
Aalborg Universitet

Comparison of Steady-State SVC Models in Load Flow Calculations

Chen, Peiyuan; Chen, Zhe; Bak-Jensen, Birgitte

Published in:
43rd International Universities Power Engineering Conference, 2008. UPEC 2008

DOI (link to publication from Publisher):
10.1109/UPEC.2008.4651502

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Chen, P., Chen, Z., & Bak-Jensen, B. (2008). Comparison of Steady-State SVC Models in Load Flow
Calculations. In 43rd International Universities Power Engineering Conference, 2008. UPEC 2008 (pp. 1-5).
IEEE (Institute of Electrical and Electronics Engineers). https://doi.org/10.1109/UPEC.2008.4651502

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025

https://doi.org/10.1109/UPEC.2008.4651502
https://vbn.aau.dk/en/publications/ffb718e0-c5cd-11dd-a016-000ea68e967b
https://doi.org/10.1109/UPEC.2008.4651502


COMPARISON OF STEADY-STATE SVC 
MODELS IN LOAD FLOW CALCULATIONS 

 
Peiyuan Chen

Aalborg University 
pch@iet.aau.dk 

Zhe Chen
Aalborg University 

zch@iet.aau.dk 

Birgitte Bak-Jensen
Aalborg University 

bbj@iet.aau.dk 
 

 
Abstract-This paper compares in a load flow calculation three 
existing steady-state models of static var compensator (SVC), i.e. 
the generator-fixed susceptance model, the total susceptance 
model and the firing angle model. The comparison is made in 
terms of the voltage at the SVC regulated bus, equivalent SVC 
susceptance at the fundamental frequency and the load flow 
convergence rate when SVC is operating both within and on the 
limits. The latter two models give inaccurate results of the SVC 
susceptance due to the assumption of constant voltage when the 
SVC is operating within the limits. This may underestimate the 
SVC regulating capability. Two modified models are proposed 
to improve the SVC regulated voltage according to its steady-
state characteristic. The simulation results of the two modified 
models show the improved accuracy of the SVC susceptance 
while retaining acceptable load flow convergence rate. 

 

I. INTRODUCTION 

 Flexible ac transmission systems (FACTS) utilize high 
power semiconductor devices to control the reactive power 
flow and thus the active power flow of the transmission 
system so that the ac power can be transmitted through a long 
distance efficiently [1]. Nowadays, FACTS devices are also 
used in high-voltage distribution systems. There are two main 
categories of FACTS devices, i.e. series-connected devices 
and shunt-connected devices. The series-connected FACTS 
device, such as thyristor controlled series compensator 
(TCSC), is to connect in series a controllable reactance in a 
power network so that the electrical distance between the 
generators and the load centers is controlled. The shunt-
connected FACTS device, such as static var compensator 
(SVC) and static synchronous condenser (STATCON), is to 
regulate bus voltages or to compensate local reactive power 
consumption by injecting reactive power to electrical 
networks. There are also combined series and shunt FACTS 
devices, such as unified power flow controllers. In order to 
analyze the performance of modern power systems integrated 
with various FACTS devices, the understanding of the 
steady-state and dynamic interaction between the FACTS 
controllers and the electrical systems are necessary.  

For steady-state analysis of electrical systems, the standard 
tool is a load flow calculation using the Newton-Raphson 
method. For electrical systems integrated with FACTS 
controllers, an accurate representation of FACTS devices is 
crucial to determine the appropriate location and preliminary 
rating of the devices as well as to study their effects on the 
system power flows and voltages under normal, abnormal and 

contingency conditions. In addition, the steady-state models 
of FACTS devices together with the load flow results provide 
the initial conditions for other power system analyses, such as 
harmonic analysis and stability issues due to large and small 
disturbances. Therefore, there are a number of steady-state 
models of FACTS devices proposed so far [2]-[4]. In terms of 
SVC, there are mainly three well-accepted steady-state 
models available, i.e. the generator-fixed susceptance model 
[2][3], the total susceptance model and the firing angle model 
[5][6]. 

This paper focuses on the steady-state modelling of SVC in 
load flow calculations. First of all, the steady-state 
characteristic of a SVC is discussed. Secondly, the three 
existing steady-state models for SVC are briefly discussed. 
The shortcomings of these models are also pointed out. 
Thirdly, a simple model based on the characteristic of the 
SVC is mentioned as well as its limitations. Then, two 
modified models based on the total susceptance model and 
firing angle model are presented. Finally, a simulation based 
on a 5-bus system is carried out to compare the results from 
the six SVC models, when the SVC is operating both within 
and on the limits. The comparison is made in terms of the 
voltage at the SVC regulated bus, the equivalent SVC 
impedance at the fundamental frequency and the convergence 
rate of the load flow algorithm. 

II. STEADY-STATE CHARACTERISTIC OF A SVC  

A simple SVC that works both in the capacitive and 
inductive range can be obtained by a fixed-capacitor (FC) in 
parallel with a thyristor controlled reactor (TCR). The FC-
TCR is the most commonly used SVC device in practice. The 
SVC models discussed in this paper are based on the FC-
TCR. However, all the steady-state SVC models in the load 
flow calculation to be discussed in the next section are 
applicable to other types of SVC, such as the thyristor 
switched capacitor (TSC)-TCR. The diagram of a FC-TCR is 
shown in Fig.1.  

The V-I diagram of the steady-state operation of a SVC is 
shown in Fig. 2, where E and Xs are the system equivalent 
Thevenin voltage and reactance, respectively. In practice, a 
SVC uses droop control of the voltage at the regulated bus. 
The droop or the slope shown in Fig.2 is exaggerated for the 
sake of the clear illustration. Usually the slope is less than 
5%. The droop control means that the voltage at the regulated 
bus is controlled within a certain interval [Vmin, Vmax], instead 
of a constant voltage value Vref. The relaxation of the constant 



voltage control improves the performance of a SVC in a 
number of ways: 

• For a given SVC susceptance range, the current rating 
of the capacitor can be reduced 

• If the system’s equivalent Thevenin voltage decreases 
from E1 to E2 due to, e.g. the increased system loading, 
a droop-controlled SVC requires a much smaller 
change in susceptance than a constant voltage 
controlled SVC, in which the susceptance already 
reaches its capacitive limit as shown in Fig. 2. 

• If the system’s equivalent Thevenin impedance Xs 
decreases further, as the dotted line shown in Fig. 2, 
the constant voltage controlled SVC is no longer able 
to provide any active support, and in this case behaves 
as a fixed capacitor. Under such condition, the SVC 
cannot help to improve the dynamic response of the 
system subjected to any transient event followed, e.g. 
a voltage dip due to a system fault. Whereas the 
droop-controlled SVC, which still remains within the 
regulated range, can actively participate in the 
improvement of the system dynamic behavior. 

Considering all these aspects, an accurate representation of 
the SVC droop control during steady-state analysis is 
important, especially when the SVC is operating close to the 
limits. In addition, an accurate SVC susceptance or the 
corresponding firing angle is necessary for other power 
system analysis such as initializing SVC during a harmonic 
analysis. Therefore, how to accurately implement a realistic 
SVC model in a load flow algorithm is of great importance. 

 

III. SVC MODELS IN LOAD FLOW CALCULATIONS 

There are mainly three existing SVC models in load flow 
calculations, e.g. the generator-fixed susceptance model, the 
total susceptance model and the firing angle model. This 
section first of all briefly discusses the three existing models. 
The inaccuracy caused by the total susceptance model and 
firing angle model is pointed out. A characteristic model 
based on the steady-state characteristic of SVC is then 
presented. In the end, two combined models are developed to 
improve the accuracy of the total susceptance model and the 
firing angle model. 

A. The generator-fixed susceptance model 
When SVC is operating within the limits, the relation 

between its injected reactive power and the regulated bus 
voltage follows the droop characteristic shown in Fig. 1. 
When the SVC is operating on the limits, it behaves like a 
fixed susceptance and its injected reactive power is 
proportional to the square of the regulated bus voltage. 
Therefore, the SVC cannot be simply modeled as a PV bus 
with fixed reactive power limits. The modeling of the droop 
control of a SVC is essential especially in the case of weak 
systems.  

The generator model represents the slope by connecting the 
SVC to an auxiliary bus separated from the high voltage bus 
by a reactance equal to the per unit slope. The generator 
model of a SVC with and without a step-down transformer is 
shown in Fig. 3. The generator model can be directly used in 
a conventional load flow program. However, the generator 
model is valid only when the SVC is operating within the 
regulated limits. The SVC model has to be changed to a fixed 
capacitor or inductor model depending on the operating limit. 
The generator model needs 2 or 3 nodes (depending on 
without or with a step-down transformer) in a load flow 
program; whereas the fixed impedance model only needs 1 
node. When the SVC is changing from the generator model to 
the fixed susceptance model, the load flow input data 
matrices need to be modified and the corresponding Jacobian 
matrix is re-dimensioned and reordered. In other words, a 
new load flow calculation is needed. The necessity to 
continuously check whether or not the SVC is changing 
between the generator model and the fixed-susceptance 

 
      Fig. 1.  Diagram of a SVC device. 

 
      Fig. 2.  Steady-state characteristic of a SVC.  

Fig. 3.  SVC generator model: without (left) and with (right) step-down
transformer. 



model also makes the method inefficient and troublesome. 

B. The total susceptance model and firing angle model 
The total susceptance model developed by [5] incorporates 

the SVC model in an advanced load flow program. It 
represents the SVC model as an adjustable susceptance 
connected to the high-voltage bus with susceptance limits. 

The total susceptance model assumes a fixed voltage at the 
SVC connection busbar when operating within the limits. 
Therefore, it is similar to a PV bus. However, instead of 
eliminating one order from the Jacobian matrix of the reactive 
power mismatch equation (due to the PV bus), another one 
representing the relation between the SVC injected reactive 
power QSVC and its equivalent susceptance BSVC is used at the 
corresponding row of the Jacobian matrix [5]: 

 
ΔQSVC

k = ( ∂ QSVC/ ∂ BSVC)k ΔBSVC
k          (1) 

 
where k is the iteration number and  
 
( ∂ QSVC/ ∂ BSVC)k = (VSVC

k)2 = QSVC
k/BSVC

k.          (2) 
 
In this way, the SVC susceptance BSVC instead of the 

voltage becomes the state variable, and thus the SVC bus is 
called PVB node. The column in the Jacobian matrix 
corresponding to the partial derivative with respect to the 
voltage of the SVC bus should be set to zero except for the 
one, which is replaced by (2), at the row of the reactive power 
mismatch equation of the SVC bus. In addition, the calculated 
QSVC

k should also be subtracted from the corresponding 
power mismatch term. When the SVC reaches the limits, the 
PVB node is changed to a PQ node. In other words, the SVC 
becomes a fixed susceptance and the Jacobian needn’t to be 
modified as when operating within the limits. The merit of 
the total susceptance model is that it only needs one node for 
the SVC in the load flow algorithm when operating both 
within and on the limits.  

The first problem of the total susceptance model is that it 
assumes the SVC voltage to be constant when operating 
within the limits. This may cause an error of the final SVC 
susceptance value due to the ignorance of the SVC slope. The 
second one is that the assumption alters the moment when the 
SVC reaches its operating limits. Both problems will be 
shown in the next section.  

The firing angle model can be seen as an extension of the 
total susceptance model, but with the firing angle as the state 
variable directly instead of the SVC susceptance. This is 
particularly useful when the firing angle is needed for the 
initialization of harmonic analysis. The total susceptance 
model, however, needs another iterative process to obtain the 
firing angle from the susceptance value. The Jacobian matrix 
corresponding to the partial derivative of the reactive power 
with respect to the firing angle is modified as [5]: 

 
ΔQSVC

k = ( ∂ QSVC/ ∂ αSVC)k ΔαSVC
k          (3) 

 

where αSVC is the firing angle of the SVC and  
 
( ∂ QSVC/ ∂ αSVC)k = 2(VSVC

k)2(cos(2αSVC
k)–1)/(πXLmax)     (4) 

 
and XLmax is the reactance of the inductor. 
The equivalent susceptance can be calculated by: 
 
BSVC

k = 1/XCmax–[2(π–αSVC
k)+sin(2 αSVC

k)]/(πXLmax)        (5) 
 
where XCmax is the reactance of the capacitor. 
In the case of a SVC connected through a transformer, the 

total susceptance model or the firing angle model can still be 
applied as the total impedance is the transformer impedance 
plus the equivalent SVC impedance [7]. 

C. The characteristic model 
The characteristic model proposed is based on the linear 

relation of the SVC steady-state characteristic shown in Fig. 
2. It also treats the SVC as an adjustable susceptance. Instead 
of modifying the Jacobian matrix, it modifies the admittance 
matrix with the updated SVC susceptance. The change of the 
SVC impedance at kth iteration is calculated by: 

 
ΔBSVC

k = (VSVC
k – Vref)/(s VSVC

k) –BSVC
k.          (6) 

 
where s is the slope of the SVC characteristic. The SVC 

impedance at the next iteration is updated by: 
 
BSVC

k+1 = BSVC
k + ΔBSVC

k.           (7) 
 
When the SVC reaches its limits, the susceptance is fixed 

at its maximum capacitive or inductive limit. The algorithm 
requires only 1 node when operating both within and on the 
limits and considers the droop control of the SVC 
characteristic. Besides, the algorithm is simple and 
straightforward. However, the problem with the characteristic 
model is that the convergence rate is relatively poor and not 
stable when the system condition is changed.  

D. The combined models 
The first combined model is based on the total susceptance 

model. However, instead of assuming a constant voltage 
when operating within the limits, it updates the voltage 
according to the droop characteristic of SVC given the 
updated susceptance. The voltage at the SVC bus is updated 
by: 

 
VSVC

k = Vref /(1–s BSVC
k).           (8) 

 
The combined model retains the merits of the total 

susceptance model, i.e. 1 node needed when operating both 
within and on the limits as well as a stable convergence rate. 
In addition, it provides a more accurate SVC susceptance 
value than the total susceptance model by updating the 
voltage at the SVC bus. The second combined model is to 
combine the firing angle model with the characteristic model. 
The approach is similar to the first combined model, i.e. to 



update the SVC voltage by using (8) when the SVC is 
operating within the limits. 

IV. COMPARISON OF SVC MODELS 

A. Simulation case 
The foregoing six SVC models are tested on a 5-bus 

network as shown in Fig. 4. The load flow calculation 
converges in 5 iterations with the maximum power mismatch 
of 10-12. The obtained voltage at bus 4 is 0.920 p.u.. In order 
to regulate the voltage at bus 4 to 1 p.u., a SVC is connected 
to the bus. The maximum susceptances of the SVC in 
inductive and capacitive range are 3.472 p.u. and 0.935 p.u., 
respectively. The slope of the SVC is 1%. The SVC is able to 
regulate the voltage within [0.991, 1.036] p.u..  

B. Within the operating limits 
After the SVC is connected to bus 4, the results of the 

voltage at the bus with the six models are shown in Fig. 5. 
The equivalent SVC susceptances are shown in Fig. 6. The 
firing angles from the firing angle model and the 
corresponding combined model are shown in Fig. 7. The 
generator-fixed susceptance model, the total susceptance 
model, the firing angle model and the characteristic model are 
referred to as the G model, B model, F model and C model in 
the figures, respectively. The combined B and C model and 
the combined F and C model are referred to as the BC model 
and the FC model, respectively. The final voltage at bus 4, the 
equivalent SVC susceptance and the iteration number of the 
six models are summarized in Table I. 

As the SVC is operating within the limits (in the capacitive 
range in this case), the generator model provides an accurate 
result, which can be taken as a reference to the other models. 
As both the total susceptance model and the firing angle 
model assume a constant voltage value when the SVC is 
operating within the limits, a final susceptance value of 0.435 
p.u. is obtained by the two models instead of 0.414 p.u. by the 
generator model. Therefore, the two models do not accurately 
reflect the actual operating characteristic of the SVC. The 
characteristic model gives the same susceptance value as the 
generator model. The modified total susceptance model and 
firing angle model, i.e. the combined BC model and FC 
model, both give the same results as the generator model. 
This is due to the reason that the combined models modify 
the SVC voltage according to the SVC droop characteristic at 
each iteration instead of keeping the voltage constant.  

As also shown in Table I, the generator model converges in 
5 iterations. The total susceptance model and firing angle 
model converge in 5 and 6 iterations, respectively. The 
characteristic model converges in 21 iterations. The low 
convergence rate is due to the reason that the change of the 
susceptance is calculated from a linear relation between the 
susceptance and the voltage so that the quadratic convergence 
rate of a standard Newton-Raphson algorithm is reduced. The 
combined BC and FC model converge in 11 and 10 iterations, 
respectively. The convergence rate of the combined models is 
higher than that of the characteristic model. This is because 

the change of the susceptance in the combined models is 
calculated from the Newton-Raphson algorithm, which keeps 
its quadratic convergence rate. The increased iteration 
number as compared to the generator model is due to the 
update of the SVC voltage, which is based on the SVC 
operating characteristic. The convergence rate of the six 
models will be further demonstrated in the next subsection. 

TABLE I 
VOLTAGE AT BUS 4, EQUIVALENT SVC SUSCEPTANCE AND ITERATION 

NUMBER FROM THE SIX SVC MODELS 
 G 

model 
B 

model 
F  

model 
C 

model 
BC 

model 
FC  

model 
V4 0.996 1 1 0.996 0.996 0.996 

Bsvc 
(αsvc) 

0.414 0.435 0.435 
(138.630) 

0.414 0.414 0.414 
(138.020) 

Iteration 5 5 6 21 11 10 
 

C. On the operating limits 

 
Fig. 4.  5-bus test system. 
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Fig. 5.  Voltage at bus 4 from the six SVC models. 
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Fig. 6.  Equivalent SVC susceptance from the six SVC models. 
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Fig. 7.  Firing angle from the firing angle model and the combined model. 



In order to spot the edge of the SVC regulating limits, a 
simple continuation load flow is performed on the network 
with the load at bus 4 increasing at the step of 1% from 1 to 2 
times the base value shown in Fig. 4. The voltage at bus 4 and 
the equivalent susceptance from the six models are shown in 
Fig. 8. As shown in the figure, the total susceptance model 
and firing angle model reach the SVC capacitive limit when 
the load at bus 4 is increased to (126+j54) MVA while at the 
same time the voltage starts decreasing from 1 p.u.. However, 
the generator model, the characteristic model and the two 
combined models all reach the SVC capacitive limit when the 
load at bus 4 is increased further to (129.5+j55.5) MVA. The 
susceptance model and firing angle model give different 
results as compared to the other models due to the constant 
voltage assumption when operating within the limits. As the 
difference of the SVC voltage increases, the difference of the 
susceptance increases. The corresponding convergence rates 
of the six models when the load increases are shown in Fig. 9. 
It is worth pointing out that although the generator-fixed 
susceptance model seems to have the best convergence rate 
during the whole range of the load scale, it needs new load 
flow calculations when the SVC is changing between the 
generator model and the fixed susceptance model. However, 
the other models, no matter under which conditions, require 
only one load flow calculation. As shown in Fig. 9, the firing 
angle model has similar convergence rate as the total 
susceptance model. This also holds for the corresponding 
combined models. The combined BC (FC) model has slower 
convergence rate than the total susceptance (firing angle) 
model, especially when SVC is operating within the limits. 
The convergence rate of the characteristic model is 
exponentially decreasing when the SVC is approaching its 
capacitive limit and becomes too large to be acceptable when 
the SVC reaches its limit. However, the convergence rate of 
the combined models is acceptable.  

V. CONCLUSIONS 

Six different existing models of SVC in load flow 
calculations have been presented. Both conditions, when SVC 
is operating within and on the limits, have been examined. 
The generator model is only valid when the SVC is operating 
within the regulating limits and has to change to the fixed-
susceptance model when operating on the limits. This alters 
the total bus number of the whole network and new load 
flows need to be carried out if using the conventional load 
flow program. The total susceptance model and the firing 
angle model use the susceptance and the firing angle as the 
state variable, respectively, and can obtain the susceptance 
and/or firing angle within one load flow calculation. 
However, both models assume a constant voltage when the 
SVC is operating within the limits, and thus do not represent 
the realistic SVC operating characteristic. Consequently, the 
two models do not provide the actual equivalent susceptance 
value at the fundamental frequency. The characteristic model 
based on the steady-state droop control of the SVC is also 
discussed but fails to have an acceptable convergence rate. 
Two new models, the combined BC and FC model, provide 
an accurate value of the equivalent SVC susceptance; while 
the convergence rate of the two combined models is also 
acceptable. 
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