT curves are represented by means of simulation points and
spline interpolation for the selected subset of possible constituent codes
at different signal-to-noise ratios (SNRs) and puncturing rates. Using
this database, the multidimensional ZIG-ZAG process is simulated for
all possible combinations of constituent codes and puncturing rates
yielding the desired overall code rate. The combination is identified for
which convergence at the point (1,1) is achieved at least for one con-
stituent code very closely at the lowest SNR. Because the simulation of
the ZIG-ZAG process is based on the very simple operations as func-
tion read out and parallel information combining for the BEC, a huge
number of such runs is possible within a few seconds on a usual PC.

To give an example, Fig. 6.6 shows the structure of the best rate 1/4
4-ary turbo code for the BIAWGN channel, which was found by this
process when the number of states per constituent code is restricted
to 8 [3]. Simulation results for this code are given in Fig. 6.7 for K =
105,N = 4 × 105. A comparison in Fig. 6.8 of this curve with the curve
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Fig. 6.8 Simulation results of bit error ratios for the 4-ary rate 1/4 turbo code of Fig. 6.7
(K = 105, N = 4 × 105) and comparison with the original rate 1/2 turbo code (K = 65536)
(BIAWGN-channel).

for the original turbo code [46] (K = 65546, R = 1/2) shows that this
code of rate 1/4 is even closer to the corresponding capacity limit than
the original turbo code. Another approach for designing multiple turbo
codes, which is also based on EXIT charts, can be found in [48].

6.3 Decoding Thresholds of LDPC Codes

The bounds on information combining can be used to analyze the
message-passing decoding of low-density parity-check (LDPC) codes.
The assumption of Gaussian distributed messages, used in the original
EXIT chart method, is not necessary; this is replaced by assuming that
the virtual channels between the code symbols and the corresponding
messages are BISMCs, as opposed to the stricter assumption of AWGN
channels in the original EXIT chart method. For each variable node
and check node decoder, the EXIT function is bounded, and resulting
from that, an upper and a lower bound of the decoding threshold is
obtained [15]. Thus in a way, the single value of the decoding threshold
based on the Gaussian assumption is replaced by an exact range of the



292 Applications and Examples

decoding threshold based on information combining; or in other words:
the single value that is an approximation is replaced by a region which
contains the correct value for all BISMCs. These principles can also be
used for code design [15].

In the following, the basics for LDPC codes will shortly be recapitu-
lated. The concept of information combining is used to bound the EXIT
functions for the variable-node and the check-node decoder. Finally,
based on these bounds, the region for the decoding threshold is deter-
mined. For convenience, the discussion is restricted to regular LDPC
codes, as the focus in this book is on the presentation of the concepts
and principles. The generalization to irregular LDPC codes is straight-
forward.

6.3.1 LDPC Codes

LDPC codes are defined by their parity-check matrices. The parity-
check constraints may be graphically represented in a factor graph
comprising one variable node for each code symbol, one check node
for each check equation, and edges between variable nodes and check
nodes according to the parity-check matrix [49–52].

In the case of regular LDPC codes, each variable node is connected
to dv check nodes, and each check node is connected to dc variable
nodes. These two values dv and dc are called the variable node degree
and the check node degree, respectively. The rate R of an LDPC code
is lower-bounded by the design rate Rd, which is a function of the two
degrees:

R ≥ Rd = 1 − dv

dc
.

The factor graph is the basis for the iterative decoding algorithm:
messages are passed between variable nodes and check nodes; each node
computes new outgoing messages based on the incoming messages, i.e.,
it performs information combining. As usually done, the messages are
assumed to be independent, i.e., the cycles in the graph are assumed
to be sufficiently large for the decoding process; this turns out to be
justified with high probability for long codes. For details on LDPC



6.3. Decoding Thresholds of LDPC Codes 293

Fig. 6.9 A variable node of degree dv = 4 and messages. (The variable node is drawn as a
circle and the check nodes are drawn as squares.)

codes and the message passing algorithm, the reader is referred to [4,
5, 49–54].

Consider now the decoding operation of variable nodes (cf. Fig. 6.9).
The variable node representing the code symbol X0 obtains the out-
put y0 of the communication channel, referred to as the message based
on the direct observation, and dv messages w0, . . . ,wdv−1 from the con-
nected check nodes. All these incoming messages are assumed to be
independent. The outgoing message v0 sent to check node C0 (the one
that sent w0) is assumed to be generated in an optimal way such that

I(X0;V0) = I(X0;Y0,W1, . . . ,Wdv−1).

The decoding operation corresponds to decoding of repetition codes.
Notice that the message is an extrinsic message as it is independent
of w0. The messages to the other check nodes are computed corre-
spondingly.

Consider now the decoding of check nodes (cf. Fig. 6.10). Without
loss of generality, assume that the variable nodes corresponding to the
code symbols X0,X1, . . . ,Xdc−1 are connected to check node C0. This
check node obtains dc messages from these variable nodes, denoted by
v0, . . . ,vdc−1. All these incoming messages are assumed to be indepen-
dent. The outgoing message w0 sent to variable node X0 (the one that
sent v0) is assumed to be generated in an optimal way such that

I(X0;W0) = I(X0;V1,V2, . . . ,Vdc−1).
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Fig. 6.10 A check node of degree dv = 4 and messages. (The variable-nodes are drawn as
circles and the check node is drawn as a square.)

The decoding operation corresponds to decoding of SPC codes. Notice
that the message is an extrinsic message as it is independent of v0. The
messages to the other variable nodes are computed correspondingly.

A fundamental question is: When an LDPC code with degrees dv

and dc is used on a communication channel with a certain parame-
ter (e.g., an AWGN channel with a certain SNR), what is the worst
channel such that the communication is still error-free when the code
length tends to infinity? The parameter corresponding to this worst-
case channel is called the decoding threshold. The question can also be
formulated as: What are the optimum degrees for a given communi-
cation channel, i.e., the degrees with the largest design rate such that
decoding is error-free.

These problems can be solved by density evolution [51,52,55], where
the evolution of the conditional probability densities of the messages
during the iterations are tracked. This can be rather simplified by
assuming that the incoming messages are Gaussian distributed. Then,
it is sufficient to track a single parameter of the message distribution.
The most successful method of this kind is the extrinsic information
transfer (EXIT) chart method [6, 7, 44,47].

6.3.2 EXIT Charts

In the EXIT chart method, the average mutual information between
code symbols and messages is tracked. Assume a communication
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channel with mutual information Ich between channel input and chan-
nel output, i.e.,

Ich = I(Xi;Yi)

for all code symbols Xi. This value is also referred to as the channel
(mutual) information. Consider now a certain iteration of the iterative
decoder.

For the variable node of code symbol X0, the mutual information
between this code symbol and the incoming messages,

I
(v)
apri = I(X0;Wi),

is called the a-priori (mutual) information. The mutual information
between the code symbol and the outgoing message,

I
(v)
ext = I(X0;V0) = I(X0;Y0,W1, . . . ,Wdv−1),

is called the extrinsic (mutual) information. As the value is the same
for all outgoing messages, this is also the average extrinsic information.
The mapping from the a-priori information to the extrinsic information
with the channel information as a parameter,

EXITv : I(v)
apri �→ I

(v)
ext , (6.21)

is called the variable-node EXIT function.
From an information theory point of view, the variable node decoder

combines one value of channel information Ich (via the communication
channel) and dv − 1 values of a-priori information I(v)

apri to the extrinsic

information I(v)
ext . The corresponding model is depicted in Fig. 6.11. The

virtual channels are BISMCs as the communication channel is assumed
to be a BISMC and the decoding operations in the variable nodes and
check nodes are symmetric.

For the check node connected to the variable nodes of the code sym-
bol X0,X1, . . . ,Xdc−1, the mutual information between a code symbol
and the corresponding incoming messages,

I
(c)
apri = I(Xi;Vi),

is called the a-priori (mutual) information. The mutual information
between a code symbol and the corresponding outgoing message,

I
(c)
ext = I(Xi;Vi) = I(X0;V1,V2, . . . ,Vdc−1),
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Fig. 6.11 Decoding model for the variable node decoder.

is called the extrinsic (mutual) information. As the value is the same
for all outgoing messages, this is also the average extrinsic information.
The mapping from the a-priori information to the extrinsic information,

EXITc : I(c)
apri �→ I

(c)
ext , (6.22)

is called the check node EXIT function.
From an information theory point of view, the check node decoder

combines dc − 1 values of a-priori information I
(c)
apri to the extrinsic

information I(c)
ext . The corresponding model is depicted in Fig. 6.12. The

virtual channels are BISMCs as the communication channel is assumed
to be a BISMC and the decoding operations in the variable nodes and
check-nodes are symmetric.

In the original EXIT chart method, the two EXIT functions are
computed independently based on the assumption that the incoming
messages are Gaussian distributed. During iterative decoding, the fol-
lowing identities hold:

I
(c)
apri = I

(v)
ext and I

(v)
apri = I

(c)
ext . (6.23)

The EXIT chart is a plot of both EXIT functions in a single diagram.
The decoding threshold can be identified with the worst communica-
tion channel, for which there is no intersection between the two EXIT
functions.
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Fig. 6.12 Decoding model for the check node decoder.

Regarding EXIT charts for LDPC codes, two remarks are worth
mentioning. First, the EXIT functions are usually determined by run-
ning the constituent decoders. They can, however, also be determined
analytically by applying (4.10) and (5.6). More results on analytical
EXIT functions can be found in [56]. Second, the EXIT chart analysis
is valid only for the asymptotic case of infinite code lengths. For further
details, we refer the reader to literature on LDPC codes.

6.3.3 Bounds on EXIT Functions

EXIT charts help to predict the behavior of the iterative decoder with-
out actually running it. The EXIT functions of the two constituent
decoders are determined separately by assuming a certain distribution
of the incoming messages, or equivalently, by assuming a certain chan-
nel model for the virtual channel between the code symbols and the
correspond. This method was shown to predict quite accurately the
decoding threshold of iterative decoders.

Nevertheless, EXIT functions depend on the model for the virtual
channel and the communication channel. This has two implications:

(a) The predicted decoding threshold is accurate only if the
model for the virtual channel is correct. Although the often
used AWGN channel provides a good approximation of
the channel that can be observed in an iterative decoder,
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it is still an approximation. Thus, the predicted decoding
thresholds cannot be proved to be accurate.

(b) The decoding threshold depends on the model for the com-
munication channel.

The original EXIT chart method is now extended using the concept of
information combining.

The EXIT functions for specific channel models will be replaced
by bounds on EXIT functions that are valid for all BISMCs. Thus,
bounds on the true decoding threshold can be obtained, and these
bounds are valid for all models of communication channels that are
BISMCs. Based on [8], this method was developed in [9–11,13] and [14,
15]. In the following, the bounds on information combining developed
in Chapters 4 and 5 will be applied.

Consider a regular LDPC code with variable node degree dv and
check node degree dc. The code symbols are transmitted over a com-
munication channel that is a BISMC and has mutual information Ich,
referred to as channel information. The iterative decoder operates
on the factor graph of the parity-check matrix of the code, and the
variable-node and the check-node decoders are assumed to perform
optimal decoding.

The decoding operation in a variable node is equivalent to decoding
a repetition code of length dv + 1. For each outgoing extrinsic mes-
sage, the decoder uses the channel information Ich and (dv − 1) val-
ues of a-priori information I

(v)
apri; the resulting extrinsic information is

denoted by I
(v)
ext . Using Theorem 5.3, the extrinsic information can be

bounded by

I
(v)
ext ≥ fpar

dv
(Ich, I

(v)
apri, . . . , I

(v)
apri︸ ︷︷ ︸

(dv−1) arguments

), (6.24)

I
(v)
ext ≤ 1 − (1 − Ich)(1 − I

(v)
apri)

dv−1. (6.25)

The lower bound corresponds to BSCs, and the upper bound corre-
sponds to BECs. This gives the bounds on the EXIT function of the
variable-node decoders.
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Similarly, the decoding operation in a check node is equivalent to
decoding of a single parity-check code of length dc. For each outgoing
extrinsic message, the decoder uses (dc − 1) values of a-priori informa-
tion I

(c)
apri; the resulting extrinsic information is denoted by I(c)

ext . Using
Theorem 4.1, the extrinsic information can be bounded by

I
(c)
ext ≥ (I(c)

apri)
dc−1, (6.26)

I
(c)
ext ≤ f ser

dc−1(I
(c)
apri, I

(c)
apri, . . . , I

(c)
apri). (6.27)

The lower bound corresponds to BECs, and the upper bound corre-
sponds to BSCs. This gives the bounds on the EXIT functions for the
check-node decoder.

The resulting extended EXIT chart with bounds on the EXIT func-
tions is illustrated in the following example. Consider a regular LDPC
code with variable node degree dv = 3 and check node degree dc = 4,
having design rate Rd = 1/4. This extended EXIT chart of this code
is depicted in Fig. 6.13 for two values of channel information Ich. Note
that the EXIT function for the check node is flipped; therefore, the
upper curve corresponds to the lower bound on the EXIT function,
and vice versa.

6.3.4 Bounds on Decoding Threshold

The bounds on the EXIT functions for variable nodes and check nodes
can be used to determine the smallest channel information that is nec-
essary for convergence, and the smallest channel information that is
sufficient for convergence. Thus, a necessary and a sufficient condition
for convergence are obtained, and these conditions are given in terms of
the mutual information of the communication channel. These bounds
on the convergence threshold are valid for all a-priori channels and
all communication channels that are BISMCs. Notice that this mutual
information of the communication channel is identical to its capacity,
as it is assumed that the channel is a BISMC and that the codewords
are equiprobable.

To explain the way to determine the bounds on the convergence
threshold, the previous example is continued (cf. Fig. 6.13).
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Fig. 6.13 Extended EXIT chart for an LDPC code with variable node degree dv = 3 and
check node degree dc = 4 for a communication channel with mutual information Ich = 0.27
and Ich = 0.40. The bounds on the EXIT functions for variable nodes and check nodes are
depicted. (Mutual information is given in bit/use.)

Lower bound on decoding threshold : For Ich = 0.27, the upper bound
on the check node EXIT function and the upper bound on the variable
node EXIT function intersect. Therefore, the decoder cannot converge
for any model of virtual channel and any model of the communication
channel if Ich < 0.27 (provided that both are BISMCs). Thus, Ich = 0.27
represents a lower bound on the convergence threshold.

Upper bound on decoding threshold : For Ich = 0.40, the lower bound on
the check node EXIT function and the lower bound on the variable
node EXIT function do not intersect. Accordingly, the decoder will
converge for any model of the virtual channel and any model of the
communication channel if Ich > 0.40. Thus, Ich = 0.40 represents an
upper bound on the convergence threshold.
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These two bounds are determined based on the graphical represen-
tation of the bounds of the EXIT functions. To obtain more precise
results, the decoding thresholds can be determined numerically using
conditions for the curves to intersect. The following theorem is based
on this concept and gives a lower and an upper bound on the decoding
threshold, and thus a necessary and a sufficient condition for conver-
gence, respectively [13–15].

Theorem 6.1 Consider a regular LDPC code (of infinite length) with
variable node degree dv and check node degree dc. The communication
channel is assumed to be an arbitrary BISMC with mutual information
(capacity) Ich. Let Ich,low be defined as the maximum value Ich ∈ [0,1]
such that there is an I ∈ [0,1] fulfilling

I = 1 − (1 − Ich)
(
1 − f ser

dc−1(I,I, . . . , I)
)dv−1

.

Let further Ich,upp be defined as the maximum value Ich ∈ [0,1] such
that there is an I ∈ [0,1] fulfilling

I = fpar
dv

(Ich, Idc−1, . . . , Idc−1).

The iterative decoder can converge only if Ich > Ich,low (necessary con-
dition), and it converges for sure if Ich > Ich,upp (sufficient condition).

The first equality corresponds to an intersection of the upper bounds
on the EXIT functions, and the second equality corresponds to an inter-
section of the lower bounds on the EXIT functions. These intersections
of EXIT functions are the basis for proving this theorem.

Proof. Consider first the case that the upper bounds on the EXIT
functions have an intersection. The upper bounds are given by (6.25)
and (6.27), and they are “coupled” by (6.23). Therefore, they may be
written as

I
(v)
ext = 1 − (1 − Ich)(1 − I

(c)
ext)

dv−1,

I
(c)
ext = f ser

dc−1(I
(v)
ext , I

(v)
ext , . . . , I

(v)
ext).

An intersection of the EXIT functions corresponds to a fixed point of
these two equations. Substituting the second equation into the first one
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and using I := I
(v)
ext , we obtain the fixed point condition

I = 1 − (1 − Ich)
(
1 − f ser

dc−1(I,I, . . . , I)
)dv−1

for an I ∈ [0,1]. When a fixed point exists for a given channel infor-
mation Ich, the upper bounds on the EXIT functions intersect, and
convergence of the iterative decoder is impossible. Therefore, the chan-
nel information has to be larger than the maximum value Ich for which
a fixed point exists, such that convergence is possible. This proves the
first part of the theorem.

Consider now the case that the lower bounds on the EXIT functions
have an intersection. The lower bounds are given by (6.24) and (6.26),
and they are “coupled” by (6.23). Thus, they may be written as

I
(v)
ext = fpar

dv
(Ich, I

(c)
ext , . . . , I

(c)
ext),

I
(c)
ext = (I(v)

ext)
dc−1.

An intersection of the EXIT functions corresponds to a fixed point of
these two equations. Substituting the second equation into the first one
and using I := I

(v)
ext , we obtain the fixed point condition

I = fpar
dv

(Ich, Idc−1, . . . , Idc−1)

for an I ∈ [0,1]. When a fixed point exists for a given channel informa-
tion Ich, the lower bounds on the EXIT functions intersect and con-
vergence of the iterative decoder cannot be guaranteed (but may be
possible). Therefore, the channel information has to be larger than the
maximum value Ich for which a fixed point exists, such that conver-
gence can be guaranteed. This proves the second part of the theorem.

Theorem 6.1 may be used to compute the upper and the lower
bound on the decoding threshold numerically. The results are usually
more precise than those determined graphically using the conventional
EXIT chart method. Notice that the lower bound corresponds to a
communication channel that is a BEC, and that the upper bound cor-
responds to a communication channel that is a BSC. For the example
considered before, one may compute the thresholds as Ich,low = 0.278
and Ich,upp = 0.398.
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The necessary condition of convergence may be used to state
whether a code can achieve capacity. If the design rate is smaller than
the lower bound on the channel information that is necessary for con-
vergence, the code cannot achieve the capacity of any communication
channel that is a BISMC. Consider the example again. The design rate
of the code is Rd = 1/4, and the lower bound on the decoding thresh-
old is Ich,low = 0.278. Since Rd < Ich,low, the given code is not capacity
achieving for any communication channel that is a BISMC.

The discussion was restricted to regular LDPC codes. Using simi-
lar concepts as for the analysis of LDPC codes for the binary erasure
channel, the method can be extended to irregular LDPC codes in a
straightforward way. This was done, for example, in [14,15].

6.4 EXIT Function for the Accumulator

Repeat-accumulate (RA) codes were proposed in [29,57,58] as a class of
iteratively decodable codes with low encoding complexity. In particular,
the encoding complexity is linear in the code length. They were further
developed in [59] such that they can operate very close to the channel
capacity when properly designed. In fact, they can be interpreted as
LDPC codes. In the following, the structure of RA codes is shortly
revised, and then we focus on the accumulator. For more details about
RA codes, we refer the reader to the literature.

The encoder of the original proposal [57] consists of repetition
encoders as outer encoder, an interleaver, and an accumulator, see
Fig. 6.14. The accumulator is the recursive convolutional encoder with
rate R = 1 and memory lengthm = 1, defined by the generator function

g(D) =
1

1 + D
.

Fig. 6.14 Encoder for the RA code.
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Fig. 6.15 The accumulator and the relation of the information symbols Uk and the code
symbols Xk.

It is depicted in Fig. 6.15. The information word1 of lengthK is mapped
onto the codeword of the same length,

[u0,u1, . . . ,uK−1] �→ [x0,x1, . . . ,xK−1].

According to the generator function, the binary information symbols Uk

and the code symbolsXk, Uk,Xk ∈ F2, fulfill the parity-check constraint

Uk ⊕ Xk−1 = Xk, (6.28)

for k = 0,1, . . . ,K − 1; the initial value is defined as X−1 := 0.
According to the encoder structure, the symbols Uk are the output

symbols of the repetition encoders and the input symbols of the accu-
mulator. Correspondingly, during iterative decoding of the RA code,
the decoder for the repetition codes (the outer decoder) and the decoder
for the accumulator (the inner decoder) exchange extrinsic probabilities
on the symbols Uk, see Fig. 6.16. Thus, the decoder for the accumula-
tor obtains one observation yk (from the communication channel) for
each symbol Xk and one a-priori value Wk (generated by the outer
decoder) for each information symbol Uk. Based on this, it computes
one extrinsic probability vk for each Uk, which is passed back to the
outer decoder:

vk = Pr(Uk = 0|w\k,y),

where the following notation for vectors is used:

y := [y0,y1, . . . ,yK−1],

w\k := [w0, . . . ,wk−1,wk+1, . . . ,wK−1].

1 As we focus on the accumulator and consider everything from its point of view, we refer to
its input symbols as information symbols and to its input word as the information word.
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Fig. 6.16 Decoder for the RA code.

As for LDPC codes, this is optimal decoding and thus we have

I(Uk;Vk) = I(Uk;W \k,Y ).

Notice that w\k is the vector of all a-priori values excluding wk.
In the sequel, bounds on the EXIT function of the accumulator are

determined. First, the factor graph of the accumulator is introduced.
Then, the bounds of information combining are applied on the factor
graph in a recursive way. This method was first presented in [60]. The
derivation of the bounds for the accumulator is more involved than for
the single parity check codes and the repetition codes. However, the
technique applied may have the potential to be extendable to other
convolutional codes.

Factor Graph and Mutual Information

A factor graph is a graphical representation of code constraints (cf. [49]
and the references therein). When depicting the check constraint in
(6.28) for all symbols, one obtains the factor graph of the accumula-
tor, shown in Fig. 6.17. This factor graph represents the basis for the
following analysis.

Fig. 6.17 Factor graph of the accumulator.
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The lengths K of the information word and of the codeword are
assumed to be infinite, i.e., K → ∞, such that the concepts of mutual
information can be applied. During iterative decoding, a-priori informa-
tion is available for all symbols Uk and channel information is available
for all symbols Xk,

I(Uk;Wk) = Iapri,

I(Xk;Yk) = Ich,

for k = 0,1, . . . ,K − 1. The extrinsic information on symbol Uk is
defined as

Iext,k := I(Uk;Y ,W \k).

Because of the regular code structure and the assumption of infinite
length, the average extrinsic information Iext tends to the extrinsic
information on a symbol Uk in the middle of the factor graph when the
codeword length approaches infinity, i.e.,

Iext → Iext,K/2 (6.29)

for K → ∞. Therefore, the average extrinsic information can be
bounded by bounding the extrinsic information on a symbol Uk in
the middle of the information word, based on the a-priori information
and the channel information. If not stated otherwise, 0 � k � K and
K → ∞, or for simplicity, k ≈ K/2 and K → ∞ are assumed.

Derivation of Bounds

Bounds on the extrinsic information for the accumulator that are only
based on the channel information and on the a-priori information are
given in the following theorem.

Theorem 6.2 Consider an accumulator, where the channel informa-
tion Ich is available for all code symbols and a-priori information Iapri
is available for all information symbols. The extrinsic information Iext
on information symbols is bounded as

Imin · Imin ≤ Iext ≤ f ser
2 (Imax, Imax),
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where Imin is the minimum value and Imax is the maximum value I ∈
[0,1] fulfilling simultaneously the two inequalities

fpar
2 (Ich, Iapri · I) ≤ I ≤ 1 − (1 − Ich)

(
1 − f ser

2 (Iapri, I)
)
.

For proving these bounds, Theorems 4.1 and 5.3 are applied in a
nested way, and a stationarity condition is employed.

To start with, (6.28) is written as

Uk = Xk−1 ⊕ Xk.

Accordingly, the extrinsic information on information symbol Uk,

Iext,k := I(Uk;Y ,W \k),

can be expressed using

Iα,k−1 := I(Xk−1;Y [0,k−1]W [0,k−1]), (6.30)

Iβ,k := I(Xk;Y [k,K−1]W [k+1,K−1]), (6.31)

which can be seen from the factor graph, Fig. 6.17. The first term cor-
responds to the forward recursion and the second term to the backward
recursion in the BCJR algorithm [37]; therefore the labels “α” and “β”
are used, as usually done in BCJR literature. To bound the extrinsic
information, Theorem 4.1 is applied:

Iα,k−1 · Iβ,k ≤ Iext,k ≤ f ser
2 (Iα,k−1, Iβ,k). (6.32)

Consider first the mutual information corresponding to the for-
ward recursion, Iα,k−1. This information on code symbol Xk−1 can
be separated into the intrinsic information based on a direct observa-
tion, I(Xk−1;Yk−1), and the left-extrinsic information based on indirect
observations,

Iαext,k−1 := I(Xk−1;Y [0,k−2]W [0,k−1]).

This term is called left-extrinsic, because it denotes extrinsic informa-
tion based only on observations that are to the left-hand side of Xk−1

in the factor graph. Regarding that I(Xk−1;Yk−1) = Ich and applying
Theorem 5.3, one obtains

Iα,k−1 ≥ fpar
2 (Ich, Iαext,k−1) (6.33)

Iα,k−1 ≤ 1 − (1 − Ich)(1 − Iαext,k−1). (6.34)
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Because of the parity-check equation

Xk−1 = Uk−1 ⊕ Xk−2

following from (6.28), the term Iαext,k−1 can be expressed using the
intrinsic information on info symbol Uk−1, I(Uk−1;Wk−1) = Iapri, and
the information on code symbol Xk−2,

I(Xk−2;Y [0,k−2]W [0,k−2]) = Iα,k−2;

the last identity can be deducted from (6.30). When applying Theo-
rem 4.1, one obtains

Iapri · Iα,k−2 ≤ Iαext,k−1 ≤ f ser
2 (Iapri, Iα,k−2).

Substituting the lower bound into (6.33) and the upper bound
into (6.34), bounds for the forward recursion are obtained:

Iα,k−1 ≥ fpar
2 (Ich, Iapri · Iα,k−2) (6.35)

Iα,k−1 ≤ 1 − (1 − Ich)
(
1 − f ser

2 (Iapri, Iα,k−2)
)
. (6.36)

The factor graph has a regular structure, and thus Iα,k−2 → Iα,k−1

for k → K/2 and K → ∞. (Remember that the interest is in the extrin-
sic information “in the middle” of the factor graph.) Let

Iα := lim
K→∞

Iα,K/2 (6.37)

denote the stationary value of Iα,k. When assuming stationarity
in (6.35) and (6.36), one obtains

Iα ≥ fpar
2 (Ich, Iapri · Iα), (6.38)

Iα ≤ 1 − (1 − Ich)
(
1 − f ser

2 (Iapri, Iα)
)
. (6.39)

These two relations are necessary conditions for possible stationary val-
ues Iα. Thus, the following lemma for the forward recursion is proved.

Lemma 6.3 Let Iα,k be defined according to (6.30), and let Iα be
defined as the stationary value of Iα,k according to (6.37). Bounds on Iα
are given by the minimum and the maximum value of Iα ∈ [0,1], ful-
filling simultaneously (6.38) and (6.39).
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Consider now the mutual information corresponding to the backward
recursion, Iβ,k. Since the factor graph is symmetric with respect to k,
the analysis for the backward recursion is identical to the one for the
forward recursion. Let

Iβ := lim
K→∞

Iβ,K/2 (6.40)

denote the stationary value. The necessary conditions for stationary
values Iβ are the same as for Iα, i.e., they are given in (6.38) and (6.39).
Thus, the following lemma for the backward recursion is proved:

Lemma 6.4 (Backward Recursion). Let Iβ,k be defined according
to (6.31), and let Iβ be defined as the stationary value of Iβ,k according
to (6.40). Bounds on Iβ are given by the minimum and the maximum
value of Iα ∈ [0,1], fulfilling simultaneously (6.38) and (6.39).

The bounds on Iα and on Iβ according to Lemmas 6.3 and 6.4
are now used to bound the extrinsic information Iext,K/2. Using the
minimum values for Iα and Iβ in the lower bound in (6.32), a lower
bound on the extrinsic information is obtained. Similarly, using the
maximum values of Iα and Iβ in the upper bound in (6.32), an upper
bound on the extrinsic information is obtained. Considering that the
two minimum values are equal and that the two maximum values are
equal, as discussed above, and taking into account (6.29), Theorem 6.2
is proved.

Illustration

The bounds on the extrinsic information according to Theorem 6.2
depend only on the channel information and on the a-priori informa-
tion. Accordingly, they represent bounds on the EXIT functions of the
accumulator. These bounds are depicted in Fig. 6.18.

It can be seen that the bounds are close to each other only for small
and for large a-priori information. This can be explained as follows. For
the derivation of the bounds, Theorems 4.1 and 5.3 were applied in a
nested way. The lower bound for repetition codes is achieved if both
channels are BSCs, and the lower bound for SPC codes is achieved if
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Fig. 6.18 Bounds on the EXIT functions of the accumulator and exact EXIT functions for
BECs; several values of channel information Ich.(Mutual information is given in bit/use.)

both channels are BECs. Thus, if the two lower bounds are applied in
a nested way, the assumptions contradict each other and the resulting
lower bound may be too pessimistic. Similarly, this holds for a nested
upper bound, and thus the upper bound may be too optimistic. There-
fore, the bounds given in Theorem 6.2 are not tight and may have a
potential for improvement.

The extrinsic information can be computed exactly when both the
communication channel and the a-priori channel are BECs. To do so,
the same approach is used as above, but each time Theorems 4.1 and 5.3
are applied, the expression corresponding to the case of BECs are
applied. This results in the stationarity condition

IBEC
α = Ich + Iapri · IBEC

α − Ich · Iapri · IBEC
α , (6.41)
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corresponding to (6.38) and (6.39). After solving for Iα and applying
Theorem 4.1, one obtains

IBEC
ext =

(
IBEC
α

)2 =
( Ich

1 − (1 − Ich)Iapri

)2
. (6.42)

This method corresponds to the one used in [59] (cf. also references
therein).

These EXIT functions are also shown in Fig. 6.18. When the channel
information Ich is small, the BEC curves are close to the lower bounds
for small Iapri, and they are close to the upper bounds for large Iapri.
Thus, the case where channels are all BECs may not be an extreme case
for the accumulator, as opposed to SPC codes and repetition codes.



7
Conclusions

This book describes the concept, the theory, and some applications
of bounding combined mutual information. The scope was limited to
binary-input symmetric memoryless channels (BISMCs) without feed-
back, and to parity-check constraints and equality constraints on the
inputs of the channels.

The starting point was properties of BISMCs. Using subchannel
indicators, BISMCs can be decomposed into subchannels that are all
binary symmetric channels (BSCs). Each of these subchannels is asso-
ciated to a value of mutual information, called the subchannel mutual
information, and thus, the BISMC can be characterized by the distribu-
tion of these values of subchannel mutual information. This distribution
is called the mutual information profile (MIP) of the BISMC.

The concept of decomposing the overall channel into BSCs and the
concept of mutual information profiles was then used to bound com-
bined mutual information. The two situations addressed are parallel
independent BISMCs, of which the channel input symbols are either
coupled by a parity-check constraint (corresponding to single parity-
check codes) or by an equality constraint (corresponding to repetition
codes). The combined mutual information turned out to take on the
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extreme values if the channels are BSCs and if the channels are BECs.
Remarkably, these two kinds of channels are also the BISMCs with
the minimum-variance and the maximum-variance mutual information
profiles. The bounds on information combining are proved using an
extension of the well-known Jensen’s inequality.

The results on information combining were applied in several ways
to illustrate this concept:

• Information processing characteristics, including the well-
known EXIT charts, can be upper and lower bounded.

• Multiple turbo codes can be designed by combining the
extrinsic information from several constituent decoders.

• The decoding thresholds of LDPC codes can be upper and
lower bounded. The Gaussian assumption, used in the origi-
nal EXIT chart method, is not required any more, only the
assumption of symmetric channels is required.

• The EXIT function of the accumulator can be upper and
lower bounded, again without Gaussian assumption, but only
assuming symmetric channels.

This book was restricted to channels with binary inputs and to the
two constraints given by single parity-check codes and repetition codes.
A generalization to non-binary channels or to other kinds of constraints
at the channel inputs would certainly be of great interest. Furthermore,
the methods applied to derive the EXIT function of the accumulator
lead to bounds that are not tight. An improvement of such bounds, or
even a generalization to other convolutional codes may also be a topic
for future research.

There are several other directions to extend the concept of bound-
ing combined information, as already mentioned in the introduction.
In [32], the channels are characterized not only by their mutual infor-
mation, but also by the bit-error probability. Thus, not only one param-
eter of the channel, but two parameters are used. When applying this to
determine decoding thresholds for LDPC codes, the resulting bounds
become tighter. In [28], again two parameters are tracked to deter-
mine bounds on the decoding threshold of LDPC codes, the expected
“soft-bit” (expected conditional probability) and the Bhattacharyya
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parameter; furthermore, non-binary codes are addressed. In [61], the
authors consider the basic problem of information combining, namely
the case of two parallel channels, and study moments of “soft-bits” for
this scenario.

The concept of information combining is still young. So it is highly
likely that new extensions and new applications will come up in the
near future. This tutorial may stimulate research into this direction.
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A
Binary Information Functions

The binary information functions for serial and parallel concatenation
are introduced in Definitions 4.1 and 5.1. This chapter provides some
more explanation.

A.1 Serially Concatenated BSCs

Consider N binary symmetric channels (BSCs) Xi → Yi, Xi,Yi ∈ F2,
i = 0,1, . . . ,N − 1, which are serially concatenated such that Yi = Xi+1

for i = 0,1, . . . ,N − 2:

X0 → Y0 = X1 → Y1 = X2 → ·· · → YN−2 = XN−1 → YN−1.

The input of the first channel is assumed to be uniformly distributed.
The mutual information of each individual channel is denoted by
Ii := I(Xi;Yi), i = 0,1, . . . ,N − 1. The end-to-end mutual information
between the input of the first and the output of the last channel is
denoted by I := I(X0;YN−1).

It is now shown that the end-to-end mutual information is given by
the binary information function for serial concatenation according to
Definition 4.1, i.e.,

I = f ser
N (I0, I1, . . . , IN−1). (A.1)
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Notice that the mutual information I is equal to the channel capacity,
as the serially concatenated channel X0 → YN−1 is symmetric.

We start with the case N = 2. It can easily be seen that the seri-
ally concatenated channel X0 → Y1 is also a BSC. Let ε01 denote its
crossover probability. We have an error on this channel if an error occurs
either on the first or on the second channel. For the crossover proba-
bility of the first channel, we have

ε0 ∈
{
h−1(1 − I0),1 − h−1(1 − I0)

}
,

and for the crossover probability of the second channel, we have

ε1 ∈
{
h−1(1 − I1),1 − h−1(1 − I1)

}
.

Consider first the case ε0 = h−1(1 − I0) and ε1 = h−1(1 − I1). Then,
the crossover probability of the serially concatenated channel is given by

ε01 = (1 − ε0)ε1 + ε0(1 − ε1).

This operation is called the convolution of the two probabilities ε0
and ε1 in [24,25]. Thus, its mutual information is given by

I(X0;Y1) = 1 − h(ε01)

= 1 − h
(
(1 − ε0)ε1 + ε0(1 − ε1)

)
.

For ε0 = 1 − h−1(1 − I0) and ε1 = 1 − h−1(1 − I1), the crossover
probability of the serially concatenated channel remains ε01; for the
other two cases the crossover probability of the serially concatenated
channel becomes 1 − ε01. Since the binary entropy function is symmet-
ric, the same end-to-end mutual information is obtained in all cases.
This completes the proof of (A.1) for N = 2.

The generalization for N > 2 follows immediately by induction.

A.2 Parallel Concatenated BSCs

Consider N binary symmetric channels (BSCs) X → Yi, X,Yi ∈ F2,
i = 0,1, . . . ,N − 1, that have the same input X. Following the accepted
practice for parallel concatenated codes, see [62], we call these chan-
nels parallel concatenated. The input X is assumed to be uniformly
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distributed. The mutual information of each channel is denoted by
Ii := I(X;Yi), i = 0,1, . . . ,N − 1. The vector of channel outputs is writ-
ten as Y := [Y0,Y1, . . . ,YN−1]. The overall mutual information between
the input and the vector of channel outputs is denoted by I := I(X;Y ).

It is now shown that the overall mutual information is given by
the binary information function for parallel concatenation according to
Definition 5.1, i.e.,

I = fpar
N (I0, I1, . . . , IN−1). (A.2)

Notice that the mutual information I is equal to the channel capacity,
as the parallel concatenated channel X → Y is symmetric.

To start with, we write the overall mutual information as

I = I(X;Y )

= H(Y ) − H(Y |X).

The first term can be computed using the joint probabilities of the
channel outputs,

H(Y ) = E
{− ldpY (y)

}
= −

∑
y∈F

N
2

pY (y) · ldpY (y)

with

pY (y) =
∑
x∈F2

pX,Y (x,y)

=
∑
x∈F2

pX(x) · pY |X(y|x)

=
∑
x∈F2

pX(x) ·
N−1∏
i=0

pYi|X(yi|x).

In the last line, we have used the conditional independence of the chan-
nel outputs for a given channel input. Notice that pX(x) = 1

2 due to the
uniform input distribution. The transition probabilities of each channel
can be expressed using its mutual information:

pYi|X(yi|x) ∈ {εi,1 − εi}
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with

εi := h−1(1 − Ii),

i = 0,1, . . . ,N − 1. Thus, the joint probability of a vector of channel
outputs y can be obtained according to

pY (y) =
1
2

(N−1∏
i=0

ϕi(yi) +
N−1∏
i=0

(
1 − ϕi(yi)

))
,

with

ϕi(yi) :=

{
εi for yi = 0,

1 − εi for yi = 1.

The second term in (A.3) can be written as

H(Y |X) =
N−1∑
i=0

H(Yi|X) =
N−1∑
i=0

(1 − Ii),

where the conditional independence of the channel outputs for a given
channel input has again been used.

By substituting the above equations into (A.3), we obtain the proof
of (A.2).



B
Convexity Lemma

This appendix provides the proof of Lemma 4.2, i.e., of the convexity
of the binary information function for serial concatenation, f ser

2 (j1, j2),
j1, j2 ∈ [0,1], according Definition 4.1. Notice that j1 and j2 correspond
to values of mutual information.

The function f ser
2 (j1, j2) is symmetric in its two arguments, and thus

it is sufficient to show that it is convex in j1 for constant j2. To show
that, the function

g(x) := 1 − f ser
2
(
1 − x,1 − h(a)

)
= h

(
[1 − 2a]h−1(x) + a

)
,

x ∈ [0,1] and a ∈ [0, 1
2 ], is introduced. (The range of the parameter a

is chosen such that h−1(h(a)) = a.) Notice that x corresponds to an
entropy, and a corresponds to a probability. Then, f ser

2 (j1, j2) is convex-
∩ in j1 for any constant j2 if and only if g(x) is convex-∪ in x for
any a.

The convexity of g(x) is proved in the following Lemma [13]. Alter-
natively, Mrs. Gerber’s lemma [25] may be used [63].
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Lemma B.1 The function

g(x) = h
(
[1 − 2a]h−1(x) + a

)
,

x ∈ [0,1], a ∈ [0, 1
2 ], is convex-∪.

Proof. The function is convex-∪ if the second derivative of g(x) with
respect to x is non-negative, i.e., if

d2g(x)
dx2 ≥ 0 (B.1)

for x ∈ [0,1] and a ∈ [0, 1
2 ].

First, this function is parametrized. Let x = h(t), t ∈ [0, 1
2 ], and let

y = g(x). Then we have

y = g
(
h(t)

)
= h([1 − 2a]t + a). (B.2)

The derivatives of x with respect to t are given as

dx

dt
= h′(t) = ld

1 − t

t
≥ 0, (B.3)

d2x

dt2
= h′′(t) = − lde

t(1 − t)
≤ 0, (B.4)

d3x

dt3
= h′′′(t) =

1 − 2t
t2(1 − t)2

· lde. (B.5)

For the first and the second derivative, the co-domains are also stated.
Similarly, the derivatives of y with respect to t are given as

dy

dt
= [1 − 2a] · h′([1 − 2a]t + a) ≥ 0, (B.6)

d2x

dt2
= [1 − 2a]2 · h′′([1 − 2a]t + a) ≤ 0. (B.7)

Again, the co-domains are also stated.
Consider now the relations between the derivatives with respect to

x and the derivatives with respect to t. The first derivative can be
written as

dy

dt
=
dy

dx
· dx
dt
,



322 Convexity Lemma

and thus it follows that

dy

dx
=
dy/dt

dx/dt
. (B.8)

The second derivative can be written as
d2y

dt2
=

d

dt

(dy
dx

)
· dx
dt

+
dy

dx
· d
dt

(dx
dt

)
=
d2y

dx2 · dx
dt

· dx
dt

+
dy

dx
· d

2x

dt2
,

and thus it follows that

d2y

dx2 =
d2y
dt2

− dy
dx · d2x

dt2(
dx
dt

)2 .

Since (dx/dt)2 ≥ 0, we have

d2y

dx2 ≥ 0 ⇔ d2y

dt2
− dy

dx
· d

2x

dt2
≥ 0

⇔ d2y

dt2
≥ dy

dx
· d

2x

dt2
=
dy/dt

dx/dt
· d

2x

dt2

⇔ d2y/dt2

dy/dt
≥ d2x/dt2

dx/dt
, (B.9)

where (B.8) was applied in the second line, and dy/dt ≥ 0 was used in
the third line.

Using the expressions for the derivatives, (B.3), (B.4), (B.6), (B.7),
in (B.9) yields

[1 − 2a]2 · h′′([1 − 2a]t + a)
[1 − 2a] · h′([1 − 2a]t + a)

≥ h′′(t)
h′(t)

. (B.10)

Let

b(t) :=
h′′(t)
h′(t)

(B.11)

and

c(a) := [1 − 2a] · b([1 − 2a]t + a).

Then (B.10) can be written as

c(a) ≥ c(0)
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for a ∈ [0, 1
2 ]. This relation holds if the first derivative of c(a) with

respect to a is non-negative.
Thus, we can give the following sufficient condition for (B.1):

dc(a)
da

≥ 0 (B.12)

for a ∈ [0, 1
2 ] and t ∈ [0, 1

2 ]. This derivative can be computed as

dc(a)
da

=
d

da
([1 − 2a] · b([1 − 2a]t + a))

= −2 · b([1 − 2a]t + a) + [1 − 2a] · b′([1 − 2a]t + a) · (1 − 2t)

= −2 · b([1 − 2a]t + a)

+(1 − 2([1 − 2a]t + a)) · b′([1 − 2a]t + a).

After substituting s := [1 − 2a]t + a, (B.12) holds if and only if

−2 · b(s) + (1 − 2s) · b′(s) ≥ 0 (B.13)

for s ∈ [t, 1
2 ] and t ∈ [0, 1

2 ], and thus for s ∈ [0, 1
2 ]. In (B.13), we first

apply (B.11) and

b′(t) =
db(t)
dt

=
h′′′(t) · h′(t) − (h′′(t)

)2(
h′(t)

)2 ,

and then we apply the expressions for h(x) and its derivatives, (B.3),
(B.4), (B.5). This gives the following equivalent relations:

(1 − 2s) · b′(s) ≥ 2 · b(s)

(1 − 2s) · h
′′′(s) · h′(t) − (h′′(s)

)2(
h′(s)

)2 ≥ 2 · h
′′(s)
h′(s)

(1 − 2s) ·
[
h′′′(s) · h′(t) − (h′′(s)

)2] ≥ 2 · h′′(s) · h′(s)

(1 − 2s)
[ 1 − 2s
s2(1 − s)2

· ld
1 − s

s
− lde
s2(1 − s)2

]
≥ 2

−1
s(1 − s)

· ld
1 − s

s

(1 − 2s)2 · ld
1 − s

s
− (1 − 2s) · lde ≥ −2s(1 − s) · ld

1 − s

s
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[(1 − 2s)2 + 2s(1 − s)] ld
1 − s

s
≥ (1 − 2s) · lde

ln
1 − s

s
≥ 1 − 2s

1 − 2s + 2s2
. (B.14)

We substitute u := (1 − s)/s. From s ∈ [0, 1
2 ], it follows that u ∈

[1,∞). Using s = 1/(1 + u) in (B.14), the left-hand side results as lnu,
and the right-hand side results as

1 − 2 1
1+u

1 − 2 1
1+u + 2( 1

1+u)2
=

(1 + u)2 − 2(1 + u)
(1 + u)2 − 2(1 + u) + 2

=
u2 − 1
u2 + 1

.

Thus, (B.1) holds if

lnu ≥ u2 − 1
u2 + 1

for u ∈ [1,∞). Since equality holds for u = 1, it is sufficient to show
that

d

du
lnu ≥ d

du

(u2 − 1
u2 + 1

)
. (B.15)

The left-hand side results as 1/u, and the right-hand side results as

d

du

(u2 − 1
u2 + 1

)
=

2u(u2 + 1) − (u2 − 1)2u
(u2 + 1)2

=
4u

(u2 + 1)2
.

Therefore (B.15) can equivalently be written as

1
u

≥ 4u
(u2 + 1)2

⇔ (u2 + 1)2 ≥ 4u2

⇔ (u2 − 1)2 ≥ 0.

To sum up, a sufficient condition for (B.1) is

(u2 − 1)2 ≥ 0

for u ∈ [1,∞). Since this is the case, we have the proof.



C
Acronyms

AWGN additive white Gaussian noise
BEC binary erasure channel
BEP bit error probability
BIAWGNC binary-input AWGN channel
BISMC binary-input symmetric memoryless channel
BSC binary symmetric channel
BSEC binary symmetric error and erasure channel
EXIT extrinsic information transfer
IPC information processing characteristic
LDPC low-density parity-check
MIP mutual information profile
RA repeat-accumulate (code)
SNR signal-to-noise ratio
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