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Bayesian Model Comparison with the g-Prior
Jesper Kjær Nielsen, Member, IEEE, Mads Græsbøll Christensen, Senior Member, IEEE,

Ali Taylan Cemgil, Member, IEEE, and Søren Holdt Jensen, Senior Member, IEEE

Abstract—Model comparison and selection is an important
problem in many model-based signal processing applications.
Often, very simple information criteria such as the Akaike
information criterion or the Bayesian information criterion are
used despite their shortcomings. Compared to these methods,
Djuric’s asymptotic MAP rule was an improvement, and in this
paper we extend the work by Djuric in several ways. Specifically,
we consider the elicitation of proper prior distributions, treat
the case of real- and complex-valued data simultaneously in
a Bayesian framework similar to that considered by Djuric,
and develop new model selection rules for a regression model
containing both linear and non-linear parameters. Moreover,
we use this framework to give a new interpretation of the
popular information criteria and relate their performance to the
signal-to-noise ratio of the data. By use of simulations, we also
demonstrate that our proposed model comparison and selection
rules outperform the traditional information criteria both in
terms of detecting the true model and in terms of predicting
unobserved data. The simulation code is available online.

Index Terms—Bayesian model comparison, Zellner’s g-prior,
AIC, BIC, Asymptotic MAP.

I. INTRODUCTION

ESSENTIALLY, all models are wrong, but some are useful
[1, p. 424]. This famous quote by Box accurately reflects

the problem that scientists and engineers face when they anal-
yse data originating from some physical process. As the exact
description of a physical process is usually impossible due to
the sheer amount of complexity or an incomplete knowledge,
simplified and approximate models are often used instead. In
this connection, model comparison and selection methods are
vital tools for the elicitation of one or several models which
can be used to make inference about physical quantities or
to make predictions. Typical model selection problems are to
find the number of non-zero regression parameters in linear
regression [2]–[4], the number of sinusoids in a periodic
signal [5]–[9], the orders of an autoregressive moving average
(ARMA) process [10]–[15], and the number of clusters in a
mixture model [16]–[18]. For several decades, a large variety
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of model comparison and selection methods have been devel-
oped (see, e.g., [3], [19]–[22] for an overview). These methods
can basically be divided in three groups with the first group
being those methods which require an a priori estimate of
the model parameters, the second group being those methods
which do not require such estimates, and the third group
being those methods in which the model parameters and
model are estimated and detected jointly [15]. The widely used
information criteria such as the Akaike information criterion
(AIC) [23], the corrected AIC (AICc) [24], the generalised
information criterion (GIC) [25], the Bayesian information
criterion (BIC) [26], the minimum description length (MDL)
[27], [28], the Hannan-Quinn information criterion (HQIC)
[10], and the predictive least squares [29] belong to the first
group of methods. The methods in the second group typically
utilise a principal component analysis of the data by analysing
the eigenvalues [11], [15], [30], the eigenvectors [31], [32],
or the angles between subspaces [33]. In the third group,
the Bayesian methods are found. Although these methods are
widely used in the statistical community [3], [34]–[37], their
use in the signal processing community has only been limited
(see, e.g., [7], [8], [14], [38] for a few notable exceptions)
compared to the use of the information criteria. The main
reasons for this are the high computational costs of running
these algorithms and the difficulty of specifying proper prior
distributions. A few approximate methods have therefore been
developed circumventing most of these issues. Two examples
of such approximate methods are the BIC [26] and the
asymptotic maximum a posteriori (MAP) rule [39], [40].

The original BIC in [26] and the original MDL principle
in [27] are identical in form, but they are derived using very
different arguments [22, App. C]. Although this type of rule
is one of the most popular model selection methods, it suffers
from that every model parameter contributes with the same
penalty to the overall model complexity penalty term in the
model selection method. Djuric’s asymptotic MAP rules [40]
improve on this by accounting for that the magnitude of the
penalty should depend on the type of models and model
parameters being used. For example, the frequency parameter
of a sinusoidal signal is shown to contribute with a three times
larger penalty term than the sinusoidal amplitude and phase.
The asymptotic MAP rules are derived in a Bayesian frame-
work and are therefore sometimes also referred to as Bayesian
information criteria [20], [41] when the name alludes to the
underlying principle rather than the specific rule suggested
in [26]1. In order to obtain very simple expressions for the
asymptotic MAP rules, Djuric uses asymptotic considerations
and improper priors, and he also neglects lower order terms

1In this paper, the terms MDL and MAP are therefore preferred over BIC.
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during the derivations. The latter is a consequence of the use
of improper priors.

In this paper, we extend the work by Djuric in several ways.
First, we treat the difficult problem of eliciting proper and
improper prior distributions on the model parameters. In this
connection, we use a prior of the same form as the Zellner’s
g-prior [42], discuss its properties, and re-parametrise it in
terms of the signal-to-noise ratio (SNR) to facilitate a better
understanding of it. Second, we treat real- and complex-valued
signals simultaneously and propose a few new model selection
rules, and third, we derive the most common information
criteria in our framework. The latter is useful for assessing the
conditions under which the, e.g., AIC and MDL are accurate.
As opposed to the various information criteria which are
generally derived from cross-validation using the Kullback-
Leibler (KL) divergence, we analyse the model comparison
problem in a Bayesian framework for numerous reasons [34],
[35]; Bayesian model comparison is consistent under very
mild conditions, naturally selects the simplest model which
explains the data reasonably well (the principle of Occam’s
razor), takes model uncertainty into account for estimation
and prediction, works for non-nested models, enables a more
intuitive interpretation of the results, and is conceptually
the same, regardless of the number and types of models
under consideration. The two major disadvantages of Bayesian
model comparison are that the computational cost of running
the resulting algorithms may be too high, and that the use of
improper and vague prior distributions only leads to sensible
answers under certain circumstances. In this paper, we discuss
and address both of these issues.

The paper is organised as follows. In Sec. II, we give an
introduction to model comparison in a Bayesian framework
and discuss some of the difficulties associated with the elici-
tation of prior distributions and the evaluation of the marginal
likelihood. In Sec. III, we propose a general regression model
consisting of both linear- and non-linear parameters. For
known non-linear parameters, we derive two model compar-
ison algorithms in Sec. IV and give a new interpretation of
the traditional information criteria. For unknown non-linear
parameters, we also derive a model comparison algorithm in
Sec. V. Through simulations, we evaluate the proposed model
comparison algorithms in Sec. VI, and Sec. VII concludes this
paper.

II. BAYESIAN MODEL COMPARISON

Assume that we observe some real- or complex-valued data

x =
[
x(t0) x(t1) · · · x(tN−1)

]T
, (1)

originating from some unknown model. Since we are unsure
about the true model, a set of K candidate parametric models
M1,M2, . . . ,MK is elicited to be compared in the light of
the data x. Each model Mk is parametrised by the model
parameters θk ∈ Θk where Θk is the parameter space
of dimension dk. The relationship between the data x and
the model Mk is given by the probability distribution with

density2 p(x|θk,Mk) which is called the observation model.
When viewed as a function of the model parameters, the
observation model is referred to as the likelihood function. The
likelihood function plays an important role in statistics where
it is used for parameter estimation. However, model selection
cannot be solely based on comparing candidate models in
terms of their likelihood as a complex model can be made to
fit the observed data better than a simple model. The various
information criteria are alternative ways of resolving this by
introducing a term that penalizes more complex models. This
is a manifestation of the well known Occam’s razor principle
which states that if two models explain the data equally well,
the simplest model should always be preferred [43, p. 343].

In a Bayesian framework, the model parameters and the
model are random variables with the pdf p(θk|Mk) and pmf
p(Mk), respectively. We refer to these distributions as the
prior distributions as they contain our state of knowledge
before any data are observed. After observing data, we update
our state of knowledge by transforming the prior distributions
into the posterior pdf p(θk|x,Mk) and pmf p(Mk|x). The
prior and posterior distributions for the model parameters and
the model are connected by Bayes’ theorem

p(θk|x,Mk) =
p(x|θk,Mk)p(θk|Mk)

p(x|Mk)
(2)

p(Mk|x) =
p(x|Mk)p(Mk)

p(x)
(3)

where

p(x|Mk) =

∫
Θk

p(x|θk,Mk)p(θk|Mk)dθk (4)

is called the marginal likelihood or the evidence. For model
comparison, we often compare the odds of two competing
models Mj and Mi. In this connection, we define the
posterior odds which are given by

p(Mj |x)

p(Mi|x)
= BF[Mj ;Mi]

p(Mj)

p(Mi)
(5)

where the Bayes’ factor is given by

BF[Mj ;Mi] =
p(x|Mj)

p(x|Mi)
,
mj(x)

mi(x)
(6)

and mk(x) is an unnormalised marginal likelihood whose nor-
malisation constant must be the same for all models. Working
with mk(x) rather than the normalised marginal likelihood
p(x|Mk) is usually much simpler. Moreover, p(x|Mk) does
not even exist if improper priors are used. We return to this
in Sec II-A. Since the prior and posterior distributions of the
model are discrete, it is easy to find the posterior odds and
the posterior distribution once the Bayes’ factors are known.
For example, we may rewrite the posterior distribution for the
models in terms of the Bayes’ factors as

p(Mk|x) =
BF[Mk;Mb]p(Mk)∑K
i=1 BF[Mi;Mb]p(Mi)

(7)

2In this paper, we have used the generic notation p(·) to denote both
a probability density function (pdf) over a continuous parameter and a
probability mass function (pmf) over a discrete parameter.
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where Mb is some user selected base model which all other
models are compared against. Therefore, the main computa-
tional challenge in Bayesian model comparison is to compute
the unnormalised marginal likelihoods, constituting the Bayes’
factor for competing pairs of models. We return to this in
Sec II-B. The posterior distribution on the models may be
used to select the most probable model. However, as the
posterior distribution contains the probabilities of all candidate
models, all models may be used to make inference about the
unknown parameters or to predict unobserved data points. This
is called Bayesian model averaging. For example, assume that
we are interested in predicting a future data vector xp using
all models. The predictive distribution then has the density

p(xp|x) =

K∑
k=1

p(Mk|x)p(xp|x,Mk) . (8)

Thus, the model averaged prediction is a weighted sum of the
predictions from every model.

A. On the Use of Improper Prior Distributions
Like Djuric [39], [40], we might be tempted to use improper

prior distributions when we have no or little prior information
before observing any data. Whereas this usually works for the
inference about model parameters, it usually leads to indeter-
minate Bayes’ factors. To see this, let the prior distribution on
the model parameters of the k’th model have the joint density
p(θk|Mk) = c−1

k h(θk|Mk) where ck =
∫

Θk
h(θk|Mk)dθk

is the normalisation constant. In the limit ck → ∞, the prior
distribution is said to be improper. An example of a popular
improper prior pdf is h(θk|Mk) = 1 so that p(θk|Mk) ∝ 1
where ∝ denotes proportional to. The posterior distribution on
the model parameters has the pdf

p(θk|x,Mk) =
p(x|θk,Mk)p(θk|Mk)

p(x|Mk)
(9)

=
p(x|θk,Mk)h(θk|Mk)∫

Θk
p(x|θk,Mk)h(θk|Mk)dθk

. (10)

Thus, provided that the integral

p̃(x|Mk) =

∫
Θk

p(x|θk,Mk)h(θk|Mk)dθk (11)

converges, the posterior pdf p(θk|x,Mk) is proper even for
an improper prior distribution. For two competing modelsMj

and Mi, the Bayes’ factor is

BF[Mj ;Mi] =
ci
cj

p̃(x|Mj)

p̃(x|Mi)
. (12)

The ratio p̃(x|Mj)/p̃(x|Mi) is well-defined if the posterior
distributions on the model parameters θj and θi are proper.
For proper prior distributions, the scalars ci and cj are finite,
and the Bayes’ factor is therefore well-defined. However, for
improper prior distributions, the Bayes’ factor is in general
indeterminate. Specifically, for the improper prior distribution
with h(θj |Mj) = h(θi|Mi) = 1, it can be shown that [44]

ci
cj

=


0 , dj > di

1 , dj = di

∞ , dj < di

(13)

where dj and di are the number of model parameters in θj and
θi, respectively. That is, the simplest model is always preferred
over more complex models, regardless of the information in
the data. This phenomenon is known as the Bartlett’s paradox3

[45]. Due to the Bartlett’s paradox, the general rule is that one
should use proper prior distributions for model comparison.
However, there exists one important exception to this rule
which we consider below. From (12), we also see that vague
prior distributions may give misleading answers. For example,
a vague distribution such as the normal distribution with a very
large variance leads to an arbitrary large normalising constant
ck which strongly influences the Bayes’ factor [35]. Therefore,
the elicitation of proper prior distributions is very important
for Bayesian model comparison.

1) Common Model Parameters: Consider the case where
one model, the null model MN , is a sub-model4 of all other
candidate models. That is MN ⊆ Mk for k = 1, . . . ,K.
We denote the null model parameters as θN and the model
parameters of the k’th model as θk =

[
θTN ψTk

]T
where (·)T

denotes matrix transposition. The prior distribution on θk now
has the pdf

p(θk|Mk) = p(ψk|θN ,Mk)p(θN |Mk) . (14)

If the null model parameters θN and the additional parameters
ψk are orthogonal5, then knowledge of the true model does
not change the knowledge about θN , and we therefore have
that p(θN |Mk) = p(θN |MN ) [35], [37]. Thus, using the
prior pdf p(θN |MN ) = c−1

b h(θN |MN ), the Bayes’ factor is

BF[Mk;MN ]

=

∫
Θk
p(x|θk,Mk)p(ψk|θN ,Mk)h(θN |MN )dθk∫

Θb
p(x|θN ,MN )h(θN |MN )dθN

(16)

which is proper if the posterior distribution on the null model
parameters and the prior distribution with pdf p(ψk|θN ,Mk)
are proper. That is, the Bayes’ factor is well-defined since cb =
ci = cj even if an improper prior distribution is selected on
the null model parameters, provided that they are orthogonal
to the additional model parameters ψk.

B. Computing the Marginal Likelihood

As alluded to earlier, the main computational difficulty in
computing the posterior distribution on the models is the
evaluation of the marginal likelihood in (4). The integral
may not have a closed-form solution, and direct numerical
evaluation may be infeasible if the number of model pa-
rameters is too large. Numerous solutions to this problem
have been proposed and they can broadly be dichotomised

3Bartlett’s paradox is also called the Lindley’s paradox, the Jeffreys’
paradox, and various combinations of the three names.

4Instead of the null model, the full model, which contains all other candidate
models, can also be used [4].

5If one set of parameters θN is orthogonal to another set of parameters
ψk , the Fisher information matrix of the joint parameter vector θk =[
θTN ψT

k

]T is diagonal. That is,

I(θk) = I(θN ,ψk) =

[
I(θN ) 0

0 I(ψk)

]
. (15)
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into stochastic methods and deterministic methods. In the
stochastic methods, the integral is evaluated using numerical
sampling which are also known as Monte Carlo techniques
[46]. Popular techniques are importance sampling [47], Chib’s
methods [48], [49], reversible jump Markov chain Monte Carlo
[50], and population Monte Carlo [51]. An overview over
and comparison of several methods are given in [52]. An
advantage of the stochastic methods is that they in principle
can generate exact results. However, it might be difficult to
assess the convergence of the underlying stochastic integration
algorithm. On the other hand, the deterministic methods can
only generate approximate results since they are based on
analytical approximations which make the evaluation of the
integral in (4) possible. These methods are also sometimes
referred to as variational Bayesian methods [53], and a simple
and widely used example of these methods is the Laplace
approximation [54]. In order to derive the original BIC and
the asymptotic MAP rule and since the Laplace approximation
is used later in this paper, we briefly describe it here.

1) The Laplace Approximation: Denote the integrand
of an integral such as in (4) by f(ξk) where ξk =[
Re(θTk ) Im(θTk )

]T
is a vector of d̃k real parameters with

support Ξk. Moreover, suppose there exists a suitable one-to-
one transformation ξk = h(ϕk) such that the logarithm of the
integrand

q(ϕk) =

∣∣∣∣∂h(ϕk)

∂ϕk

∣∣∣∣ f (h(ϕk)) (17)

can be accurately approximated by the second-order Taylor
expansion around a mode ϕ̂k of q(ϕk). That is,

ln q(ϕk) ≈ ln q(ϕ̂k)+
1

2
(ϕk− ϕ̂k)TH(ϕ̂k)(ϕk− ϕ̂k) (18)

where
H(ϕk) =

∂2 ln q(ϕk)

∂ϕk∂ϕ
T
k

(19)

is the Hessian matrix. Under certain regularity conditions [40],
the Laplace approximation is then given by∫

Φk

q(ϕk)dϕk ≈ q(ϕ̂k)(2π)d̃k/2| −H(ϕ̂k)|−1/2 (20)

where Φk is the support of ϕk. The main difficulty in
computing the Laplace approximation is to find a suitable
parametrisation of the integrand so that the second-order
Taylor expansion of ln q(ϕk) is accurate. If q(ϕk) consists
of multiple, significant, and well-separated peaks, an integral
can be approximated by a Laplace approximation to each peak
at their respective modes [55].

2) The Original BIC and the Asymptotic MAP: The original
BIC [26] and the asymptotic MAP rule [40] are based on the
Laplace approximation with h(·) being the identity function
so that

f(ξk) = q(ϕk) = p(x|ξk,Mk)p(ξk|Mk) . (21)

By neglecting terms of order O(1) and assuming a flat prior
around ξ̂k, the marginal likelihood in the asymptotic MAP
rule is∫

Ξk

f(ξk)dξk ≈ p(x|ξ̂k,Mk)| −H(ϕ̂k)|−1/2 . (22)

In the MAP rule, the determinant of the observed information
matrix −H(ϕ̂k) is evaluated using asymptotic considerations,
and the asymptotic result therefore depends on the specific
structure of H(ϕ̂k), the number of data points, and the
SNR [41]. For the original BIC, however, this determinant
is assumed to grow linearly in the sample size N so that

| −H(ϕ̂k)| =
∣∣∣∣−Nα α

N
H(ϕ̂k)

∣∣∣∣ =

(
N

α

)d̃k
O(1) (23)

where α is an arbitrary constant. In the original BIC, α = 1
and the original BIC is therefore∫

Ξk

f(ξk)dξk ≈ p(x|ξ̂k,Mk)N−d̃k/2 , (24)

but α can be selected arbitrarily which we find unsatisfactory.
In [40], Djuric shows that the MAP rule and the orignal
BIC/MDL coincide for autoregressive models and sinusoidal
models with known frequencies. However, he also shows that
that they differ for polynomial models, sinusoidal models with
unknown frequencies, and chirped signal models.

III. MODEL COMPARISON IN REGRESSION MODELS

Bayesian model comparison as outlined in Sec. II is appli-
cable to any model, but we have to work with a specific model
to come up with specific algorithms for model comparison. In
the rest of this paper, we therefore focus on regression models
of the form

Mk : x = sk(φk,ψ,αk)+e = Bψ+Zk(φk)αk+e (25)

where sk(φk,ψ,αk) and e form a Wold decomposition of
the real- or complex-valued data x into a predictable part
and a non-predictable part, respectively. Since the model
parameters are treated as random variables, the predictable
part sk(φk,ψ,αk) is also stochastic like the non-predictable
part. All models include the same null model

MN : x = Bψ + e (26)

where B and ψ are a known N × lN system matrix and a
known or unknown vector of lN linear parameters, respec-
tively. Usually, the predictable part of the null model is either
taken to be a vector of ones so that ψ acts as an intercept or
not present at all. In the latter case, the null model is simply
the noise-only model. The various candidate models differ in
terms of the lk linear parameters in the vector αk and the
N×lk system matrix Zk(φk), which is parametrised by the ρk
real-valued and non-linear parameters in the vector φk. These
non-linear parameters may be either known, unknown or not
present at all. We discuss the first and latter case in Sec. IV
and the case of unknown non-linear parameters in Sec. V.
Without loss of generality, we assume that the columns of B
and Zk(φk) are orthogonal to each other so that ψ has the
same interpretation in all models and therefore can be assigned
an improper prior if ψ is unknown. If the columns of B and
Zk(φk) are not orthogonal to each other, s(φk,ψ,αk) can be
re-parametrised so that the columns of the two system matrices
are orthogonal [56]. We focus on the regression model in (25)
for several reasons. First of all, many common signal models
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used in signal processing can be written in the form of (25).
Examples of such models are the linear regression model, the
polynomial regression model, the autoregressive signal model,
the sinusoidal model, and the chirped signal model, and these
signal models were also considered by Djuric in [40]. Second,
the regression model in (25) is analytically tractable and
therefore results in computational algorithms with a tractable
complexity. Moreover, the analytical tractability facilitates
insight into, e.g., the various information criteria. Finally, the
regression model in (25) can be viewed as a approximation to
more complex models [3].

A. Elicitation of Prior Distributions

In the Bayesian framework, the unknown parameters are
random variables. In addition to specifying a distribution
on the noise vector, we therefore also have to elicit prior
distributions on these unknown parameters. The elicitation
of prior distributions is a controversial aspect in Bayesian
statistics as it is often argued that subjectivity is introduced
into the analysis. We here take a more practical view at
this philosophical problem and consider the elicitation as a
consistent and explicit way of stating our assumptions. In
addition to the philosophical issue, we also face two practical
problems in the context of eliciting prior distributions for
model comparison. First, if we assume that lk ≤ L, we can
select a subset of columns from Zk(φk) in K = 2L different
ways. A careful elicitation of the prior distribution for the
model parameters in each model is therefore infeasible if L
is too large, and we therefore prefer to do the elicitation in a
more generic way. Second, even if we have only a vague prior
knowledge, the use of improper or vague prior distributions
in an attempt to be objective may lead to bad or non-sensible
answers [35]. As we discussed in Sec. II, this approach usually
works for making inference about model parameters, but may
lead to the Bartlett’s paradox for model selection.

1) The Noise Distribution: In order to deduce the observa-
tion model, we have to select a model for the non-predictable
part e of the model in (25). As it is purely stochastic, it
must have zero mean, and we assume that it has a finite
variance. As advocated by Jaynes and Bretthorst [57]–[59],
we select the distribution which maximises the entropy under
these constraints. It is well-known, that this distribution is the
(complex) normal distribution with pdf

p(e|σ2) =
[
rπσ2

]−N/r
exp

(
−e

He

rσ2

)
(27)

=

{
CN (e; 0, σ2IN ) , r = 1

N (e; 0, σ2IN ) , r = 2
(28)

where (·)H denotes conjugate matrix transposition, IN is the
N × N identity matrix, and r is either 1 if x is complex-
valued or 2 if x is real-valued. To simplify the notation, we
use the non-standard notation Nr(·) to refer to either the
complex normal distribution with pdf CN (·) for r = 1 or
the real normal distribution with pdf N (·) for r = 2. It
is important to note that the noise variance σ2 is a random
variable. As opposed to the case where it is simply a fixed but
unknown quantity, the noise distribution marginalised over this

random noise variance is able to model noise with heavy tails
and is robust towards outliers. Another important observation
is that (28) does not explicitly model any correlations in
the noise. However, including correlation constraints into the
elicitation of the noise distribution lowers the entropy of the
noise distribution which is therefore more informative [58,
Ch. 7], [59]. This leads to more accurate estimates when there
is genuine prior information about the correlation structure.
However, if nothing is known about the correlation structure,
the noise distribution in (28) is the best choice since it is the
least informative distribution and is thus able to capture every
possible correlation structure in the noise [59], [60].

The Gaussian assumption on the noise implies that the
observed data are distributed as

p(x|αk,ψ,φk, σ2,Mk)

= Nr(x;Bψ +Zk(φk)αk, σ
2IN ) . (29)

The Fisher information matrix (FIM) for this observation
model is derived in App. A and given by (79). The block diag-
onal structure of the FIM means that the common parameters
ψ and σ2 are orthogonal to the additional model parameters
and can therefore be assigned improper prior distributions.

2) The Noise Variance: Since the noise variance is a
common parameter in all models and orthogonal to all other
parameters, it can be assigned an improper prior. The Jeffreys’
prior p(σ2) = (σ2)−1 is a widely used improper prior for
the noise variance which we also adopt in this paper. The
popularity primarily stems from that the prior is invariant
under transformations of the form σm for all m 6= 0. Thus,
the Jeffreys’ prior includes the same prior knowledge whether
we parametrise our model in terms of the noise variance σ2,
the standard deviation σ, or the precision parameter λ = σ−2.

3) The Linear Parameters: Since we have assumed that
BHZk(φk) = 0, the linear parameters ψ of the null model
are orthogonal to the remaining parameters. We can therefore
use the improper prior distribution with pdf p(ψ) ∝ 1 for
ψ. This prior is often used for location parameters as it
is translation invariant. As the dimension of the vector αk
of linear parameters varies between models, a proper prior
distribution must be assigned on it. For linear regression
models, the Zellner’s g-prior given by [42]

p(αk|g, σ2,φk,Mk)

= Nr(αk; 0, gσ2[ZHk (φk)Zk(φk)]−1) (30)

has been widely adopted since it leads to analytically tractable
marginal likelihoods and is easy to understand and interpret
[4]. The g-prior can be interpreted as the posterior distribution
on αk arising from the analysis of a conceptual sample x0 = 0
given the non-linear parameters φk, a uniform prior on αk,
and a scaled variance gσ2 [61]. Given φk, the covariance
matrix of the g-prior also coincides with a scaled version of the
inverse Fisher information matrix. Consequently, a large prior
variance is therefore assigned to parameters which are difficult
to estimate. We can also make a physical interpretation of the
scalar g when the null model is the noise-only model. In this
case, the mean of the prior on the average signal-to-noise ratio
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(SNR) is [62]

E[η|g,Mk] = lkg/N . (31)

Moreover, this value is also the mode of the prior on the
average SNR in dB [62].

If the hyperparameter g is treated as a fixed but unknown
quantity, its value must be selected carefully. In, e.g., [2], [4],
[63], the consequences of selecting various fixed choices of
g have been analysed. In [4], [64], the hyperparameter g was
also treated as a random variable and integrated out of the
marginal likelihood, thus avoiding the selection of a particular
value for it. For the prior distribution on g, a special case of
the beta prime or inverted beta distribution with pdf

p(g|δ) =
δ − r
r

(1 + g)−δ/r , δ > r . (32)

was used. The hyperparameter δ should be selected in the
interval r < δ ≤ 2r [4]. Besides having some desirable
analytical properties, p(g|δ) reduces to the Jeffreys’ prior and
the reference prior for a linear regression model when δ = r
[65]. However, since this prior is improper, it can only be used
when the prior probability of the null model is zero.

4) The non-linear Parameters: The elicitation of the prior
distribution on the non-linear parameters φk is hard to do in
general. In this paper, we therefore treat the case of non-linear
parameters with a uniform prior of the form

p(φk|Mk) = W−1
k IΦk

(φk) (33)

where IΦk
(·) is the indicator function on the support Φk and

Wk is the normalisation constant. This uniform prior is often
used for the non-linear parameters of sinusoidal and chirped
signal models.

5) The Models: For the prior on the model, we select a
uniform prior of the form p(Mk) = K−1IK(k) where K =
{1, 2, . . . ,K}. For a finite number of models, however, it is
easy to use a different prior in our framework through (7).

B. Bayesian Inference

So far, we have elicited our probability model consisting of
the observation model in (29) and the prior distributions on the
model parameters. These distributions constitute the integrand
of the integral representation of the marginal likelihood in (4),
and we now evaluate this integral. After some algebra, the
integrand can be rewritten as

p(x|αk,ψ,φk, σ2,Mk)p(αk|g, σ2,φk,Mk)

× p(ψ)p(σ2)p(g|δ)p(φk|Mk)

∝ Nr(α; gmk/(1 + g), gσ2[ZHk (φk)Zk(φk)]−1/(1 + g))

×Nr(ψ;mN , σ
2[BHB]−1)Inv-G

(
σ2;

N − lN
r

,
Nσ̂2

k

r

)
× mN (x)

(1 + g)lk/r

(
σ̂2
N

σ̂2
k

)(N−lN )/r

p(g|δ)p(φk|Mk) (34)

where Inv-G is the inverse gamma distribution. Moreover, we
have defined

mk , [ZHk (φk)Zk(φk)]−1ZHk (φk)x (35)

mN , (BHB)−1BHx (36)

σ̂2
k ,

xH(IN − PB − g
1+gPZ)x

N
(37)

mN (x) ,
Γ((N − lN )/r)

(Nπσ̂2
N )(N−lN )/r|BHB|1/r

(38)

where PB and PZ are the orthogonal projection matrices of
B and Zk(φk), respectively, and σ̂2

k is asymptotically equal to
the maximum likelihood (ML) estimate of the noise variance in
the limit σ̂2

ML = limg→∞ σ̂2
k. The estimate σ̂2

N is the estimated
noise variance of the null model, and it is defined as σ̂2

k

for PZ = 0. Finally, mN (x) is the unnormalised marginal
likelihood of the null model. The linear parameters and the
noise variance is now easily integrated out of the marginal
likelihood in (4). Doing this, we obtain that

p(x|g,φk,Mk) ∝ mN (x)

(1 + g)lk/r

(
σ̂2
N

σ̂2
k

)(N−lN )/r

(39)

=
mN (x)(1 + g)(N−lN−lk)/r

(1 + g[1−R2
k(φk)])(N−lN )/r

(40)

which we define as the unnormalised marginal likelihood
mk(x|g,φk) of model Mk given g and φk. Moreover,

R2
k(φk) ,

xHPZx

xH(IN − PB)x
(41)

resembles the coefficient of determination from classical linear
regression analysis where it measures how well the data set
fits the regression. Whereas the linear parameters and the noise
variance were easily integrated out of the marginal likelihood,
the hyperparameter g and the non-linear parameters φk are not.
In the next two sections, we therefore propose approximate
ways of performing the integration over these parameters.

IV. KNOWN SYSTEM MATRIX

In this section, we consider the case where there are either
no non-linear parameters or they are known.

A. Fixed Choices of g

We first assume that g is a fixed quantity. From (6) and
(39), the Bayes’ factor is therefore

BF[Mk;MN |g,φk] = (1 + g)−lk/r
(
σ̂2
N

σ̂2
k

)(N−lN )/r

. (42)

With a uniform prior on the models, it follows from (7) that
the Bayes’ factor is proportional to the posterior distribution
with pdf p(Mk|x, g,φk) on the models. The model with the
highest posterior probability is the solution to

k̂ = arg max
k∈K

p(Mk|x, g,φk) (43)

= arg max
k∈K

[
−(N − lN ) ln σ̂2

k − lk ln(1 + g)
]
. (44)
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As alluded to in Sec. III-A3, the value of g is vital in model
selection. From (40), we see that if g →∞, the Bayes’ factor
in (42) goes to zero. The null model is therefore always the
most probable model, regardless of the information in the data
(Bartlett’s paradox). Another problem occurs if we assume
that the least squares estimate mk → ∞ or, equivalently,
that R2

k(φk) → 1 so that the null model cannot be true.
Although we would expect that the Bayes’ factor would also
go to infinity, it converges to the constant (1 + g)(N−ln−lk)/r,
and this is called the information paradox [4], [35], [66]. For
these two reasons, the value of g should depend on the data
in some way. A local empirical Bayesian (EB) estimate is a
data-dependent estimate of g, and it is the maximum of the
marginal likelihood w.r.t. g [4]

gEB
k = arg max

g∈R+

p(x|g,φk,Mk) (45)

= max

(
(N − lN )R2

k(φk)− lk
(1−R2

k(φk))lk
, 0

)
, lk > 0 (46)

where R+ is the set of non-negative real-valued numbers. This
choice of g clearly resolves the information paradox. Inserting
the EB estimate of g into (44) gives for R2

k(φk) > lk/N the
empirical BIC (e-BIC)

k̂ = arg max
k∈K

[
− (N − lN ) ln σ̂2

ML − lk ln(1 + gEB
k )

+ (N − lN ) ln(1− lk/(N − lN ))
]

(47)

whose form is similar to most of the information criteria.
When the null model is the noise-only model so that lN = 0,
these information criteria can be written as [20]6

k̂ = arg max
k∈K

[
−2N ln σ̂2

ML − rνkh(νk, N)
]

(48)

where νk is the number of real-valued independent param-
eters in the model, and h(νk, N) is a penalty coefficient.
For h(νk, N) = {2, lnN}, we get the AIC and the MDL,
respectively. Note that νk is not always the same as the
number of unknown parameters [30]. Moreover, if the penalty
coefficient does not depend on the candidate model, νk may
be interpreted as the number of independent parameters which
are not in all candidate models. In nested models with white
Gaussian noise and a known system matrix, this means that
the noise variance parameter does not have to be counted
as an independent parameter. Thus, selecting νk as either
νk = 2lk/r + 1 or νk = 2lk/r does not change, e.g., the
AIC and the MDL.

1) Interpretation of the e-BIC: To gain some insight into
the behaviour of the e-BIC, we here compare it to the AIC
and the MDL in the context of a linear regression model with
N � lk and lN = 0. Under these assumptions, the penalty
coefficient of the e-BIC in (47) reduces to

h(νk, N) = ln(1 + gEB
k )−N ln(1− lk/N)/lk (49)

≈ ln(1 + gEB
k ) + 1 = ln(1 +NηEB

k /lk) + 1 (50)

6The cost function must be divided by 2r when the information criteria
are used for model averaging and comparison in the so-called multi-modal
approach [21].

where the approximation follows from the assumption that
N � lk so that ln(1−lk/N) ≈ −lk/N . From the approximate
e-BIC (ae-BIC) in (50), several interesting observations can
be made. When the SNR is large enough to justify that
NηEB

k � lk, the e-BIC is basically a corrected MDL which
takes the estimated SNR of the data into account. The penalty
coefficient grows with the estimated SNR and the chance of
over-fitting thus becomes very low, even under high SNR con-
ditions where the AIC, but also the MDL tend to overestimate
the model order [67]. When the estimated SNR on the other
hand becomes so low that NηEB

k � lk, the e-BIC reduces to an
AIC-like rule which has a constant penalty coefficient. In the
extreme case of an estimated SNR of zero, the e-BIC reduces
to the so-called no-name rule [20]. Interestingly, empirical
studies [40], [68] have shown that the AIC performs better
than the MDL when the SNR in the data is low, and this
is automatically captured by the e-BIC. The e-BIC therefore
performs well across all SNR values as we have demonstrated
for the polynomial model in [62].

B. Integration over g
Another way to resolve the information paradox is by

treating g as a random variable and integrate it out of the
marginal likelihood. For the prior distribution on g in (32)
and the unnormalised marginal likelihood in (40), we obtain
the Bayes’ factor given by

BF[Mk;MN |φk] =

∫ ∞
0

mk(x|g,φk)

mN (x)
p(g|δ)dg

=
δ − r

lk + δ − r 2F1

(
N − lN

r
, 1;

lk + δ

r
;R2

k(φk)

)
(51)

where 2F1 is the Gaussian hypergeometric function [69,
p. 314]. When N is large or R2

k(φk) is very close to one,
numerical and computational problems with the evaluation of
the Gaussian hypergeometric function may be encountered
[70]. From a computational point of view, it may therefore
not be advantageous to marginalise (51) w.r.t. g analytically.
Instead, the Laplace approximation can be used as a simple
alternative. Using the procedure outlined in Sec. II-B1 and the
results in App. B, we get that

BF[Mk;MN |φk]

≈ BF[Mk;MN |ĝ,φk]
ĝ(δ − r)
r(1 + ĝ)δ/r

√
2πγ(ĝ|φk) (52)

where ĝ = exp(τ̂) and γ(ĝ|φk) can be found from (83) and
(84), respectively, with v = 1, w = (N − lN − lk − δ)/r,
and u = (N− lN )/r. Since the marginal posterior distribution
on g does not have a symmetric pdf and in order to avoid
edge effects near g = 0, the Laplace approximation was made
for the parametrisation τ = ln g [4]. This parametrisation
suggests that the posterior distribution on g is approximately a
log-normal distribution. The model with the highest posterior
probability can be found by maximising (52) w.r.t. the model
index and this yields the Laplace BIC (lp-BIC)

k̂ = arg max
k∈K

[
− (N − lN ) ln σ̂2

k − lk ln(1 + ĝ)

− δ ln(1 + ĝ) + r ln ĝ + (r/2) ln γ(ĝ|φk)
]

(53)
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Rule h(νk, N) Bayes’ factor

AIC 2 See [21]
MDL lnN See [21]
MAP Model dependent See [21]
e-BIC ln(1 + gEB

k )−N ln(1− lk/N)/lk (42)
ae-BIC ln(1 + gEB

k ) + 1 (42)
lp-BIC No short expression. See (53) instead. (52)

TABLE I
PENALTY TERMS AND BAYES’ FACTORS FOR REGRESSION MODELS WITH
A KNOWN SYSTEM MATRIX AND THE NOISE-ONLY MODEL AS THE NULL

MODEL.

Compared to the maximisation in (44), (53) differs in terms of
the estimate of g and the last three terms. These terms account
for the uncertainty in our point estimate of g. In Table I, we
have compared the proposed model selection and comparison
rules with the AIC, the MDL, and the MAP rule for regression
models with a known system matrix and lN = 0.

V. UNKOWN NON-LINEAR PARAMETERS

In this section, the ρk real-valued and non-linear parameters
φk are also assumed unknown, and they must therefore be
integrated out of the marginal likelihood in (40). Since an
analytical marginalisation is usually not possible, we here con-
sider doing the joint integral over φk and g using the Laplace
approximation with the change of variables τ = ln g. Dividing
(40) by mN (x) yields the following integral representation of
the Bayes’ factor in (6)

BF[Mk;MN ] =

∫ ∞
−∞

∫
Φk

q(φk, τ)dφkdτ (54)

where the integrand is given by

q(φk, τ) = BF[Mk;MN | exp(τ),φk]p(φk|Mk)p(τ |δ)
(55)

with
p(τ |δ) = exp(τ)p(g|δ)

∣∣
g=exp(τ)

. (56)

According to the procedure outlined in Sec. II-B1, we need
to find the mode and Hessian of ln q(φk, τ) to approximate
the integrand by a normal pdf. For the uniform prior on φk
in (33), the mode of ln q(φk, τ) w.r.t. φk is given by

φ̂
MAP
k = arg max

φk∈Φk

p(x|g,φk,Mk) = arg max
φk∈Φk

p(x|φk,Mk)

= arg max
φk∈Φk

R2
k(φk) = arg max

φk∈Φk

Ck(φk) (57)

where we have defined

Ck(φk) , xHPZx . (58)

Note that Ck(φk) does not depend on the hyperparameter g
(and equivalently τ ) so the MAP estimator φ̂

MAP
k is indepen-

dent of the prior on g. Depending on the structure of Zk(φk),
it might be hard to perform the maximisation of Ck(φk). In
App. C, we have therefore derived the first and second order
differentials of an orthogonal projection matrix as these are
useful in numerical optimisation algorithms for maximising
Ck(φk). We also note in passing that the MAP estimator is

identical to the ML estimator for the non-linear regression
model in (25). Evaluated at the mode φ̂

MAP
k , the Hessian matrix

H(φk) is given by

H(φ̂
MAP
k ) =

exp(τ)(N − lN )

rN [1 + exp(τ)]σ̂2
k

D (59)

where we have defined

D ,
∂2Ck(φk)

∂φk∂φ
T
k

∣∣∣∣
φk=φ̂

MAP
k

. (60)

Using the results in App. C, the (n,m)’th element of D can
be written as

[D]nm = 2Re
{
wH

[
Λnm − T nS−1

k Z
H
k (φ̂

MAP
k )Tm

− TmS−1
k Z

H
k (φ̂

MAP
k )T n

]
mk +wHT nS

−1
k T

H
mw

−mH
k T

H
n (IN − PZ)Tmmk

}
(61)

where we have defined

w , x−Zk(φ̂
MAP
k )mk (62)

Sk , ZHk (φ̂
MAP
k )Zk(φ̂

MAP
k ) (63)

T i ,
∂Zk(φk)

∂φi

∣∣∣∣
φk=φ̂

MAP
k

(64)

Λnm ,
∂2Zk(φk)

∂φn∂φm

∣∣∣∣
φk=φ̂

MAP
k

. (65)

As we demonstrate in the Sec. VI, the value of [D]nm can
often be approximated by only the last term in (61).

Since φ̂
MAP
k does not depend on the value of τ , the mode

and second-order derivative of ln q(φk, τ) w.r.t. τ are therefore
the same as in Sec. IV-B and can be found in App. B with
v = 1, w = (N − lN − lk− δ)/r, and u = (N − lN )/r. Thus,
the Laplace approximation of the Bayes’ factor in (54) is

BF[Mk;MN ] ≈ BF[Mk;MN |ĝ, φ̂
MAP
k ]

ĝ(δ − r)
r(1 + ĝ)δ/r

×W−1
k (2π)(ρk+1)/2

√
γ(ĝ|φ̂MAP

k )| −H(φ̂
MAP
k )|−1/2 . (66)

When q(φk, τ) consists of multiple, significant, and well-
separated peaks, the integral in (54) can be approximated
by a Laplace approximation to each peak at their respective
modes [55]. In this case, the Bayes’ factor in (66) will be a
sum over each of these peaks. Since it is not obvious how
the number of peaks should be selected in a computationally
simple manner, we consider only one peak in the simulations
in Sec. VI. Although this is often a crude approximation for
low SNRs, we demonstrate that other model selection rules
are still outperformed.

VI. SIMULATIONS

We demonstrate the applicability of our model comparison
algorithms by three simulation examples. In the first example,
we compare the penalty coefficient of our proposed algorithms
with the penalty coefficient of the AIC, the MDL, and the
MAP rule. In the second and third example, we consider model



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL XX, NO. XX, MONTH YEAR 9

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

R2
k(φk)

h
(l
k
,N

)
AIC MDL/MAP ae-BIC e-BIC lp-BIC

101 102 103

N

Fig. 1. Interpretation of the various information criteria for lk = 5. The plots show the penalty coefficient h(lk, N) as a function of R2
k(φk) and the

number of data points N . In the left plot, N = 95, and in the right, R2
k(φk) = 0.95 for the e-BIC, the ae-BIC, and the lp-BIC.
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Fig. 3. Prediction performance versus the SNR (top row) and versus the prediction step at an SNR of 0 dB (bottom row) for a periodic signal model. In the
plots in the left column, only the model with the highest posterior probability was used whereas all models were used in the plots in the right column.

comparison in models containing unknown non-linear param-
eters. Specifically, we first consider a periodic signal model
which consists of a single non-linear parameter, the fundamen-
tal frequency, and then consider the uniform linear array model
which consists of multiple non-linear parameters, the direction
of arrivals (DOA). Similar simulations comparing the perfor-
mance of the e-BIC in (42) and the lp-BIC in (52) to other
order selection rules for linear and polynomial models can be
found in [4] and [62], respectively. The simulation code can be
found at http://kom.aau.dk/~jkn/publications/publications.php.

A. Penalty Coefficient
In Sec. IV-A1, we considered the interpretation of the AIC

[23] and the MDL [26], [27] for a regression model with
a known system matrix when the null model is the noise-
only model and N � lk. For the linear regression model, the
MDL and the MAP are equivalent [40]. Here, we give some
more insight by use of a simple simulation example in which
the penalty coefficients of the AIC, the MDL/MAP, the e-
BIC, the approximate e-BIC (ae-BIC), and the lp-BIC methods

were found as a function of the coefficient of determination
R2
k(φk) and the number of data points N . We fixed the

number of linear parameters to lk = 5, and Fig. 1 shows
the results. In the left plot, the penalty coefficients h(lk, N)
were computed as a function of R2

k(φk) for N = 95. Since
the AIC and the MDL/MAP do not depend on the data, their
penalty coefficients were constant. On the other hand, the
penalty coefficients of the e-BIC, the ae-BIC, and the lp-
BIC are data dependent and increased with the coefficient
of determination. In the right plot, the penalty coefficients
h(lk, N) were computed as a function of the number of data
points N for R2

k(φk) = 0.95. Note that the MDL/MAP had
the same trend as the e-BIC, the ae-BIC, and the lp-BIC
although shifted. The vertical distance between these penalties
depends on the particular value of R2

k(φk). In Fig. 1, we set
R2
k(φk) = 0.95, but if R2

k(φk) ≈ 0.648 was selected instead,
the e-BIC and the MDL/MAP would coincide for large values
of N .

http://kom.aau.dk/~jkn/publications/publications.php
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Fig. 2. The first three plots show the percentage of correctly detected,
overestimated, and underestimated number of harmonic components versus
the SNR for the harmonic signal model. The last plot shows the RMSE of
the estimated number of harmonic components.

B. Periodic Signal Model

We consider a complex periodic signal model given by

Mk : x(n) =

L∑
i=1

αi exp(jωin)ILk
(i) + e(n) (67)

for n = 0, 1, . . . , N − 1 where ILk
(i) indicates whether the

i’th harmonic component is included in the modelMk or not.
This model is a special case of the model in (25) with the null
model being the noise-only model, φk = ω, and αk being the
complex amplitudes. Since no closed-form solution exists for
the posterior distribution on the models for the periodic signal
model, we consider the approximation in (66) which we refer
to as the Laplace (LP) method. The method is compared to the
AIC and the asymptotic MAP rule by Djuric with the latter
having the penalty coefficient in (48) given by [9]

h(lk, N) = lnN +
3

2lk
lnN . (68)

For the periodic signal model, the Hessian matrix in (59) is a
scalar which can be approximated by [71]

H(ω̂MAP
k ) ≈ − ĝN(N2 − 1)

∑L
i=1 |[mk]i|2i2ILk

(i)

6(1 + ĝ)σ̂2
k

(69)

where ω̂MAP
k is the ML estimate of the fundamental frequency.

In the simulations, we set the maximum number of harmonic
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Fig. 4. The first three plots show the percentage of correctly detected,
overestimated, and underestimated number of sources versus the SNR for the
uniform linear array model. The last plot shows the RMSE of the estimated
number of sources.

components to L = 10 and considered K = 2L − 1 = 1023
models. Zero prior probability was assigned to the noise-
only model as the model comparison performance was eval-
uated against the SNR. Moreover, this permits the use of
the improper prior p(g|δ = r = 1) since g is now a
common parameter in all models. For each SNR from −10
dB to 20 dB in steps of 1 dB, we ran 1000 Monte Carlo
runs. As recommended in [21], a data vector x consisting of
N = 50 samples was generated in each run by first randomly
selecting a model from a uniform prior on the models. For this
model, we then randomly selected the fundamental frequency
and the phases of the complex amplitudes from a uniform
distribution on the interval [(2π)−1, 2π/max(Lk)] and [0, 2π],
respectively. The amplitudes of the harmonics in the selected
model were all set to one. Finally a complex noise vector was
generated and normalised so that the data had the desired SNR.
Besides generating a data vector, we also generated a vector
xp of unobserved data for n = N,N + 1, . . . 2N − 1.

In Fig. 2, the percentage of correctly detected models,
overestimated models, underestimated models, and the root-
mean-squared-error (RMSE) of the estimated model versus
the SNR are shown. The RMSE is defined as

E(L̂k) =

√√√√ L∑
i=1

(ILk
(i)− IL̂k

(i))2 (70)
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where L̂k is the set containing the harmonic numbers of the
most likely model. For an SNR below 0 dB, the LP method
and the asymptotic MAP rule had a similar performance and
were better than the AIC. For SNRs above 5 dB, the LP
method also outperformed the asymptotic MAP rule. In terms
of the RMSE, similar observations are made except that the
asymptotic MAP rule performs worse than the other methods
for low SNRs. However, it should be noted that the percentage
of correctly detected models is not necessarily the best way
of benchmarking model selection methods. As exemplified in
[21], the true model does not always give the best prediction
performance, and it may therefore be advantageous to either
over- or underestimate the model order. Using the same Monte
Carlo setup as above, we have therefore also investigated the
prediction performance, and the results are shown in Fig. 3.
In the plots in the left column, only the single model with
the largest posterior probability was used for making the
predictions of the predictable part sp whereas all models
were used as in (8) in the plots in the right column. The
prediction based on a single model and all models was the
mean of p(xp|x,Mk) and p(xp|x), respectively, where the
latter depends on the former as in (8) with

p(xp|x,Mk) =

∫
Θk

p(xp|θk,Mk)p(θk|x,Mk)dθk . (71)

In the top row, the MSE of the total prediction error versus
the SNR is shown, and in the bottom row, the MSE of the
prediction error for each prediction step at an SNR of 0 dB
is shown. In the four plots, the Oracle knew the true model
but not the model parameters. From the four figures, we see
again that the LP method outperformed the other methods with
the AIC being the overall worst. For low SNRs, we also see
that the MSE of the prediction errors were significantly lower
when model averaging was used. Moreover, we see that the
performance was also better than the Oracle’s performance
and this demonstrates, as discussed above, that the true model
does not always give the best prediction performance. For
high SNRs, only the AIC performed slightly worse than the
other methods which performed almost as well as the Oracle.
Moreover, there was basically no difference between the single
and multi-model predictions since a single model received all
posterior probability.

C. Uniform Linear Array Signal Model

In the third and final simulation example, we consider
the problem of estimation the number of narrowband source
signals impinging on a uniform linear array (ULA) consisting
of M calibrated sensors. For this problem, the model for the
m’th sensor signal is given by [22, Ch. 6]

Mk : ym(n) =

lk∑
i=1

si(n) exp(−jωin) + em(n) (72)

for n = 0, 1, . . . , N − 1 where ωi is the spatial frequency in
radians per sample of the i’th source. The spatial frequency
is related to the direction of arrival (DOA) θi of the source
signal by

ωi =
ωcd sin(θi)

v
(73)

where ωc, d, and v are the carrier frequency in radians per
second, the sensor distance in meters, and the propagation
speed in meters per second, respectively. The signal si(n) is
the baseband signal of the i’th source. The signal model in
(72) can be written into the form of (25) as

vec(Y ) = (IN ⊗Z(ωk))vec(Sk) + vec(E) (74)

where vec(·) and ⊗ denote the vectorisation and the Kronecker
product, respectively. The M ×N matrices Y and E contain
the observed sensor signals, and the noise realisations, and
the lk ×N matrix Sk contains the baseband signals. Finally,
the M × lk matrix Zk(ω) contains the lk steering vectors
with the (m, i)’th element being given by exp(−jωi(m−1)).
As in the previous example, no closed-form expression exists
for the posterior distribution on the models, and we therefore
again consider the Laplace approximation in (66). By only
keeping the last term of (61) and by making the approximation
Z(ωk)HZ(ωk) ≈ MI lk , the determinant of the negative of
the Hessian matrix in (59) can be approximated by

| −H(ω̂MAP
k )| ≈

(
ĝM3

6(1 + ĝ)σ̂2
k

)lk lk∏
i=1

N−1∑
n=0

|si(n)|2 (75)

where ω̂MAP
k coincides with the maximum likelihood estimate

of ω which we have computed using the RELAX algorithm
[72]. Using a Monte Carlo simulation consisting of 1000 runs
for every SNR from -20 dB to 40 dB in steps of 2 dB,
we evaluated the model detection performance for N = 100
snapshots and M = 10 sensors. As in the previous simulation,
we generated the model parameters at random in every run
with the baseband signals being realisations from a complex-
valued white Gaussian process. The true number of sources
was either one, two, or three. In addition to comparing the
proposed method to the AIC and the asymptotic MAP rule, we
also compared to two subspace-based methods which are often
used in array processing. These are the MUSIC method using
angle between subspaces (AbS) [33], [73] and the estimation
error (ESTER) method [31] based on ESPRIT. Since neither
of these methods are able to detect whether a source is
present or not, the all-noise model was not included in the
set of candidate models which was set to consist of maximum
K = 5 sources. Fig. 4 shows the results of the simulation. The
proposed method (LP) performed better than the other rules for
SNRs up to approximately 15 dB where the asymptotic MAP
rule achieved the same performance. For low SNRs, the AIC
performed better than the asymptotic MAP rule. The MUSIC
and ESTER methods performed well across all SNRs and only
slightly worse than the proposed method. All methods except
the AIC seem to be consistent order selection rules.

VII. CONCLUSION

Model comparison and selection is a difficult and im-
portant problem and a lot of methods have therefore been
proposed. In this paper, we first gave an overview over how
model comparison is performed for any model in a Bayesian
framework. We also discussed the two major issues of doing
the model comparison in a Bayesian framework, namely the
elicitation of prior distributions and the evaluation of the
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marginal likelihood. Specifically, we reviewed the conditions
for using improper prior distributions, and we briefly discussed
approximate numerical and analytical algorithms for evaluat-
ing the marginal likelihood. In the second part of the paper, we
analysed a general regression model in a Bayesian framework.
The model consisted of both linear and non-linear parameters,
and we used and motivated a prior of the same form as the
Zellner’s g-prior for this model. Many of the information
criteria can be interpreted in a new light using this model
with known non-linear parameters. These interpretations also
gave insight into why the AIC often overestimate the model
complexity for a high SNR, and why the MDL underestimate
the model complexity for a low SNR. For unknown non-
linear parameters, we proposed an approximate way of inte-
grating them out of the marginal likelihood using the Laplace
approximation, and we demonstrated through two simulation
examples that our proposed model comparison and selection
algorithm outperformed other algorithms such as the AIC, the
MDL, and the asymptotic MAP rule both in terms of detecting
the true model and in making predictions.

APPENDIX A
FISHER INFORMATION MATRIX FOR THE OBSERVATION

MODEL

Let γ denote a mixed parameter vector of complex-valued
and real-valued parameters. Using the procedure in [74,
App. 15C], it can be shown that the (n,m)’th element of the
Fisher information matrix (FIM) for the normal distribution
Nr(x;µ(γ); Σ(γ)) is given by

[I(γ)]nm =
1

r

(
∂µ∗(γ)

∂γ∗n

)T
Σ−1(γ)

(
∂µ∗(γ)

∂γ∗m

)∗
+

1

r

(
∂µ(γ)

∂γ∗n

)H
Σ−1(γ)

(
∂µ(γ)

∂γ∗m

)
+

1

r
tr

(
Σ−1(γ)

∂Σ(γ)

∂γ∗n
Σ−1(γ)

(
∂Σ(γ)

∂γ∗m

)H)
. (76)

For the observation model in (29), the parameter vector is
given by γ =

[
ψT αTk φTk σ2

]T
, and the mean vector

and covariance matrix are given by

µ(γ) = Bψ +Zk(φk)αk (77)

Σ(γ) = σ2IN . (78)

Computing the derivatives in (76) for the observation model
in (29) yields the FIM given by

I(γ) =
1

σ2

BHB 0 0
0 I(αk,φk) 0
0 0 N

rσ2

 (79)

where

I(αk,φk) =

[
ZHk (φk)Zk(φk) ZHk (φk)Qk(φk)

QH
k (φk)Zk(φk) 2

rRe
(
QH
k (φk)Qk(φk)

)]

Qk(φk) ,
∂(Zk(φk)αk)

∂φk
.

Note that I(γ) is block diagonal which follows from the
assumption that BHZk(φk) = 0.

APPENDIX B
LAPLACE APPROXIMATION WITH THE HYPER-G PRIOR

For the hyper-g prior in (32), the integral in (51) with the
change of variables to τ = ln g can be written in the form∫ ∞

0

gv−1(1 + g)w[1 + g(1−R2
k(φk))]−udg =∫ ∞

−∞
exp(vτ)(1+exp(τ))w[1+exp(τ)(1−R2

k(φk))]−udτ .

Taking the derivative of the logarithm of the integrand and
equating to zero lead to the quadratic equation

0 = ατ exp(2τ) + βτ exp(τ) + v (80)

where we have defined

ατ , (1−R2
k(φk))(v + w − u) (81)

βτ , (u− v)R2
k(φk) + 2v + w − u (82)

For u − w > v, the only positive solution to this quadratic
equation is

τ̂ = ln

(
βτ +

√
β2
τ − 4ατv

−2ατ

)
(83)

which is the mode of the normal approximation to the
integrand. The corresponding variance at this mode with
ĝ = exp(τ̂) is

γ(ĝ|φk) =

[
ĝu(1−R2

k(φk))

[1 + ĝ(1−R2
k(φk))]2

− ĝw

(1 + ĝ)2

]−1

. (84)

APPENDIX C
DIFFERENTIALS OF A PROJECTION MATRIX

Let P = G(GHG)−1GH denote an orthogonal projection
matrix, and let S = GHG denote an inner matrix product.
The differential of S is then given by

dS = (dG)HG+GH(dG) . (85)

This result can be used to show that

dS−1 = −S−1[(dG)HG+GH(dG)]S−1 , (86)

and that

dP = P⊥(dG)S−1GH +GS−1(dG)HP⊥ (87)

where P⊥ = I−P is the complementary projection of P . Let
δ denote another differential operator. From the above results,
we obtain after some algebra that

δ(dP ) = P⊥(δ(dG))S−1GH +GS−1(δ(dG))HP⊥

+ P⊥
[
(dG)S−1(δG)H + (δG)S−1(dG)H

]
P⊥

− P⊥
[
(δG)S−1GH(dG) + (dG)S−1GH(δG)

]
S−1GH

−GS−1
[
(δG)HGS−1(dG)H + (dG)HGS−1(δG)H

]
P⊥

−GS−1
[
(dG)HP⊥(δG) + (δG)HP⊥(dG)

]
S−1GH .
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