Aalborg Universitet AALBORG

UNIVERSITY

Aeroelastic Stability of Suspension Bridges using CFD

Steerdahl, Jesper Winther; Sgrensen, Niels; Nielsen, Sgren R.K.

Published in:
Proceedings of International Symposium of the International Association for Shell and Spatial Structures (IASS) :
Structural Architecture - towards the future looking to the past

Publication date:
2007

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Steerdahl, J. W., Sgrensen, N., & Nielsen, S. R. K. (2007). Aeroelastic Stability of Suspension Bridges using
CFD. In M. Majowiecki (Ed.), Proceedings of International Symposium of the International Association for Shell
and Spatial Structures (IASS) : Structural Architecture - towards the future looking to the past: Venice, Italy, 3-6
December 2007 University luav of Venice : Department of Architectural Construction.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: February 19, 2026


https://vbn.aau.dk/en/publications/ddb15b20-cda8-11dc-8dd8-000ea68e967b

Aeroelastic Stability of Suspension Bridges using CFD

Jesper STARDAHL Niels SORENSEN Soren NIELSEN
Assistant professor Professor Professor

Aalborg University Aalborg University Aalborg University
Aalborg, Denmark Aalborg, Denmark Aalborg, Denmark
Summary

In recent years large span suspension bridges with very thin and slender profiles have been built without proportional
increasing torsional and bending stiffness. As a consequence large deformations at the mid-span can occur with risk of
aeroelastic instability and structural failure. Analysis of aeroelastic stability also named flutter stability is mostly based on
semi-empirical engineering models, where model specific parameters, the so-called flutter derivatives, need calibration
from wind tunnel tests or numerical methods. Several papers have been written about calibration of flutter derivatives
using CFD models and the aeroelastic stability boundary has been successfully determined when comparing two-
dimensional flow situations using wind tunnel test data and CFD methods for the flow solution and two-degrees-of-
freedom structural models in translation perpendicular to the flow direction and rotation around the span axis of the
bridge section. These models assume that the main contributing modal modes of the bridge are the first bending mode
and the first torsional mode. The present work focuses on numerical evaluation of the flutter instability using an arbitrary
number of modes describing the structural deformation. Furthermore, flutter derivatives are evaluated by CFD models
using forced motion of a bridge section in a two-dimensional virtual wind tunnel. The parameter region of critical values is
shown to be outside measured values. It is shown that a rough extrapolation of the measured values may lead to
erroneous results and CFD simulations may be used for extrapolation into the critical region. The flow analysis serves as
preliminary studies for evaluating flutter stability using CFD methods in three dimensions, where the span-wise
correlation of vortex separation, skew inflow, and effects from cables at the mid-span are to be considered.

Keywords: CFD; Suspension bridges; flutter derivatives; aeroelastic stability.

1. Introduction
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Fig. 1 Definition of notation. a) Principle structural setup of a suspension bridge. b) Cross section of bridge deck.

With ever increasing span lengths without proportional increase of the torsion and bending stiffness, modern suspension
bridges become susceptible to aeroelastic instability and excessive vibrations when exposed to strong turbulent wind.
Due to sharp edges and railings the boundary layer will generally be fully separated almost from the leading edge as
illustrated in Fig. 1.

Aeroelastic stability analysis of suspension bridges is mostly based on engineering models defined by the pioneering
work by Davenport [1] and later by Scanlan [2,3] using the so-called empirical determined flutter derivatives for
aeroelastic loading on a reduced degree-of-freedom structural model. These represent a kind of frequency response
functions for the aeroelastic loads due to forced harmonic motions of the bridge deck.

The underlying aerodynamic theory is basically two-dimensional, and presumes that parameters of the theory such as
static force and moment coefficients, flutter derivatives and aerodynamic admittance functions are determined
experimentally in model tests in a wind tunnel. The effect of along-wind response has been included in the 2D-approach,
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at the expense of increasing the number of flutter derivatives from 12 to 18, [4]. When applied to time domain
simulations, the flutter derivatives and aerodynamic admittance functions are typically approximated by low order rational
functions for which the corresponding impulse response functions are directly available, making direct time integration
possible at the expense of introducing additional filter state variable, Chen and Kareem [5,6]. The indicated filter
variables account for various delay effects, e.g. the transient circulation built up following any instantaneous change of
the effective angle of attack.

Attempts have been made to take the aerodynamic non-linearity into account by linearizing the loads around a static
angle of torsion, [7,8,9]. This implies that the aerodynamic coupling constants (flutter derivatives and aerodynamic
admittance functions), in addition to a dependence on frequency and Reynold's number, also become a function of the
said angle. However, large suspension bridges are relatively flexible, and may undergo relatively large deformations.
This questions the application of any linear load model, which in principle is based on the linearization of the loads
around a given fixed position of the bridge.

3D-effects caused by oblique incoming wind have been taken into account in the same way by determining the flutter
derivatives in the wind tunnel with the model section skewed to the along wind, [10]. The component of the skewed
incoming wind along the bridge deck will convey a separated boundary layer pattern at a certain position to other
positions on the bridge, and in this way introduce a certain delayed coherence of the flow pattern along the bridge. This
convection is partly constrained by the sidewalls of the wind tunnel in the indicated model test. Neither has it been
adequately considered elsewhere in the literature.

Still, another 3D-effect is the influence of the cables on the flow over the bridge deck at the mid-span. This may influence
the modal loads of symmetric bending and torsion modes significantly, which have maximum amplitude at this position.
All the 3D-effects mentioned can be treated in wind tunnel tests of a full-model bridge. Since such tests have to be
performed at scales as small as say 1:100, the tests suffer from inherent problems to reproduce the real flow pattern and
dynamic behaviour of the bridge. Especially the along-span correlation of turbulence can be very difficult to simulate.

To improve the understanding of both 2D- and 3D-flows over the bridge sections and the coupled fluid structure problem,
CFD (Computational Fluid Dynamics) is a possible supplement to the simpler aerodynamic models and wind tunnel tests
typically used. In recent years, the progress in computer speeds, numerical methods and turbulence modelling have
made it feasible to resolve the flow over bridge sections with a high degree of details. This has resulted in a series, of
mainly 2D-studies of the fluid structure problem of the flow around 2D-bridge sections using CFD type codes; see
[11,12,13,14,15,16].

The idea of the paper is to determine the flutter stability of the Great-Belt bridge using measured flutter derivatives from
the literature and comparing these measurements with CFD simulations of the considered cross section. Often only the
lowest plunge and pitch mode are used for evaluating the critical flutter velocity. In the present work an approach for
determining the critical velocity using an arbitrary number of modes is devised. A numerical example where results from
using the 8 lowest modes is presented. Finally, the numerical evaluated flutter derivatives are used for finding the flutter
velocity. The results are compared with the case where flutter derivatives from measurements are used.

2. Theory

A global (x4, x5, x3)-coordinate system is introduced as shown in Fig. 1a. Global displacement components w; (x4, t)
and rotation components 6, (x4, t) of a given section of the bridge deck defined by the x,-coordinate are stored in the
vector u(xq, t) defined as

ul (g, 1) = [ug (xq, 1), up (1, £), u3 (x4, 1), 01 (¥, £), 02 (1, £), O5(%1, )] (1
Displacement and rotational components of the jth eigenmode of the bridge deck are stored in the vector

DT (x) = [U (1), U3 (1), U5 (x), 6 (1), 05 (1), 057 ()] 2
Then, the displacement vector may be represented by the modal decomposition

uCxy, t) = X2 @9 (x1)q;(t) ()
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q;(t) represents the jth undamped modal coordinate. These are given by the following ordinary differential equation
M;(§; + 2{w;q; + wig) = F() , j=12,.. (4)

where w; is the undamped circular eigenfrequency, ¢; is the damping ration, M; is the modal mass, and F;(t) is the

modal load in the jth mode. Because the structural damping of the bridge is low, and the important eigenfrequencies are
well separated, modal decoupling via the structural damping has been assumed. Further, it should be noticed that the
modal mass includes contributions both from the bridge deck and the pylons, cables and hangers. Only a load per unit
length p, (x4, t) in the x,-direction and a torsional moment per unit length m, (x4, t) in the x-direction are acting on
the bridge deck. Then, the modal load becomes

Fi(t) = [ (UY (e)pa (1, ) + O (g (g, ) dixy (5)

where L is the entire length of the bridge deck. The said loads are assumed to be self-induced by the motion of the
bridge deck. Further, a linearized 2D description of the basically non-linear flow is assumed. Then, the following
expressions for the external loads on the bridge deck may be postulated

1 * ! * 9 *
P2 (a1, t) = 2 pV?B(KH; (K) 2 + KH3(K)B 2 + K2H3 (K)6,) (6)

1 * ! * 9 *
my (x1,t) = 5 pV2B2(KAL(K) 22 + K A3 (K)B ~ + K2 A3(K)6,) (7)

where p is the mass density of air, V' is the wind velocity, and B is the width of the bridge deck.
H{(K),H;(K),H;(K),A1(K), A5(K), A5(K) are non-dimensional real functions, so-called flutter derivatives,
depending on the reduced frequency K (and Reynold's number) defined as

K =22 ®)

(6) and (7) only make sense for harmonically varying motions of the bridge deck at the circular frequency w. Then, the
flutter derivatives specify the frequency response functions for the indicated loads due to forced harmonically varying
motions of the bridge deck. Due to the postulated 2D-character of the flow the flutter derivatives may be determined in
2D-wind tunnel tests.

The displacement components u, (x4, t) and 68, (x4, t) may be represented by the following modal expansions

Uy Gy, 1) = £2 U () g (0)

() )
01(x1, t) = X521 0777 (x1)q;(8)

The modal expansions for u, (x,t) and 6, (x4, t) as follow from (3) are inserted into (6) and (7), and the results are
inserted into the modal loads (5), leading to

Fi(t) = Xk=1 kjr(@, V)i () + ¢ (0, V)i (£) (10)

1 « L i
ke (w,V) = 2 pV2BK2H; [, UL ()08 (xy)dx; +

1 « rL j k

~pV2B2K24; [ 0 (x)0{" (x)dx, (11)

1 « L j 1 « L ]
Ge(w,V) = 2 pVBKH] [ U (x)US (e daey +pVB2KH; [ U ()0 (e )dxy +
1 « L j k 1 « L j k
~pVB2KA; [ 00 (x))U” (x)dxy + 5 pVB3KA; [ 00 ()0 (x)dx,  (12)

[<1[>]
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Because of the symmetry of the bridge around the plane A shown in Fig. 3, the mode shape components UZU ) (x1) and

01(j)(x1) will either be symmetric or skew-symmetric functions of x; around the said plane. Hence, integrals of
symmetric and a skew-symmetric mode shape components in (11) and (12) will cancel. Further, Qf’)(xl) =0in

symmetric or skew-symmetric bending modes, and Uz(j) (x1) = 0 in symmetric or skew-symmetric torsional modes.
Hence, this cancels an additional number of the components ki (w,V) and cjx(w, V). With the ordering of the
eigenmodes as indicated in Table 1 the modal equations of motion may be recasted into the following matrix form

Table 1 Ordering and symmetry properties of modes

mode U (1) 0,7 (x1)

1 1st symmetric 0

2 0 1st symmetric

3 1st skew-symmetric 0

4 0 1st skew-symmetric
5 2nd symmetric 0

6 0 2nd symmetric

7 2nd skew-symmetric 0

8 0 2nd skew-symmetric

mq + cq + kq = ¢5(w,V)q + ko(w,V)q

qT(t) = [ql (t)' q> (t)' qs3 (t)' q4 (t)' qs (t)' ]

M, 0 20,0, M; 0

m=[0 M, ],c=[0 20w, M,
0 kiz 00 0 kg 0 0
0 ky, 0 0 0 kye 0 O
00 0 ksyy 0 0 0 ksg
000 0 ky 0 0 0 Fkyg

Ko(w,V)=|0 ksy 0 0 0 kge O O
0 kg 0 0 0 kegg O O
00 0 ky 00 0 kg
L00 0 kgg 0 O 0 kgg

(€11 €12 O 0 €15 €16 O
€21 €22 O 0 €25 €6 O
0 0 C3z3 €34 O 0 C37
0 0 Csz C4a O 0 Ca7y
Co@V)=]csy ¢ 0 0  cs5 C56 O

Fig. 2 Definition of symmetry planes.

(13)
(14)
a’%M1 0

k= wiM, - (15)

k110

k3 10

0

0

kg0 - (16)

keio -

0

0

C19 €110

C29 C210°""

0 0

0 0

Cs9 Cs510 " (7)

Ce9 Co10"""

0 0

0 0
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At application the modal expansion is truncated, and the system matrices m, ¢, k, ky(w, V) and c,(w, V) become
finite quadratic matrices. As seen from (15), (16) and (17) the modal coordinates g4 (t), q.(t), gs(t), qs(t), qo(t),
q10(t), ... are decoupled from the modal coordinates g5 (t), q4(t), q-(t), qg(t), .... It turns out that instability only
takes place among the former modal coordinates. Hence, the latter can be extracted from the equations of motion,
reducing the dimension of stability analysis to half the magnitude. At small wind velocities the system is stable in the
sense that a given perturbation from the equilibrium state q(t) = q(t) = 0 is damped out in harmonic vibrations with
an exponential decreasing amplitude. On the other hand at a very large wind velocity the harmonic vibrations becomes
unstable with exponentially increasing amplitudes. Hence, a critical wind velocity V.. exists, where the structure performs
harmonic vibrations with constant amplitudes. Then, at the critical wind velocity the solution has the form

q(t) = qoe* (18)

where w is the so-called circular flutter frequency. Insertion of (18) into (13) provides the following non-linear eigenvalue
problem for the determination of w and V.,

(—w?m+iw(c - ¢o(w, 1)) + (kK —ko(w,V.)))qo = 0 (19)
Non-trivial solutions g, # 0 only exists if the coefficient matrix is singular, leading to the flutter condition
det(—w?*m + iw(c — cy(w, V) + (K — Ko(w,V.))) =0 (20)

(20) must be fulfilled for the real and imaginary part of the determinant, which provides two non-linear equations for the
determination of w and V..

A numerical evaluation of the flutter derivatives using CFD methods assumes a harmonic variation of u, (t) = fi,e'®t
and 6(t) = Ge'“t, with the circular frequency w and real amplitude i, and 8. Inserting in (6) and (7) and assuming
the lift and moment to vary harmonic with the same frequency and a phase ¢ relative to the motion, the following is
obtained

¢ el@wt=9) = KZ(LHl(K) + (iH;(K) + H3(K))0,)et

. (21)
Eyet@t=®) = K2(iA; (K) + (i45(K) + A5(K))8,)et.
where p,(t) = %pVZBELei(“’t“l’) and my (t) = %pVZBZEMei(“’t“i’) are given in terms of the non-dimensional lift
and moment coefficients, respectively. A simulation with harmonic translation of the bridge deck and a simulation with

harmonic rotation of the bridge deck as indicated above is made from which ¢;, ¢, and ¢ can be identified from the
numerical simulated lift and moment forces. This gives the following 6 conditions for determining the 6 flutter derivatives

c”LBe cLe

Im(“—) = Hj, Im<j§§ ) = H3, R(m = H; -
B * 9 * *
Im(c“;zgz):Al, Im(45-) = 43, R(i’;’;;) A3,

where the first 2 for H; and A7 are used in combination with the harmonic translation simulation and the remaining 4 are
used in combination with the harmonic rotation simulation.

3.  Numerical example

In the numerical example the Great Belt Link of Denmark is used with a mid-span of 1624m and outer span of 535m and
pylons with a height of 250m. The bridge deck is steel and the pylons are made of concrete. A finite element model has
been developed for extracting the lowest eigenmodes and frequencies for flutter analysis. Numerical two-dimensional
aerodynamic analyses have been performed on a bridge deck section for identifying the flutter derivatives.
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The aerodynamic simulations are performed with the incompressible Navier-Stokes solver EllipSys2D [19,20,21]. The

code is second order accurate in time using the PISO algorithm of [18], and four sub-iterations per time step. The

dimensionless time step used in the actual simulations is equal to At* = A'%V = 0.01. In space the code is second order

accurate, using central differences for the diffusive terms and the third order accurate QUICK scheme for the convective
terms [23]. The turbulence in the boundary layer of the bridge is modelled by the k- SST model ,[24].

The computational grid is generated with the 2D hyperbolic grid generation program [22]. The grid topology is a so called
O-configuration, and has 256 cells in the chordwise direction and 64 cells in the normal direction. Grid independence test
was performed with half the number of cells in each direction. The grid around the profile is illustrated in Fig. 3a and the
velocity vector field result from a steady simulation is visualized in Fig. 3b.

a) b)

Fig. 3 a) Fine mesh around the bridge section. b) Velocity field visualization.

The lift and moment coefficients determined by numerical simulations are shown in Fig. 4 where (—) indicate results
from a fine mesh simulation and ( - --) indicate results from a coarse mesh simulation. The illustrated results are for a
pitch case with a periode of 54s. As seen, a significant harmonic component is present with a frequency equal the
pitching frequency. Also a significant high frequency component is present on the fine mesh due to vortex shedding. In
the present approach the high frequency component is filtered out from the flutter analysis. On the coarse grid the vortex
shedding is not capture, but the deformation frequency component in the loads are present with the same frequency and
phase as for the fine mesh results. However, an increase of the mean value of the lift is observed, but with no influence
of the evaluated flutter derivatives. Hence, a coarse mesh can be used for evaluating flutter derivatives. Furthermore,
numerical evaluated flutter derivatives where calculated for Reynold's number equal the one used for measurements
without changes in the results.
)

a)

o

e [F]
M [+]

~_0.05
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Fig. 4 Lift and moment coefficients determined by numerical simulations. Harmonic pitch with periode T=>54s, 2zV/wB=9. a) ¢ (t).
cm (t). (—) Solution on fine mesh. ( ---) Solution on coarse mesh.

By a least-square-error method the amplitude and phase between the motion and forces are extracted from ¢y, (t) and
cm(t) and (22) is used to determine the flutter derivatives. In Fig. 5 the numerical evaluated flutter derivatives are
compared with wind tunnel test data from Reinhold et al. [17]. Third degree polynomiums are fitted to the experimental
data. As seen, the qualitative and quantitative variations are captured by the numerical analyses. However, at large
values for % the numerical solution deviates from the extrapolations especially in A% and H; which are the terms on 8.
It should be emphasized that extrapolations far from the measured data might be inaccurate, and also at low frequencies
these terms might be hard to estimate accurately.

[<1[>]
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Fig. 3 Flutter derivatives. (V) Wind tunnel test results from Reinhold et al. [17]. (O) CFD results. (—) Least square fit to Reinhold
test data using 3rd degree polynomiums.

Finally, the critical flutter velocity and frequency are determined using the modal approach described in the previous

section. The determinant condition in (20) is evaluated for the decoupled problem using 2 or 8 modes. The results are
shown in table 2.

Table 2 Critical values of from the flutter analysis.

modes  flutter derivatives V. W, 2mVe
wB

2 wind tunnel 100.9m/s 1.182 rad/s 17.3

8 wind tunnel 121.9m/s 1.101 rad/s 22.4

2 CFD 68.8m/s 1.152 rad/s 12.1

8 CFD 92.5m/s 1.095 rad/s 171

The flutter derivatives entering (20) are taken both as the wind tunnel test data (V) and as the CFD results (1) from
Fig. 5, respectively. By introducing higher modes a significant increase in the flutter velocity is obtained whereas the
critical frequency is relatively constant. For the determined critical values the flutter derivatives are evaluated at a value
larger than 15 where measurements are extrapolated and unreliable. When using the numerical evaluated flutter
derivatives the velocity is significantly reduced but the same tendency as before is observed when introducing 8 modes
instead of 2.

4. Conclusion

In the present work a two-dimensional flutter analysis is performed on the Great Belt Link suspension bridge. A method
for introducing an arbitrary number of modes is devised. It is shown that the critical values of the flutter analysis are
significantly changed when introducing more modes. The two-dimensional analysis is based on the method devised by
Scanlan [2,3], where the so-called flutter derivatives enter. These coefficients are obtained from numerical CFD analysis
and compared with wind tunnel measurements obtained from the litterature. It was shown that both qualitatively and
quantitatively it is possible to obtain good results using CFD methods. However, the method devised by Scanlan does
not include effects from vortex shedding, which introduce a significant high frequency component in the aerodynamic
loads. Critical values for the flutter analysis are found in regions where it is necessary to perform extrapolation of
measurements making these results uncertain. When the numerical evaluated flutter derivatives are used, a significant
reduction of the flutter velocity is found. It can be concluded that the flutter analysis is relatively sensitive to the correct
evaluation of flutter derivatives. A rough extrapolation may result in erroneous results. CFD results are easily obtained in

[<1[>]
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the entire region and may be used for extrapolating measured flutter derivatives.
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