
Aalborg Universitet

Modeling software product lines using color-blind transition systems

Larsen, Kim Guldstrand; Nyman, Ulrik; Wasowski, Andrzej

Published in:
International Journal on Software Tools for Technology Transfer

DOI (link to publication from Publisher):
10.1007/s10009-007-0046-x

Publication date:
2007

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Larsen, K. G., Nyman, U., & Wasowski, A. (2007). Modeling software product lines using color-blind transition
systems. International Journal on Software Tools for Technology Transfer, 9(5-6), 471.
https://doi.org/10.1007/s10009-007-0046-x

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025

https://doi.org/10.1007/s10009-007-0046-x
https://vbn.aau.dk/en/publications/54762790-c5df-11db-86ee-000ea68e967b
https://doi.org/10.1007/s10009-007-0046-x

Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Modeling Software Product Lines
Using Color-blind Transition Systems

Kim G. Larsen1, Ulrik Nyman1, Andrzej Wąsowski2

1 CISS, Aalborg University, Denmark, e-mail: {kgl,ulrik}@cs.aau.dk
2 IT University of Copenhagen, Denmark, e-mail: wasowski@itu.dk

Received: date / Revised version: date

Abstract. Families of embedded discrete finite state
programs are modeled using input-enabled alternating
transition systems. One model describes all functional-
ity, while each variant is defined by an environment, de-
scribing its possible uses. The environments show both
the inputs that a system can receive and indicate which
of the system’s responses are relevant for the environ-
ment. The latter trait, called color-blindness, creates new
possibilities for system transformations in the specializa-
tion process. We demonstrate the use of the framework
by applying it to two classes of realistic design languages.
An example of a product line of alarm clocks is used
throughout the article.

Key words: Product Lines, Embedded Software, La-
beled Transition Systems, Modeling, Relativized Simu-
lation

1 Introduction

Modern software becomes increasingly customizable. Em-
bedded devices are often produced in multiple variants,
each needing different software. Our long-term goal is to
provide a theoretical foundation, tools, and a method-
ology for maintenance of a family of embedded software
products with similar but varying degree of functionality.
Such a family of products is usually known as a prod-
uct line, and the process of maintaining the software is
known as product line management [5,11]. The present
work focuses on a framework for modeling software prod-
uct lines and specifying correctness of transformations
used in automatic derivation of family members.

In design of embedded software the final code size is
often essential for the financial success of the product.

Even a small reduction in code size may allow reduc-
tions in the production cost, if it makes it possible to
use cheaper hardware. Our communications with ven-
dors confirm that many electronic systems are produced
in such large quantities that even a small reduction for
each device can bring enormous savings.

Manual implementation of the different versions of
software for different versions of the product can keep
the final code sizes close to optimal, while driving up the
software development cost significantly. The general idea
of product line management is to avoid explicit mainte-
nance of multiple versions of the software, and use meth-
ods for design and development of the entire product
family as a whole.

We propose to use a single general model as a de-
scription of all available functionality in a product fam-
ily. Such a family may evolve over time, and so can the
general model, but we do not consider this here. A set of
hierarchically organized specifications describes the dif-
ferent environments in which each version of the embed-
ded software will operate. Pragmatically speaking envi-
ronments are descriptions of all possible uses for a given
variant of the product. A simpler system variant usu-
ally allows less sensor inputs and less actuator outputs,
which corresponds to environments not providing the in-
puts, or not caring about specific responses received. We
will say that the implementation of the system has been
specialized correctly to a given variant if the restrict-
ing environment cannot see the difference between the
original and specialized versions of the program.

Fig. 1 gives an overview of the setup. The designer
needs to create the model containing the complete set
of functionality (top-left state diagram) and the envi-
ronment specifications (top row). In the depicted setup
the general model is specialized to a given environment
in the model language before being compiled into the
target language. The model obtained after the special-
ization should behave identically to the general model as

2 Kim G. Larsen et al.: Modeling Software Product Lines Using Color-blind Transition Systems

snooze!.
ignore{beepOff}?
...

equiv{glow,
lightOff}?
...

models

compilation compilationcompilation

the cheapest product

sp
ec
ia
li
za
ti
o
n

sp
ec
ia
li
za
ti
o
n

a medium productthe greatest product

modeling language

target language

hardware+softwareproducts

programs

specifications environment language

07:03 07:0307:03

armed fired delayed
alarmTO/
beepOn

snoozeTO/
beepOnbeepOff

alarm/

snooze/
beepOff

idle
alarm

alarm

timer

alarmTO ∧ armed ∨ snoozeTO ∧ delayed ∨ snooze/lightOn

onglowing

((alarm ∧ fired) ∨ snoozeR) ∧ day/lightOff

(alarm ∧ fired ∨ snoozeR)
∧night / glow

∨snoozeTO ∧ delayed/lightOn
snooze ∨ alarmTO ∧ armed

off

bright/
lightOff

dark

/glow

backlight

day night
dark

brightsensor

armed fired
alarmTO/
beepOn

beepOff

alarm/

idle
alarm

alarm

timer

alarmTO ∧ armed ∨ snooze/lightOn

onglowing

((alarm ∧ fired) ∨ snoozeR) ∧ day/lightOff

/lightOn
snooze ∨ alarmTO ∧ armed

off

bright/
lightOff

dark

/glow

(alarm ∧ fired ∨ snoozeR)
∧night / glow

backlight

day night
dark

brightsensor

C2
armed fired

alarmTO/
beepOn

beepOff

alarm/

idle
alarm

alarm

timer

alarmTO ∧ armed/lightOn

on

((alarm ∧ fired) ∨ snoozeR)/lightOff

off/glowing

snooze

backlight

C4

Fig. 1. Overview of a product line of alarm clocks. The top left model is the general model specified by a developer. User also provides
usage descriptions in the form of environments (on the very top).

long as the environment behaves according to its spec-
ification. In pragmatic terms this means that if the en-
vironment models the hardware and the system is spe-
cialized with respect to this model, it should behave as
expected as long as it is run on the hardware respecting
the assumptions.

A compelling example of how different two versions
of the same product can be, can be found on Fig. 2,
which shows the front of two different coffee vending
machines by Wittenborg. The simple machine, FB 55,
has no coin collection unit or choice of additives, such
as sugar or milk. Such a simple coffee machine is ideal
in circumstances where the coffee is pre-paid, and where
the simplicity is important because people are in a hurry.
Indeed many even simpler Wittenborg’s machines have
recently been seen at open areas of Frankfurt and Mu-
nich airports. The more complex machine, ES 5100, is
more appropriate for an environment where people use
the same machine every day, such as at work (one can be
seen in CISS, where two of the authors are employed).
The control software for these two machines could have
been constructed by creating one model containing the
comprehensive functionality of the most complex coffee
machine and then creating environments for simpler cof-
fee machines. The environments could state that the user
would never use certain buttons, in that these buttons
would not be physically present on the machine.

Throughout the article we will use an alarm clock
example. In order to produce several different versions
of alarm clocks we only need to design a general model
with all the functionality (Fig. 3) and specify the envi-
ronments in which the other versions of the alarm clocks
are expected to function. Fig. 7 shows a very restricted
version of the alarm clock, with much less functionality.

Fig. 2. Two variants of Wittenborg’s coffee machine. The simple
FB 55 (left) has few buttons and no coin collection unit. The
advanced ES 5100 (right) provides the user with the choice of
different coffee specialties and additives.

This alarm clock can be derived from the original model
given a description of an environment.

Our environments not only restrict possible input
stimuli, but also exhibit inabilities in distinguishing out-
put stimuli. Some outputs are indistinguishable for a
given environment in the same way as a color-blind per-
son cannot distinguish some colors. In the case of Fig. 7
the environment cannot, among other things, see the dif-
ference between the light in the clock glowing or being
completely off. Inability of a given environment to distin-

Kim G. Larsen et al.: Modeling Software Product Lines Using Color-blind Transition Systems 3

guish certain outputs is dependent on the state of that
environment. Thus an environment can specify that a
user, after pressing one button, will not distinguish be-
tween two different outputs, but will distinguish between
these two outputs again after pressing another button,
e.g. a reset button.
The paper proceeds as follows. Section 2 introduces

state/event systems and motivates our work using the
alarm clock example. I/O alternating transition systems
are presented in section 3, while the concept of color-
blindness is introduced in section 4. Composition opera-
tors for environments are discussed in section 5. Section 6
focuses on adaptation to realistic design languages. The
main alarm clock example is completed in section 7. In
section 8 we briefly touch on available techniques that
can be used in specializing code for product variants.
Sections 9–10 refer the related work and conclude.

2 State/Event Systems

Let Event and Action be finite sets of environment stim-
uli and system outputs respectively. A state/event ma-
chine Mi = (Si, s

0
i , Ti) is a triple comprising a set of local

states Si, the initial state s
0
i ∈ Si and a set of syntactic

transitions Ti. A state/event system consists of n ma-
chines M = {M1, . . . ,Mn} with mutually disjoint sets
of states. A global state of the system is a tuple of lo-
cal states: State = S1 × S2 × · · · × Sn. Transitions in
Ti ⊆ Si × Event × Guard × Action × Si describe reac-
tions undertaken by Mi in reply to a given event, in a
given local and global state. Global states are described
by transition guards: simple Boolean expressions over
activity of states, which can be evaluated in any given
global state, giving rise to a natural satisfaction relation
� ⊆ State ×Guard .
State/event systems are input-enabled : the local tran-

sition relation includes not only the syntactical transi-
tions but also self loops for all configurations for which
reactions are not specified. We write s e o

−−−→i s
′
i, mean-

ing that the reaction of machine Mi to arrival of event
e in global state s is, to change the local state to s′i and
generate the set of actions o:

s
e {a}
−−−−−→i s

′
i iff ∃g. (πi(s), e, g, a, s

′
i) ∈ Ti ∧ s � g

s e ∅
−−−→i πi(s) otherwise,

where πi(s) denotes the i’th projection of s. The global
transition relation

T ⊆ State × Event × P(Action) × State

subsumes all local reactions

s e o
−−−→ s′ ⇔def ∀i.s e oi−−−−→i πi(s

′) where o = o1∪. . .∪on.

Fig. 3 depicts a state/event model C0 of an alarm
clock. The essentials of the alarm clock are handled by

the timer machine. If the timer is in the armed state and
the hardware sends an alarm time-out event (alarmTO)
then the beeper is turned on. The actual timers are not
part of the modeled system, and thus the environment
sends a time-out event to the system with a certain delay
after a hardware timer has been activated. The user can
postpone the alarm by pressing the snooze button (event
snooze), which allows him to continue sleeping until the
snooze timer times out (snoozeTO). Releasing the but-
ton sends a snoozeR event to the model. The backlight
machine controls the built-in lamps. Only a faint light is
displayed in the glowing state, such that the display can
be read in the dark. The full light is on while the alarm
is beeping or the snooze button is being pressed. The
sensor machine models the current external light level.
Events dark and bright are generated by the sensor driver
whenever the light level around the clock changes above
or below some threshold.
We would like to support automatic derivation of

model variants for discrete control systems like the alarm
clock. One such variant C4, which is a very limited ver-
sion of the alarm clock is depicted on Fig. 7. This variant
does not have any snooze functionality, because the envi-
ronment guarantees that it will never provide the input
snooze. Thus it is as if there were no snooze button on
the alarm clock. This environment also specifies that it
cannot see the difference between the backlight glowing
and being completely off. This implies that the hardware
of the clock would only need one lightbulb, for the full
light setting, instead of two lightbulbs for two different
light levels. The glowing and off states can now be com-
bined into one state and the sensor component is no
longer necessary.

3 I/O Alternating Transition Systems

The reactive synchronous paradigm seems to be pre-
dominant in development of embedded software. The
state/event systems of the previous section [24,16] are
just an example chosen from a multitude of available for-
malisms, like Esterel [2], statecharts [12], or Java Card
[32]. A common assumption about these systems is that
they react to any input event at any time and each re-
action occurs infinitely fast, so that the system is al-
ways able to observe the arrival of the next event. Such
semantics is conveniently captured by I/O-alternating
transition systems :

Definition 1. An I/O-alternating transition system, or
IOATS, is a tuple (In,Out ,Gen,Obs , !

−→,
?
−→, s0), where

In and Out are sets of inputs and outputs, Gen and Obs
are finite sets of generators and observers,
!
−→ ⊆ Gen ×Out ×Obs is a generation relation,
?
−→ ⊆ Obs × In ×Gen is an observation relation, and
s0 ∈ Gen ∪Obs is the initial state.

We have distinguished two transition relations: !
−→ is

a generation relation advancing from a generator to an

4 Kim G. Larsen et al.: Modeling Software Product Lines Using Color-blind Transition Systems

observer, while ?
−→ is an observation relation advanc-

ing from an observer to a generator. This alternation
is inherent to the way synchronous systems operate. We
write S o!

−−→s, instead of (S, o, s) ∈ !
−→ and s

i?
−−→S instead

of (s, i, S) ∈ ?
−→. Small letters are used for observers and

capital letters for generators. In addition observers are
required to be input-enabled:

∀s ∈ Obs. ∀i ∈ In. ∃S, o, s′. s i?
−−→S ∧ S o!

−−→s′ (1)

With these assumptions we can propose a simulation
based refinement relation:

Definition 2. Let S1 = (In,Out ,Gen1,Obs1,
!
−→1,

?
−→1, s

0
1) and S2 = (In,Out ,Gen2,Obs2,

!
−→2,

?
−→2, s

0
2)

be IOATSs. A binary relation R ∈ Obs1 ×Obs2 consti-
tutes a simulation on observers of S1 and S2 iff (s1, s2) ∈
R implies that:

whenever s1
i?
−−→S1 ∧ S1

o!
−−→s′1

then also s2
i?
−−→S2 ∧ S2

o!
−−→s′2 and (s′1, s

′
2) ∈ R .

Let R be the largest of such relations ordered by inclu-
sion. An observer s2 simulates an observer s1, written
s16s2, iff (s1, s2) ∈ R. Finally S2 simulates S1, written
S16S2, iff s

0
16s

0
2.

We distinguish the actual systems from the environ-
ments, in which they operate. Environments are free in
choice of inputs, while systems independently determine
the outputs. A system S = (InS ,OutS ,GenS ,ObsS ,
!
−→S ,

?
−→S , sS) operates embedded in some environment

E = (InE ,OutE ,GenE ,ObsE ,
!
−→E ,

?
−→E , sE). Systems al-

ways begin execution in an observer state, so sS ∈ ObsS .
Environments always begin execution in a generator
state, so sE ∈ GenE . System S is compatible with the
environment E if InS = OutE and OutS = InE . Compo-
sition of a system S with a compatible environment E
is defined in the usual way, by synchronization on iden-
tical labels (and complementary transition types). The
initial observer of the system is composed with the ini-
tial generator of the environment. Due to the compat-
ibility requirement and input-enabledness of observers,
the closed system is able to advance for any input that
can be generated by the environment. For a closed sys-
tem it is known, which of its states cannot be exercised
by the environment. A given environment may not be
able to distinguish two systems from each other, even
though they are not identical. We capture this with a
notion of relativized simulation:

Definition 3. Consider three IOATSs: an environment
E = (Out, In,Gen ,Obs, !

−→,
?
−→, E0) and two systems:

S1 = (In,Out ,Gen1,Obs1,
!
−→1,

?
−→1, s

0
1) and S2 = (In,

Out ,Gen2,Obs2,
!
−→2,

?
−→2, s

0
2). A Gen-indexed family

of binary relations R :Gen→P(Obs1×Obs2) is a rela-
tivized simulation iff (s1, s2) ∈ RE implies that:

whenever E i!
−−→e ∧ e o?

−−→E′

then whenever s1
i?
−−→S1 ∧ S1

o!
−−→s′1

then also s2
i?
−−→S2 ∧ S2

o!
−−→s′2 and (s′1, s

′
2) ∈ RE′ .

Let R be the largest of such families ordered by compo-
nent-wise inclusion. We say that an observer s2 simulates
an observer s1 in the generator E, written s16Es2, iff
(s1, s2) ∈ RE . The system S2 simulates S1 in the context
of E , written S16ES2, iff s

0
16E0s02.

The choice of simulation as the preorder underlying
our methodology is somewhat arbitrary. Most other be-
havioral preorders of the linear-time/branching-time hi-
erarchy of van Glabbeek [35] would be adequate, such
as testing preorder, 2/

3
bisimulation (ready simulation),

language inclusion, ioco [34] and bisimulation. What is
important is that the particular preorder preserves prop-
erties of interest and that the preorder may be relativized
with respect to environmental restrictions.

4 Color-blind I/O-alternating Transition
Systems

In the previous section we have stated that two systems
are in a refinement relation with respect to a certain
context if this context cannot activate their incompat-
ible parts. However, in industrial development, it often
happens that the environment cannot distinguish two
systems, not because it makes incompatible parts un-
reachable, but because its ability to distinguish different
outputs might be limited depending on its actual state.
A variant of the alarm clock may have only one lightbulb
installed, which should be lit whenever the backlight is
on or glowing. The environment, being a model of the
hardware in this case, will treat the glow and lightOn
outputs as identical, allowing for optimizations when
generating code for this specific type of hardware.1 For
this particular example, the distinguishing capability of
the environment is clearly static and hence the specifica-
tion of code optimization is realizable using simple pro-
cess algebraic operations such as relabelling and hiding.
However, environmental restrictions can be dynamically
changing. This is the case for the environment leading to
the specialized model C1 (Fig. 4). Here the environment
only becomes blind for the lightOn action after the pro-
duction of the snooze event. To give a proper treatment
of such situations we relax the equivalence of labels in
relativized simulation and label observation transitions
of environments with sets of inputs called observation
classes. Such transitions can be taken in the presence of
any of the inputs in their observation class.

Definition 4. A color-blind IOATS is a tuple E = (In ,
Out ,Gen,Obs , !

−→,
?
−→, E0), where In and Out are sets

of inputs and outputs, Gen andObs are finite sets of gen-
erators and color-blind observers, !

−→ ⊆ Gen×Out×Obs
is a generation relation, ?

−→ ⊆ Obs × P(In) × Gen is a
color-blind observation relation, and E0 ∈ Gen is an
initial state.

1 Note that this is an alternative to the version presented in
Fig. 7, where glow and lightOff are considered identical.

Kim G. Larsen et al.: Modeling Software Product Lines Using Color-blind Transition Systems 5

armed fired delayed
alarmTO/
beepOn

snoozeTO/
beepOnbeepOff

alarm/

snooze/
beepOff

idle
alarm

alarm

timer

alarmTO ∧ armed ∨ snoozeTO ∧ delayed ∨ snooze/lightOn

onglowing

((alarm ∧ fired) ∨ snoozeR) ∧ day/lightOff

(alarm ∧ fired ∨ snoozeR)
∧night / glow

∨snoozeTO ∧ delayed/lightOn
snooze ∨ alarmTO ∧ armed

off

bright/
lightOff

dark

/glow

backlight

day night
dark

brightsensor

Fig. 3. The initial model, C0, of the alarm clock

armed fired delayed
alarmTO/
beepOn

snoozeTO/
beepOnbeepOff

alarm/

snooze/
beepOff

idle
alarm

alarm

timer

alarmTO ∧ armed ∨ snoozeTO ∧ delayed/lightOn

onglowing

∨snoozeTO ∧ delayed/lightOn
alarmTO ∧ armed

off

((alarm ∧ fired) ∨ snoozeR) ∧ day/lightOff

dark

/glow

bright/
lightOff

(alarm ∧ fired ∨ snoozeR)
∧night / glow

snooze

snooze

backlight

day night
dark

brightsensor

C1

Fig. 4. A specialized model, C1, of an alarm clock.

armed fired
alarmTO/
beepOn

beepOff

alarm/

idle
alarm

alarm

timer

alarmTO ∧ armed ∨ snooze/lightOn

onglowing

((alarm ∧ fired) ∨ snoozeR) ∧ day/lightOff

/lightOn
snooze ∨ alarmTO ∧ armed

off

bright/
lightOff

dark

/glow

(alarm ∧ fired ∨ snoozeR)
∧night / glow

backlight

day night
dark

brightsensor

C2

Fig. 5. A specialized model, C2, of an alarm clock.

armed fired
alarmTO/
beepOn

beepOff

alarm/

idle
alarm

alarm

timer

alarmTO ∧ armed/lightOn

onglowing

/lightOn
alarmTO ∧ armed

off

((alarm ∧ fired) ∨ snoozeR) ∧ day/lightOff

dark

/glow

bright/
lightOff

(alarm ∧ fired ∨ snoozeR)
∧night / glow

snooze

snooze

backlight

day night
dark

brightsensor

C3

Fig. 6. A specialized model, C3, of an alarm clock.

armed fired
alarmTO/
beepOn

beepOff

alarm/

idle
alarm

alarm

timer

alarmTO ∧ armed/lightOn

on

((alarm ∧ fired) ∨ snoozeR)/lightOff

off/glowing

snooze

backlight

C4

Fig. 7. A specialized model, C4, of an alarm clock

ignore{}?

bright!
dark!
alarm!

snoozeTO!
alarmTO!

ignore{}?

snooze! snoozeR!

dark!

snoozeTO!
bright!

ignore{}?

alarm!

alarmTO!

Fig. 8. Environment Interleave snooze snoozeR.

E ′:

ignore{lightOn}?ignore{}?

snoozeR!

snoozeTO!

alarmTO!

bright!

snooze!

dark!
alarm!

Fig. 9. Environment E ′ ignoring the lightOn output produced in
reaction to the snooze button.

E ′′:

ignore{}? ignore{beepOn}?

snoozeR!

snoozeTO!

alarmTO!

bright!

snooze!

dark!
alarm!

snoozeTO!
ignore{beepOff}?

Fig. 10. Environment E ′′ ignoring the snooze function of the clock.

E ′′′:

equiv{glow, lightOff}?

bright!
dark!
alarm!

snoozeTO!
alarmTO!

snoozeR!

snooze!

Fig. 11. Environment E ′′′ Equiv glow lightOff.

6 Kim G. Larsen et al.: Modeling Software Product Lines Using Color-blind Transition Systems

A color-blind environment E = (InE ,OutE ,GenE ,ObsE ,
!
−→E ,

?
−→E , E) and a usual IOATS S = (InS ,OutS ,GenS ,

ObsS ,
!
−→S ,

?
−→S , s) are compatible if their signatures

match: InE = OutS ∧OutE = InS . Since we only con-
sider compatible systems and environments, we fix the
meaning of the input and output, choosing the system’s
perspective. We denote the set of inputs of the system by
In (which is also the set of outputs of the environment).
Similarly Out is the set of outputs of the system (but
the set of inputs for the environment). A single input
will be denoted by i, single output by o, and classes of
outputs by capital O. We still write E i!

−−→e instead of
(E, i, e) ∈ !

−→ and e
O?
−−−→E instead of (e,O,E) ∈ ?

−→.
We require that the observers in color-blind IOATS

are deterministic and input enabled, so that the obser-
vation classes on the transitions outgoing from a single
state form a partitioning of the inputs into equivalence
classes. Formally:

∀e ∈ ObsE .∀O1, O2 ⊆ Out .∀E1, E2 ∈ GenE .

e
O1?
−−−→E1 ∧ e

O2?
−−−→E2

⇒ O1 ∩O2 = ∅ ∨ (O1 = O2 ∧ E1 = E2)

∀e ∈ ObsE .∀o ∈ Out .∃O ⊆ Out.∃E ∈ GenE .

e
O?
−−−→E ∧ o ∈ O. (2)

The generation relation should also be deterministic:

∀E ∈ GenE . ∀i ∈ In.∀e1, e2 ∈ ObsE .

E
i!
−−→e1 ∧ E

i!
−−→e2 ⇒ e1 = e2 . (3)

Note that determinism in this sense does not limit the
freedom of the environment in choosing inputs, but means
that each input choice uniquely determines the target
state.
Consider a blind environment B with two states, a

generator B and an observer b. Intuitively B can exe-
cute all parts of the system, but does not care about the
responses it gets:

∀i ∈ In. B i!
−−→b and b

Out?
−−−−→B .

Dually, a perfect vision environment V observes all the
outputs:

∀i ∈ In.V i!
−−→v and ∀o ∈ Out .v

{o}?
−−−−→V .

A compatible environment–system pair forms a closed
system, advancing in lock-steps. The generation transi-
tion of the system, synchronizes with the observation
transition of the environment, whenever the output pro-
duced falls into the right observation class. We enrich
our previous definition of relativized simulation to ac-
commodate this new synchronization principle:

Definition 5. Let E = (Out , In,Gen,Obs , !
−→,

?
−→, E0)

be a color-blind environment IOATS and S1 = (In ,Out,
Gen1,Obs1,

!
−→1,

?
−→1, s

0
1), S2 = (In,Out ,Gen2,Obs2,

!
−→2,

?
−→2, s

0
2) be two system IOATSs. A Gen-indexed

family of relations R :Gen→P(Obs1×Obs2) is a rela-
tivized simulation iff (s1, s2)∈RE implies that:

whenever E i!
−−→e ∧ e O?

−−−→E′

then whenever s1
i?
−−→S1 ∧ S1

o1!−−−→s′1 ∧ o1 ∈ O

then also s2
i?
−−→S2 ∧ S2

o2!
−−−→s′2 ∧ o2 ∈ O

and (s′1, s
′
2) ∈ RE′ .

Let R be the largest of such families ordered by com-
ponent-wise inclusion. An observer s2 simulates an ob-
server s1 in the context of generator E, written s16Es2,
iff (s1, s2) ∈ RE . An IOATS S2 simulates another IOATS
S1 in the context of a compatible color-blind IOATS E ,
written S16ES2, iff s

0
16E0s02. Finally S1 is equivalent to

S2 in the context of E , written S1 ≶E S2, iff S16ES2 and
S26ES1.

Let S1, S2 be IOATSs and E be a color-blind IOATS
compatible with them, as in the above definition. Let R be
an endofunction on a Gen-indexed family of binary relations:

R(R) = λE.{(s1, s2) | ∀i, e,O, E′. ∀i, S1, o1, s
′
1. ∃S2, o2.

E i!
−−→e ∧ e O?

−−−→E′ ∧ s1
i?

−−→S1 ∧ S1

o1!

−−−→s′1 ∧ o1 ∈ O

implies s2
i?

−−→S2 ∧ S2

o2!

−−−→s′2 ∧ o2 ∈ O ∧ (s′1, s
′
2) ∈ RE′} .

Proposition 1. A Gen-indexed family of relations R con-
stitutes a relativized simulation with respect to a color-blind
IOATS iff R ⊆ R(R) (inclusion interpreted component-wise).

Proof. R is a monotonic endofunction on the complete lat-
tice of Gen-indexed famillies of binary relations over Obs1 ×
Obs2 ordered by inclusion. By Tarski’s theorem [33] R has
the greatest fixpoint

T

∞

j=0
R

j(λE.ObsS1
×ObsS2

), equal to
the relativized simulation of Def. 5. Since the fixpoint con-
tains all relativized simulations, we can use a classic proof
technique: to show that one IOATS simulates another in an
environment, find any relativized simulation relating them.
⊓⊔

Even though we have initially postulated that typical
execution contexts do not exercise all possible traces of
the system, we shall now require that environments can
always produce any of the inputs in In. This requirement
surprisingly does not defeat our initial goal. We can di-
rect all transitions producing impossible inputs to the
observer b and embed the blind environment B with a
suitable signature in every environment. Instead of spec-
ifying that the environment cannot produce i, we state
that i can be produced, but the subsequent system be-
havior is irrelevant. Proposition 2 justifies this formally:

Proposition 2. For any two observers s1, s2 from
IOATSs S1, S2 with identical signatures: s16Bs2 (where
B ∈ B such that B closes S1 and S2).

Fig. 12 presents two systems and two compatible
color-blind environments. Environment transitions from
generators to the blind observer b have been omitted.
There is one such transition for each input–generator
pair, for which the transition is not drawn. Observe that

Kim G. Larsen et al.: Modeling Software Product Lines Using Color-blind Transition Systems 7

F1:I: F2:M:

i2!

{o4}? {o1, o2}?

i1! {o3}?

i3?

o4!o1!

i2? i1?

i2! {o1}?

{o4}? {o2}?

{o3}?i1!

i3? o3!

o2! o4!

i2? i1?

Fig. 12. SystemsM and I and compatible environments F1, F2

the systemM simulates I in the environment F1 (writ-
ten I6F1

M) not due to the fact that F1 is not able to ex-
ercise the differing parts of the two systems, but because
F1 cannot distinguish between the outputs (o1, o2) pro-
duced by I and M. The F2 environment distinguishes
I andM, by observing the outputs o1 and o2 with two
separate transitions.
Relativized simulation is a weaker notion than usual

simulation and the perfect vision environment V is the
most discriminating environment:

Proposition 3. For any two systems S1, S2 and for
any compatible color-blind environment E it holds that
S16S2 =⇒ S16ES2 and S16S2 ⇐⇒ S16VS2.

With the above propositions we have hinted at the
notion of discrimination—the ability of environment to
distinguish systems from each other:

Definition 6. A color-blind IOATS F is more discrim-
inating than E , written E⊑F , iff F distinguishes more
processes: E⊑F iff ∀S1,S2.S16FS2 ⇒ S16ES2.

The blind environment B is the least discriminating—
it cannot distinguish any two systems from each other
(proposition 2). By proposition 3 the perfect vision en-
vironment V is the most discriminating one.
The notion of discrimination will soon prove funda-

mental for our developments. We shall use it to design
composition operators for behavioral properties, facili-
tating hierarchical modeling of product lines. Unfortu-
nately the definition of the discrimination is rather ab-
stract. The quantification over all systems, makes it in-
feasible to reason about it mechanically. To remedy this
obstacle we introduce a new preorder on environments:
a simulation for color-blind IOATSs.

Definition 7. Let E = (Out , In,GenE ,ObsE ,
!
−→E ,

?
−→E ,

E0) and F = (Out , In,GenF ,ObsF ,
!
−→F ,

?
−→F , F

0) be
color-blind environments. A pair of binary relations,R1 ⊆
GenE×GenF andR2 ⊆ ObsF ×ObsE , constitutes a sim-
ulation between states of color-blind IOATSs iff (E,F) ∈
R1 implies that

whenever E i!
−−→e then also F i!

−−→f and (f, e) ∈ R2 ,

and (f, e) ∈ R2 implies that whenever f
Of ?

−−−→F

then also e Oe?
−−−→E and Of ⊆ Oe and (E,F) ∈ R1 .

Let (R1, R2) be the largest such pair of relations (ordered
by point-wise inclusion). A generator F simulates a gen-
erator E, written E6F , iff (E,F) ∈ R1. An observer e
simulates an observer f , written f6e, iff (f, e) ∈ R2. An
environment F simulates E , written E6F , iff E06F 0.

Let E , F be color-blind environments as in the above defini-
tion. Let S be an endofunction on pairs of binary relations
on states of these environments such that:

S(R1, R2) = (

{(E, F) | ∀i, e.∃f.E i!
−−→e =⇒ F i!

−−→f and (f, e) ∈ R2},

{(f, e) | ∀Of , F ′.∃Oe, E
′. f

Of?

−−−→F ′ =⇒ e
Oe?

−−−→E′

and Of ⊆ Oe and (E′, F ′) ∈ R1})

Proposition 4. A pair of binary relations (R1, R2) consti-
tutes a simulation between color-blind IOATSs iff (R1, R2) ⊆
S(R1, R2) (pointwise inclusion).

Proof. S is a monotonic endofunction on a complete lattice
of pairs of binary relations. By Tarski’s theorem S has the
greatest fixpoint

T

∞

j=0
S

j(GenE×GenF ,ObsF×ObsE), equal
to the simulation of Def. 7. Since the fixpoint contains all
simulations, it enables use of the known proof technique: to
show that an IOATS simulates another, find any simulation
relating them. ⊓⊔

The simulation preorder can be established mechan-
ically for finite state systems using state exploration [4].
Thanks to the following central result, these techniques
can also be used to verify discrimination properties:

Theorem 1. For any two color-blind environments E
and F : E⊑F iff E6F .

We prove the theorem at the state level, which generalizes
directly to the IOATS level.

Definition 8. Let E and F be color-blind environments with
identical signatures and let E ∈ GenE , F ∈ GenF be genera-
tors. The generator F is more discriminating than E, written
E⊑F , iff for all observers s1, s2 of all systems S1, S2 (com-
patible with E , F) s16F s2 implies s16Es2.

Lemma 1. For any generators E ∈ GenE and F ∈ GenF it
holds that E6F ⇒ E⊑F .

Proof. Let S1, S2 be systems compatible with E , F . Also
let E6F , like in the lemma. We show that for any observers
s1, s2 of S1 and S2 respectively, s16F s2 implies s16Es2, or
in other words that (6F) ⊆ (6E). We proceed in two steps:
first we introduce a GenE -indexed family of relations R such
that (6F) ⊆ RE, second we argue that RE is an E-relativized
simulation, so RE ⊆ (6E).

RE = {(s1, s2)∈ObsS1
×ObsS2

| ∃F ′∈GenF . E6F ′∧s16F ′s2}

First step: (6F) ⊆ RE , since E6F . Second step: take s1, s2

and E′ such that (s1, s2) ∈ RE′ . Let E′ i!
−−→e′ and e′

Oe?
−−−→E′′

and s1
i?

−−→S1 and S1

o1!

−−−→s′1 and o1 ∈ Oe. We need to find

8 Kim G. Larsen et al.: Modeling Software Product Lines Using Color-blind Transition Systems

S2, o2, s
′
2 such that s2

i?
−−→S2 and S2

o2!

−−−→s′2 and o2 ∈ Oe and
(s′1, s

′
2) ∈ RE′′ . But since (s1, s2) ∈ RE′ there must exists

F ′ such that s16F ′s2 and E′6F ′. The latter means that
there exist f ′, Of , F ′′ such that F ′ i!

−−→f ′ and f ′ Of?

−−−→F ′′ and
o1 ∈ Of ⊆ Oe and E′′6F ′′, which combined with the former
implies that s2

i?
−−→S2 and S2

o2!
−−−→s′2 and o2 ∈ Of ⊆ Oe. It

remains to be shown that (s′1, s
′
2) ∈ RE′′ , which follows from

the definition of R, as E′′6F ′′.

Lemma 2. For any generators E ∈ GenE and F ∈ GenF it
holds that E⊑F ⇒ E6F .

For a set of inputs I ⊆ In and an output o ∈ Out define
a looping system L(I, o) (Fig. 13). Let L(I, o) denote a gen-
erator and l(I, o) denote an observer. In L(I, o) there is an
observation transition from l(I, o) to L(I, o) for every i ∈ I
and a single generation transition L(I, o) o!

−−→l(I, o).

Proof. We prove the contrapositive: for all E ,F and E, F ,
their generators, E 66F implies E 6 ⊑F (there exist systems
S1,S2 and their observers s1, s2 such that s16F s2 but s1 66Es2).
Since E 66F then there exists n ≥ 1 such that (E, F)

∈
Tn−1

j=0
S

j(GenE × GenF ,ObsF × ObsE) and (E,F) /∈
Tn

j=0
S

j(GenE×GenF ,ObsF×ObsE).
1◦. if n = 1 then there exist input ik, observation class Of and
observers e,f such that E

ik !

−−−→e and F
ik!

−−−→f and f
Of !

−−−→F ′,
but for all transitions outgoing from e, e

Oe?
−−−→E′, we have

that Of 6⊆ Oe. Because of this and the fact that the obser-
vation classes of e form a partitioning of Out (see (2)), there
exist two distinct observation classes O′

e, O
′′
e of e, such that

O′
e ∩ Of 6= ∅ and O′′

e ∩ Of 6= ∅. Let o′ be an arbitrary el-
ement from O′

e ∩ Of and similarly o′′ ∈ O′′
e ∩ Of . We shall

now construct our two systems S1 and S2. The idea is that
the first steps of S1 and S2 differ insufficiently to be distin-
guished by f , but sufficiently for e to distinguish them. In
the subsequent steps both systems behave identically. Let S1

just consist of l(In, o′) and S2 be as on Fig. 13b. It is easy to
observe that s16F s2, but s1 66Es2.
2◦. Inductive step. Now consider that n > 1. In a similar
manner as above we would like to construct two systems
which violate E-relativized simulation in the nth step on the
very trace, on which E and F disagree. On all other traces of
length n, and all longer traces they should behave identically.
Consider the prefixes of the execution witnessing E 66F :

E
ik !

−−−→e,e
Oe?

−−−→E′ and F
ik!

−−−→f , f
Of?

−−−→F ′. Since n > 1, Of ⊆
Oe and there exists a violation of simulation between E′ and
F ′ in n − 1 steps. By our induction hypothesis there exist
systems S ′

1 and S ′
2 and states thereof S′

1 and S′
2 such that

S′
16F S′

2 and S′
1 66ES′

2. We create a new pair of systems S1

and S2 by adding new initial observers s1, s2 and generators
S1, S2 with transitions s1

ik?

−−−→S1, S1
o!

−−→s′1 and s2

ik?

−−−→S2,
S2

o!
−−→s′2, where o ∈ Of ⊆ Oe and s′1 and s′2 are the initial
states of S ′

1 and S ′
1. Both for s1 and s2 we also add transi-

tions for all inputs different than ik to l(In, o). See Fig. 13c.
It is not hard to see that s16F s2, but s1 66Es2. ⊓⊔

5 Composition of Behavioral Properties

Typical code generators do not use any context infor-
mation, assuming that the model is combined with the
perfect vision environment V . Another extreme would be

a program synthesis tool requiring a precise environment
model, imposing a significant burden on engineers. We
propose light-weight, composable, partial specifications
of environments in the form of behavioral properties like:
that certain events always come interleaved (e.g. on/off
switch), or that there is causality between an input and
an output (e.g. a timer only timeouts after it has been
started). Each property can be expressed as a simple
color-blind IOATS. In this section we consider ways of
composing such properties in a conjunctive and disjunc-
tive manner. Conjunctions express adding up inabilities
of environments. If one event is unobservable and an-
other event is unobservable then both are unobservable.
Disjunctions express adding up abilities. If one event is
observable or another is observable, then both might be
observable. This means that conjunction decreases dis-
criminative power, making observation classes coarser in
the transition systems representing properties, while dis-
junction increases discriminative power, making observa-
tion classes finer. It turns out that the suitable semantics
for both connectives can be constructed using greatest
lower bounds (glbs) and least upper bounds (lubs) with
respect to the discrimination preorder ⊑.
As said before, every observer e of a color-blind

IOATS induces a partitioning of Out into observation
classes. Let us denote this partitioning by Pe. The set
of all equivalence relations over Out ordered by inclu-
sion forms a complete lattice (and hence the set of all
partitionings). Consequently for any set of partitionings
{Pk}k∈L there exist the greatest lower bound

d
k∈L Pk,

which is the coarsest partitioning finer than any of Pk
and the least upper bound

⊔

k∈L Pk, which is the finest
partitioning coarser than all Pk.

The composition is defined for environments with the
same I/O signatures. We consider two kinds of composi-
tion: a sum and a product. Due to the alternating nature
of communication in our setup, sums and products al-
ternate too: a sum of generators evolves into a product
of observers, and dually a sum of observers evolves into
a product of generators.

Definition 9. Let E = (Out , In,GenE ,ObsE ,
!
−→E ,

?
−→E ,

E0) and F = (Out , In,GenF ,ObsF ,
!
−→F ,

?
−→F , F

0) be
color-blind environments. We define their sum to be a
color-blind IOATS E+F = (Out , In,GenEF ,ObsEF ,

!
−→,

?
−→, {E0, F 0}), where GenEF = P(GenE∪GenF), ObsEF
= P(ObsE∪ObsF) and !

−→,
?
−→ are defined by recursively

applying the SG and PO rules given shortly.

Sums intuitively correspond to disjunctions of prop-
erties. The composition is synchronous: all composed
generators take identical steps simultaneously. From the
system’s perspective a single input is generated. A sum
should be as discriminating as any of the summands.
For this reason after taking a generation transition over
an input i, the sum advances to a product of generators
reachable by i from any of the summands. This product,
which also embeds determinization, builds the coarsest

Kim G. Larsen et al.: Modeling Software Product Lines Using Color-blind Transition Systems 9

i1?

ik?

o!l(I, o) L(I, o)

a)
i1?

ik?

o′!l(In , o′) L(In , o′)
ik?

i1?

ik−1?

o′!

o′′!
S1S1 :

b)
S2 : ik?

i1?

ik−1?

o!
S′

1

L(In , o)

ik?

i1?

ik−1?

o!
S′

2

L(In , o)
S1 : S2 :c)

Fig. 13. a) L(I, o). b) Counter example systems S1 and S2. c) S1 and S2 created in the inductive step of the proof of lemma 2. Although
all these examples assume that In = {i1, . . . , ij}, the finiteness of In is only a visualization convention and is not relied upon in the
proofs.

observation relation that is finer than any of the origi-
nal observation relations, guaranteeing that indeed the
constructed observer is as discriminative as necessary:

E1
i!

−−→e1 . . . En
i!

−−→en

n
P

k=1

Ek
i!

−−→
n
Q

k=1

ek

SG

O∈
nd

k=1

Pek
E={E|∃1≤k≤n.∃O′⊆Out .ek

O′
?

−−−→E ∧ O⊆O′}

n
Q

k=1

ek
O?

−−−→
P

E

PO

Observation classes in the product of observers (PO)
are finer than observation classes of any of the composed
processes. Whenever any output o is observed by the re-
sult of the composition we advance to the state E com-
posed of states reachable by o from all ek’s. Since O is
finer than some class in any of these observers there is
always exactly n such reachable generators.
The product of two environment IOATSs is defined

as follows.

Definition 10. Let E = (Out , In,GenE ,ObsE ,
!
−→E ,

?
−→E , E

0) and F=(Out , In,GenF ,ObsF ,
!
−→F ,

?
−→F , F

0)
be color-blind environments. Their product is an IOATS
E × F = (Out , In,GenEF ,ObsEF ,

!
−→,

?
−→, {E0, F 0}),

where GenEF = P(GenE ∪ GenF), ObsEF = P(ObsE ∪
ObsF) and transition relations !

−→,
?
−→ are defined by

recursively applying the PG and SO rules given shortly.

A product of generators corresponds to a conjunction
of properties (or synchronous composition in CSP [14]).
Again the generator rule is very simple and synchronous,
but the observer rule this time builds the finest observa-
tion relation that is coarser than any of the factors:

E1
i!
−−→e1 . . . En

i!
−−→en

n
∏

k=1

Ek
i!
−−→

n
∑

k=1

ek

PG

O ∈
n
F

k=1

Pek
E = {E|∃1 ≤ k ≤ n.∃O′ ⊆ O.ek

O′
?

−−−→E}

n
P

k=1

ek
O?

−−−→
Q

E

SO

Observation classes in the sum of observers (SO) are
coarser than classes of any of the composed observers.
The transition relation follows to those generators that

can be reached by any output belonging to such an ex-
tended class. The size of E can exceed the number of
original observers n.
The result of a composition is a well-formed color-

blind IOATS enjoying the following essential property:

Theorem 2.
∑n
k=1

{Ek} is the least environment with
respect to 6, which simulates all summands, while
∏n
k=1

{Ek} is the greatest environment with respect to 6,
which is simulated by all the factors.

Since discrimination and simulation coincide (Thm. 1)
⊑ can replace 6 in the above theorem: The sum of envi-
ronments is the least discriminating environment, more
discriminating than each of the summands. The product
is the most discriminating environment, less discrimi-
nating than each of the factors. These in turn are stan-
dard expectations about conjunction and disjunction. A
conjunction (product) of two properties expressing in-
ability to observe two behaviors, will result in a prop-
erty expressing inability to observe either. Disjunction
(sum) of two properties expressing ability to observe
something, results in a property expressing the ability
to observe both. See example on Fig. 14.

Proof. We shall show the theorem on the state level (the
result on the IOATSs level follows directly). First show that
∀k = 1 . . . n. Ek6

Pn

k=1
Ek. This is in fact the case because

the product of observers creates observation classes which are
always subsets of original classes (partitioning of the original
classes). More formally it can be argued by showing that the
pair of relations (R1, R2), defined as below forms a simulation
on environments:

R1 =

(

Ej ,
X

k∈I

Ek

!

˛

˛

˛

for any finite I and gen-
erators {Ek}k∈I and j ∈ I

)

R2 =

(

Y

k∈I

ek, ej

!

˛

˛

˛

for any finite I and obser-
vers {ek}k∈I and j ∈ I

)

(4)

It remains to show that for all such generators F that ∀k =
1 . . . n. Ek6F , it holds that also

Pn

k=1
Ek6F . This in turn is

achieved by showing that the pair of relations (R3, R4) forms
a simulation on environments, where:

R3 =

(

X

k∈I

Ek, F

!

˛

˛

˛

∀ finite I. ∀{Ek}k∈I .
∀F. ∀k ∈ I.Ek6F

)

R4 =

(

f,
Y

k∈I

ek

!

˛

˛

˛

∀ finite I. ∀{ek}k∈I .
∀f.∀k ∈ I. f6ek

)

(5)

The proof of the case for products of generators is dual. ⊓⊔

10 Kim G. Larsen et al.: Modeling Software Product Lines Using Color-blind Transition Systems
{o

1
}?

{o
2
}?

{o
3
}?

{o
4
}?

i 3
!

i2!

i 3
!

i1! {
o
4 }

?

{
o
3 }

?

{
o
2 }

?

{
o
1 }

?

Interleave i1 i2

i3!

i2!

i1!

Equiv o1 o2

{o1, o2}?

{o4}?

{o3}?

(Interleave i1 i2) + (Equiv o1 o2)

i1!

i2!

{o
1
}?

{o
1
}?

{o
2
}?

{o
3
}?

{o
4
}?

i 3
!

{o
2
}?

{o
3
}?

i 3
!

{o
4
}?

{o4}?
i1!

{o3}?

{o1, o2}?

i2!

i3!

i1!

i2!

(Interleave i1 i2) × (Equiv o1 o2)

i 3
!

i2!

i1!

i 3
!

{o
4
}?

{o
1
,o

2
}?

{o
3
}?

{o
1
,o

2
}?

{o
4
}?

{o
3
}?

Fig. 14. Environments Interleave i1 i2 (left) and Equiv o1 o2

(right), their sum (top) and product (bottom). Transitions to the
blind observer b are supressed. The product can only generate
what both of the factors could generate and distinguish only what
both of them could distinguish. The sum can generate what any of
the summands could generate and observe what any of them could
observe. In particular o1 and o2 are distinguished in the traces for
which the Interleave property is preserved and not otherwise.

6 Toward Realistic Design Languages

Until now we have assumed that outputs of systems are
atomic. This assumption however often does not hold for
realistic languages, which typically support structured
output: sets, multisets, sequences or even sequences of
sets of atomic actions produced in a single step. We
will study two groups of languages. We have success-
fully applied our framework to the semantics of lan-
guages producing sets (state/event systems of section 2,
Harel’s statecharts [12], synchronous languages [2]) and
sequences (Java Card [32], UML state diagrams [29]).
Each of these language groups, set based and sequence
based, will be discussed in the two following subsections.
The set based version is further demonstrated by exam-
ple in Section 7.

From now on assume a finite set of environment events
Event and a finite set of atomic output actions Action.
In order to be able to handle realistic languages we need
to instantiate our framework for a given reaction style.
This includes not only giving mappings from Event and
Action to In and Out , but also proposing suitable repre-
sentation for observation classes and computing bounds
on classes.

6.1 Set based

State/event models of section 2 are synchronous and
non-blocking, so they meet all the assumptions of our
framework. The set of abstract events In = Event , while
the set of abstract outputs contains all possible subsets
of Action.

In = Event Out = P(Action)

Each state configuration s ∈ State corresponds to a sin-
gle observer at the abstract level, while a new generator
is added for each pair of configurations (in practice it
suffices to consider pairs of configurations related in the
global transition relation):

Obs = State Gen = State × State

Finally for every global transition s e o
−−−→ s′ at the model

level we introduce a single observation transition
s
e?
−−→(s, s′) and a single generation transition (s, s′) o!

−−→s′

in the abstract IOATS. Remaining states are not related.
These definitions allow us to use the framework of

previous sections and model environments for State Event
Systems as color-blind IOATSs. Note though, that, since
Out is a powerset now, observation classes are not sim-
ply sets of outputs, but sets of subsets of Action. How
should these classes be specified and represented? How
can we compute the greatest lower bounds (glbs) and
least upper bounds (lubs) on partitionings in this domain
to efficiently obtain sums and products of IOATSs?
Subsets of finite sets, such asAction, are conveniently

described with propositional formulæ. For each formula
φ over variables representing elements of Action consider
a corresponding set of its satisfiable assignments. Each
assignment describes a set of actions, or a single output.
We can use propositional formulæ instead of explicit enu-
merations as specifications of observational classes. More
importantly we can efficiently implement them symboli-
cally using Reduced Ordered Binary Decision Diagrams,
or BDDs [3].
We still need to make sure that classes represented

on transitions leaving from a single observer are indeed
disjoint and form a partitioning (see (2)). To achieve
this we require that all corresponding formulæ are mu-
tually exclusive and that they add up to the complete
universum. For a set of formulæ φ1, . . . , φn labeling all
distinct transitions outgoing from a single observer state
the following two conditions must hold:

∀i, j∈ {1..n}. i 6= j ⇒ φi ∧ φj ≡ false (6)

φ1 ∨ . . . ∨ φn ≡ true (7)

These conditions are feasible to verify computationally,
especially easily using a BDD engine, or a SAT-solver.
Syntactically correct environments can be combined

in sums and products using the operational rules pre-
sented in section 5. In particular the rules for observers
rely on the existence of glbs and lubs for partitionings.

Kim G. Larsen et al.: Modeling Software Product Lines Using Color-blind Transition Systems 11

F:E: E + F : E × F:

(¬a1)?

(a1)?

e2!

e1!

(¬a2)?

(a2)?

e2!

e1!

e2!

e1!

(true)?

(¬a1 ∧ ¬a2)?

(¬a1 ∧ a2)?

(a1 ∧ ¬a2)?

(a1 ∧ a2)?

e2!

e1!

Fig. 15. Left: environments E and F , suitable for executing set-based reactive systems. Right: the sum and product of E and F .
Observational classes computed according to propositions 5 (for sum) and 6 (for product)

Even though these glbs and lubs exists, we still need to
give an efficient way to compute them:

Proposition 5. Consider two equivalence relations ∼φ
and ∼ψ defined on P(Action), such that the observa-
tion classes of ∼φ are described by formulæ φ1, . . . , φm
and observation classes of ∼ψ are described by formulæ
ψ1, . . . , ψn. Then the equivalence relation ∼φ ⊓ ∼ψ is
characterized by formulæ:

{φi ∧ ψj |i = 1 . . .m, j = 1 . . . n} .

Obviously some of the new observational classes may
be empty, since usually not all conjunctions are satisfi-
able. Unsatisfiable formulæ can be eliminated since cor-
responding BDDs automatically reduce to false.

The lub of two equivalence relations is a transitive
closure of the union of these two relations. The compu-
tation of this transitive closure is realized by the classic
Union-Find algorithm (see [6, chapter 21]) applied to
the observation classes of both relations. Any two over-
lapping classes should be merged until no more classes
overlap. An overlapping occurs if the conjunction of the
two respective formulæ is satisfiable. A union of the class
represented by φ with a class represented by ψ corre-
sponds to replacement of the two formulæ with a dis-
junction φ ∨ ψ of the two.

Proposition 6. Let ∼φ, ∼ψ be equivalence relations on
P(Action), such that their observation classes are de-
scribed by formulæ φ1, . . . , φm and ψ1, . . . , ψn respec-
tively. Then the equivalence relation ∼φ ⊔ ∼ψ is charac-
terized by formulæ computed using the Union-Find al-
gorithm applied to the set {φ1, . . . , φm, ψ1, . . . , ψn}, where
two formulæ are unifiable, if their conjunction is satisfi-
able, and disjunction is the union operation.

Fig. 15 presents examples of environments with ob-
servational classes represented by propositional formulæ
together with their sum and product computed using the
intersection and the Union-Find algorithm.

We remark, that a nearly identical adaptation allows
applications of our framework to other set-based lan-
guages including many hardware description languages,
synchronous languages [2] and Harel’s statecharts [12].

6.2 Sequence based

Let us now turn from systems producing outputs struc-
tured as sets towards systems that produce outputs struc-
tured as sequences of atomic actions—for example UML
state diagrams. Now each observation transition of the
system awaits a single input from the Event set, while
each generation transition produces an output which is
a finite sequence of actions from Action :

In = Event and Out = Action∗ .

The first step in adapting the theory is linking the
concrete states of models (for example state configura-
tions in statecharts, or variable store in Java Card) to
abstract states of the IOATS. This can normally be done
in a direct way (at least for finite state models) in the
same spirit as in the previous section. Subsequently the
observation and generation relations must be extracted
from the semantics of the language in question. Obser-
vation classes on the environment side (color-blind) be-
come sets of sequences of actions. Partitioning ofAction∗

into classes that are regular languages can be described
by a finite automaton.

Definition 11. A classifier DFA over alphabet A is a
quadruple c = (S,A, s,−→), where S is a finite set of
states, A is a finite set of symbols, s ∈ S is an initial
state and −→∈S→A→ S is an input-enabled transition
function, meaning that for every s∈S function −→(s) is
defined for each element of its domain A. We usually
write s a

−→s′ instead of −→(s)(a) = s′.

A classifier DFA consecutively applies −→ to a state
and the head of the input sequence obtaining a new state
and input sequence. An execution over a list of symbols
s
a1−−→s1

a2−−→ . . .
an−−→sn is abbreviated with s

a1...an−−−−−→∗sn.

Definition 12. Let c = (S,A, s,−→) be a classifier. Se-
quences σ1, σ2 ∈ A∗ are equivalent with respect to c if
both advance c to the same state: ∃s′.s σ1−−→∗s′∧s σ2−−→∗s′.

The equivalence with respect to a classifier is an equiv-
alence relation and partitions A∗ into a finite set of
classes, isomorphic with the reachable states.
For a classifier e = (Se,Action, se,−→e) consider a

mapping of its states to generators γe : Se → Gen. Each

12 Kim G. Larsen et al.: Modeling Software Product Lines Using Color-blind Transition Systems

E + F : E × F:F:E:
e1!

?

e2!

a1

a1

?

a2

a2

a2

? ?

a1

a1

a2

a1

e1!

?

e2!

a2

a1

e1!

?

?

e2! a2

a2

a1

a2

e1!

?

?

e2!

a1

a2

a1

Fig. 16. Environments E and F observing sequences, their sum and product.

observer of the environment comprises a classifier and a
generator mapping. Environments advance from an ob-
server (e, γe) to a generator γe(s) if it observes a sequence
σ advancing the classifier to a state s:

(e, γe)
{σ | se

σ
−−→∗s} ?

−−−−−−−−−−−−−→γe(s) .

Fig. 16 shows two color-blind IOATSs E and F of sig-
nature: Event = {e1, e2} and Action = {a1, a2}. E dis-
tinguishes reactions containing at least one occurrence of
a1 from those not containing a1 at all. Similarly F dis-
tinguishes between sequences containing at least one a2

from those not containing a2 at all. Observers are drawn
as boxes containing classifier DFAs. Classifier transitions
are represented as dotted arrows to distinguish them
from IOATS transitions.
The product of classifiers is a central construction in

computing products of observers, supporting composi-
tion of environments:

Definition 13. Let e = (Se, A, se,−→e) and f = (Sf , A,
sf ,−→f) be classifiers. A product of e and f is a classifier
e⊗f = (Se×Sf , A, (se, sf),−→), where (se, sf)

a
−→(s′e, s

′
f)

if se
a
−→s′e and sf

a
−→s′f .

Proposition 7. Let ∼e and ∼f be two equivalences on
Action∗ induced by classifiers e and f . Their greatest
lower bound ∼e ⊓ ∼f exists and is induced by e⊗ f .

Fig. 16 presents the sum E + F obtained by appli-
cation of operational rules of section 5 (SG,PO) and
the above proposition. E + F distinguishes four classes
of outputs: an empty sequence, sequences consisting of
occurrences of a1, consisting of occurrences of a2, and
containing occurrences of both a1 and a2.
As we have seen before, the least upper bound of

two partitionings ∼e ⊔ ∼f is usually computed using a
Union-Find algorithm, which unifies any two overlap-
ping classes, until all classes are disjoint. In this case
classes are represented by states in the classifiers e and
f . We need to apply the algorithm to states of e and f ,
ultimately producing a classifier, whose states are sets
of states of f and e. The two classes s1 and s2 overlap,
whenever there is an output sequence, that can advance
one classifier to a state in s1, and the other classifier to a
state in s2. The initial set of classes is given by reachable
states of the product classifier e⊗ f :

i. S := {{ei, fj} | (ei, fj) is reachable in e⊗ f}.

ii. If there exist s1, s2 ∈ S such that s1 ∩ s2 6= ∅ then
S := S \ {s1, s2} ∪ {s1 ∪ s2}.

iii. Repeat (ii) until no more classes can be unified.

The final value of S is the set of states of the new
classifier DFA. The initial state is the class that contains
initial states of e and f (note that both of them will be
in the same class). The transition function −→ is a sum of
transition functions −→e and −→f lifted to sets of states.
For s1, s2 ∈ S:

s1
a
−→s2 if ∃.p1 ∈ S1.∃p2 ∈ S2. p1

a
−→e p2 or p1

a
−→f p2

The following proposition claims that this function is
well-defined, deterministic and input-enabled:

Proposition 8. Let s1, s2 ∈ S be any two of the sets
of states (not necessarily distinct) constructed with the
above algorithm. Then for any states p1, p2 ∈ s1, p

′
1, p

′
2 ∈

s2 of the original classifiers and any symbol a: p1
a
−→1 p

′
1

and p′1 ∈ s2 iff p2
a
−→2 p

′
2 and s

′
2 ∈ s2, where −→i de-

notes −→e if si ∈ Se or −→f if si ∈ Sf .

It follows that the classifier g = (S,A, s,−→) con-
structed above is a well defined classifier DFA. Moreover,
the observation classes that it induces are coarser than
any class of ∼e and ∼f . Due to the properties of the
union-find algorithm, ∼g is actually the least equiva-
lence encompassing both ∼e and ∼f :

Proposition 9. Let ∼e and ∼f be equivalences over
Action∗, induced by classifiers e = (Se,Action, se,−→e)
and f = (Sf ,Action , sf ,−→f). The equivalence ∼e ⊔ ∼f
is induced by a classifier g such that its states are com-
puted applying the Union-Find algorithm to the set

{ {ei, fj} | (ei, fj) reachable in e⊗ f } ,

where two sets s1,s2 are unifiable if s1∩s2 is not empty.
The union operation is a set union, the initial state is the
set containing initial states of e and f , and the transition
function is a sum of transition functions lifted to sets of
states.

The rightmost IOATS on Fig. 16 is a product of E
and F obtained by application of the composition rules
from section 5 (PG,SO) and the above algorithm. This
product gives rise to the observer which does not distin-
guish any sequences.

Kim G. Larsen et al.: Modeling Software Product Lines Using Color-blind Transition Systems 13

7 Environment Driven Specialization

We shall now broaden the meaning of a model of a sys-
tem to encompass a family of systems, and let it repre-
sent functionality, which in its entire richness may not
be present in any of the actual members being pro-
duced. Particular family members will be specified using
models of environments, and derived by transformations
preserving relativized equivalence in a given color-blind
environment. Each transformation can only be applied
if its application precondition is satisfied. We face two
proof obligations here. The first is a manual proof of cor-
rectness of the transformation itself, which can be done
ahead of time. The second is the application precondition
satisfaction check, which takes place at the specialization
time. This proof should be obtained automatically using
one of the available technologies (type checking, static
analysis and model-checking). In this section we firstly
formulate correctness condition for transformations and
then informally demonstrate a product line derivation
scenario, hinting at what techniques could be used to
make such automatic derivation viable.
Let T be a model transformation,M a family model

and E an environment defining a specific family member.
Then we will say that T is correct iff the original model
and the derived member are in E-relativized two-way
simulation relation. T (M, E) ≶E M. This means that E
cannot distinguish the behavior of the two systems.
We will now present a family of environment speci-

fications and a corresponding family of alarm clocks de-
rived from the original alarm clock model using the envi-
ronments. The transition relation of state/event systems
(see section 2) produces sets of actions during a single re-
action step. In such a setting the observational classes of
environments become sets of sets (powersets) of actions.
For a set A ⊆ Action let ignore A denote observation

classes, which ignore elements of A, but distinguish all
the other actions:

ignore A =
{

{o ∪ o′|o′ ∈ P(A)}
∣

∣ o ∈ P(Action \A)
}

Note that ignoring the empty set, ignore ∅, means ob-
serving all differences in outputs. Another abbreviation
equiv A denotes observation classes, which are unable to
distinguish between any actions in A:

equiv A =
{

{o ∪ o′|o′ ∈ P(A) \ ∅}
∣

∣ o ∈ P(Action \A)
}

∪ P(Action \A)

We shall begin with stating general requirements,
which hold for all the environments used to execute the
alarm clock. These general requirements usually reflect
the physical nature of actuators and sensors. In the case
of our alarm clock events dark/bright and snooze/snoozeR
are always generated in an alternating fashion:

E0 = Interleave snooze snoozeR ∧ Interleave dark bright .

E0

E3

E4

E2E1

Fig. 17. Relationships be-
tween the environments.

C2

C0

C3

C4

C1

E1 E2

E4

E3

E3

Fig. 18. Relationships be-
tween the product variants.

Fig. 8 demonstrates how Interleave could be defined us-
ing a set-based semantics.

In section 2 the most restricted family member C4

was introduced in figure Fig. 7. Here we will first intro-
duce some family members that are less restricted.

The least restricted member of the family C1 is shown
in Fig. 4. This model operates in an environment, which
becomes blind for the lightOn action right after generat-
ing the snooze event. Formally the environment in which
C1 behaves identical to C0 is E1 = E0 ∧ E ′, where E ′ is
defined on Fig. 9.

Fig. 5 presents a new clock C2, which is devoid of
the actual snooze function. The user of this clock can
still press the snooze button, but the only effect it has
is turning the backlight on for a short while. This user
becomes blind to beepOn and beepOff actions initiated
by the snooze and snoozeTO events. Formally E2 = E0 ∧
E ′′, where E ′′ is defined on Fig. 10.

The third clock variant C3 is a combination of C1 and
C2. It has neither the snooze function nor the snooze ac-
tivated backlight. We obtain it by specialization against
the E3 environment, where E3 = E1 ∧ E2. The model is
presented on Fig. 6. Note that C3 still needs a snooze
button, which exhibits a slight anomaly in turning on
the glow mode, namely that the glow mode will not be
activated, while this button is pressed. This is a perfectly
correct reminiscence of our original model, which could
be easily remedied by adding another constraint to the
environment, that event snooze never occurs.

We would like to consider yet another restriction of
the clock behavior. The clock denoted C4, shall be de-
prived of the glowing mode (Fig. 7). The glow-mode
lamp is not installed and the glow action is reimple-
mented to turn off the main lamp instead. A correspond-
ing environment E ′′′ is defined on Fig. 11. This environ-
ment is itself interesting as it specifies a less shiny alarm
clock, which may find its happy customers. Neverthe-
less, we decided to combine its characteristics with the
restrictions of E3, giving rise to an even more simple
alarm clock with neither the snooze related functions
nor the glow mode: E4 = E3 ∧ E ′′′.

One can describe surprisingly many more reason-
able variants even for such a simple system. Figures 17–
18 present an overview of environments and systems in
our product line. Edges represent simulation and rela-
tivized simulation. Proposition 10 explains how to inter-
pret transitivity in the hierarchy of systems (Fig. 18).

14 Kim G. Larsen et al.: Modeling Software Product Lines Using Color-blind Transition Systems

Proposition 10. For any systems S1, S2 and S3 and
any two compatible color-blind environments E and F it
holds that: S16ES2 ∧ S26FS3 ∧ E6F ⇒ S16ES3.

8 Model Transformations

While discussing techniques for implementation of op-
timizers, we rely as much as possible on existing tech-
niques that are well known in compiler technology, par-
tial evaluation and model-checking. What is important,
we believe that optimizations should be designed and im-
plemented for particular languages, not for their abstract
semantics. Despite the fact that many transformations
can be generalized beyond the particular language, such
generalizations rarely lead to successful implementations
in specialization tools and compilers. There is very lit-
tle hope that we can translate any reactive synchronous
program into an IOATS, apply the transformations on
the abstract layer, and then transform it back to the
modeling language, code generate and still obtain signif-
icantly optimized code. Contrary—it is most likely that
this process of multiple translation will increase the code
size significantly. Instead the semantic layer of IOATS
should be used for making proofs of correctness of trans-
formations operating on the level of concrete modeling
language. We also use the semantic properties, like color-
blindness, to inspire our search for transformations.

8.1 Environment Independent Transformations

Many simple optimizations can be achieved just by anal-
ysis of the state/event models in absence of any environ-
ment, relying on classical data-flow analysis [1, chpt. 17]
[27, chpt. 8] and interpreting the model as a control
graph. These include constant propagation [27, p. 329],
deadcode elimination [27, p. 580], and, to some extent,
elimination of side-effect-free code [27, p. 592]. In reac-
tive synchronous models, like state/event systems, these
optimizations correspond to simplification of guards, drop-
ping transitions never enabled, dropping states not being
targets of any transitions, and dropping entire state ma-
chines or processes that produce no side-effects and are
never referred to. The notion of side-effect-free part of
the model is perhaps a bit less standard than the others,
so let us discuss it briefly.
A state machine is pure if there are no guards in other

machines that refer to it, and it has no outputs on tran-
sitions (this is a static property). A set of state machines
is mutually pure if none of the state machines in the set
has any outputs on transitions and none of the state ma-
chines outside the set refer to its states in guards. It is
not hard to see that a maximal set of mutally pure state
machines can safely be removed from the model without
any execution environment ever observing this change.
Formally this can be argued by making a two-way rel-
ativized simulation proof in our framework, assuming a

perfect vision environment. Note that we have removed
the sensor component from the alarm clock model using
precisely this reasoning (see C4, Fig. 7).
Typically, all optimizations mentioned above are not

applicable for reactive models when used in isolation:
programmers rarely write code that is dead, does not
compute anything or makes a complex computation that
always results in the same constant. In most of such
cases these are manifestations of errors, which should
be reported. Basic optimizations are nevertheless essen-
tial, when combined with more advanced techniques de-
scribed below, which often produce code with constants
in expressions, unreachable states and transitions, etc.

8.2 Optimizations with Static Environments

Knowledge of static properties of environment may allow
to apply the above optimizations more aggressively. If
some events can never be input to the system, then they
can obviously invalidate some guards (a never constraint
on an event can be propagated as false to guard condi-
tions and constant propagation may be applied subse-
quently). If some outputs are never being observed (al-
ways ignored), they can be erased from transitions’ ac-
tions, which may introduce mutually pure components
in the model, that could be ereased subsequently as de-
scribed above.

Perhaps the most interesting optimizations, which
are also new, can be performed for static environments
exhibiting color-blindness (Equiv constraints). If some
actions are always equivalent, we can definitely substi-
tute one for another. Remember that actions correspond
to invocations of actuator drivers, so if we could elimi-
nate one driver/handler it can potentially save a signifi-
cant amount of program memory. In order to justify the
choice, one needs more information about the properties
of drivers. In the following we assume that each action
ai ∈ Action has a weight wi assigned describing a mea-
sure to be minimized (execution time, code size, price of
the respective actuator, etc). We formulate the problem
as follows:

Input: a set of actions Action = {a1, . . . , an}, corre-
sponding weights w1, . . . , wn, and an equivalence rela-
tion E on Action.

Output: An optimal selection of equivalence class rep-
resentatives, so that when substituted in the model for
all call places they minimize the total cost for the model:

n
∑

i=1

xiwi ,

where xi = 1 if ai has been chosen as a representa-
tive for some class, and xi = 0 otherwise. This prob-
lem can be solved computing equivalence classes using
a Union-Find like algorithm, and then choosing the

Kim G. Larsen et al.: Modeling Software Product Lines Using Color-blind Transition Systems 15

cheapest element for each class. Again proofs of correct-
ness of the above optimizations can be written using
two-way relativized simulation as a requirement, assum-
ing an IOATS environment that represents the static
properties required (all such environments have exactly
one generator state and one observer state).

8.3 Optimizations with Dynamic Environments

There is no doubt, that introducing behavior in envi-
ronments, vastly increases the amount of possible op-
timizations. For example precise reachability analysis
can be executed on the model, to achieve more aggres-
sive kind of code elimination, or identify more parts of
guards as being constants. Nevertheless we shall not dis-
cuss all these possibilities here. Instead, we focus on a
transformation that directly exploits color-blindness of
our environments. Ultimately we would like to consider
an algorithm for Action-Set-Minimization, an exten-
sion of the one presented in the previous paragraph, but
with the equivalence relation on actions changing dy-
namically. This complicates the problem significantly, as
now each transition, not each action, may require choos-
ing a different substitute for its actions. Moreover this
substitute candidate has to satisfy observation require-
ments of all environment transitions that can possibly
be executed in parallel with the given system transition.

We can use reachability analysis [24,4] to find pairs
of environment/system transitions that can fire simul-
taneously. We are particularly interested in identifying
pairs containing one observation transition of environ-
ment and one generation transition of the system. Dur-
ing the model exploration one should record information
about what sets of actions are observed in what obser-
vation classes of environments, ultimately gathering a
list of pairs: each consisting a subset of call places and
a formula describing the observation class. This infor-
mation can be translated into a constraint satisfaction
problem, with the objective to minimize a cost function
(most typically reflecting the code size as above). An
off-the-shelf tool like ILOG’s CPLEX [18] could be used
to solve the problem, returning for each set of actions
a cheaper replacement for this set. In fact, as it is typi-
cal in industrial optimization problems, the optimality of
the solution is not required for the correctness of our ap-
plication, so an approximating solver could be used (for
example LP (Linear Programming) based), or the ILP
(Integer Linear Programming) solver can be interrupted
early to use the best solution found so far, if finding the
optimal solution proves intractable. Finally the informa-
tion obtained from the solver is used to restructure the
transition layout and actual calls placed on transitions.
Ultimately less drivers are needed in the final product,
and the kernel code is smaller.

9 Related Work

Derivation of product lines is often associated with par-
tial evaluation [19,8,13]. There have been approaches to
enable partial evaluation based on execution traces in-
stead of fixed input values [15,28,10], nevertheless they
were never implemented for realistic languages. We fear
that these transformations, designed for abstract pro-
cess calculi, can be barely applied in such contexts. Our
framework allows more transformations than known be-
fore due to the color-blindness, which allows some non-
reductive mutations in the program.
Wąsowski [36] presented a static framework for speci-

fying environments for reactive models, which relies solely
on state independent properties. The present paper, it-
self an extension of [23], provides a theoretical founda-
tion for a product line management setup similar to Wą-
sowski’s [36], but based on behavioral properties.
Relativized simulation has been introduced by Larsen

in [22,21,20]. Our framework is modeled after this work,
rephrased in the setting of IOATSs and extended with
color-blindness. In Larsen’s formulation, based on sim-
ple labeled transition systems [26], it was impossible to
directly express an environments’ inability to distinguish
outputs. Further results on color-blind environments, as
well as detailed proofs, can be found in [37].
The study of systems embedded into behavioral con-

texts is quite mature [21,9,25,30,17]. Our work stems
out from the field, by its direct support for observability
specifications via color-blindness. This support is needed,
if the tools based on this framework, are to be useful for
development of product lines of embedded systems.
Czarnecki and Antkiewicz [7] present a dual approach

to product line derivation. We specify variants by le-
gal use (black-box), they specify variants by annotating
model internals with conditions (white-box). In our case
the derivation is difficult, but safety properties are pre-
served. In their case the derivation is relatively easier,
while specifications still need to be verified.

10 Conclusion & Future Work

We have presented the semantics of a specification lan-
guage for environments of reactive synchronous systems,
together with a notion of context-dependent refinement
based on color-blindness. This refinement relation is more
liberal than usual in allowing some mutations to program
outputs, instead of bare reductions. We have explained
and demonstrated how partial specifications of behaviors
can be composed and used to define families of products.
The framework was designed as a core of an upcom-
ing tool for compact code generation and product line
derivation for discrete control embedded systems. Our
specifications shall be used as preconditions for advanced
model optimizers/specializers. We have thoroughly dis-
cussed issues, which arise in the implementation of the

16 Kim G. Larsen et al.: Modeling Software Product Lines Using Color-blind Transition Systems

theory for realistic languages, especially focusing on lan-
guages with sequences as outputs.
An implementation [31] of a powerful context-aware

optimizer for models based on model-checking and pro-
gram analysis is planned. This prototype tool is sup-
posed to be compatible with an industrial development
environment for embedded systems [16], which will allow
for realistic case studies.

References

1. Andrew A. Appel. Modern Compiler Implementation in
C. Cambridge University Press, 1998.

2. Gérard Berry. The foundations of Esterel. In G. Plotkin,
C. Stirling, and M. Tofte, editors, Proof, Language and
Interaction. Essays in Honour of Robin Milner, pages
425–454. MIT Press, Cambridge, MA, 2000.

3. Randal E. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Comput-
ers, 35(8):677–691, August 1986.

4. Edmund M. Clarke. Model Checking. MIT Press, 1999.
5. Paul Clements and Linda Northrop. Software Product
Lines: Practices and Patterns. Addison-Wesley, 2001.

6. Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms.
MIT Press, 2nd edition, 2001.

7. Krzysztof Czarnecki and Michał Antkiewicz. Mapping
features to models: A template approach based on su-
perimposed variants. In R. Glück and M. Lowry, ed-
itors, Generative Programming and Component Engi-
neering (GPCE), volume 3676 of LNCS, pages 422–437.
Springer-Verlag, 2005.

8. Olivier Danvy, Robert Glück, and Peter Thiemann, edi-
tors. Partial Evaluation, volume 1110 of LNCS, Dagstuhl
Castle, Germany, February 1996. Springer-Verlag.

9. Luca de Alfaro and Thomas A. Henzinger. Interface au-
tomata. In Symposium on Foundations of Software En-
gineering (FSE), pages 109–120. ACM Press, 2001.

10. Sandro Etalle and Maurizo Gabbrieli. Partial evalua-
tion of concurrent constraint languages. ACM Comput-
ing Surveys, 30(3es), September 1998.

11. Hassan Gomaa. Design Software Product Lines with
UML. Addison-Wesley, 2001.

12. David Harel. Statecharts: A visual formalism for complex
systems. Science of Computer Programming, 8:231–274,
1987.

13. John Hatcliff, Torben Æ. Mogensen, and Peter Thie-
mann, editors. Partial Evaluation: Practice and Theory.
International Summer School, volume 1706 of LNCS.
Springer-Verlag, 1999.

14. C.A.R. Hoare. Communicating Sequential Processes.
Prentice Hall, 1985.

15. Haruo Hosoya, Naoki Kobayashi, and Akinori Yonezawa.
Partial evaluation scheme for concurrent languages and
its correctness. In L. Bougé, P. Fraigniaud, A. Mignotte,
and Y. Robert, editors, Euro-Par’96, volume 1123 of
LNCS, pages 625–632. Springer-Verlag, 1996.

16. IAR visualSTATE®. www.iar.com/Products/VS.
17. A. Igarashi and N. Kobayashi. A generic type system for
the pi-calculus. In POPL 2001. ACM Press.

18. Ilog CPLEX. www.ilog.com/products/cplex.
19. Neil D. Jones, Carsten K. Gomard, and Peter Sestoft.
Partial Evaluation and Automatic Program Generation.
Prentice Hall, 1993.

20. K.G. Larsen and R. Milner. A compositional protocol
verification using relativized bisimulation. Information
and Computation, 99(1):80–108, 1992.

21. Kim G. Larsen. Context Dependent Bisumulation Be-
tween Processes. PhD thesis, Edinburgh University, 1986.

22. Kim G. Larsen. A context dependent equivalence be-
tween processes. Theoretical Computer Science, 49:184–
215, 1987.

23. Kim G. Larsen, Ulrik Larsen, and Andrzej Wąsowski.
Color-blind specifications for transformations of reactive
synchronous programs. In M. Cerioli, editor, Fundamen-
tal Approaches to Software Engineering (FASE), volume
3442 of LNCS. Springer-Verlag, 2005.

24. J. Lind-Nielsen, H. R. Andersen, H. Hulgaard,
G. Behrmann, K. Kristoffersen, and K. G. Larsen. Verifi-
cation of large state/event systems using compositional-
ity and dependency analysis. Formal Methods in System
Design, 18(1):5–23, 2001.

25. Nancy Lynch. I/O automata: A model for discrete event
systems. In Annual Conference on Information Sciences
and Systems, pages 29–38, Princeton University, 1988.

26. Robin Milner. Communication and Concurrency. Pren-
tice Hall, 1989.

27. Steven S. Muchnick. Advanced Compiler Design and Im-
plementation. Morgan Kaufmann Publishers, 1997.

28. Masaki Murakami. Partial evaluation of reactive com-
munciating processes using temporal logic formulas. In
Workshop on Algebraic and Object-Oriented Approaches
to Software Science, 1995.

29. Object Management Group. OMG Unified Modelling
Language specification, 1999. www.omg.org.

30. Sriram K. Rajamani and Jakob Rehof. Conformance
checking for models of asynchronous message passing
software. In E. Brinksma and K. G. Larsen, editors, Con-
ference on Computer Aided Verification (CAV), volume
2404 of LNCS, pages 166–179. Springer-Verlag, 2002.

31. Scope. www.itu.dk/~wasowski/scope.
32. Sun Microsystems. Java card(TM) specification.
java.sun.com/products/javacard/specs.html.

33. Alfred Tarski. A lattice-theoretical fixpoint theorem and
its applications. Pacific Journal of Mathematics, 5:285–
309, 1955.

34. Jan Tretmans. Test generation with inputs, outputs, and
repetitive quiescence. Software—Concepts and Tools,
17(3):103–120, 1996.

35. Rob van Glabbeek. The linear time–branching time spec-
trum (extended abstract). In J.C.M. Beaten and J.W.
Klop, editors, Theories of Concurrency: Unification and
Extension (CONCUR), volume 458 of LNCS, pages 278–
297. Springer-Verlag, 1990.

36. Andrzej Wąsowski. Automatic generation of program
families by model restrictions. In Software Product Line
Conference (SPLC), volume 3154 of LNCS. Springer-
Verlag, 2004.

37. Andrzej Wąsowski. Code Generation and Model Driven
Development for Constrained Embedded Software. PhD
thesis, IT University of Copenhagen, January 2005.

