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Accurate Estimation of Low Fundamental
Frequencies from Real-Valued Measurements

Mads Græsbøll Christensen, Senior Member, IEEE

Abstract— In this paper, the difficult problem of estimating
low fundamental frequencies from real-valued measurements is
addressed. The methods commonly employed do not take the
phenomena encountered in this scenario into account and thus
fail to deliver accurate estimates. The reason for this is that
they employ asymptotic approximations that are violated when
the harmonics are not well-separated in frequency, something
that happens when the observed signal is real-valued and the
fundamental frequency is low. To mitigate this, we analyze
the problem and present some exact fundamental frequency
estimators that are aimed at solving this problem. These esti-
mators are based on the principles of nonlinear least-squares,
harmonic fitting, optimal filtering, subspace orthogonality, and
shift-invariance, and they all reduce to already published methods
for a high number of observations. In experiments, the methods
are compared and the increased accuracy obtained by avoiding
asymptotic approximations is demonstrated.

I. INTRODUCTION

Signals that are periodic can be decomposed into a sum
of sinusoids having frequencies that are integer multiples of
a fundamental frequency, much like the well-known Fourier
series, except that real-life signals are noisy and are not
observed over an integer number of periods. The problem of
finding this fundamental frequency is referred to as funda-
mental frequency estimation or sometimes as pitch estimation,
with the latter term referring to the perceptual attribute that
is associated with sound waves exhibiting periodicity. Many
signals that can be encountered by the signal processing
practitioner are periodic or approximately so. This is, for
example, the case in speech processing, where voiced speech
exhibits such characteristics, and in music processing for tones
produced by musical instruments. Also in the analysis of
some bird calls and various other biological signals, like vital
signs [1], such signals can be encountered. Moreover, they
occur in radar applications for rotating targets [2] and in
passive detection, localization, and identification of boats and
helicopters [3]. It is then also not surprising that a host of
methods have been proposed over the years including methods
based on the principles of maximum likelihood, least-squares
(LS), and weighted least-squares (WLS) [4]–[8], auto-/cross-
correlation and related methods [9]–[13], linear prediction
[14], filtering [2], [15]–[17], and subspace methods [18], [19].
We note in passing that several of the cited methods can
be interpreted in more than one way and may therefore be
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considered as belonging to several of the categories above.
For an introduction to the fundamental frequency estimation
problem and an overview of fundamental frequency estimators,
we refer the interested reader to [20].

We are here concerned with a specific problem in determin-
ing the fundamental frequency under certain circumstances.
When the fundamental frequency of a periodic signal is low
as compared to the number of samples, the harmonics of
the signal are closely spaced in its spectrum, as the distance
between harmonics is given by the fundamental frequency. A
similar effect comes into play when the observed signal is
real (when we say that some quantity is real, we mean that
it is real-valued, i.e., its imaginary part is zero). In this case,
harmonics occur in the spectrum not only at positive integer
multiples of a fundamental, but also for negative, as complex
conjugate pairs of complex sinusoids combine to yield real
signals. Again, the distance between the individual complex
sinusoids is given by the fundamental frequency. The problem
here is that when harmonics are close in frequency, and they
are far from being orthogonal, they will interact. As such, this
is not really a problem, but most of the parametric methods
in the literature ignore this. The reason for this is simple: by
ignoring the interaction, one obtains simpler estimators that
can be implemented efficiently using, for example, the fast
Fourier transform (FFT) or polynomial rooting methods. An
example of this is the so-called harmonic summation method
[4], in which an approximate maximum likelihood estimate of
the fundamental frequency is obtained by summing the power
spectral density sampled at candidate fundamental frequencies
and picking the one that yields the highest power. This method
is accurate when the number of samples approaches infinity,
but it fails to take the interaction into account for finite length
signals. From the above discussion, it should also be clear that
when the fundamental frequency is high relative to the number
of available samples, there is essentially no error in using a
complex model for a real-valued signal.

Interestingly, the problem of taking the nature of real signals
into account has been addressed in the frequency estimation
literature, i.e., for the case where sinusoids are not constrained
to being integer multiples of a fundamental frequency. Some
examples of adaptations of well-known estimators to this
problem are for maximum likelihood methods [21], [22],
subspace methods [23], [24], Capon’s method [25], and the
linear prediction [26] method.

It is possible to bound the performance of estimators by
computing the Cramér-Rao lower bound (CRLB), which is
a lower bound on the variance of an unbiased estimator.
This has also been done for the problem of estimating the
fundamental frequency [2], [18]. These show that the expected
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performance (of an optimal estimator) does not depend on the
fundamental frequency. At first glance, this seems to contradict
the premise of this paper. However, upon closer inspection, it
turns out that these bounds were derived based on asymptotic
approximations relying on the number of samples approaching
infinity or being sufficiently large. In former case, the support
of spectrum of the sinusoids reduces to a single point, and,
hence, the interaction between sinusoids will be zero as long
as the fundamental frequency is different from zero, a trivial
case that is of no interest anyway.

In this paper, we aim to analyze and solve this problem
in a systematic manner. We define the problem of interest
with complex and real signal models and analyze it using
using what we refer to as the exact CRLB. Then, a number of
solutions to the problem are presented, some of which are new,
some of which are known, namely a nonlinear least-squares
method, an optimal filtering method, a subspace method
based on angles between subspaces, and, finally, a method
based on a WLS fitting of unconstrained frequencies (called
harmonic fitting). The presented methods have in common that
they avoid the use of asymptotic approximations, whenever
possible, and they take the real-valued nature of the observed
signal into account. The nonlinear least-squares method is
well-documented in the literature having been applied to many
problems, including also frequency estimation and fundamen-
tal frequency estimation [5], [6], [8]. The optimal filtering
method, which is based on constrained optimization, was
originally proposed in [8], but only for complex signals. Here,
the underlying constraints are modified to fit real signals. The
method based on angles between subspaces is an exact version
of the MUSIC-based methods of [8], [18] both of which
employ an approximate measure of subspace orthogonality
as introduced in [27]. The connection between the exact
and approximate measures of the angles between subspaces
was first analyzed in [28], but was only used for deriving
an approximate, normalized measure for order estimation
and, hence, not for fundamental frequency estimation. The
harmonic fitting method was originally proposed in [6], but
employed a weighting of the individual harmonics derived
based on asymptotic properties, while we here avoid using
these. In simulations, the effectiveness of these methods is
then investigated and their performance compared to the exact
CRLB, and the problem is analyzed via comparisons of the
asymptotic and exact CRLBs.

The remainder of the present paper is organized as follows:
In Section II, we introduce the problem and the signal models
and proceed to derive the corresponding CRLB. In the section
that follows, namely Section III, we present some methods for
solving the problem. We then present the experimental results
in Section IV, after which we conclude on our work in Section
V.

II. PRELIMINARIES

A. Model and Problem Definition

We will now proceed to define the problem of interest
and the associated signal model. The observed real signal
x(n) is composed of a set of L sinusoids having frequencies

that are integer multiples of a fundamental frequency ω0,
real amplitude Al > 0, and phases φl ∈ [0, 2π). Aside
from the sinusoids, we assume that an additive noise source
e(n) is present. This noise source represents all stochastic
signal components, even those that are integral parts of natural
signals that may be of interest to us in other cases. It is here
assumed to be white Gaussian distributed having variance σ2

and zero mean, although this is strictly speaking not necessary
for all the presented methods. Mathematically, the observed
signal can be expressed for n = 0, . . . , N − 1 as

x(n) =

L∑
l=1

Al cos (ω0ln+ φl) + e(n). (1)

The problem is then to estimate ω0 from x(n). For a given
L, the fundamental frequency can be in the range ω0 ∈
(0, πL ). Regarding the remaining unknown parameters, some
comments are in order. The model order, L, (also referred to
as the number of harmonics) can be found a variety of ways
and it is possible to solve jointly for the fundamental frequency
and the model order, something that has been done for all the
methodologies employed here (see [20]), and the extension
of these principles to the estimator presented herein is fairly
straightforward for which reason we defer from any further
discussion of this problem. Once the fundamental frequency
and the model order L has been found, the corresponding
phases and amplitudes can be found using one of the many
existing amplitude estimators [20], [29]. Compared to the
problem of estimating the fundamental frequency, this is
fairly easy, as these parameters are linear. We note that for
L = 1, the model above reduces to a single real sinusoid
and the associated estimation problem to the usual frequency
estimation problem.

Regarding the realism of the model (1), there are several
issues that may be a concern. First, the amplitudes, phases
and frequencies are assumed to be constant for the duration
of the N samples. Since natural sources most often are
time-varying, N should be chosen sufficiently low so that
the model is a good approximation of the observed signal.
Second, the frequencies of the harmonics are assumed to be
integer multiples of the fundamental frequency. This should
be considered an approximation too, as natural signals may
exhibit deviations from this for variety of reasons. We note in
passing that a number of modified signal models that take this
into account exist [20], [30]. Since these are widely application
and signal specific and we wish to retain the generality of
the presented material, we will not go further into details on
this matter. Third, the noise was assumed to be Gaussian and
white. Regarding the Gaussian assumption, this appears to be
the norm in the literature, and, in our experience, it does not
appear to be a major shortcoming of existing methods used in
speech and audio processing. It should also be noted that even
though several of the estimators herein are derived based on
this assumption, the estimators may still be accurate, at least
asymptotically so, even if the assumption does not hold [31].
Moreover, the white Gaussian distribution can be shown to be
the one that maximizes the entropy of the noise [32], i.e., it is
a worst case scenario. For colored noise, one can apply pre-
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whitening [5], [33], i.e., a filtering, to render the noise white,
or, at least, more close to being white than it was prior to the
pre-whitening. Fourth, the noise was assumed to have zero
mean and no DC offset (0 frequency component) is included
in the deterministic part of (1). This is mostly done for
simplicity. The presence of such a component can, though, be
addressed in several ways: a) the presented estimators can be
extended by including the zero frequency component having
an unknown amplitude [31]; b) the mean can be estimated
(and removed) a priori as it is typically caused by calibration
errors in microphones and constant outside n = 0, . . . , N −1;
c) the signal of interest can be preprocessed using a simple
DC blocking filter.

This signal model in (1) can also be expressed using
complex sinusoids as

x(n) =

L∑
l=−L

ale
jω0ln + e(n), (2)

with al = a∗−l and a0 = 0. In this notation, the phase and
amplitude have been combined into a complex amplitude as
al = Al

2 e
jφl and (·)∗ denotes the complex-conjugate. It should

be stressed that no additional assumptions have been used in
going from (1) to (2), which means that (2) is exact. The
error in applying a complex model arises when modifying
(2) into x(n) ≈

∑L
l=1 ale

jω0ln + e(n), i.e., when assuming
that only half the complex sinusoids are there. This essentially
ignores the interaction between the complex sinusoids having
frequencies {ω0l}Ll=1 and {−ω0l}Ll=1. Another frequently used
approach is to convert (1) into a complex model via the
Hilbert transform, which can be used to compute the so-called
discrete-time analytic signal. However, the error committed in
this process is essentially the same (aside from the subop-
timality of the finite-length Hilbert transform), and they are
both accurate under the same conditions, namely that ω0 is
not close to 0 relative to N .

B. Cramér-Rao Lower Bound and Further Definitions

An estimator is said to be unbiased if the expected value of
its estimate θ̂i of the ith parameter θi of the parameter vector
θ ∈ RP is identical to the true parameter for all possible values
of the true parameter, i.e., E

{
θ̂i

}
= θi ∀θi. The difference,

i.e., θi − E
{
θ̂i

}
, is referred to as the bias. The CRLB is

a lower bound on the variance of an unbiased estimate of a
parameter, say θi, and it is given by var(θ̂i) ≥

[
I−1(θ)

]
ii

.
Here, the notation [I(θ)]il means the ilth entry of the matrix
I(θ) and var(·) denotes the variance. Furthermore, I(θ) is the
Fisher information matrix defined as

I(θ) = −E

{
∂2 ln p(x;θ)

∂θ∂θT

}
, (3)

where p(x;θ) is the likelihood function of the observed signal
parametrized by the parameters θ. For the case of Gaussian
signals with x ∼ N (µ(θ),Q) where Q is the noise covariance
matrix (which is not parametrized by any of the parameters in

θ) and µ(θ) is the mean, the likelihood function is given by

p(x;θ) =
1

det (2πQ)
1
2

e−
1
2 (x−µ(θ))TQ−1(x−µ(θ)). (4)

For this case, Slepian-Bang’s formula [34] can be used for
determining a more specific expression for the Fisher infor-
mation matrix. More specifically, it is given by

[I(θ)]nm =
∂µT (θ)

∂θn
Q−1 ∂µ(θ)

∂θm
. (5)

For the problem and signal model considered here, the in-
volved quantities are given by:

x , [ x(0) · · · x(N − 1) ]
T

Q , σ2I

θ , [ ω0 A1 φ1 · · · AL φL ]
T

µ(θ) , Za

Z , [ z(ω0) z∗(ω0) · · · z(ω0L) z∗(ω0L) ] ,

a ,
1

2

[
A1e

jφ1 A1e
−jφ1 · · · ALejφL ALe

−jφL
]T

z(ω0l) ,
[

1 ejω0l1 · · · ejω0l(N−1)
]T
.

Note that we will make extensive use of these definitions later.
In relation to the problem at hand, some observations about
the nature of the matrix Z can be made: Firstly, for ω0 6= 0
and ω0 ∈ (0, πL ), Z has full rank. However, for ω0 = 0, it
will be rank deficient and as ω0 → 0, the condition number
of Z will tend to infinity and the involved estimation problem
is basically ill-posed.

With the above in place, we now have to determine the
following derivatives:

∂µ(θ)

∂ω0
=

∂Z

∂ω0
a,
∂µ(θ)

∂Al
= Z

∂a

∂Al
,
∂µ(θ)

∂φl
= Z

∂a

∂φl
, (6)

which, in turn, require that the following be computed:

∂Z

∂ω0
=

[
∂z(ω0)

∂ω0

∂z∗(ω0)

∂ω0
· · · ∂z(ω0L)

∂ω0

∂z∗(ω0L)

∂ω0

]
∂z(ω0l)

∂ω0
=
[

0 jlejω0l · · · j(N − 1)lejω0l(N−1)
]T

(7)

∂a

∂Al
=

1

2

[
0 · · · 0 ejφl e−jφl 0 · · · 0

]T
∂a

∂φl
=

1

2

[
0 · · · 0 jAle

jφl − jAle−jφl 0 · · · 0
]T
.

For simplicity, we introduce the following definitions:

∂Z

∂ω0
a , α0

Z
∂a

∂Al
= Re

{
ejφlz(ω0l)

}
, βl

Z
∂a

∂φl
= −Al Im

{
ejφlz(ω0l)

}
, γl.

(8)

Here, Re {·} and Im {·} denote the real and imaginary values,
respectively. Note that all the quantities above are real. The
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entries in the Fisher information matrix can now be expressed
in terms of inner products between these quantities as:

I(θ) =
1

σ2



αT0 α0 αT0 β1 αT0 γ1 · · · αT0 βL αT0 γL
βT1 α0 βT1 β1 βT1 γ1 · · · βT1 βL βT1 γL
γT1 α0 γT1 β1 γT1 γ1 · · · γT1 βL γT1 γL

...
...

...
. . .

...
...

βTLα0 βTLβ1 βTLγ1 . . . βTLβL βTLγL
γTLα0 γTLβ1 γTLγ1 . . . γTLβL γTLγL


(9)

The CRLB can now be determined from this by computing the
inverse of this matrix and inspecting its diagonal elements.
The simple closed form expressions for CRLBs obtained in
[2], [18] can be found using the asymptotic orthogonality of
complex sinusoids in computing the inner products above.
However, we here do not employ this technique as we wish to
take into account that the sinusoids are not orthogonal for low
fundamental frequencies, and we therefore refer to this CRLB
as the exact CRLB. For reference, the asymptotic CRLB for
the problem at hand is given by

var(ω̂0) ≥ 24σ2

N3
∑L
l=1A

2
l l

2
. (10)

The lower bound can be seen to be determined by the signal-
to-noise ratio (SNR) defined (in dB) as

SNR = 20 log10

∑L
l=1A

2
l l

2

σ2
[dB] . (11)

An interesting observation can be made from (9): it can be
seen that the noise variance is simply a constant factor, and
the effect of noise is, hence, unrelated to the problem of low
fundamental frequencies. In this connection, it should be noted
that this is also the case when the noise variance is uknown
[35].

III. METHODS

A. Nonlinear Least-Squares

We will now present a number of estimators for solving
the problem of interest. The first such method is the nonlinear
least-squares (NLS) method, which is based on the principle of
maximum likelihood estimation. It is an adaptation of a type
of estimator that has appeared in many forms and contexts
throughout the years to the problem at hand [4], [5], [8]. The
maximum likelihood estimator for the parameters θ is given
by

θ̂ = arg max
θ

p(x;θ). (12)

Under the assumption that x is Gaussian distributed and the
noise is white, i.e., x ∼ N (µ(θ), σ2I) , the likelihood function
is given by (4). By inserting (4) into (12), taking the logarithm
and dropping all constant terms, we obtain:

θ̂ = arg min
θ
‖x− µ(θ)‖2 , (13)

where ‖ · ‖2 denotes the vector 2-norm. This shows the well-
known result that when the noise is white and Gaussian dis-
tributed, the LS method is the maximum likelihood estimator.
As before, the mean is determined by the harmonic signal

model, i.e., µ(θ) = Za and the unknown parameters are
in this case the fundamental frequency ω0 that completely
characterizes Z and the vector a containing the complex
amplitudes. This results in the following problem:

(ω̂0, â) = arg min
ω0,a
‖x− Za‖2 . (14)

Since we are not really interested in the complex amplitudes,
we will substitute these by their maximum likelihood estimate
(for a given ω0), which is â =

(
ZHZ

)−1
ZHx, with (·)H

denoting the Hermitian-transposition. The resulting estimator
depends only on ω0:

ω̂0 = arg max
ω0

xTΠZx. (15)

with ΠZ being the orthogonal projection matrix for the space
spanned by the columns of Z, i.e., ΠZ = Z

(
ZHZ

)−1
ZH .

This is the estimator that we will here refer to as the
NLS estimator. For each fundamental frequency candidate
it involves operations of complexity O(L2N) + O(L3) +
O(LN2) +O(N2). The estimator does not, however, require
any initialization1, unlike the methods to follow. It should be
noted that in assessing the complexity of the various methods,
we treat the involved variables, here N and L, as independent
variables, although they may not be. The matrix Z has full rank
as long as ω0 6= 0 and that N ≥ L for the inverse

(
ZHZ

)−1

to exist. However, for very small ω0, numerical effects may
render the estimates useless.

The harmonic summation method [4] follows from this by
using the fact that the columns of Z are orthogonal asymp-
totically in N [20]. Although this leads to a computationally
efficient implementation based on the fast Fourier transform,
this ultimately also leads to the failure of this method for low
ω0 and N .

B. Harmonic Fitting

The idea behind the following method is quite intuitive and
appealing due to its simplicity. It is based on the principle of
[36] used in [6]. Many different and good methods exist for
finding frequencies of sinusoids in an unconstrained manner,
meaning that they find frequencies that are not constrained
to being integer multiples of a fundamental frequency. The
question is then how to find an estimate of the fundamental
frequency from these frequencies.

Suppose we find a set of parameter estimates η̂ from x,
and assuming that a maximum likelihood estimator with suf-
ficiently large N is used (and that some regularity conditions
are satisfied), the estimates η̂ are distributed as (see, e.g., [34])

η̂ ∼ N (η, I−1(η)) (16)

where I(η) is the Fisher information matrix for the likelihood
function for η (here, η are the true values). Now, suppose
that we are not interested in these parameters, but rather in a

1In the context of complexity analysis, by initialization we mean that
quantities that have to be computed before numerical optimization can be
performed to obtain the parameters of interest, i.e. the computation of
quantities other than the signal of interest.
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different set θ and that we can find a linear transformation S
that relates these two. Mathematically, this can be stated as

η = Sθ. (17)

In the following, we assume that S is real, has full rank and is
tall and that both parameter sets are real. Since η̂ are estimates
of η and are distributed according to (16), the difference η̂−
Sθ is distributed as η̂−Sθ ∼ N (0, I−1(η)). We can now use
this to pose a probability density function of η̂ as

p(η̂;θ) =
1

det (2πI−1(η))
1
2

e−
1
2 (η̂−Sθ)T I(θ)(η̂−Sθ), (18)

which can be seen to be parametrized by the unknown param-
eters θ and is, hence, a likelihood function. Proceeding now
as in Subsection III-A, we can state the maximum likelihood
estimate of θ as

θ̂ = arg max
θ

ln p(η̂;θ) (19)

= arg min
θ

(η̂ − Sθ)
T

I(η) (η̂ − Sθ) , (20)

which can be seen to be a WLS estimator. Since the signal
model is linear, the problem has a closed form solution,
which is given by θ̂ =

(
ST I(η)S

)−1
ST I(η)η̂. At this point,

some remarks are in order. Firstly, the estimator takes on
the form of the solution to a linear LS problem regardless
of the original distribution of x. Secondly, the estimates η̂
need not follow the exact distribution in (16) for (20) to hold;
the estimate covariance can be off by a multiplicative factor
without affecting the form of the estimator. The principle
used in arriving at (20) is known as the extended invariance
principle (EXIP), or just the invariance principle, depending on
the exact problem [36] (see also [31], [34], [37]). The principle
has been applied to fundamental frequency estimation for a
complex model and using asymptotic approximations of I(η)
in [6]. Here, we will use it for a real model and without making
use of the aforementioned asymptotic approximation.

The problem now remains to cast the problem of interest in
this framework and determine η, S, and I(η). Firstly, for the
case of a sinusoidal model with no harmonic constraint, we
obtain a set of frequencies {Ωl ∈ (0, π)}Ll=1. Moreover, we
assume that the frequencies are organized as Ω1 < . . . < ΩL.
Next, we define a parameter set containing the corresponding
parameters as η , [ Ω1 C1 Φ1 · · · ΩL CL ΦL ]

T , where
{Cl} are the corresponding amplitudes and {Φl} the phases. It
should be noted that there is no reason to include both positive
and negative frequencies as these will be identical (as will the
corresponding amplitudes and phases) for estimators tailored
to real measurements. The transformation S ∈ R3L×2L+1

relating these to θ can easily be confirmed to be given by

S =



1
0 1
0 1
2
0 1 0
0 1
...

...
L 0
0 1
0 1


. (21)

We can now express η in terms of θ as in (17). The estimator
in (20) requires that the true parameters are known to find
I(η). Instead, we can use an approximation based on the
parameter estimates η̂ (see [37], [38]), i.e., I(η) ≈ I(η̂),
which, for Gaussian signals, is given by

[I(η̂)]nm =
∂µT (η)

∂ηn
Q−1 ∂µ(η)

∂ηm

∣∣∣∣
η=η̃

, (22)

with Q being the covariance matrix of the observation noise
and µ(η) being the mean of the same signal parametrized
in terms of η. The approximation above is essentially valid
due to the maximum likelihood estimates η̂ being consistent
estimates of η and I(η) being a continuous function. For the
particular parametrization used here, i.e., the unconstrained
model, I(η̂) can be shown to be the following (see, e.g., [34]):

I(η̂) =
1

σ2

 Ξ11 . . . Ξ1L

...
...

ΞL1 . . . ΞLL

 , (23)

where the individual blocks are given by

Ξkl =

 δTk δl δTk εl δTk ζl
εTk δl εTk εl εTk ζl
ζTk δl ζTk εl ζTk ζl

 . (24)

The entries in these blocks involve a number of quantities
defined as

δl , Ĉl Re

{
ejΦ̂l

[
0 jejΩ̂l · · · j(N − 1)ejΩ̂l(N−1)

]T}
εl , Re

{
ejΦ̂lz(Ω̂l)

}
(25)

ζl , −Ĉl Im
{
ejΦ̂lz(Ω̂l)

}
.

We note that the usually used expression for the CRLB for
the unconstrained model is obtained, as before, by applying
asymptotic approximations. More specifically, this leads to a
block-diagonal structure in (23) as the off-diagonal blocks
are approximately equal to zero, i.e., Ξkl = 0 ,for l 6= k.
Moreover, the individual blocks on the diagonal exhibit a
block-diagonal structure themselves, hence leading to simple
closed-form expressions.

Returning to the task at hand, we, finally, arrive at the
estimator:

θ̂ =
(
ST I(η̂)S

)−1
ST I(η̂)η̂. (26)

The processing steps of the estimator can be summarized
as follows: First, estimate the parameters in η̂ and, second,
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compute I(η̂) from these parameters. Third, compute the
parameter of θ̂ from the aforementioned quantities along with
S, which is not signal-dependent. The fundamental frequency
can now simply be extracted from the first element of θ̂.
Obviously, this process can be simplified somewhat if only the
fundamental frequency is desired by determining only the first
row of the matrix

(
ST I(η̂)S

)−1
ST I(η̂). As was demonstrated

in [6], this methodology proved quite successful even with a
number of asymptotic approximation, and we thus also expect
it to perform well for our problem. Given the initial estimates
η̂, the estimator has complexity O(L3), but unlike the NLS
method, it is in closed-form.

C. Optimal Filtering
The next solution to the problem under consideration is

based on optimal filtering, which was first used for funda-
mental frequency estimation in [8] (see also [16]). Before
providing more details on this, we introduce some notation
and definitions. First, we define the output signal x̂(n) of the
length M filter having real coefficients h(n) as

x̂(n) =

M−1∑
m=0

h(m)x(n−m) , hTx(n), (27)

with h being a vector containing the filter coefficients of the
filter defined as h = [ h(0) · · · h(M − 1) ]

T and x(n) =
[ x(n) x(n− 1) · · · x(n−M + 1) ]

T . For our signal model,
the output signal x̂(n) can be thought of as an estimate of the
periodic parts of the signal. The output power of the filter
can be expressed in terms of the covariance matrix R as
E
{
|x̂(n)|2

}
= hTRh. The question is now how to design

the filter such that x̂(n) actually resembles a periodic signal.
Such a filter should have a frequency response that allows
the periodic components to pass undistorted while suppressing
everything else. This means that the frequency response should
be one for all the harmonic frequencies, and, since we are here
concerned with real signals, this should be the case also for
the negative frequencies. One can think of filters having these
properties as a kind of comb filter. Mathematically, we can
state this as the following optimization problem:

min
h

hTRh s.t. ZHh = 1 (28)

with 1 = [ 1 · · · 1 ]T ∈ R2L. We here remind the reader that
Z ∈ CM×2L contains all the sinusoids of the real signal model,
so the constraints state that the frequency response of the filter
must be one for both positive and negative frequencies.

To solve the optimization problem, we introduce the La-
grange multipliers λ = [ λ1 · · ·λ2L ]

T , and the Lagrangian
dual function associated with the problem, which can be
written as L(h,λ) = hTRh − λT

(
ZHh− 1

)
. Taking

the derivative with respect to the filter coefficients and
the Lagrange multipliers and setting the result equal to
zero and solving for the unknowns, leads to the optimal
filter h = R−1Z

(
ZHR−1Z

)−1
1. The output power of

this filter can then be expressed compactly as hTRh =

1H
(
ZHR−1Z

)−1
1. Since the optimal filter depends on the

observed signal via R, the resulting filter can be thought of
as an adaptive comb filter.

The filter can be used for determining the fundamental
frequency in the following way: for a candidate fundamental
frequency, the filter passes the candidate harmonics while it
suppresses everything else. Therefore, the fundamental fre-
quency can be identified as the value for which the output
power of the filter is the highest. In math, this can be stated
as

ω̂0 = arg max
ω0

1H
(
ZHR−1Z

)−1
1. (29)

For complex signals, this type of solution was demonstrated to
have excellent performance under very adverse conditions in
[8], effectively decoupling the multi-pitch estimation problem
into a set of single-pitch problems. The estimator in (29) re-
quires initialization of complexity O(M3) for computing R−1

while for each fundamental frequency candidate, it requires
computations of complexity O(L3) +O(ML2) +O(M2L).

The method requires that the covariance matrix is replaced
by an estimate. We use here the usual estimator, the sample
covariance matrix, i.e.,

R ≈ 1

N −M + 1

N−1∑
n=M−1

x(n)xT (n). (30)

Since the method also requires that this matrix is invertible, it
follows that the filter length must be chosen such that M <
N
2 + 1, although it is well-documented in the literature that
M in practice should not be chosen too close to this bound.
Moreover, we also require that M ≥ L for the matrix inverse
in (29) to exist. Combined, this allows us to bound M as
2L ≤M ≤ N

2 + 1. It should also be noted that M should be
chosen proportionally to N for the estimator to be consistent.
This is also the case for the other methods presented later.

D. Angles between Subspace

The next method is a subspace method reminiscent of
MUSIC [27], a method that has previously been applied to
the fundamental frequency estimation problem in [8], [18]. It
builds on more recent ideas presented in [20], [28]. In MUSIC,
an estimate of a basis for the noise subspace is obtained via
the eigenvalue decomposition of the sample covariance matrix.
This is then used for estimation purposes by choosing the
candidate model that is the closest to being orthogonal to
that space. This is also the idea we here pursue, although
the present methods differs in a fundamental way, namely in
terms of how the angles between the subspaces are measured.
Let x(n) = [ x(n) x(n+ 1) · · · x(n+M − 1) ]

T . We can
then express this vector as

x(n) = Za + e(n), (31)

with Z ∈ CM×2L being defined as in (6) except that the
columns have length M and e(n) = [ e(n) e(n+1) · · · e(n+
M − 1) ]T . The covariance matrix2 of this vector is given by

R =E
{
x(n)xH(n)

}
= ZPZH + σ2I (32)

2The reader should be aware that our definitions of x(n) and R here differ
from those in Section III-C.
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where E
{
aaH

}
= P, which is given by

P = E




a1a
∗
1 a∗1a

∗
1 . . . a1a

∗
L a∗1a

∗
L

a1a1 a∗1a1 . . . a1aL a∗1aL
...

...
...

...
aLa

∗
1 a∗La

∗
1 . . . aLa

∗
L a∗La

∗
L

aLa1 a∗La1 . . . aLaL a∗LaL




. (33)

This matrix can be seen to involve block-matrices of the
following form:

Pkl = E

{[
aka
∗
l a∗ka

∗
l

akal a∗kal

]}
. (34)

Next, we will analyze the behavior of this matrix assuming
that the phases φl are uniformly distributed and indepen-
dent over l. This means that E

{
Ak

2 e
jφk
}

= 0 and that
E
{
Ak

2 e
jφk Al

2 e
−jφl

}
= Ak

2 E
{
ejφk

}
Al

2 E
{
e−jφl

}
= 0 for

k 6= l. Hence, we obtain that for k 6= l, the matrix Pkl is
simply Pkl = 0. For k = l, we obtain

Pll =

[
A2

l

4 0

0
A2

l

4

]
, (35)

as E
{
Al

2 e
jφl Al

2 e
−jφl

}
=

A2
l

4 and E
{
Al

2 e
jφl Al

2 e
jφl
}

=
A2

l

4 E
{
e2jφl

}
= 0. Therefore, the amplitude covariance matrix

P takes on the form P = 1
4diag

([
A2

1 A
2
1 · · · A2

L A2
L

])
,

which means that the diagonal structure obtained for complex
signals is retained for real signals, and the so-called covariance
matrix model, therefore, still holds. We note that the assump-
tions that lead to this model are sufficient but not necessary
conditions.

The eigenvalue decomposition (EVD) of the covariance ma-
trix is R = UΓUH , where Γ is a diagonal matrix containing
the positive eigenvalues, γk, ordered as γ1 ≥ γ2 ≥ . . . ≥ γM .
Moreover, it can easily be seen that γ2L+1 = . . . = γM =
σ2. The covariance matrix is positive definite and symmetric
by construction. Therefore, U contains the M orthonormal
vectors, which are eigenvectors of R. We will denote these as
U =

[
u1 · · · uM

]
. Let S be formed from a subset of

the columns of this matrix as

S =
[

u1 · · · u2L

]
. (36)

We denote the subspace spanned by the columns of S as S =
R (S) and refer to it as the signal subspace. Similarly, let G
be formed from the remaining eigenvectors as

G =
[

u2L+1 · · · uM
]
. (37)

We refer to the space G = R (G) as the noise subspace. Using
these definitions, we now obtain U

(
Γ− σ2I

)
UH = ZPZH

as the identity matrix is diagonalized by an arbitrary orthonor-
mal basis. Introducing Ψ = diag([ γ1 − σ2 · · · γ2L − σ2 ]),
this leads to the following partitioning of the EVD:

R =
[

S G
]([ Ψ 0

0 0

]
+ σ2I

)[
SH

GH

]
, (38)

which shows that we may write SΨSH = ZPZH . As the
columns of S and G are orthogonal and R (Z) = R (S), it

follows that ZHG = 0, which is the subspace orthogonality
principle used in the MUSIC algorithm [27], [39].

In practice, the estimated noise subspace eigenvectors will
not be perfect due to the observation noise and finite observa-
tion lengths. The above relation is, therefore, only approximate
and a measure must be introduced to determine how close a
candidate model Z is to being orthogonal to G. Traditionally,
this has been done using the Frobenius norm. However, this
only measures the sum of cosine to the non-trivial angles
squared between the two spaces for orthogonal vectors in
both Z and G, and, since we are here concerned with low
frequencies, the asymptotic orthogonality of the column of
Z is not accurate. We therefore measure the orthogonality as
follows. The principal angles {ξk} between the two subspaces
Z and G are defined recursively for k = 1, . . . ,K as [40]

cos (ξk) = max
u∈Z

max
v∈G

uHv

‖u‖2‖v‖2
, uHk vk, (39)

where K is the minimal dimension of the two subspaces, i.e.,
K = min{2L,M − 2L} and uHui = 0 and vHvi = 0 for
i = 1, . . . , k − 1. The angles are bounded and ordered as
0 ≤ ξ1 ≤ . . . ≤ ξK ≤ π

2 . Given the orthogonal projection
matrices for Z and G, denoted ΠZ and ΠG, respectively, the
expression in (39) can be written as

cos (ξk) = max
y

max
z

yHΠZΠGz

‖y‖2‖z‖2
(40)

= yHk ΠZΠGzk = κk. (41)

As can be seen, {κk} are the ordered singular values of
the matrix product ΠZΠG, and the two sets of vectors {y}
and {z} are the left and right singular vectors of the matrix
product, respectively. The singular values are related to the
Frobenius norm of ΠZΠG and hence its trace, denoted with
Tr {·}, as ‖ΠZΠG‖2F =

∑K
k=1 κ

2
k which shows that if the

Frobenius norm of the product is zero, then all the non-trivial
angles are π

2 , i.e., the two subspaces are orthogonal. This
expression can be used to find the fundamental frequency as

ω̂0 = arg min
ω0

‖ΠZΠG‖2F , (42)

and the estimate can be seen to be the value for which the
sum of cosine to the angles squared is the least. Finally, (42)
can be expressed as

ω̂0 = arg min
ω0

Tr
{

Z
(
ZHZ

)−1
ZHGGH

}
, (43)

which is asymptotically equivalent to the fundamental fre-
quency estimator in [18] but different for finite M and N
in that it takes the non-orthogonality of the sinusoids for
low M and ω0 into account. Hence, it can be expected to
yield superior estimates for low fundamental frequencies. This
estimator requires that a number of quantities are computed in
the initialization, i.e., only once, namely the EVD of R and
the projection matrix for the noise subspace, which results in a
complexity of O((M −L)M2) +O(M3) (which is obviously
only valid for L < M ). For each candidate fundamental fre-
quency, operations having complexity O(L2M)+O(M2L)+
O(L3) are computed.
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As for the covariance matrix, it has to be estimated and its
dimensions chosen. For this method, this is done as described
in (30), only with a different definition of x(n) as described
earlier in this section. Unlike the optimal filtering method, it
is not required for this method that the estimated matrix has
full rank. It must, however, allow for the estimation of a basis
for the signal subspace, which requires that M ≤ N − 2L +
1. Additionally, for the orthogonal complement to the signal
subspace to be non-empty, M ≥ 2L + 1, which means that
we obtain the following inequality for M :

2L+ 1 ≤M ≤ N − 2L+ 1. (44)

E. Shift-Invariance

The final estimator is also a subspace method and thus
builds on the same matrix covariance model as in Section III-
D. The last method was based on the noise subspace eigen-
vectors, while the present one is based on the signal subspace
eigenvectors. More specifically, it is based on the principle
used in [19]. The signal subspace is given by S = R (S) with
the matrix S being defined as in (36). As established earlier,
the columns of S span the same space as the columns of Z,
i.e., R (S) = R (Z). Therefore, we may express the relation
between these matrices as S = ZB where

B = PZHSΨ−1, (45)

with B being a square and full rank matrix as both S and Z
do, and it is hence invertible, something that we will make use
of later. The matrix Z exhibits a particular structure, known
as shift-invariance. This property can be expressed in the
following way. Define the matrices Z and Z by removing the
last and first rows of Z, i.e., Z = [ I 0 ] Z and Z = [ 0 I ] Z
where it follows that I is (M − 1)× (M − 1). Now, doing the
same for S we obtain S = [ I 0 ] S and S = [ 0 I ] S. From
these definitions and (45), it can easily be seen that S and Z
are related as S = ZB. More importantly, however, due to the
particular structure of the model, the matrices Z and Z can be
related as Z = ZD where

D = diag
([
ejω0 e−jω0 · · · ejω0L e−jω0L

])
. (46)

This property is known as shift-invariance. However, since we
are interested in finding the parameters that characterize Z,
this is of little use by itself. From the above it also follows
that S = SΣ and the matrix relating S to S can be shown to
be (see, e.g., [41])

Σ = B−1DB, (47)

i.e., the matrix Σ has the frequencies of the harmonics as the
arguments of its eigenvalues. Since S and hence S and S are
known from the EVD of the sample covariance matrix, this is
useful in the following way: Given S to S, we can solve for Σ,
from which we can find the frequencies via the EVD. Since
the sample covariance will be corrupted by noise in practice,
so will S and S, and, consequently the above relations will
only hold approximately, i.e., S ≈ SΣ, which means we have
to introduce some way of finding Σ. Here, we proceed by

estimating Σ using total least-squares (TLS) as follows. Define
∆ and ∆ as the minimal perturbations of S to S, respectively:

min
∥∥[∆ ∆

]∥∥
F

s. t. S + ∆ = (S + ∆) Σ. (48)

An estimate Σ̂ of Σ is then obtained as the solution to S+∆ =
(S + ∆) Σ for the perturbations solving (48) (see [41] for
further details).

The frequencies obtained from the eigenvalues of Σ̂ are
not constrained to being integer multiples of a fundamental
frequency, i.e., they are unconstrained frequencies, and, hence,
cannot be used directly for estimating the fundamental fre-
quency. Much like for the WLS method in Section III-B, we
must fit a fundamental frequency to these frequencies. We now
proceed to express Σ̂ in terms of the empirical EVD as

Σ̂ = CD̂C−1 (49)

with C containing the empirical eigenvectors of Σ̂ and

D̂ = diag
([

ejΩ̂
+
1 ejΩ̂

−
1 · · · ejΩ̂

+
L ejΩ̂

−
2L

])
. (50)

We here denote the estimated frequencies as {Ω̂+
l ∈ (0, π)}Ll=1

and {Ω̂−l ∈ (−π, 0)}Ll=1. Moreover, we assume that they are
ordered Ω̂+

1 < . . . < Ω̂+
L and Ω̂−1 > . . . > Ω̂−L and that the

corresponding eigenvectors in C are ordered accordingly.
Recall that S = SB−1DB, and thus SC ≈ SCD, where

D depends on the unknown fundamental frequency ω0. We
can now introduce a metric that measures the extent to which
the right and left side resemble each other as ‖SC−SCD‖2F .
This expression can be expanded as

‖SC− SCD‖2F = −2 Re
(

Tr
{

SCDHCHSH
})

(51)

+ Tr
{

SCCHS
H
}

+ Tr
{

SCCHSH
}
. (52)

Noting that the last two terms do not depend on ω0 and intro-
ducing δl =

[
CHSHSC

]
ll

, we finally obtain the estimator

ω̂0 = arg max
ω0

2 Re

{
L∑
l=1

δ2l−1e
−jω0l + δ2le

jω0l

}
. (53)

As can be seen, the resulting estimator is extremely simple
having complexity O(L) for each fundamental frequency
candidate, albeit the initialization, i.e., the computation of δl, is
somewhat complex. More specifically, it requires computations
of complexity O(M3) +O(L3) +O(M2L) +O(L2M). We
also note that the involved cost function is generally smooth
and well-behaved. Regarding the size of the covariance matrix,
M should be chosen according to (44) for obtaining a rank
2L estimate of S and for Σ to be unique.

IV. EXPERIMENTAL RESULTS

A. Exact vs. Asymptotic Bounds

We will start out the experimental part of this paper by
exploring the difference between the exact and asymptotic
CRLBs for the problem of estimating the fundamental fre-
quency and the dependency of this difference on various pa-
rameters. This is interesting for a number of reasons. Many of
the estimators derived based on complex models are based on
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Fig. 1. Exact and asymptotic Cramér-Rao lower bounds as functions of various parameters, namely (a) the segment length (in ms), (b) the fundamental
frequency (in Hz), (c) the number of harmonics L, and (d) the sampling frequency (in kHz). Each point on the curves is obtained over 1000 realizations of
the involved parameters.

the same asymptotic approximation that the asymptotic CRLB
is based on. Hence, if the asymptotic approximation is accurate
for the CRLB, it is also likely to be accurate for the various
estimators. Moreover, we can also learn something about the
conditions under which the approximation will hold and learn
if anything can be done about it. To make it easier to interpret
the results, we will do this assuming typical physical values
encountered in speech and audio applications. In the first
experiment, a low fundamental frequency of 50 Hz is assumed
along with a sampling frequency of 8 kHz. Moreover, the noise
variance is kept fixed at one throughout these experiments. The
remaining parameters were uniformly distributed phases and
Rayleigh distributed amplitudes with five harmonics. Based on
these values, the exact CRLB based on (9) and the asymptotic
approximation in (10) were computed as a function of the
segment length (in ms) for 1000 realizations of the parameters

for each experimental condition. The results, in the form of
the averages over these realizations, are shown in Figure 1(a).
As can be seen, there is a huge discrepancy between the two
bounds for short segments, and this discrepancy vanishes for
long segments. This clearly shows that the claim that the
problem of estimating low fundamental frequencies is difficult
is indeed true. It also shows that it is entirely unrealistic to
expect estimators to perform close to the asymptotic CRLB
under these circumstances, and, hence, an estimator may be
falsely deemed suboptimal if its performance is compared to
the wrong bound.

In the next experiment, the segment length is kept fixed
at 20 ms while the fundamental frequency is varied with
the remaining parameters and experimental conditions being
as before. The results are shown in Figure 1(b). The same
observations as for the varying segment length can be observed



10

here, namely that as the fundamental frequency is lowered,
relative to N , the discrepancy between the asymptotic and
exact CRLBs grow. Beyond a certain frequency, here 80 Hz,
there is basically no difference between the two bounds and
asymptotic approximations must therefore be valid from this
frequency and beyond. It should be noted that depending on
the physics of the observed phenomenon, a low fundamental
frequency may also have more harmonics, as they can in
principle extend up to half the sampling frequency. This is
not reflected in this experiment. It can be seen from (10)
that, in theory, the more harmonics that are present, the more
accurately the underlying fundamental frequency also can be
estimated, at least for a sufficiently high N . For this reason, the
next experiment focuses on the dependency on the number of
harmonics, L. In this experiment, a fundamental frequency of
50 Hz is used for different L while other experimental settings
were as before. The results can be seen in Figure 1(c). From
the figure, it can be seen that the discrepancy between the two
bounds actually increases as a function of L, meaning that
the more harmonics are in the signal, it becomes relatively
more difficult to determine the fundamental frequency, due to
it being so low. On the other hand, the bound does decrease as
a function of L even if the gap increases, so it is still beneficial
to incorporate the additional harmonics in the model. Part of
the reason that the bounds decrease as a function of L is that
it effectively leads to an increase in SNR, as defined in (11)
when the noise variance is kept fixed.

The final experiment involving the differences between the
CRLBs is one where all the prior parameters are kept fixed
while the sampling frequency is changed, and this is motivated
as follows: since the highest possible segment length (in ms) is
dictated by the stationarity of the observed signal, it is not pos-
sible to mitigate the problems associated with low fundamental
frequencies by simply changing the segment length beyond a
certain point. However, the sampling frequency can of course
be changed in many situations, and raising the sampling
frequency while keeping the segment length in ms fixed, of
course leads to a higher number of samples N . Here, the
behavior of the asymptotic and exact CRLBs is observed for a
20 ms segment and a fundamental frequency of 50 Hz with five
harmonics. In Figure 1(d), the resulting curves can be seen.
The figure shows that simply changing the sampling frequency
does not alleviate the discrepancy between the two CRLBs,
and the explanation is that while raising the fundamental does
lead to a higher N , it also leads to a lower ω0. But it is also
interesting to note that both bounds do decrease as a function
of the sampling rate, meaning that we are able to estimate
the fundamental frequency more accurately by increasing the
sampling frequency. An explanation for this is that while
increasing the sampling frequency results in a proportionally
higher N and lower ω0 the effect of the noise on the ability
to estimate the parameters is nonlinear. That this is the case
can be seen from (10), from which it can be observed that the
bound is inversely proportional to N3.

B. Tested Methods
In the following experiments, we will compare the perfor-

mance of the presented estimators to the previously published

methods based on a complex signal model and/or asymptotic
approximations. We will denote the methods for real signals
by prefix “r” and their complex counterparts by prefix “c”. To
summarize, the following methods will be compared:
• rWLS is the harmonic fitting method based on WLS as

presented in Section III-B. It requires that unconstrained
frequencies and their amplitudes are found. This is done
using ESPRIT and LS, respectively.

• rFILT is the optimal filtering method presented in Section
III-C.

• rNLS is the NLS method of Section III-A.
• rABS is the subspace method based on measuring the

angles between subspaces as described in Section III-D.
• rSHIFT is another subspace method, but based on the

shift-invariance property, as presented in Section III-E.
We will compare the performance of these methods to a
number of reference methods, namely the following:
• cWLS is the harmonic fitting method as originally pro-

posed in [6]. It uses asymptotic approximations of the
weighting matrix to obtain a simple expression for the
fundamental frequency. Like its real counterpart it re-
quires unconstrained frequency and their amplitude es-
timates. Here, the same as for rWLS are used.

• cFILT is the optimal filtering method proposed in [8]. It
differs from rFILT in that it does not take the existence
of complex conjugate pairs of harmonics into account.

• cNLS is the approximate NLS method as described in
[8]. It is similar to the methods of [4], [5]. It differs from
rNLS in the following way: it is based on the asymptotic
orthogonality of complex sinusoids and, hence, takes
neither the existence of complex conjugate pairs nor the
interaction between the harmonics into account.

• cABS is the MUSIC-based method of [18], except that
the model order is assumed known. Unlike rABS, it uses
an approximation of the angles between the subspaces.

• cSHIFT is the method proposed in [19], which is based
on the shift-invariance property of the signal subspace. It
differs from rSHIFT in that it does not take the existence
of complex conjugate pairs of complex sinusoids into
account. Unlike [19] it uses TLS rather than LS.

All estimators are implemented in a two-step fashion where a
coarse fundamental frequency estimate is first found using a
grid search after which a simple dichotomous search is used to
obtain a refined estimate. The same grid size and dichotomous
search algorithm is used for all the methods. For most of the
methods, a covariance matrix size/filter length of M = N/2
is used, except for the optimal filtering methods where M =
N/4 have been used (the reason for this will become clear
later). For the estimators relying on a complex model, the real
signal is mapped to a complex one via the Hilbert transform.
The optimal filtering methods require an invertible covariance
matrix for which reason the down-sampled analytic signal is
used for cFILT. To address the numerical issue associated
with very low fundamental frequencies, which may cause
the involved matrices to be rank deficient numerically but
not on paper, the Moore-Penrose pseudo-inverse [40] is used
whenever appropriate.
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Fig. 2. Example of a signal having a low frequency, here a tone played by a contrabassoon. Shown are (a) the time-domain signal, and (b) part of its
spectrum, namely the low frequencies, estimated using the periodogram.
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Fig. 3. Fundamental frequency estimates obtained for the signal in Figure 2 as a function of the segment length (in ms) for (a) the estimators for real-valued
signals and (b) their complex counterparts.

C. A Signal Example

Next, we will illustrate the problems associated with low
fundamental frequencies using a recorded signal, namely a
tone played by a contrabassoon. The signal is shown in Figure
2(a) along with its spectrum in Figure 2(b), here estimated
using the periodogram computed using a 8192 point FFT and
a rectangular window. Note that a sampling frequency of 8820
Hz is used. In studying the effect of the low fundamental
frequency on the ability to obtain accurate estimates, the
segment length will be varied from 10 ms to 100 ms (with
all segments beginning at the start of the signal shown in
Figure 2(a)). The various estimators are then run on these
segments. The number of harmonics was determined by visual
inspection of the spectrum. The results are shown in Figure 3
for (a) the presented estimators, and (b) the estimators based

on asymptotic approximations and complex signal models.
A number of interesting observations can be made from the
figures. Firstly, all estimators, both the real ones and their
complex counterparts, converge to the same result when the
segment length is increased. It can also be seen that all the
methods break down when the segment length gets extremely
short. Moreover, for this particular example, the methods for
real signals generally outperform the complex ones, but it
should also be noted that other factors may play a role due to
the complex nature of real-life signals.

D. Monte Carlo Simulations

The methods are compared using Monte Carlo simulations
by generating signals according to the model in (2) and then
applying the various estimators to the resulting signal. The
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Fig. 4. Performance measured in terms of the Mean Square estimation Error (MSE) as a function of the covariance matrix size, M , for (a) the real estimators
and (b) their complex counterparts based on asymptotic approximations.

so-obtained parameter estimates are then compared to the true
parameters and the estimation error is measured in terms of
the mean square error (MSE). For each set of experimental
conditions, 100 realizations are used and the CRLB shown
in the figures to follow is the average over the exact CRLB.
The signals were generated with the following parameters,
except when otherwise stated (e.g., when a certain parameter
is varied): a fundamental frequency with ω0 = 0.3129 is
used with five harmonics, each having unit amplitude and
phases uniformly distributed between −π and π. Segments
of N = 100 samples were used with white Gaussian noise
added at an SNR of 40 dB, according to the definition of the
SNR in (11).

First, the influence of the covariance matrix size, which
is also the filter length for the filtering methods, on the
performance of the various estimators is investigated. This is
done by simply varying M while keeping all other parameters
fixed. The results are shown in Figure 4 for the real estimators
(a) and the complex ones (b). Note that neither the NLS nor
the WLS class methods make use of the covariance matrix
an their performance hence does not depend on M . It can
generally be observed that as long as the covariance matrix
size is not chosen too low or too high, the methods perform
well. In fact, the only class of methods that are sensitive to
M being close to M/2 appears to be the optimal filtering
methods (we remind the reader that N = 100 is used here).
All methods, except one, perform close to the CRLB. For the
cNLS method, a gap between its MSE and the CRLB can
be seen. This demonstrates the clear sub-optimality of this
method for the problem at hand and illustrates the importance
of avoiding asymptotic approximations. It should be noted
that the cNLS method performs extremely well for sufficiently
high N and ω0, being statistically efficient. Moreover, it has
also been confirmed experimentally that the poor performance
reported (and in the experiments to follow) here is not due to
the suboptimality of the Hilbert transform used but rather, as
stated, the asymptotic approximation.

We will now proceed to investigate the dependency of the
performance for the various estimators on the number of
samples N . For the methods requiring a covariance matrix,
it was stated that M should be chosen proportionally to
N ; otherwise, the estimator would not be consistent. So, in
varying N , the covariance matrix size will also be varied
with M = N/2 for all methods, except the optimal filtering
methods for which M = N/4 is used. The results are shown
in Figure 5(a) and Figure 5(b) for the two classes of methods.
It can be seen that all the methods appear to be consistent in
that the MSE decreases as a function of N . It can also be seen
that the filtering methods, rFILT and cFILT perform poorly
for low N , and that cNLS is clearly sup-optimal performing
far from the CRLB, unlike rNLS, for the entire range of N
shown here. Similarly, the cSHIFT methods perform poorly.
Other than that, it appears that the remaining methods, aside
from rNLS, break down below 40 samples.

In the next experiment, the performance of the various
methods is investigated as a function of the SNR. From the
asymptotic SNR in (10), one would perhaps expect this to be a
trivial experiment as the noise variance is a linear parameter.
However, due to the estimation problem being nonlinear, it
is difficult to predict exactly how the performance of esti-
mators will depend on the SNR. Moreover, it is well-known
that, for nonlinear problems, estimators will exhibit so-called
threshold behavior, which means that below a certain point,
the estimators will break down producing what is essentially
useless results. The MSE as a function of the SNR is depicted
in Figures 6(a) and 6(b) for the real and complex estimators,
respectively. A number of interesting observations can be made
from these figures. For most of the methods, except cNLS,
it can be seen that the performance increases as a function
of the SNR, as can be expected from good estimators. The
cNLS method can be seen to hit a floor for high SNRs.
This is likely to be due to the approximations used in that
method being inaccurate. For low, SNRs, however, this appear
to not matter much as the error is dominated by the noise,
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Fig. 5. Performance measured in terms of the Mean Square estimation Error (MSE) as a function of the number of observations, N , for (a) the real estimators
and (b) their complex counterparts based on asymptotic approximations.
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Fig. 6. Performance measured in terms of the Mean Square estimation Error (MSE) as a function of the SNR for (a) the real estimators and (b) their complex
counterparts based on asymptotic approximations.

with the MSE following the CRLB. It even appears that the
cNLS method breaks down later than the cWLS, cSHIFT and
cFILT methods with also the cABS method performing quite
well for low SNRs. The rNLS can be observed to mitigate
the problems of the cNLS as it follows the CRLB even for
high SNRs. In fact, it can be seen to be statistically efficient
above SNRs of 5 dB. Curiously, the rABS and cABS appear
to perform almost equally well, being fairly robust against
low SNRs, although it is not statistically efficient. The rWLS,
rFILT and rSHIFT methods appear to perform similarly to
their complex counterparts in this experiment, with the optimal
filtering method performing the worst.

In the final and most important experiment, the role of the
fundamental frequency will be investigated. More specifically,
the fundamental frequency is varied from a value for which
it is expected that all methods work to a low value close to

zero, and it is expected they eventually will exhibit threshold
behavior. The results are shown in Figures 7(a) and 7(b)
for the two classes of methods. Starting with the complex
methods, a number of interesting points can be made. Firstly,
all except the cWLS perform poorly with the resulting MSEs
differing substantially from the CRLB. The cWLS method
performs well, following the CRLB, until about a fundamental
frequency of 0.06. The cABS method also performs quite
well, but performs further from the CRLB as the fundamental
frequency is lowered. The cNLS, cFILT and cSHIFT methods
can be seen to generally not perform well at all. For the real
methods, it can be observed that the rNLS method performs the
best, followed by the rWLS, rABS, and rSHIFT methods with
the rFILT method performing quite poorly and worst of the
methods. Comparing the two figures an important observation
can be made: it can clearly be seen that all methods, except the



14

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

ω
0

M
S

E

 

 

rWLS rFILT rNLS rABS rSHIFT CRLB

(a)

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

ω
0

M
S

E

 

 

cWLS cFILT cNLS cABS cSHIFT CRLB

(b)

Fig. 7. Performance measured in terms of the Mean Square estimation Error (MSE) as a function of the fundamental frequency, ω0, for (a) the real estimators
and (b) their complex counterparts based on asymptotic approximations.

rWLS method, are improved by the modifications presented
in this paper. This clearly demonstrates that the commonly
used approximations are not suitable for low fundamental
frequencies and that it is possible to avoid them. Regarding
the rWLS method, from the experiments, it appears that the
approximations used in the weighting matrix in the cWLS
method is not the reason for threshold behavior as the rWLS
method behaves in the same way, rather the dominant error
source is most likely the unconstrained frequencies. The reader
should be aware that the rWLS method, like the cWLS
method, is dependent on the unconstrained frequencies being
accurate, and it can of course be expected that this will not
be the case when the fundamental frequency is low. Note
that the high sensitivity of this method to spurious frequency
estimates was also demonstrated in [18], albeit under different
circumstances.

V. CONCLUSION

In this paper, the problem of estimating low fundamental
frequencies from real-valued measurements has been consid-
ered. The problem has been analyzed via comparisons of
the asymptotic and approximate Cramér-Rao lower bounds.
These comparisons show that the asymptotic approximations
frequently used in estimators and in the computation of
estimation bounds are not accurate under these circumstances.
To mitigate this, a number of estimators have been presented in
which such approximations are avoided, and these estimators
can therefore be said to be exact. The estimators are based on
the methodologies of maximum likelihood, leading to a non-
linear least-squares method and a harmonic fitting algorithm
that fits individual frequencies to a fundamental frequency
estimate, optimal filtering as known from Capon’s classical
beam-former, and subspace methods, herein one based on
subspace orthogonality and one based on subspace shift-
invariance. All of the methods, except the harmonic fitting
one, which makes use of an set of intermediate parameters,

have cubic complexity in the number of samples and/or
the number of harmonics. In Monte Carlo simulations, the
performance of the various estimators has been investigated
and compared to methods employing asymptotic approxima-
tions. These simulations showed that, among the considered
methods, the nonlinear least-squares method performed the
best, the optimal filtering method performed the worst, and the
remaining methods in-between. More importantly, however,
the simulations showed that for all the considered methods, ex-
cept the harmonic fitting one, it is possible to achieve improved
performance by using the exact estimators. Moreover, it can
be seen that not only do the proposed methods perform closer
to the Cramér-Rao lower bound, but their threshold behavior
is also improved for low fundamental frequencies.
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