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Abstract

In Ars Comb. 84 (2007), 85–96, Pedersen and Vestergaard posed
the problem of determining a lower bound for the number of inde-
pendent sets in a tree of fixed order and diameter d. Asymptotically,
we give here a complete solution for trees of diameter d ≤ 5. The
lower bound is 5n/3 and we give the structure of the extremal trees. A
generalization to connected graphs is stated.

1 Introduction

Half a century ago authors counted maximal independent sets in a graph
([7, 8]) and the first results on the number of independent subsets of a graph
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appeared in [11, 2, 3], here i(G) was called the Fibonacci number of G. In
chemical literature i(G) is called the Merrifield-Simmons index. It is treated
in a monograph ([6]) and in a wealth of later papers ([1, 17, 16, 15, 14, 13,
12]).

In [10] several upper and lower bounds for i(G) were presented in terms
of order, size or independence number and also bounds for i(G) in trees and
in unicyclic graphs were obtained.

Denoting n-order trees with diameter d by T (n, d), we have that

i(T (n, d)) ≤ fib(d) + 2n−d fib(d + 1) (1)

[9, Th. 3.1], [5, Th. 1].
Formula (1) gives a tight upper bound for the number of independent

sets in a tree in terms of its diameter and order, in [9] we also determined
the trees for which that upper bound is attained. In the same paper we
posed the problem of determining the corresponding lower bound in terms
of diameter and order, and asked for a characterization of the trees for which
the lower bound is attained. This is for sufficiently large orders done here for
diameters four and five. Asymptotically the number of independent sets in
n-order trees of diameter five turns out to be 5n/3 (Corollary 3). The results
for diameter three and four are also given in a recent paper [4].

2 Notation

All graphs will be assumed simple and finite. A vertex of degree one is
called a leaf and its unique neighbour is called a stem. In a graph G the set
of vertices which are neigbours to a vertex v ∈ V (G) is denoted by NG(v)
and by N(v) if the graph G is obvious from context. The set of vertices
consisting of the vertex v and all its neighbours is denoted by N [v], i.e.
N [v] = {v} ∪N(v). Let S ⊆ V (G), then N(S) denotes the set of vertices in
V (G) having a neighbour in S and N [S] = S∪N(S). For a set S of vertices,
S ⊆ V (G) we let G− S denote the graph obtained from G by deleting from
G all vertices of S and all edges incident with a vertex of S.

Given a graph G, a subset S of V (G) is said to be independent, if no two
vertices of S are adjacent in G, in particular, the empty set is considered to
be an independent set of any graph. The number of independent sets in a
graph G is denoted by i(G).
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We shall often consider some tree T of a given diameter d and order n
such that i(T ) is minimum. By this we mean that T is a tree of diameter d
and order n such that no other tree T ′ of diameter d and order n contains
fewer independent sets than T does.

3 Helpful results

In this section we state some basic observations and results, which will be
helpful for characterizing trees of a given diameter and order which contain
the fewest possible number of independent sets.

Observation 1. Let G be a graph and let v ∈ V (G) and e = uz ∈ E(G).
Then
(i) i(G) = i(G− v) + i(G−N [v])
(ii) i(G− e) = i(G) + i(G−N [{u, z}])
(iii) i(G) = i(G− {u, z}) + i(G−N [u]) + i(G−N [z])

Observation 2. If H is a induced subgraph of G then i(H) ≤ i(G) and
equality holds if and only if G ∼= H. If H is a spanning subgraph of G then
i(H) ≥ i(G) and equality holds if and only if H ∼= G.

Lemma 1. Let G be a graph containing two leaves l1 and l2 such that
d(l1, l2) ≤ 3 and let si denote the stem adjacent to li for i ∈ {1, 2}. If
G′ := G− s2l2 + l1l2 then i(G′) ≤ i(G) and if equality holds then either
(i) d(l1, l2) = 2, s1 = s2 and NG(s1) = {l1, l2}, i.e., in G the three vertices
s1, l1, l2 span a P3 as a component or
(ii) d(l1, l2) = 3, s1 6= s2 and NG(s2) = {s1, l2}.
Proof. Observe that G− l2s2 = G′ − l1l2 so by Observation 1(ii)

i(G) = i(G− s2l2)− i(G−N [s2])

= i(G′ − l1l2)− i(G−N [s2])

i(G′) = i(G′ − l1l2)− i(G′ −NG′([l1, l2])

and thus

i(G)− i(G′) = i(G′ −NG′ [{l1, l2}])− i(G−NG[{l2, s2}]) (2)

= i(G′ −NG′ [l1])− i(G−NG[s2]).
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Since G − NG[s2] ∼= (G′ − NG′ [l1]) − NG′(s2) the graph G − NG[s2] is
an induced subgraph of G′ − NG′ [l1]. Therefore i(G′ − NG′ [l1]) − i(G −
NG[s2]) ≥ 0 and hence we have that i(G) ≥ i(G′). If i(G) = i(G′) then
i(G′ − NG′ [l1]) − i(G − NG[s2]) = 0 and for d(l1, l2) = 2, i.e., s1 = s2, we
have NG(s1) = {l1, l2} while for d(l1, l2) = 3, i.e., s1 6= s2, we have that
NG(s2) = {s1, l2}. This proves Lemma 1.

Lemma 2. Let T be a tree of diameter d ≥ 4 and order n such that i(T ) is
minimum. Then no vertex in T is adjacent to more than two leaves, and if a
vertex is adjacent to two leaves then it is penultimate (adjacent to an end)
on a diametrical path of G.

Proof. Assume that a vertex v is adjacent to two leaves l1, l2. By Lemma
1 it follows that v is the second vertex on a diametrical path v1, v2 =
v, v3, v4, . . . , vd+1. Otherwise the graph G′ = G − vl2 + l1l2 would have
i(G′) < i(G) and the diameter of G′ would not be larger than that of G.
So only the penultimate vertex of a diametrical path can support multi-
ple leaves. We shall prove that v can support at most two leaves. Let
L := {l1, . . . , lk}, k ≥ 3, be the leaves adjacent to v and consider the tree
T ′ := T − {l1v, l2v} + {v3l1, l1l2}. Let C be the component of T − v2v3

containing v3 then

i(T ) = i(C − v3)(2|L| + 1) + i(C −N [v3])2|L|

> 3i(C − v3)(2|L|−2 + 1) + i(C −N [v3])2|L|−1 = i(T ′).

Since T ′ is a tree with diameter d and order n, we have a contradiction
with the minimality of i(T ). Thus, v is not adjacent to more than two
leaves.

Lemma 3. Let H be a graph with a vertex v. Let G1, . . . , Gk, k ≥ 7, be
copies of K2 and let vi ∈ Gi. If G = H ∪ G1 ∪ · · · ∪ Gk + {vv1, . . . , vvk}
and G′ = H ∪ G1 ∪ · · · ∪ Gk−1 + {x, y} + {vv1, . . . , vvk−1, v1x, v2y}, then
i(G′) < i(G).

Proof. By considering G and G′ we observe that i(G) = 3ki(H−v)+2ki(H−
N [v]) and i(G′) = 25 · 3k−3i(H − v) + 2k+1i(H −N [v]). Thus, since k ≥ 7,
we obtain

i(G)−i(G′) = 2·3k−3i(H−v)−2ki(H−N [v]) ≥ (2·3k−3−2k)i(H−N [v]) > 0.
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4 Trees of diameter three

For trees of diameter three the problem is straightforward. For completeness
we describe the trees T of diameter three for which i(T ) is minimum.

Proposition 1. Given any fixed n ≥ 4, let T denote a tree of diameter
three and order n for which the number of independent sets is minimum.
Let P4 : x0x1x2x3 denote a diametrical path of T . Then

{deg(x1), deg(x2)} =
{⌊n− 2

2

⌋
,
⌈n− 2

2

⌉}
.

5 Trees of diameter four

Let G2k+2, k ≥ 2, be the graph obtained from K1,k+1 by subdividing k of
its edges. Consider a tree T with diameter 4 and order n such that i(T )
is minimum. Let v1, . . . , v5 be a diametrical path in T . If n ≥ 7 it follows
from Lemma 1 and Lemma 2 that T ∼= Gn or that each component of T −v3

is isomorphic to K2 or P3. If T 6∼= Gn then let s(T ) and t(T ) denote the
number of components from T − v3 isomorphic to K2 and P3, respectively.
Then n = 1 + 2s + 3t and i(T ) = 2s(T )4t(T ) + 3s(T )5t(T ).

Theorem 1. Let Tn be a tree of diameter four and order n for which the
parameter i(Tn) attains its minimum value and let v1, . . . , v5 be a diametrical
path in Tn. Then T5 = P5, T6 = G6 and if n ≥ 7 then each component of
Tn − v3 is isomorphic to K2 or P3 and

• s(Tn) is as indicated in the following table when 7 ≤ n ≤ 25.

• s(Tn) ∈ {0, 1, 2} and s(Tn) ≡ 2n + 1(mod 3) for n ≥ 26.

n 7 8 9 10 11 12 13 14 15 16
s(Tn) 3 2 4 3 5 4 6 5 4 3
n 17 18 19 20 21 22 23 24 25

s(Tn) 5 4 3 2 4 3 2 1 3
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Proof. The theorem is easily verified for n ≤ 6. Thus, we may assume n ≥ 7. By
considering Gn (if n is even) it easily follows that the graph T ′ obtained from Gn

by removing the leaf adjacent to the center vertex and attaching a second leaf to
another stem satisfies i(T ′) < i(Gn). Thus we may assume that Tn 6∼= Gn and only
s(Tn) has to be determined.

Now consider trees T ′ and T ′′ with the same structure as T , i.e., having diameter
four and such that all components obtained by deletion of the central vertex are
K2’s or P3’s. Assume further that that s(T ′′) = s(T ′)−3 ≥ 0 and t(T ′′) = t(T ′)+2.
If s′ := s(T ′) and t′ := t(T ′) then

i(T ′)− i(T ′′) =
2
27

3s′
5t′ − 2s′

4t′ .

It follows that

i(T ′)− i(T ′′) ≥ 0⇔
(

3
2

)s′ (
5
4

)t′

≥ 27
2
⇔ s′ log 3/2 + t′ log 5/4 ≥ log 27/2.

Since n′ := |V (T ′)| = 1 + 2s′ + 3t′ we may obtain that i(T ′) − i(T ′′) ≥ 0
if and only if s′ ≥ a − bn′ for real numbers a and b, a = log(27/2)+(1/3) log(5/4)

log(3/2)−(2/3) log(5/4) ,

b = (1/3) log(5/4)
log(3/2)−(2/3) log(5/4) , (a ≈ 10, 429 and b ≈ 0, 2898).
It follows that if k is the largest integer such that k ≤ a−bn and n = 1+2k+3t

for some integer t ≥ 0 then s(Tn) = k if and only if k ≥ 0. Using these observations,
it is straightforward to derive the values of s(Tn) for n ≤ 25. For n ≥ 26 the
inequality s′ ≤ a− bn implies that s′ < 3 and therefore s(Tn) ≤ 2. By the equation
n = 1+2s+3t we obtain that 2s(Tn) ≡ n−1(mod 3) and the statement is obtained
since this implies that s(Tn) ≡ −2s(Tn) ≡ 1− n ≡ 2n + 1(mod 3).

6 Trees of diameter five
In order to describe trees of diameter five with minimum number of independent
sets we introduce the following terminology.

Let T denote a tree of diameter five with a diametrical path
P6 : x0x1x2x3x4x5. If there is exactly one leaf attached to {x2, x3}, then we refer
to T as a center-leaf tree, and if there is no leaf attached to {x2, x3}, then we refer
to T as a center-leaf-free tree.

Let T denote a center-leaf-free tree. If every component of T − {x2, x3} is
a K1,1 then T is referred to as a center-leaf-free K1,1-tree. If every component
of T − {x2, x3} is a K1,2, then T is referred to as a center-leaf-free K1,2-tree. If
every component of T − {x2, x3} is a K1,1 or a K1,2, then T is referred to as a
center-leaf-free mixed-K1,1-K1,2-tree.
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6.1 Some lemmas concerning trees of diameter five
In the following we prove some results needed for the characterization of trees of
diameter five with minimum number of independent sets.

Lemma 4. Let T be a tree of diameter five for which i(T ) is minimum, and let
P6 : x0x1x2x3x4x5 denote a diametrical path of T . Then

(1) The neighbourhood N [x2, x3] contains at most one leaf,

(2) if there is a leaf l attached to either x2 or x3, then every component of
T − {x2, x3, l} is a K1,1, and

(3) if neither x2 nor x3 has a leaf attached, then every component of T −{x2, x3}
is a K1,1 or a K1,2.

Proof. Statement (1) follows from Lemma 1, while statement (3) follows from
Lemma 2. To prove statement (2), we may assume that a leaf l is adjacent to
x2. From Lemma 1 it follows that all vertices from N(x2)\{x3} have degree at
most two in T . Thus we may assume that a vertex y ∈ N(x3)\{x2} has degree at
least three in T . By Lemma 2 y has degree exactly three.

Let l′, x be a the two leaves adjacent to y and consider the tree T ′ := T−yl′+ll′.
Observe that an independent set S in T ′ is independent in T unless {l′, y} ⊆ S. An
independent set in T containing both l and l′ is not independent in T ′. Therefore

i(T ) = i(T ′)− i(T ′ −NT ′ [l′, y]) + i(T −NT [l, l′]). (3)

One component of T ′ −NT ′ [l′, y] is A, the subdivided star with center x2 and the
other components are a collection B of K1,1’s and K1,2’s, each joined by a (deleted)
edge to x3. Compare this to T −NT [{l, l′}] which as components has A − x2 and
the isolated vertex x in one group (corresponding to A) and one further component
B ∪ {x3}. We see by Observation 2 that i(T ′ −NT ′ [l′, y]) < i(T −NT [l, l′]). Thus
(3) implies i(T ) > i(T ′) which contradicts the choice of T .

Lemma 4 states that given an integer n ≥ 6, the minimum value of i(T ) over all
trees of order n and diameter five is attained for a center-leaf K1,1-tree or a center-
leaf-free mixed-K1,1-K1,2-tree. Given any center-leaf-free mixed-K1,1-K1,2-tree T ,
we let p(T ) and q(T ) denote the number of K1,1’s attached to x2 and x3, respec-
tively, and let r(T ) and s(T ) denote the number of K1,2’s attached, by their center
vertex, to x2 and x3, respectively. Whenever the context is clear we will simply
write p, q, r and s for p(T ), q(T ), r(T ) and s(T ). For the number of independent
sets in a center-leaf-free mixed-K1,1-K1,2-tree T we can use Observation 1(iii) to
obtain Proposition 2 below.

Proposition 2. The number of independent sets in any center-leaf-free mixed-
K1,1-K1,2-tree T is

3p+q5r+s + 2p3q4r5s + 2q3p5r4s. (4)
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Lemma 5. Let T be a tree of diameter five for which i(T ) is minimum. If there is
a leaf attached to x2 or x3, then n(T ) ≤ 27.

Proof. Suppose there is a leaf attached to x2 or x3. Then it follows from Lemma 4,
that T is a center-leaf K1,1-tree. If p and q denote the number of K2’s attached to x2

and x3, respectively, then p, q ≤ 6, according to Lemma 3. Since n(T ) = 3+2(p+q),
the desired bound on n(T ) follows.

Corollary 1. If n ≥ 28, then a tree T of diameter five and order n for which i(T )
is minimum is a center-leaf-free mixed-K1,1-K1,2-tree.

Proof. As noted above in Lemma 4, the tree T is either a center-leaf K1,1-tree
or a center-leaf-free mixed-K1,1-K1,2-tree. Since n ≥ 28, the claim follows from
Lemma 5.

Lemma 6. Let T be a tree of diameter five for which i(T ) is minimum, and let
P6 : x0x1x2x3x4x5 denote a diametrical path of T . Let r and s denote the number
of K1,2’s attached by their center vertex to x2 and x3, respectively. By symmetry,
we may assume r = s + c for some non-negative integer c. If c ≥ 1 then p ≤ q and
given values of p and q we have that c is the largest possible integer such that

c ≤
⌊

log(5/4) + (q − p) log(3/2)
log(5/4)

⌋
.

Proof. Suppose that c ≥ 1. Let T ′ denote the center-leaf-free mixed K1,1-K1,2-tree
with p(T ′) = p, q(T ′) = q, r(T ′) = r − 1 = s + c− 1 and s(T ′) = s + 1. According
to Observation 1(iii),

i(T ) = 3p+q5r+s + 2p3q4r5s + 2q3p5r4s and
i(T ′) = 3p+q5r+s + 2p3q4r−15s+1 + 2q3p5r−14s+1.

Thus i(T ) − i(T ′) = 1
52q3p5r4s − 1

42p3q4r5s. Now consider the logarithm of the
ratio of these two terms

log
( 1

52q3p5r4s

1
42p3q4r5s

)
= log

(
4
5

(
2
3

)q−p(5
4

)c
)

= log
(

4
5

)
+(q−p) log

(
2
3

)
+c log

(
5
4

)
.

This term is at most zero since by hypothesis i(T ) ≤ i(T ′). This implies that p ≤ q
and since i(T ) is minimum and we by hypothesis create a tree T ′ with larger i(T ′)
each time we move a K1,2-component attached to x2 over to x3. Therefore we want
c to be the largest possible integer such that

c ≤ log(5/4) + (q − p) log(3/2)
log(5/4)

.
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Analogously to Lemma 3 we can obtain Lemma 7.

Lemma 7. Let H be a graph with a vertex v. Let G1, . . . , G9 be copies of K1,2

and let vi be the center vertex of Gi, 1 ≤ i ≤ 9. Let F1, F2, F3 be copies of K1,1

and let fi be a vertex in Fi, 1 ≤ i ≤ 3. If G = H ∪G1 ∪ · · · ∪G7 ∪ F1 ∪ F2 ∪ F3 +
{vv1, . . . , vv7, vf1, vf2, vf3} and G′ = H ∪G1 ∪ · · · ∪G9 + {vv1, . . . , vv7, vv8, vv9},
then i(G′) < i(G).

Proof. i(G) − i(G′) = 2 · 57 · i(H − v) − 217i(H − N [v]) > 0 because i(H − v) ≥
i(H −N [v]) and 57 > 216.

From Lemma 7 we obtain the following corollary.

Corollary 2. Let T be a tree of diameter five for which i(T ) is minimum. If n ≥ 88
then p ≤ 2, q ≤ 2 and |r − s| ≤ 4.

Proof. By Lemma 6 we can choose notation such that r ≥ s and p ≤ q. By Lemma
3 we have that p ≤ q ≤ 6. Assume that q ≥ 3. Then Lemma 7 implies that
s ≤ 6 and from Lemma 6 we get c ≤ log(5/4)+6 log(3/2)

log(5/4) ' 11, 9, i.e., c ≤ 11, so that
r ≤ 17. Either r ≤ 6 and p ≤ 6 or 7 ≤ r ≤ 17 and p ≤ 2. Both cases imply
that n ≤ 87. This contradiction proves that q ≤ 2. Again, Lemma 6 gives that
c ≤ log(5/4)+2 log(3/2)

log(5/4) ' 4, 6 such that c ≤ 4.

6.2 Main result for trees of diameter five
By using the results from Section 6.1 we obtain the main results for trees of diameter
five.

Theorem 2. For any n ≥ 28, a tree T of diameter five and order n for which
i(T ) is minimum is a center-leaf-free mixed-K1,1-K1,2-tree with r(T ) = s(T ) + c
and q(T ) = p(T ) + d for non-negative integers c and d. Moreover, c ≤ 11 and
p(T ), q(T ) ≤ 6. If n ≥ 88 then c ≤ 4 and p(T ), q(T ) ≤ 2.

Proof. The proof relies on the results of Section 6.1. According to Corollary 1, the
tree T as described in the theorem is a center-leaf-free mixed-K1,1-K1,2-tree. The
bounds on the parameters p(T ), q(T ), r(T ), s(T ) follow from Lemma 3, Lemma 6
and Corollary 2.

If Tn is a tree of diameter five and order n for which i(Tn) is minimum, then it
follows from the above theorem that as n increases the tree Tn will be an increasingly
’well-balanced’ center-leaf-free mixed-K1,1-K1,2-tree, that is, the ratio of r(Tn) and
s(Tn) will tend to one, and the ratio of (p(Tn) + q(Tn))/n will be small.

Lemma 8. There is an integer n′ such that if Tn is a tree of diameter five and
order n ≥ n′ for which i(Tn) is minimum then p(Tn) + q(Tn) ≤ 2.

9



Proof. Let Tn be any center-leaf-free mixed-K1,1-K1,2-tree of order n such that
p(Tn) + q(Tn) ≥ 3 and p(Tn), q(Tn) ≤ 6. Consider a center-leaf-free mixed-K1,1-
K1,2-tree Tn

2 of order n with p(Tn
2 )+q(Tn

2 ) = p(Tn)+q(Tn)−3 and r(Tn
2 )+s(Tn

2 ) =
r(Tn) + s(Tn) + 2. From equation (4) it follows that

lim
n→∞

i(Tn)
3p(T n)+q(T n)5r(T n)+s(T n)

= 1 and lim
n→∞

i(Tn
2 )

3p(T n)+q(T n)5r(T n)+s(T n)
=

25
27

.

Thus there must exist an integer n′ such that i(Tn) > i(Tn
2 ) when n ≥ n′.This

implies that Tn can not be the graph Tn for n ≥ n′ and the statement follows.

By using the result from Lemma 8 we can obtain the following characterization
of Tn when n ≥ n′.

Theorem 3. There is an integer n′ such that if Tn is a tree of diameter five and
order n ≥ n′ for which i(Tn) is minimum. Then Tn is a center-leaf-free mixed-K1,1-
K1,2-tree and p, q, r and s is as indicated in the following table (it is assumed that
c := r − s ≥ 0 and p ≤ q):

n mod 6 q p c
0 1 1 0
1 1 0 1
2 0 0 0
3 2 0 3
4 1 0 2
5 0 0 1

Proof. Let n′ be the integer from Lemma 8 and consider Tn when n ≥ n′. Then
p + q ≤ 2 and Lemma 6 implies that c ≤ 1 if p = q, c ∈ {1, 2} if q − p = 1
and c ∈ {3, 4} if q − p = 2. By considering cases depending on n mod 6 it can
be observed that this determines the parameters p, q and c when n mod 3 6= 0.
Further in the case n mod 6 = 0 either p = 1, q = 1 and c = 0 or p = 0, q = 2 and
c = 4 and in the case n mod 6 = 3 either p = 1, q = 1 and c = 1 or p = 0, q = 2
and c = 3. In both cases we only have to compare the number of independent sets
in the two trees that might be isomorphic to Tn and the result is as indicated in
the table.

It can be shown that the integer n′ from Lemma 8 and Theorem 3 can be chosen
to be smaller than one hundred.

From Theorem 3 we immediately obtain

Corollary 3. Asymptotically the minimum number of independent sets in n-order
trees of diameter five is 5n/3.
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7 The lower bound of i on graphs of fixed order and
diameter

The following theorem gives an optimal bound for i for connected graphs of fixed
order and diameter. The graph obtained by attaching a path P to a vertex v in a
graph G is the graph P ∪ G + uv where u is a vertex of P with minimum degree.
The Fibonacci numbers fib(0), fib(1), . . . is defined by the equations fib(0) := 0,
fib(1) := 1 and fib(n) := fib(n− 1) + fib(n− 2) for n ≥ 2.

Theorem 4. If G is a connected graph of order n and diameter d ≥ 2, then

2fib(d + 1) + (n− d)fib(d) ≤ i(G), (5)

where equality occurs if and only if G is isomorphic to the graph obtained from
Kn−d+2 by removing an edge wv and attaching a path Pd−2 at v (if d ≥ 3).

Proof. If G ∼= Pd+1 then the statement is true for G since i(G) = fib(d + 3) =
2fib(d + 1) + (n − d)fib(d). Let G be a connected graph of order n and diameter
d, G 6∼= Pd+1. Assume that the statement is true for each graph of order less than
n. Consider a diametrical path P : v1, . . . , vd+1 in G. Since G 6∼= Pd+1 there must
be a vertex u 6∈ V (P ) such that G − u is connected and since P is a diametrical
path u can at most be adjacent to three vertices of P . Thus G− u is a graph with
diameter at least d and G − N [u] has at least d − 2 vertices. By assumption we
have that i(G − u) ≥ 2fib(d + 1) + (n − 1 − d)fib(d) and Observation 2 implies
that i(G − N [u]) ≥ i(Pd−2) = fib(d). If equality holds in both inequalities then
G −N [u] ∼= Pd−2 and G − u has diameter d and can be constructed as one of the
graphs described in the statement. Thus if equality holds in both inequalities G
must be one of the graphs described in the statement. By applying Observation 1
we obtain that

i(G) = i(G− u) + i(G−N [u]) ≥ 2fib(d + 1) + (n− d)fib(d)

and equality occurs if and only if G is one of the graphs described in the statement.
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