An active damper for stabilizing power-electronics-based AC systems

Wang, Xiongfei; Blaabjerg, Frede; Liserre, Marco; Chen, Zhe; He, Jinwei; Li, Yunwei

Published in:
IEEE Transactions on Power Electronics

DOI (link to publication from Publisher):
10.1109/TPEL.2013.2278716

Publication date:
2014

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
An Active Damper for Stabilizing Power Electronics Based AC Systems

Xiongfei Wang
Frede Blaabjerg
Marco Liserre
Zhe Chen
Jinwei He
Yunwei Li

Suggested Citation
An Active Damper for Stabilizing Power Electronics Based AC Systems

Xiongfei Wang, Member, IEEE, Frede Blaabjerg, Fellow, IEEE, Marco Liserre, Fellow, IEEE, Zhe Chen, Senior Member, IEEE, Jinwei He, Student Member, IEEE, and Yunwei Li, Senior Member, IEEE

Abstract—The mutual interactions in the parallel grid-connected converters coupled through the grid impedance tend to result in a number of stability and power quality problems. To address them, this paper proposes an active damper based on a power converter with the high control bandwidth. The general idea behind this proposal is to dynamically reshape the grid impedance profile seen from the point of common coupling of the converters, such that the potential oscillations and resonance propagation in the parallel grid-connected converters can be mitigated. Further, to validate the effectiveness of the active damper, simulations and experimental tests on a three-converter based setup are carried out. The results show that the active damper can become a promising way to stabilize the power electronics based AC power systems.

Index Terms—Grid-connected converters, grid impedance, paralleled operation, stability, resonance propagation

I. INTRODUCTION

Over the last years, the power electronics converters are gaining a wide acceptance as a flexible and efficient grid interface for connecting renewable energy systems and at the load side as electric drives [1], [2]. The mutual interactions between the control loops of the parallel grid-connected converters coupled via the grid impedance, such as the wind turbines converters in wind farms [3], the Photovoltaic (PV) inverters in PV power plants [4], and the locomotive converters in the electric railway networks [5], will be inevitable, which may result in the undesired small-signal oscillations. Further, due to the popular use of LCL-filters, the additional resonances may arise in the paralleled converters and vary with the different number of converters. This fact in turn reduces the allowed control bandwidth of converters, and in some cases brings in the under-damped resonances [6]-[8].

There is, consequently, an urgent need to develop effective measures to address the aforementioned challenges. In [9], the impedance-based stability analysis approach, originating from the Middlebrook’s Extra Element Theorem [10], provides a powerful tool to gain the insight of the interactions in the paralleled converters. It has been shown that a non-negative real part of the input admittance of a grid-connected converter is usually required for damping oscillations [11]-[13]. Hence, to dampen out the resonance propagation in the parallel grid-connected PV inverters with LCL-filters, the Resistive-Active Power Filter (R-APF) method is implemented in [14], where the inverters are controlled to behave as resistive loads at the non-fundamental frequencies. However, in this case, a high-bandwidth current controller is needed in order to cover a wide range of resonant frequencies, which poses a challenge for the converters with the low ratio of sampling-to-fundamental frequencies. Further, the performance of the R-APF method is affected by the grid-side inductances in the LCL-filters [15]. As opposite to synthesizing a resistive load, a filter-based approach is reported in [3], where a wideband notch filter is inserted into the current control loop of the wind turbine converters, such that the resonances in a wind power plant can be dampened out. The main problem in this method is that the notch filter design is highly dependent on the system conditions, and thus its stabilizing performance may be degraded under the system parameter variations [16].

In this work, instead of reshaping the input admittances of the grid-connected converters with the different control loops, an active damper based on a power converter with the high control bandwidth is proposed. The active damper is installed at the Point of Common Coupling (PCC) of the paralleled converters, and is controlled to be a variable resistance at the frequencies where the resonance arises. Thus, the grid impedance seen from the PCC can be dynamically adjusted by the active damper, and the resonances resulting from the interactions in the parallel grid-connected converters can effectively be mitigated. This paper presents first a small-signal stability analysis of a power electronics based AC system including two paralleled active rectifiers with the LCL-filters in Section II. The mutual interactions between the current control loops of the rectifiers as well as the effect of the grid impedance variation are assessed by the Nyquist stability criterion. Then, in light of the
analysis results, the operation principle of the proposed active
damper is discussed in Section III, including the basic
configuration and the control schemes. This is followed by an
assessment on the stabilizing effect of the active damper in the
frequency domain. Finally, in Section IV, to further validate
the performance of the active damper, the time domain
simulations and experiments on a three-converter based setup
are performed. The results show that the proposed active
damper concept provides a flexible way to address the
stability and power quality problems in the power electronics
based AC systems.

II. STABILITY ANALYSIS OF PARALLEL GRID-CONNECTED
CONVERTERS WITH LCL-FILTERS

A. System Description

Fig. 1 illustrates a balanced three-phase power electronics
based AC system, where two active rectifiers are connected to
the PCC, and a Power Factor Correction (PFC) capacitor C_{PFC}
is installed at the PCC. In such a system, the small-signal
oscillations can arise in the different ways. A straightforward
way is the unstable control loop of the active rectifier when
connecting it to a stiff AC grid with nearly zero grid
impedance [17]. The second case is that the input admittance
of active rectifier may exhibit the negative real part at the low
frequencies depending on the dynamics of the outer DC-link
voltage and reactive power control loops as well as the Phase
Locked-Loop (PLL). As a consequence, the low frequency
oscillations may be triggered even with a single active rectifier
[11]-[13], [18]. The third case is due to the system impedance
variation at the PCC of active rectifiers, which can result from
the change of grid impedance [19], and the input admittance
of the other paralleled rectifiers [14].

In this work, the active rectifiers are designed with a stable
behavior seen from the PCC. The dynamics of the outer power
control and synchronization loops are designed much slower
than the inner current control loop. Thus, the low frequency
oscillations caused by the outer control loops can be neglected
for the sake of simplicity. Consequently, only the third case is
concerned, which implies that the mutual interactions between
the current control loops of the paralleled rectifiers can be
characterized by their closed-loop input admittances [11]. The
impedance-based stability analysis method, which is based on
the terminal behavioral models of rectifiers, can thus be used
to identify the nature of their mutual interactions [20]-[23].

B. Modeling of Parallel Grid-Connected Converters

Fig. 2 depicts the simplified circuit for the i-th ($i=1$, 2)
active rectifier, where the voltage source converter is
represented by the modulated voltage source $V_{M,i}$
and the grid-side current is controlled for a better stability of
the control system [24]. Thus, the frequency behavior of the
LCL-filter seen from the PCC can be expressed by the following
two admittances

$$Y_{M,i} = \frac{I_{g,i}}{V_{M,i}} = \left[\begin{array}{ccc}
Z_{Cf,i} & Z_{Cf,i} & Z_{Cf,i} \\
Z_{Cf,i} & Z_{Cf,i} & Z_{Cf,i}
\end{array} \right]^{-1} Z_{Lg,i} \left[\begin{array}{c}
Z_{Lg,i} \ Z_{Lg,i} \\
Z_{Lg,i} \ Z_{Lg,i}
\end{array} \right]^{-1} \left[\begin{array}{c}
Z_{Lg,i} \ Z_{Lg,i} \\
Z_{Lg,i} \ Z_{Lg,i}
\end{array} \right]$$

(1)

$$Y_{a,i} = \frac{I_{g,i}}{V_{PCC}} = \left[\begin{array}{c}
Z_{Cf,i} \ Z_{Cf,i} \\
Z_{Cf,i} \ Z_{Cf,i}
\end{array} \right]^{-1} \left[\begin{array}{c}
Z_{Lg,i} \ Z_{Lg,i} \\
Z_{Lg,i} \ Z_{Lg,i}
\end{array} \right]^{-1} \left[\begin{array}{c}
Z_{Lg,i} \ Z_{Lg,i} \\
Z_{Lg,i} \ Z_{Lg,i}
\end{array} \right]$$

(2)

where $Z_{Lg,i}$, $Z_{Cf,i}$ and $Z_{Lg,i}$ are the impedances for the inductor
$L_{g,i}$, the capacitor $C_{f,i}$, and the inductor $L_{g,i}$, respectively.

Fig. 3 depicts the block diagram of the grid-side current
control loop for the i-th active rectifier, where the Proportional
plus Resonant (PR) current controller is used in the stationary
$\alpha\beta$-frame [25]. From Fig. 3, the Norton equivalent circuit of
the admittance of the PFC capacitor. Impedance including gain of the current control loop, which is derived as T_{i} behavior of the active rectifier seen from the PCC can be derived as

$$I_{i} = G_{i}\cdot I_{i}^{*} - Y_{m,i} V_{PCC}$$

$$G_{i} = \frac{T_{i}}{1 + T_{i}}, \quad Y_{m,i} = \frac{Y_{m,i}}{1 + T_{i}}$$

where I_{i} is the current reference for the i-th active rectifier, G_{i}^{*} is the closed-loop gain of the control current loop, and $Y_{m,i}$ is the closed-loop input admittance. T_{i} is the open-loop gain of the control current loop, which is derived as

$$T_{i} = G_{i}^{*} G_{i} Y_{m,i}$$

where G_{i} is the PR current controller and G_{i}^{*} is the approximated 1.5 sampling period ($T_{s,i}$) delay in the digital control [26], which are expressed as

$$G_{i} = K_{p,i} + \frac{K_{i,i} s}{s^2 + \omega_{f}^2}$$

$$G_{i}^{*} = e^{-1.5T_{s,i} s} + \frac{1 - 1.5T_{s,i} s / 2 + (1.5T_{s,i} s / 2)^2}{1 + 1.5T_{s,i} s / 2 + (1.5T_{s,i} s / 2)^2}$$

where ω_{f} denotes the fundamental frequency of the AC system.

Fig. 5 illustrates the closed-loop model of the power electronics based AC system shown in Fig. 1 by substituting the active rectifiers with the Norton equivalent circuits. Y_{C} is the admittance of the PFC capacitor C_{PFC}, Z_{S} is the grid impedance including L_{S} and R_{S}. It is clear that there are three closed-loop gains for characterizing the response of the grid-side current in the i-th active rectifier, which are expressed as

$$I_{i} = \frac{1}{1 + T_{m,j}} G_{i,j}^{*} I_{j}^{*} - \frac{T_{m,j}}{1 + T_{m,j}} G_{i,j}^{*} I_{j}^{*} - \frac{T_{m,j}}{1 + T_{m,j}} \frac{V_{S}}{Z_{S}}$$

where the term j' denotes the other active rectifier ($i \neq j$). $T_{m,j}$ is the gain of the so-called minor feedback loop, which describes the loading effect of the system impedance at the PCC of active rectifiers, and can be expressed as

$$T_{m,j} = Y_{m,j}^{*} Y_{m,j} = \frac{1}{Z_{S}} + Y_{C} + Y_{m,j}$$

where $Y_{m,j}$ is the system admittance seen by the i-th active rectifier at the PCC, which consists of the closed-loop input admittance of the other j-th rectifier, the grid admittance, and the admittance of the PFC capacitor.

C. Impedance-Based Stability Analysis

Table I summarizes the electrical constants for the power electronics based AC system. The main controller parameters of the active rectifiers are listed in Table II. On the basis of these parameters, the frequency response of the open-loop gain of the current control loop T_{i} is plotted in Fig. 6, where a stable terminal behavior of the active rectifier seen from the PCC can be observed. This implies that the closed-loop gains of the active rectifiers $G_{i,j}$ and $G_{i,j}^{*}$ have no poles in the right-half plane, and thus providing a theoretical basis for employing the impedance-based stability criterion [9], [20]-[23]. Then, the stability of the whole system can be assessed through the frequency domain response of the minor-loop gain derived in (9).

To clearly see the effect of the dynamic interactions between the paralleled active rectifiers, the single active rectifier operation case is first evaluated with the different grid inductances. Then, the paralleled operation of active rectifiers is assessed by considering the effect of the input admittance of the other j-th rectifier.

Fig. 7 compares the Nyquist plots for the minor-loop gains $T_{m,j}$ of single active rectifier with the different grid inductances. Notice that the minor-loop gain has no poles in the right-half plane due to the stable terminal behavior of the active rectifiers at the PCC. The number of encirclements of the point ($-1, 0$) indicates the number of unstable closed-loop
TABLE I. SYSTEM ELECTRICAL CONSTANTS

<table>
<thead>
<tr>
<th>Electrical Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid impedance (Z_S)</td>
<td>(L_S = 1.2 \text{ mH})</td>
</tr>
<tr>
<td></td>
<td>(R_S = 0.4 \Omega)</td>
</tr>
<tr>
<td>PFC capacitor (C_{PFC})</td>
<td>(20 \mu\text{F})</td>
</tr>
<tr>
<td>(LCL)-filters</td>
<td>(L_{f1} = L_{f2} = 1.5 \text{ mH})</td>
</tr>
<tr>
<td></td>
<td>(R_{f1} = R_{f2} = 0.1 \Omega)</td>
</tr>
<tr>
<td></td>
<td>(C_{f1} = C_{f2} = 4.7 \mu\text{F})</td>
</tr>
<tr>
<td></td>
<td>(R_{f1} = R_{f2} = 0.068 \Omega)</td>
</tr>
<tr>
<td></td>
<td>(L_{g1} = L_{g2} = 1.8 \text{ mH})</td>
</tr>
<tr>
<td></td>
<td>(R_{g1} = R_{g2} = 0.2 \Omega)</td>
</tr>
<tr>
<td>DC-link voltages (V_{dc1} = V_{dc2})</td>
<td>(700 \text{ V})</td>
</tr>
<tr>
<td>DC loads (R_1 = R_2)</td>
<td>(400 \Omega)</td>
</tr>
</tbody>
</table>

TABLE II. MAIN CONTROLLER PARAMETERS OF ACTIVE RECTIFIERS

<table>
<thead>
<tr>
<th>Controller Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching frequency (f_{sw})</td>
<td>(10 \text{ kHz})</td>
</tr>
<tr>
<td>Sampling period (T_s)</td>
<td>(100 \mu\text{s})</td>
</tr>
<tr>
<td>PR current controller (K_{p1} = K_{p2})</td>
<td>(18)</td>
</tr>
<tr>
<td></td>
<td>(K_{i1} = K_{i2})</td>
</tr>
<tr>
<td>Harmonic resonant current controller (K_{p1} = K_{p2})</td>
<td>(600)</td>
</tr>
<tr>
<td></td>
<td>(K_{p1} = K_{p2})</td>
</tr>
<tr>
<td></td>
<td>(K_{p1} = K_{p2})</td>
</tr>
<tr>
<td></td>
<td>(K_{p1} = K_{p2})</td>
</tr>
<tr>
<td>DC-link voltage controller (K_{a1} = K_{a2})</td>
<td>(0.05)</td>
</tr>
<tr>
<td></td>
<td>(K_{a1} = K_{a2})</td>
</tr>
</tbody>
</table>

![Fig. 6. Frequency response for the open-loop gain of the current control loop in the \(i\)-th rectifier.](image)

Poles of the whole system. It is seen that the active rectifier becomes unstable when the grid inductance \(L_S\) is equal to 0.6 mH, which indicates that the grid impedance variation has an important effect on the stability of active rectifier [19].

![Fig. 7. Nyquist plots of the minor-loop gains derived with the different grid inductance in the case of single active rectifier.](image)

Fig. 7 shows the Nyquist plots of the minor-loop gain for the paralleled operation of active rectifiers. Since in the case of \(L_S\) equal to 0.6 mH, the current control loop is already unstable for the single active rectifier, this is not considered in Fig. 8. However, it is interesting to note that the current control loop becomes unstable when \(L_S\) is equal to 1.2 mH, rather than being marginally stable as shown in Fig. 7. To further identify the resonance frequency in this unstable case, the closed-loop response of the minor feedback loop, \(T_m(i)/(1+T_m(i))\) is depicted in Fig. 9, where the resonances arising around the 35th harmonic can be observed.

![Fig. 8. Nyquist plots of the minor-loop gains derived with the effect of the input admittance of the other paralleled active rectifier.](image)

Further, it is also important to note that such impedance interactions of the paralleled converters may result in unstable oscillations when multiple harmonic controllers are employed. This is demonstrated in the following by using the 5th, 7th, 11th, and 13th harmonic controllers:
where $K_{ih,i}$ denotes the gains of the harmonic resonant controllers, which are listed in Table II. Also, $K_{pc,i}$ is reduced as 15 in order to establish a stable operation of the paralleled rectifiers without harmonic controllers. This is done to prove that it is the combination of using harmonic controllers and connecting rectifiers in parallel that make the system unstable and neither of the two conditions alone.

Fig. 10 shows the frequency response of the open-loop gain with multiple harmonic resonant controllers. It is clear that the rectifiers exhibit a stable terminal behavior at the PCC, which implies that the control loops of rectifiers has no effect on the instability of the minor-loop gain $T_{m,i}$. Fig. 11 compares the Nyquist plots of minor-loop gains derived with and without the harmonic resonant controllers in the paralleled operation of rectifiers. It can be observed that for the case without the harmonic controllers, the unstable case in Fig. 8 is stabilized with a lower current control loop bandwidth ($K_{pc,i} = 15$). Nevertheless, after enabling the harmonic controllers, the phase margin around the 13th harmonic becomes negative due to the impedance interactions [35].

To validate the above frequency domain analysis, the time domain simulations based on the nonlinear switching models of the paralleled active rectifiers are performed in SIMULINK and PLECS Blockset. Notice that in order to prevent the divergence of simulations for an unstable power electronics based system, the stiff simulation solver ode15s is chosen [27], [28]. Thus, instead of the infinite time domain response, the steady-state oscillation with a much higher amplitude is obtained to indicate the instability phenomena.

Fig. 12 shows the simulated currents in the case of single active rectifier with the different grid inductances. It is clear that a severe resonance occurs in the case that L_S is 0.6 mH, which agrees with the Nyquist plots shown in Fig. 7. Fig. 13 shows the simulated currents for the case of paralleled active rectifiers. It is seen that the resonances arise when L_S is equal to 1.2 mH, which matches well with the Nyquist plots shown in Fig. 8. Fig. 14 depicts the current harmonic spectra in this resonant case, which further confirms the closed-loop frequency response shown in Fig. 9. Also, Fig. 15 shows the simulated currents for the case with the harmonic resonant controllers, which validates the Nyquist plots shown in Fig. 11.
(b)

(c)

Fig. 12. Simulated currents in the case of single active rectifier under the different grid inductances. (a) \(L_S = 0.3 \text{ mH} \). (b) \(L_S = 0.6 \text{ mH} \). (c) \(L_S = 1.2 \text{ mH} \).

Fig. 13. Simulated currents in the case of the paralleled active rectifiers under the different grid inductances. (a) \(L_S = 0.3 \text{ mH} \). (b) \(L_S = 1.2 \text{ mH} \).

III. PROPOSED ACTIVE DAMPER

From (9), it can be found that the grid impedance \(Z_S \) results in a coupling between the paralleled active rectifiers. As in the case of an ideally stiff power grid, there are no interactions between the controllers of the paralleled active rectifiers. Thus, the basic idea behind the proposed active damper is to introduce a variable resonance damping resistance, via a power converter with a high control bandwidth, into the grid impedance profile, in order to dampen out the resonance propagation in the parallel grid-connected converters.

A. Operation Principle

Fig. 16 shows the basic configuration of the active damper used in the power electronics based AC system, which consists of a three-phase, two-level voltage source converter and a resonance damping controller. Since there is no additional energy storage element needed at the DC-link, only the active power for keeping a constant DC-link voltage is consumed by the active damper. Further, the active damper is supposed to only dampen out the resonance caused by the dynamic interactions in the parallel grid-connected converters. This is different from the conventional APFs used for the steady-state harmonic current compensation. The power rating of the active damper can thus be designed lower than the APFs, which allows a high switching frequency design. Consequently, a high control bandwidth that covers a wide range of resonance frequencies can be achieved.

Fig. 17 depicts two types of block diagrams for the resonance damping controller. The first option is similar to the R-APF method [29], as shown in Fig. 17 (a). However, instead of synthesizing the resistance at all the non-fundamental frequencies as the R-APF method, the damping resistance, \(R_{\text{damp}} \), is only emulated at the resonance frequencies in this scheme. This is achieved by using a resonance detection block to extract the resonant voltage component, \(V_{\text{pcc}} \), from the non-fundamental voltage, \(V_{\text{pcc,n}} \). A number of signal processing techniques have been reported for harmonic estimation [30]-[32]. Among these methods, the real-time implementation of Discrete Fourier Transform (DFT) algorithm provides an attractive way to realize this resonance detection block [31].

Fig. 14. Current harmonic spectra in the resonant case of paralleled active rectifiers (\(L_S = 1.2 \text{ mH} \), see Fig. 13).
Fig. 16. Basic configuration of the proposed active damper used in the power electronics based AC system.

![Diagram](image)

Fig. 17. Two types of block diagrams for the resonance damping controller. (a) R-APF method. (b) Direct resonant voltage compensation scheme.

Fig. 18. Nyquist plots of the minor-loop gains with the different damping resistances of the active damper.

![Nyquist Plot](image)
Fig. 19. Frequency responses of the input admittance of one rectifier and the total sum of the other admittances considering the active damper.

Fig. 20. Nyquist plots of the minor-loop gain derived with the multiple harmonic resonant controllers and the active damper.

Fig. 18 depicts the Nyquist plots of the minor-loop gains under the different damping resistance of the active damper. It is shown that for the resonant case of paralleled active rectifiers ($L_S = 1.2$ mH), the system becomes stabilized with the decrease of the damping resistance. Also, the frequency responses of Y_m and Y_o are shown in Fig. 19, from which it can be seen that the intersection points between the two admittances disappear when $R_{d,ref}$ is equal to $5 \, \Omega$.

Similarly, Fig. 20 depicts the stabilizing effect of the active damper for the minor-loop gains with the harmonic resonant controllers, corresponding to Fig. 11. The resonant voltage controller is designed with the center frequency at 650 Hz and the bandwidth of 50 Hz. The damping resistance is chosen as $20 \, \Omega$. It is clear that the system becomes stabilized even when a large damping resistance is synthesized.

IV. SIMULATION AND EXPERIMENTAL RESULTS

To confirm the performance of the proposed active damper, the time domain simulations based on the nonlinear switching models of converters and laboratory tests are performed with a three-converter setup. Two converters are controlled to behave as the paralleled active rectifiers shown in Fig. 1, and the last converter is controlled as the active damper. Table III gives the main parameters of the active damper.

A. Simulation Results

Corresponding to the simulated currents shown in Fig. 12 and Fig. 13, the stabilizing performances of the active damper are assessed in both the cases of single active rectifier and paralleled active rectifiers, respectively. Fig. 21 shows the simulated PCC voltage and current for the unstable case of single active rectifier ($L_S=0.6$ mH) before and after using the active damper. The active damper is enabled at the time instant of 0.24 s. It is clear that the resonance caused by the grid impedance variation is damped by the active damper.

Fig. 22 shows the simulated currents for the resonant case of the paralleled active rectifiers ($L_S=1.2$ mH) after applying the active damper. Compared to Fig. 13, it is seen that the instability caused by the dynamic interactions between the control loops of the paralleled active rectifiers are stabilized by the active damper. Fig. 23 shows the changes of the PCC voltage once the active damper is enabled at the instant of 0.24 s. An effective resonance damping on the PCC voltage can be observed.

Fig. 24 shows the output current of the active damper and the associated harmonic spectra in the case of paralleled active rectifiers. It is seen that the fundamental frequency current is

TABLE III. MAIN PARAMETERS OF ACTIVE DAMPER

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter inductance $L_{f,D}$</td>
<td>3 mH</td>
</tr>
<tr>
<td>DC capacitor $C_{dc,D}$</td>
<td>660 μF</td>
</tr>
<tr>
<td>Switching frequency f_{sw}</td>
<td>20 kHz</td>
</tr>
<tr>
<td>Sampling period T_s</td>
<td>50 μs</td>
</tr>
<tr>
<td>DC-link voltage $V_{dc,D}$</td>
<td>700 V</td>
</tr>
<tr>
<td>PR current controller K_{p_i}</td>
<td>30</td>
</tr>
<tr>
<td>K_{r_i}</td>
<td>600</td>
</tr>
<tr>
<td>DC-link voltage controller $K_{p_{dc,D}}$</td>
<td>0.05</td>
</tr>
<tr>
<td>$K_{i_{dc,D}}$</td>
<td>0.5</td>
</tr>
<tr>
<td>Resonant controller K_r</td>
<td>2</td>
</tr>
<tr>
<td>ω_r</td>
<td>3500π rad/s</td>
</tr>
</tbody>
</table>

Fig. 21. Simulated PCC voltage and current for the unstable case of single active rectifier ($L_S=0.6$ mH) before and after using the active damper at 0.24 s.
low due to the absence of the additional energy storage element in the DC side, whereas the resonant frequencies currents are relative larger compared to the fundamental frequency current. This implies that the active damper has to absorb a certain amount of resonance currents for stabilizing the paralleled converters.

B. Experimental Results

Fig. 25 shows the hardware picture of the built laboratory test setup, where three parallel grid-connected Danfoss frequency converters are used as the two paralleled active rectifiers and the active damper. The control algorithms for the converters are implemented in DS1006 dSPACE system.

Considering the grid background harmonic voltages and the low-order harmonics caused by the dead time, the multiple harmonic resonant controllers (5th, 7th, 11th and 13th) are enabled in the laboratory tests. Further, owing to the nonlinear behavior of the filter inductor and the parameter drift at high frequencies, only the effect of the impedance interactions on the minor-loop gains derived with the multiple harmonic resonant controllers is considered in the laboratory tests.

Fig. 26 shows the measured output currents and for the paralleled active rectifiers before applying the active damper. The measured PCC voltage waveform in this case is shown in Fig. 27. It can be seen that a low-order harmonic resonance propagates in the test setup. To further identify the resonance frequency, Fig. 28 shows the harmonic spectra of the PCC voltage. It is clear that the harmonic resonance arises at the 13th harmonic, which agrees well with the frequency domain

![Fig. 25. Hardware picture of the built laboratory setup.](image)

![Fig. 26. Measured output currents of the paralleled active rectifiers before applying the active damper (2 A/div, 4 ms/div).](image)

![Fig. 27. Measured PCC voltage waveform before applying the active damper (100 V/div, 4 ms/div).](image)
In contrast, Fig. 29 shows the measured output currents of the paralleled active rectifiers after enabling the active damper. It is evident that the thirteenth harmonic resonance is effectively damped, and also the low-order harmonic currents caused by the background harmonics are compensated by the harmonic resonant controllers. Fig. 30 shows the measured PCC voltage waveform with the use of active damper and its harmonic spectra is shown in Fig. 31. It is seen that the harmonic resonance propagation in the system is damped by the active damper, which matches with the frequency domain analysis in Fig. 20.

V. CONCLUSIONS

This paper has discussed the resonance propagation in the parallel grid-connected converters. An active damper concept for stabilizing such a power electronics based AC systems has been proposed. Although several active stabilization schemes have been reported in the previous work, most of them are embedded in the control systems of the converters. As a consequence, the performances of those approaches are either limited by the characteristics of converters or sensitive to the system conditions, which tend to cause the additional resonances. In contrast, the proposed active damper aims to provide a versatile device that can be plug-and-play under the different applications. Further, the active damper only takes effect on the resonance damping, which allows a lower power and higher control bandwidth compared to the conventional APFs. Two control topologies of the active damper have been discussed. Note that the direct resonant voltage compensation method simplifies the synthesis of the variable resistance at the resonance frequencies compared to the R-APF approach. Finally, the time domain simulations on the nonlinear switching models of converters and the experimental tests have been carried out. The results have confirmed the stabilizing performance of the proposed active damper.

REFERENCES

