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Abstract—The dynamic interactions among the interconnected 
power converters may bring in harmonic resonance in a power 
electronics based power system. This paper addresses this issue 
in a power system dominated by multiple current- and voltage- 
controlled inverters with LCL- and LC-filters. The impedance-
based analysis approach is adopted and expanded to a meshed 
and balanced three-phase power network. An impedance ratio 
derivation method is proposed based on the nodal admittance 
matrix. By this means, the contribution of each inverter to the 
system resonance modes can be easily predicted by the Nyquist 
stability criterion. To validate the theoretical analysis, the time 
domain simulations and experimental tests on a three-inverter-
based system are presented. 

I. INTRODUCTION 

The proportion of power electronics apparatus in electric 
power systems keeps growing in recent years, driven by the 
rapid development of renewable power sources and energy-
efficient drives [1]. As a consequence, the power electronics 
based power systems are becoming important components of 
the power grids, such as wind farms [2], photovoltaic power 
plants [3], microgrids [4], and electric rail systems [5]. These 
systems provide superior features to build the modern power 
grids, such as the full controllability, sustainability, and high 
efficiency, but bring also new challenges [6]. The small time 
constants of switching power converters considerably reduce 
the system damping. The dynamic interactions between the 
power electronics based power sources and loads may bring 
in a wide frequency range of harmonic resonances [7]. This 
problem is further aggravated by the shunt capacitors, which 
can be found in the widely used LCL- or LC-filters of power 
converters and in the underground cables [8]. The resonance 
propagation triggered by the shunt capacitors is becoming an 
important power quality problem [9].   

The continuous research efforts have been made to deal 
with the harmonic resonance in the power electronics based 
power systems. A general analysis approach is to build the 
state-space model for the power system, and then identify the 
resonance modes based on the eigenvalues and eigenvectors 
of the system state matrix [10]. This method has been mostly 
used for the traditional power systems with a large number of 

machines [11], where the effect of the individual components 
or subsystems on the system stability is usually hidden in the 
state matrix. In [12], the Component Connection Method 
(CCM) that takes advantage of matrix algebra and sparsity is 
introduced for the stability analysis of the High-Voltage DC 
(HVDC) systems. Unlike the general state-space models, the 
CCM decomposes the power system into several subsystems 
by components, and depicts the system dynamic behavior by 
assembling the linearized models of subsystems. Hence, it is 
more intuitive than the state-space analysis for predicting the 
impacts of subsystems on the global system stability. Later 
on, the CCM is expanded into the multivariable frequency 
domain [13], where the system resonances are evaluated by 
the generalized Nyquist stability criterion [14]. 

The impedance-based approach, originally introduced for 
designing the input filters of the DC-DC converters [15], has 
provided another way to analyze the resonances. Similarly to 
the CCM, the impedance-based approach is also based on the 
linearized models of converters [16]. However, instead of 
synthesizing the system transfer matrices as in the CCM, the 
impedance-based approach predicts the harmonic resonance 
by the ratio between the output impedance of each converter 
and the equivalent system impedance derived at the Point of 
Connection (PoC) of each converter. Thus, a more insightful 
and design-oriented resonance analysis can be achieved [17]. 
Several applications of the impedance-based approach can be 
found in the power electronics based AC power systems, e.g. 
the cascaded sour-load inverter system [18], the parallel grid-
connected converters with LCL-filters [19], and the parallel 
uninterruptible power supply inverters with LC-filters [20]. 
However, in all these cases, the effect of connection network 
structures is often overlooked. Few of them have considered 
the operations with multiple voltage- and current-controlled 
inverters. 

This paper attempts to fill in this gap by expanding the 
impedance-based resonance analysis to a three phase meshed 
and balanced power system, where a voltage-controlled and 
two current-controlled inverters with LC- and LCL-filters are 
interconnected. The harmonic resonances that result from the 
interactions among these inverters as well as other passive 
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system components are evaluated. By the help of the nodal 
admittance matrix, an impedance ratio derivation method is 
proposed in order to predict how each inverter contributes to 
the system resonances. Lastly, the time domain simulations 
and experimental results are presented to further validate the 
theoretical analysis in the frequency domain.    

II. SYSTEM MODELING AND ANALYSIS TECHNIQUE 

This section reviews the CCM and the impedance-based 
approach for modeling and analysis of harmonic resonance 
in the power electronics based AC power system. 

A. System Description 

Fig. 1 shows a simplified one-line diagram for a three-
phase balanced power system which is considered in this 
work, where a voltage-controlled and two current-controlled 
inverters are interconnected as a meshed network via power 
cables. The voltage-controlled inverter regulates the system 
frequency and voltage amplitude, and the current-controlled 
inverters operate with unity power factor. 

In the system, the shunt capacitors in the LC- and LCL-
filters of the inverters and the power cables may bring in the 
harmonic resonance with the cable inductances. Further, the 
output impedance of an inverter may exhibit a non-positive 
real part in a certain frequency range, which depends on its 
control loop dynamic [21]. Consequently, the non-intentional 
harmonic resonance may be triggered due to the interactions 
among the controllers of the inverters [22]. This necessitates 
the use of a design-oriented analysis method to predict how 
the inverters interact with each other and affect the harmonic 
resonance in the system.     

B. CCM 

Fig. 2 depicts the block diagram of the CCM used for the 
studied system. The current- and voltage-controlled inverters 
are modeled by the Norton and Thevenin equivalent circuits, 
respectively, at their PoC, while the meshed network can be 
modeled by the nodal admittance or impedance matrix. Thus, 
the system transfer matrices can be derived as  
 

( ) ( ) ( )y s u s d s s scl cdG ( ) G ( )  (1) 
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where Gclv,1(s), Gcli,2(s), and Gcli,3(s) denote the voltage and 
current reference-to-output transfer functions of the voltage- 
and current-controlled inverters, respectively. Zov,1(s), Yoi,2(s), 
and Yoi,3(s) are the output impedance and admittances of the 
voltage- and current-controlled inverters, respectively. Thus,  
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Fig.  1.  Simplified one-line diagram of a power electronics based AC power 
system. 

** *

Fig.  2.  Block diagram of the CCM used for the studied power system.  

the system resonance can be predicted by the loop transfer 
matrix [I + Gnw(s)Gcd(s)]-1 provided that the closed-loop 
response of each inverter Gcl (s) is stable. 

It is obvious that the CCM decomposes the power system 
into three decentralized feedback loops by the inverters. The 
effect of the inverter controllers and the associated physical 
components on the system resonances can be modeled. Also, 
the decentralized stabilizing control loops can be developed 
based on this modeling method [23].   

C. Impedance-Based Approach 

Fig. 3 depicts the impedance-based equivalent circuits for 
the voltage- and current-controlled inverters. It is interesting 
to note that the terminal behavioral models of the inverters 
are also required in this approach [16]. However, different 
from the CCM, the interactions between one inverter and the 
others are modeled by the equivalent impedance/admittance 
for the rest of the system, i.e. Zlv (s) or Yli,m (s) (m = 2, 3).  

The closed-loop transfer functions of the inverters can be 
derived as follows 
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Fig.  3.  Impedance-based equivalent models for (a) the voltage- and (b) the 
current-controlled inverters.  
 
Hence, if the terminal behavior of the inverters at their PoC, 
i.e. Gclv,1 (s) and Gcli,m (s) are designed stable, the stability of 
the voltage and current at each system bus can be determined 
by the following impedance ratios 
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which are also termed as the minor feedback loop gains [17]. 
The design specifications for the inverters output impedances 
can thus be derived to preserve the power system stability.   

III. MODELING OF INVERTERS 

To perform the harmonic resonance analysis by using the 
impedance-based approach, the impedance-based equivalent 
models of inverters are derived in this section. Also, the 
constant DC-link voltages of the inverters are assumed, since 
the bandwidth of the DC-link voltage control are designed 
lower than the system fundamental frequency.   

A. Voltage-Controlled Inverters 

Fig. 4 illustrates the control block diagram of the voltage- 
controlled inverter. The control system is implemented in the 
stationary frame, including the inner Proportional (P) current 
controller and the outer Proportional Resonant (PR) voltage 
controller. The three-phase inverters without neutral wire can 
be transformed into two independent single-phase systems in 
the αβ-frame. Thus, the inverter dynamics can be modeled as 
a real scalar system. Also, due to the assumed constant DC-
link voltage, the inverter can be modeled by the LC-filter.  

From Fig. 4, the reference-to-output transfer function and 
the closed-loop output impedance can be given by  
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Fig.  4.  Control block diagram of the voltage-controlled inverter. 

where Tv (s) is the open-loop gain of the voltage control loop, 
and Zoi(s) is the open-loop output impedance evaluated with 
the outer voltage loop open and the inner current loop closed, 
which are expressed as [24] 
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where ZLf,1(s) and ZCf,1(s) are the impedances of the filter 
inductor and capacitor, respectively. GPWM(s) depicts the 
effect of the time delay in the digital control and Pulse Width 
Modulation (PWM). Gci (s) and Gvi (s) are the inner P current 
controller and outer PR voltage controller, respectively. 
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where ω1 is the system fundamental frequency. 

It is worth to note that the dead time of the power 
switches in the real case increases the damping of the LC-
filter [25]. This effect also affects the resonances caused by 
the impedance interactions of inverters. In this work, the 
damping effect of the dead time is modeled by increasing the 
series resistance in the filter inductor.   

B. Current-Controlled Inverters 

Fig. 5 depicts the control block diagram for the current-
controlled inverters. The current in the grid-side inductor of 
the LCL-filter is controlled for a better stability, and the PR 
controller in the stationary αβ-frame is used in the current 
control loop. The second-order Phase-Locked Loop (PLL) is 
adopted for grid synchronization [26].  

The PLL also affects the output impedance of the inverter 
besides the current control loop [21]. However, since the 
PLL is normally designed with a low bandwidth to filter 
harmonic disturbance [26], the effect of PLL dynamics on 
the harmonic resonance is disregarded. Thus, the current 
control loop itself can be modeled as a real scalar system. 



**

 
Fig.  5.  Control block diagram of the current-controlled inverter. 
 

The current reference-to-output transfer function and the 
closed-loop output admittance can be derived as  
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where Tc (s) is the open-loop gain of the current-control loop, 
Yo (s) is the output admittance of the LCL-filter, which are 
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where ZLf,m(s), ZLg,m(s) and ZCf,m(s) are the impedances of the 
LCL-filter inductors and capacitor, respectively. Gcgi(s) is the 
PR current controller, which is given by 
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IV. HARMONIC RESONANCE ANALYSIS 

From Fig. 3, it is known that the system impedance seen 
from the PoC of each inverter is essential for the impedance-
based analysis. Thus, a system impedance derivation method 
based on the nodal admittance matrix is developed and used 
in the following harmonic resonance analysis.  

A. System Equivalent Circuit 

Fig. 6 depicts the impedance-based equivalent circuit for 
the power system shown in Fig. 1. The power cables are 
represented as the PI-section models to include the effect of 
the shunt capacitors. Also, to facilitate the formulation of the 
nodal admittance matrix, the Thevenin model of the voltage-
controlled inverter is converted to the Norton circuit.  

To obtain the system impedances at the PoC of inverters, 
the nodal admittance matrix including the output admittances  

Y p
Y

p
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Fig.  6.  Impedance-based equivalent circuit for the studied power system.  
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where Yov,1 = 1/Zov,1, and Yp is the cable admittance. Then, by 
inverting Ync, the nodal impedance matrix (Znc) is given by 

11 12 13

21 22 23

31 32 33

Z Z Z

Z Z Z

Z Z Z

 
   
  

ncZ  (16) 

where the diagonal elements are the system impedances seen 
by the equivalent current sources of the inverters. Hence, the 
system impedances at the PoC of inverters can be derived by 
using the following relationship 
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It is noted that the Z11Yov,1 directly depicts the close-loop 
response of the minor feedback loop for the voltage-
controlled inverter. Similarly, the closed-loop responses for 
the current-controlled inverters can also be found using the 
nodal admittance matrix (Yno) of the connection network 
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Thus, the following closed-loop responses can be obtained 
together with (16)  
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where the second and third diagonal elements of Yno Znc are 
corresponding to (4).  

B. Impedance-Based Analysis 

Table I lists the main electrical parameters of the power 
system, and Table II gives the voltage and current controller 
parameters of the inverters. The power cables adopt the same 
PI-section models. The current-controlled inverters are also 
designed with the same parameters for the sake of simplicity.  

Fig. 7 depicts the frequency responses for the open-loop 
gains of the voltage- and current-controlled inverters, Tv (s) 
and Tc (s). It is seen that the stable terminal behavior of the 
inverters at the PoC are obtained with the designed controller 
parameters. Thus, the system resonances can be predicted by 
assessing the minor feedback loop gains in (5).   

Fig. 8 shows the Nyquist diagrams of the minor feedback 
loop gains of the voltage- and current-controlled inverters. It 
can be seen that the minor feedback loop for the voltage-
controlled inverter is unstable, whereas the minor feedback 
loop of the current-controlled inverters is stable. It indicates 
that the impedance interaction at the PoC of the voltage-
controlled inverter (Bus 1) brings in harmonic resonance to 
the power system. In contrast, the admittance interactions at 
the PoC of current-controlled inverters have no contribution 
to trigger the harmonic resonance.  

Fig. 9 shows the Nyquist diagrams of the minor feedback 
loop gains by reducing the proportional gains, Kpi and Kpv, of 
the voltage-controlled inverter (Kpi =5, Kpv=0.05) . It is seen 
that all the minor feedback loops in this case become stable. 

TABLE I.  MAIN ELECTRICAL PARAMETERS OF POWER SYSTEM 

Electrical Constants Values (p.u.a) 

Power cables 
(PI-section) 

Series inductance (Lp) 0.005 

Seres resistance (Rp) 0.013 

Shunt capacitance (Cp) 0.01 

RL load 1, 2 
Resistance (R1=R2) 0.12 

Inductance (L1 =L2) 5.06 

Voltage-controlled 
inverter 1 

Filter inductor (Lf,1) 0.03 

Filter capaictor (Cf,1) 0.13 

DC-link voltage (Vdc,1) 1.88 

Current-controlled 
inverter 2, 3 

Filter inductor (Lf,2 = Lf,3) 0.3 

Filter capaictor (Cf,2 = Cf,3) 0.024 

Filter inductor (Lg,2 = Lg,3) 0.035 

DC-link voltage (Vdc,2 =Vdc,3) 1.88 

Active power (P2 = P3) 0.1 

Reactive power (Q2 = Q3) 0 

a. System base voltage: 400 V, base frequency: 50 Hz, and base power: 10 kVA.  
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Fig.  7.  Frequency responses for the open-loop gains of the voltage- 
controlled (Tv(s)) and current-controlled (Tc(s)) inverters.  
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Fig.  8.  Nyquist plots of the minor feedback loop gains of the inverters in 
the resonant case (a) Full view. (b) Zoom on (-1, j0). 



TABLE II.  CONTROLLER PARAMETERS OF INVERTERS 

Controllers parameters Values 

Voltage-controlled 
inverter 1 

Current controller Kpi 8 

Voltage controller  
Kpv 0.1 

Krv 100 

Samping period Td,1 100 μs 

Current-controlled 
inverter 2, 3 

Current controller   
Kpgi,2= Kpgi,3 15 

Krgi,2= Krgi,3 600 

Samping period Td,2= Td,3 100 μs 
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Fig.  9.  Nyquist plots of the minor feedback loop gains of the inverters in 
the stable case (a) Full view. (b) Zoom on (-1, j0). 
 

V. SIMULATION AND EXPERIMETNAL RESULTS 

To verify the impedance-based resonance analysis, the 
power system shown in Fig. 1 is built in the time domain 
simulations by using MATLAB and PLECS Blockset, and in 
the laboratory test.   

A. Simulation Results 

Fig. 10 shows the simulated currents of the inverters with 
the controller parameters listed in TABLE II. The simulated 
bus voltages are shown in Fig. 11. It can be observed that the 
harmonic resonance is triggered in the power system, which 
confirms the frequency domain analysis in Fig. 8.  

In contrast, Fig. 12 shows the simulated currents of the 
inverters after reducing the proportional gains in the voltage-
controlled inverter (Kpi=5, Kpv=0.05). The simulated voltage 
at each bus of the system is shown in Fig. 13. It is obvious 
that the harmonic resonance in Fig. 10 and 11 are stabilized 
in this case, which verifies the theoretical analysis in Fig. 9. 
It also indicates that the harmonic resonance triggered in the 
system is caused by the voltage-controlled inverter other than 
the current-controlled inverters.   

 

 
Fig.  10.  Simulated output currents of the inverters in the resonant case.  
 

 
Fig.  11.  Simulated bus voltages in the resonant case. 
 

 
Fig.  12.  Simulated output currents of the inverters in the resonant case.  



 

Fig.  13.  Simulated bus voltages in the resonant case. 
 

B. Experimental Results 

Fig. 14 shows a hardware picture of the built laboratory 
test setup. Three Danfoss frequency converters operate as a 
voltage-controlled and two current-controlled inverters. The 
control algorithm is applied in DS1006 dSPACE system. 

First, the resonance case which is based on the controller 
parameters listed in Table II is tested. Fig. 15 shows the 
measured output currents of the inverters. The measured bus 
voltages are shown in Fig. 16. It is evident that the harmonic  

 

Fig.  14.  Hardware picture of the built laboratory test setup.  
 

resonance is triggered in the power system, which matches 
with the simulation results shown in Fig. 10 and Fig. 11. 

Then, by reducing the proportional gains in the voltage-
controlled inverter (Kpi=5, Kpv=0.05), the stable case which is 
predicted in Fig. 9 is tested in the experiment. Fig. 17 shows 
the measured output currents of the inverters. The measured 
bus voltages are shown in Fig. 18. It is clear that the stable 
operation of the power system is obtained, which shows a 
close correlation to the theoretical analysis in Fig. 9 and the 
time domain simulations in Fig. 12 and Fig. 13.  

  

 
  

(a) (b) (c) 
  

Fig.  15.  Measured output currents of the (a) voltage-controlled inverter 1, current-controlled (b) inverter 2, and (c) inverter 3 in the resonant case.
 

 
  

(a) (b) (c) 
  

Fig.  16.  Measured bus voltage waveforms in the resonant case. (a) Bus 1. (b) Bus 2. (c) Bus 3. 
 

 
  

(a) (b) (c) 
  

Fig.  17.  Measured output currents of the (a) voltage-controlled inverter 1, current-controlled (b) inverter 2, and (c) inverter 3 in the stable case.



 
  

(a) (b) (c) 
  

Fig.  18.  Measured bus voltage waveforms in the stable case. (a) Bus 1. (b) Bus 2. (c) Bus 3.
 

VI. CONCLUSIONS 

This paper has discussed a modeling and analysis method 
to address the harmonic resonance in the power electronics 
based power systems. The CCM and the impedance-based 
approach are briefly reviewed. It has been shown that the 
impedance-based approach is a more localized and design-
oriented analysis tool than the CCM. Further, the impedance-
based approach has been expanded to a three-phase meshed 
network including multiple voltage- and current- controlled 
inverters with LC- and LCL-filters. By the help of the nodal 
admittance matrix, a method for derivation of the impedance 
ratios has been developed. Thus, the resonance propagation 
caused by the impedance interactions among inverters can be 
easily assessed by the Nyquist stability criterion. The time 
domain simulations and experimental test results have been 
presented, which matches with the theoretical analysis. 
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