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Parametric Modeling for Damped Sinusoids From
Multiple Channels

Zhenhua Zhou, H. C. So, Senior Member, IEEE, and Mads Græsbøll Christensen, Senior Member, IEEE

Abstract—The problem of parametric modeling for noisy
damped sinusoidal signals from multiple channels is addressed.
Utilizing the shift invariance property of the signal subspace, the
number of distinct sinusoidal poles in the multiple channels is first
determined. With the estimated number, the distinct frequencies
and damping factors are then computed with the multi-channel
weighted linear prediction method. The estimated sinusoidal
poles are then matched to each channel according to the extreme
value theory of distribution of random fields. Simulations are
performed to show the performance advantages of the proposed
multi-channel sinusoidal modeling methodology compared with
existing methods.

Index Terms—Extreme value theory, model order estimation,
multi-channel processing, sinusoidal model selection, sinusoidal
parameter estimation, weighted linear prediction.

I. INTRODUCTION

P ARAMETRIC modeling for sinusoidal signals [1] is a
classical but still open problem in statistical signal pro-

cessing, finding its applications in a wide range of areas. This
problem consists of two parts — sinusoidal model order detec-
tion and parameter estimation. During the recent decades, the
problem of parametrically modeling the sinusoidal signals from
multiple channels, which are contaminated by different unde-
sired harmonics [2]–[8], has attracted considerable attention.
For example, in the fields of nuclear magnetic resonance and nu-
clear quadrupole resonance spectroscopy, the measured signals
in different channels are well modeled as a sum of exponentially
damped sinusoids [9], and may share common mode sinusoidal
components. In music and voiced speech signal processing, the
signals recorded using a microphone array can be modeled as a
sum of harmonic signals with different sinusoidal orders, funda-
mental frequencies and directions-of-arrival (DOAs) [6]. Given
the corresponding observations, the goal is to determine the un-
known orders and the parameters of the sinusoids in the mul-
tiple channels, after which the signal parametrization is com-
plete. This problem is of great research value not just because
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it is interesting and practical, but also there are two significant
advantages compared to single-channel modeling:
• The multi-channel setup means more observed data and
the parameter estimation refinement of the common mode
sinusoidal components is expected, whichmakes it feasible
to extract the common information in a more accurate way.
This is evident from the Cramér-Rao lower bound (CRLB)
[10] and comparison with single-channel results, as shown
in Section V.

• In a multi-source scenario, if the sources are overlap-
ping in one dimension (e.g., for a multi-pitch signal
[11], the sources share some harmonic components),
a single-channel setup will not be able to resolve the
sources. On the other hand, this issue can be solved with
the multi-channel setup (e.g., for the multi-pitch signal,
we can observe the sources using a microphone array, and
model them with joint DOA and fundamental frequency
estimation [6]–[8]).

The main contribution of this work is on parametric modeling
of multi-channel sinusoidal signals. Here, we focus on the gen-
eral case of damped cisoids. Recently, there have been several
proposals to achieve multi-channel damped sinusoidal param-
eter estimation. In [12], two decimative versions of the Hankel
total least-squares (HTLS) approach, that is, HTLSDstack and
HTLSDsum algorithms, are proposed, where the decimative
data can be regarded as a special case of multi-channel signals
with the same sinusoidal components. Similar ideas have also
been applied to the spectral analysis of multi-channel magnetic
resonance spectroscopy data [3]. To deal with a more general
multi-channel sinusoidal parameter estimation problem where
the signals in different channels consist of different sinusoidal
components, the signal subspaces of all the single channels
are computed with the singular value decomposition (SVD),
the common signal subspace is extracted with a second SVD,
and the common poles, where each corresponds to a pair of
frequency and damping factor, are found from the common
signal subspace using total least squares (TLS) [2], [4]. There
also exist other methods to tackle the multi-channel estimation
problem, such as principal component analysis (PCA) [13]
and independent component analysis (ICA) [14]. However,
these algorithms cannot perform optimally with respect to the
CRLB as they are not derived from maximum likelihood (ML)
framework. What is more important is that all of the above
methods do not take the problem of model order detection into
account, namely, the detection of the numbers of the sinusoidal
components existing in the channels and especially the number
of the common sinusoidal poles, which are assumed known

. Additionally, the remaining sinusoidal components,
which do not appear in all the channels, reflect the character-
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istics of their corresponding channels [4], [5], and are also of
interest. But the aforementioned [2]–[4], [12]–[14] do not pay
attention to them.
In this paper, we aim at addressing these issues from a new

and complete viewpoint via performing the parametric mod-
eling with joint model selection and parameter estimation. It
consists of three parts: (i) detection of the number of distinct
sinusoidal poles from multiple channels; (ii) optimal frequency
and damping factor estimation of the distinct sinusoidal poles;
and (iii) sinusoidal model selection, that is, matching the esti-
mated sinusoidal poles to their corresponding channels.
In the literature [15], there are many methods to detect the

number of sinusoids embedded in noise. For the undamped
sinusoids, detection schemes include the information theoretic
criteria [16], [17] such as the minimum description length
(MDL) criterion, direct Kullback-Leibler (KL) approach, gen-
eralized cross-validatory KL approach based on the generalized
information criterion (GIC), Bayesian approach based on the
Bayesian information criterion (BIC). However, all of them
are based on the asymptotic conditions of infinite data lengths.
Therefore, they cannot be applied to the damped sinusoidal
signal indeed, which decays to zero with sufficiently large
data length. Recently, several methods have been proposed
[18]–[20] for the tone number detection of damped sinusoids,
which are related to the rank determination of data matrix.
In [18], the MUltiple SIgnal Classification (MUSIC) order
estimator is devised by means of the subspace angles. But
performance loss will occur when the frequency spacing is not
large, especially for damped sinusoids, which is seen from the
derivation of the order estimation measure. Both ESTimation
ERror (ESTER) [19] and subspace-based automatic model
order selection (SAMOS) [20] methods are developed to de-
termine the rank of data matrix and to detect the tone number
with the use of the shift-invariance property of signal subspace.
The latter is more robust to noise because it takes into account
the perturbation of both sides of the shift-invariance equation
instead of computing the residual error of the shift-invariance
equation in a least squares (LS) sense. Here we extend the
SAMOS method to the multi-channel scenario, and detect the
number of the distinct sinusoidal poles in the multiple channels
with the multi-channel model order estimator (MC-MOE).
From the detected number of the distinct multi-channel

sinusoidal poles, the next step is to estimate the corresponding
frequencies and damping factors. It is well known that the ML
method [21] is statistically efficient while its computational
complexity is extremely high, especially when the tone number
is large, which limits its use in practice. Instead, computa-
tionally efficient techniques have been proposed, such as the
subspace-based algorithms [22], [23], linear prediction-based
methods [24], [25], and weighted linear prediction (WLP) [26]
estimators. In particular, the WLP-based estimators are popular
with good computational efficiency and nearly optimum estima-
tion accuracy. Usually they consider the single-channel signal.
Here, we extend the WLP approach to the current problem, that
is, parameter estimation for the sinusoidal poles from multiple
channels, which is referred to as the multi-channel weighted
linear prediction (MC-WLP) estimator.
Finally, sinusoidal model selection, or matching the estimated

poles to their corresponding channels, is realized based on a se-

quence of hypothesis tests. At each test, we compute the sig-
nificance of the maximum correlation between the estimation
residual and a sinusoidal function, whose statistical property is
derived from the extreme value theory (EVT) about the distribu-
tion of the maximum of stochastic fields. We refer this scheme
to as EVT selector.
The rest of this paper is organized as follows. The problem of

parametric modeling for damped sinusoids from multiple chan-
nels is formulated in Section II. The proposed methodology
for model selection and sinusoidal parameter estimation is pre-
sented in Section III, which includes detecting the number of
the distinct sinusoidal poles with the MC-MOE, sinusoidal pa-
rameter estimation with the MC-WLP method, and sinusoidal
model selection for each channel with the EVT selector. Monte
Carlo simulation results are presented in Section V to evaluate
the performance of the proposed framework by comparing with
other popular order detection and multi-channel sinusoidal pa-
rameter estimation methods. Finally, conclusions are drawn in
Section VI.

II. PROBLEM FORMULATION

The observed data are noisy multi-channel damped cisoids
without reverberation and multi-path components [2]–[4], and
they are modeled as:

(1)

where ,
and , with ,

and being the unknown complex-valued amplitude,
frequency and damping factor of the -th sinusoidal component
in the -th channel, respectively. The and represent
the number of channels and sinusoidal components in the -th
channel, respectively, while
represents the data length. Here, , , are
assumed not all to be zero, and is the additive noise
source in the -th channel, , which is assumed
to be uncorrelated white complex Gaussian process with mean
zero and variance . According to [2]–[5], [27], the sinusoidal
poles , from different channels in-
dexed , may be shared by or less channels,
which means that from the channels
are identical. Such sinusoidal poles correspond to the common
mode information.
Our objective is to estimate the frequencies and damping

factors of the sinusoidal components in the multiple channels,
and to determine the sinusoidal model of each channel by
matching the estimated sinusoidal poles to their corresponding
channels. Since the common mode information is shared by
multiple channels, better estimation accuracy is expected.

III. ALGORITHM DEVELOPMENT

A. Detection of Distinct Multi-Channel Sinusoidal Poles

In [20], the SAMOS method is proposed for order detec-
tion of single-channel damped sinusoids, which consists of con-
structing the data matrix, analyzing the shift-invariance of the
signal subspace, and determining the rank information of data
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matrix. Here, we develop the MC-MOE for detection of the
number of the distinct sinusoidal poles in the multiple channels
by extending the SAMOS method, where we will construct the
multi-channel data matrix and analyze its rank information.
For the -th channel, , define an

Hankel matrix as:

(2)

where is the data matrix with the -th
element , and the row number sat-
isfying . The
matrices and are the noise-free and noise components of
, respectively. From (1), the Vandermonde decomposition of

the Hankel matrix can be written as:

(3)

(4)

(5)

(6)

for . In the following, we explore the rank
property of the signal subspace of the multi-channel signal and
extend the SAMOS method to estimate the number of the dis-
tinct sinusoidal poles in the multiple channels, denoted by .
Firstly, we group and re-index the distinct sinusoidal poles

, from the
channels, , as

. Stack the data matrices , as
, which can be expressed as:

(7)

with and being the noise-free and noise components, re-
spectively. According to (3), can be decomposed as:

(8)

where

(9)

(10)

(11)

for , and

if ,: ;
otherwise.

(12)
From (8), it is observed that is rank- and its column space

is exactly spanned by the Vandermonde columns of with
the following shift-invariance property:

(13)

where and the subscripts and de-
note the first and last row-deleting operators, respectively. On
the other hand, due to the rank- property, can be decom-
posed using the SVD as:

(14)

where and , and
and

are the components of signal and noise subspaces, respectively,
and is a diagonal matrix with non-zero diagonal
elements. Comparing (14) and (8), it is seen that the columns
of span the same space as that of . Therefore, is also
rank- , and bears the shift-invariance property:

(15)

where with being a unitary matrix. From
(15), we see that and span exactly the same subspace,
and then is still a rank-
matrix. This means that the last singular values of are
equal to zero. According to the principle of the SAMOSmethod
[28], the number of the distinct poles in the channels is esti-
mated as:

(16)

for , with

(17)

where is the -th largest singular value of ,
which is constructed from the left columns of the left singular
matrix of . This method is referred to as MC-MOE.

B. Frequency and Damping Factor Estimation

Having determined , we estimate the sinusoidal poles
, to obtain the frequency and damping

factor parameters. In the past years, several sinusoidal param-
eter estimation methods [22]–[25] with low computational
complexity but suboptimal performance have been developed.
To improve the estimation accuracy, our development is based
on the WLP technique [29]. Since the WLP-based method orig-
inates from the optimum weighting of error, nearly optimum
estimation accuracy is expected.
To begin with, it is observed that there exists a coef-

ficient vector such that
and are equiv-

alent, and then , for .
Thus,

(18)

for , that is, the
noise-free signal satisfies the linear prediction (LP) rela-
tion of (18). Here, the elements in are the LP coefficients.
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When the signal is corrupted by noise, (18) will not be sat-
isfied exactly. Instead, the LP error vector for the -th channel,

, is:

(19)

where

(20)

(21)

Here denotes the Toeplitz matrix with
and as the first column and first row, respectively,

and is the variable for . Stack the LP error vectors
, as . Ac-

cording to WLP, the LP coefficient estimates, denoted by , are
determined by solving the following cost function:

(22)

where ,
are formed by stacking ,

, , and is the weighting matrix, which
has the form of [30]:

(23)

where , and
with de-

noting the Hankel matrix with and as the first column
and last row, respectively. Relaxing the weighting matrix as
known , the WLP solution to (22) is:

(24)

The estimates of the sinusoidal poles existing in the multiple
channels, , can be obtained as the roots of the
following LP equation:

(25)

and the corresponding estimates of the frequency and damping
factor of the -th sinusoidal pole , denoted by , , are

(26)

In practice, and , which are required in con-
structing the weighting matrix of (23), are not known

. Accordingly, and are com-
puted in an iterative manner:
• Step 1. Set the noise levels as .

• Step 2. Determine the initial estimate from (24) by setting
as , which denotes the identity matrix.

• Step 3. Use and to construct the weighting ma-
trix , and find an updated estimate .

• Step 4. Estimate the sinusoidal poles from by
solving the roots of (25).

• Step 5. Use to estimate the noise levels as

for , where

• Step 6. Repeat Step 3 — Step 5 until the difference of the
2-norm of between successive iterations is smaller than

, and then the final estimates and are
obtained.

This method is called the multi-channel weighted linear pre-
diction (MC-WLP) estimator.
It is worth mentioning that when the unknown noise levels

, are equal, they will be canceled in the first and
second terms of (24). As a result, the procedure to estimate the
noise levels in Step 5 can be eliminated.

C. Sinusoidal Model Selection for Multiple Channels

Up to now, we have estimated the number of the distinct
poles in the multiple channels and the corresponding frequen-
cies and damping factors. However, it is still unknown which
sinusoidal poles belong to which channel. This is a problem of
sinusoidal model selection, namely, matching the estimated si-
nusoidal poles to their corresponding channels. For convenience
of analysis, we assume that are all nonzero here. For the
case , which is the problem of signal detection, we have
studied it in Section IV. Our idea of model selection is based on
multiple hypothesis tests and the asymptotic distribution of the
maximum of 2-dimensional (2-D) Gaussian random fields.
Theorem 1: Let be a zero mean and unit variance

Gaussian random field defined for inside a 2-D
rectangular domain . Let be the
covariance function of . Then asymptotically in ,

(27)

where is given by

(28)

Proof: see [31].
To make use of the above theorem, it is essential to analyze

the statistical property of the residual for the WLP estimates of
the order from the -th channel data:

(29)
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where ,

(30)

, and and are
the WLP estimates of and , respectively, for

and .
In [32], it is shown that under small error assump-

tion, the perturbation of the WLP estimates of the fre-
quencies and damping factors and ,

, is:

(31)

where , ,
, and and are defined as:

(32)

(33)

(34)

(35)

(36)

(37)

(38)

with and being
the variables for and , . According
to [33], in the first-order sense, there holds the relationship be-
tween the perturbation of and that of as follows:

(39)

and

(40)

(41)

where ,
. Making use of (31), (39) and

the small noise condition, it is derived that the fitting residual is

(42)

where , and is the noise-free
part of .
Stacking the real and imaginary parts of , we obtain

(43)

Since or is white Gaussian, it is observed from (43) that
the fitting residual vector with the WLP estimates of order ,

, is also Gaussian with the covariance matrix

(44)

The model selection criterion comes from the observation
that matching the sinusoidal poles for each channel can be
viewed as a problem of multiple hypothesis tests related to the
Gaussian random field and the above Gaussian residual. In de-
tail, the Gaussian random field corresponding to our particular
problem has the following specific form:

(45)

where
is the sinusoidal function, ,

is the weighted inner product defined as:

(46)

and is the weighted 2-norm of the form:

(47)

where represents Moore-Penrose pseudo-inverse. From (45),
it is seen that is a Gaussian random field defined on

with mean zero and variance:

(48)

Therefore, according to Theorem 1, the asymptotic probability
distribution of the statistical quantity

with respect to , is

(49)

where

(50)
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is a zero mean and unit variance Gaussian random field, and

(51)

(52)

(53)

Now we devise the sinusoidal model selection criterion by
utilizing the asymptotic distribution of (49). Let be the pre-
assigned probability of incorrect model selection. Referring to
(49), our goal is to find a threshold for which

(54)

Taking logarithm on (54), the corresponding threshold is the
solution to

(55)

According to EVT, we look for an asymptotic solution of (55)
in the following form [34]:

(56)

Substituting (56) into (55), neglecting the minor terms, and
equating terms of the same order give

. To sum up,

(57)

where

(58)

To compute , it is necessary to study the behavior of .
In the following, we explore the analytical form of the elements
of to facilitate the computation of . Denote

, . Then at , it is derived
that

(59)

(60)

(61)

With the analytical form of the elements of in (59)–(61),
the quantity of (51), that is the integral of over
the domain , can be calculated in a numer-
ical way [35].
The next question is to calculate , that is, to find ,
, such that:

(62)

Defining ,
, we have:

(63)

Integrating both sides of (63) with respect to the variable for
, we know that is the optimum value of such that

(64)

Substituting into
(64), we see that and minimize , and thus using these
values, will be obtained. Now we reformulate (64) as:

(65)

Consequently, is obtained by solving the following LS
problem

(66)

where the parameters and are converted into the functions of
[1]. As a result, the nonlinear parameter is found with one-
dimensional search, is calculated from , and then is
computed. Here, the search is conducted with the trust-region-
reflective algorithm bearing the local convergence property with
quadratic rate of convergence [36], and the initial value from the
minimum grid point.
In practice, the true values of the parameters con-

tained in the weighting matrices and the noise levels
are unknown. However, when the

signal-to-noise ratio (SNR) is higher than the threshold value
(or is small enough), the parameter estimates and
of (26), , will be close to their true values,

with which we can estimate and
accurately. Therefore, in the algorithm implementation, it is
reasonable to construct the stochastic field of (50), and to
determine and the threshold value in the same way
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as (66) and (58), but with the estimated and . In addition,
from the derivation of (29) –(44), the covariance matrix keeps
the same expression of (44) if the parameter estimates
are closer to their true values. Therefore, in practice, the sinu-
soidal parameter estimates from the multi-channel data and the
MC-WLP estimator, , are utilized in the construction
of the stochastic field of (50), which are more accurate
than that from the single-channel data.
According to (45), for the -th channel ( ),

the quantity can be viewed as the max-

imum “weighted” correlation between the fitting residual
(or ) of order and the sinusoidal function scaled
by the “weighted” energy of . In the above analysis, we
show that, when fitting the signal with the accurate sinu-
soidal pole estimates of the correct model order , the noise-
less part of , , will be canceled out by the estimated vectors

, as much as possible, and the residual
is just Gaussian noise and uncorrelated with any sinu-

soidal function. Therefore, it is reasonable to regard
as small with high probability. On the other hand, if we fit the
signal with sinusoidal poles, , there will be
at least one sinusoidal pole not canceled out, and the remained
part contains noticeable sinusoids. Ignoring the differ-

ence in for different order , it is observed that
is obviously larger. As a result, the sinusoidal model selection
criterion with the MC-WLP estimates , for the
-th channel, is proposed as follows:
• Step 1. Estimate the amplitudes of corresponding to the
sinusoidal poles :

• Step 2. Sort as
in terms of their moduli.

• Step 3. Set .
• Step 4. Fit the signal with the selected sinusoidal poles
corresponding to .

• Step 5. Estimate by (44), and by

for , where

and with the sinusoidal parameters corresponding to
.

• Step 6. Construct the statistical quantity , compute
the threshold , and perform the hypothesis test. If

, then the model selection is finished, and
the selected sinusoidal poles belong to the -th channel.
Otherwise, go to Step 7.

• Step 7. Set , and go to Step 4.
The above sinusoidal model selection method is termed as the

EVT selector. Note that the testing statistical quantity
is the maximum weighted correlation between and
scaled by the weighted energy of , and the EVT selector is
also able to be applied in the single-channel setup.

IV. PERFORMANCE ANALYSIS

A. Consistency of Detection of Distinct Poles

Regarding the consistency of the proposed MC-MOE, it
is straightforward that on the asymptotic SNR condition:

, , and then converges to the version
from . Furthermore, for the matrix , its
last singular values , and
then . On the other hand, according to the analysis in
the SAMOS method [28], will normally not be equal to
zero for other values. As a result, when , will
be the minimal of with probability one, which completes
the proof of the asymptotic consistency of the MC-MOE with
respect to SNR.
In practice, the probability of correct detection cannot be

guaranteed to be one, and there is also threshold behavior at
certain SNR, above which it is close to one and below which it is
rapidly decreased to near zero. This threshold behavior is largely
attributed to the occurrence of “subspace swapping” [37].

B. Computational Complexity of Parameter Estimation

In the MC-WLP parameter estimation for the sinusoids from
the multiple channels, the main computational complexity
(taking only the multiplications into account) in one iteration
consists of threemain parts from (24): (i) times ofmatrixmul-
tiplication of and ; (ii)matrix inversion of

; (iii) constructionof theweightingmatrix
, among which the third part occupies most of the computa-

tion, and requires FLOPs of totally. Normally ,
and thewhole computational complexity is not dominated by ,
which means that the computation for the multi-channel signals
is nearly the same as that for the single-channel signal. On the
other hand, we can also make the multi-channel sinusoidal pa-
rameter estimation channel bychannel, followedby theweighted
least squares (WLS) refinement, which requires times of
the weighting matrix construction, and thus the computational
complexity of instead.

C. Parameter Estimation Accuracy

In parameter estimation, minimum variance unbiased esti-
mator is often desired [10], which means that the estimator is
unbiased and its variance is minimum. Usually, the accuracy of
the devised estimator is evaluated with the mean square error
(MSE): with and being the true
value and its estimate, respectively, where bias and variance are
involved. When the SNR is sufficiently high, the MSE of the
-th pole , is [38]

(67)

where is the covariance matrix of :

(68)

(69)

(70)
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and the MSEs of the frequency and damping factor es-
timates are expressed as [39]:

(71)

It is difficult to prove that for multi-channel multiple-tone
signal, theMSE of theMC-WLP estimator, (71), is equivalent to
CRLB theoretically. However, when the data length or SNR is
large enough, theWLP-based estimate will converge to its glob-
ally optimum solution [29]. This is also supported by simulation
results in Section V. In addition, following the methodology
in [40], it can be proved that the MC-WLP estimator for the
multi-channel undamped single-tone signals is unbiased with
variance:

(72)

for large data length with being the SNR of the -th
channel, which is equal to the asymptotic CRLB [41]. In such
a case, the MC-WLP method is proved as a minimum variance
unbiased estimator.

D. Existence Hypothesis Test and its Threshold Performance

It is assumed that there exists the sinusoidal signal in all the
multiple channels in Section III-C. Nevertheless, in practice, it
is also possible that there is noise only in some channels. So, it
is necessary to check the existence of signals for each channel
prior to sinusoidal model selection. This is a binary hypothesis
test problem for the -th ( ) channel:

(73)

In detail, suppose that for the -th channel:

(74)

for and , and fit with the
sinusoidal function in an LS way similar to Section III:

(75)

where , . Based on
the ideas in Section III, the hypothesis is accepted if
, or rejected otherwise, where is the threshold defined as

. According to Theorem 1 and following the
similar steps in Section III, the asymptotic distribution of
is derived as:

(76)

and the corresponding threshold value is:

(77)

where

(78)

(79)

(80)

Next, we analyze the threshold signal strength required for
detecting the presence of a single undamped sinusoid:

(81)

for , where , and
and represent the real-valued amplitude, initial phase and
frequency, respectively. To focus on the problem of detection
threshold analysis, here we assume that and are
known . Then we have that:

(82)

where
, and

(83)

As a result, when the SNR is sufficiently large compared with
the data length , we obtain

(84)

Hence, the sinusoidal power required for detection is:

(85)

and the corresponding threshold SNR of the -th channel is

(86)

From (86), it is seen that with the increase of the data length
, the threshold SNR needed for existence will improve.

When the data length , the detection threshold SNR:
, which demonstrates the asymptotic consistency

of the existence hypothesis test for undamped single-tone
signal. However, in practice, the threshold SNR is somewhat
higher than the theoretical value of (86) as the noise plays an
obvious role in of (84).
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TABLE I
NUMBER OF SINUSOIDS IN EACH CHANNEL

TABLE II
SINUSOIDAL POLES IN EACH CHANNEL

TABLE III
AMPLITUDES IN EACH CHANNEL

V. SIMULATION RESULTS

Monte Carlo simulations are carried out to evaluate the per-
formance of the proposed multi-channel sinusoidal modeling
methodology, which consists of three parts: (i) detection of dis-
tinct multi-channel sinusoidal poles with the MC-MOE; (ii) fre-
quency and damping factor estimation of multi-channel sinu-
soidal poles with the MC-WLP estimator; and (iii) sinusoidal
model selection for each channel with the EVT selector. The
performance of the detection of distinct sinusoidal poles is eval-
uated in terms of the probability of correct detection (PCD):

with and being the number of correct de-
tection trials and the total number of trials, respectively. The pa-
rameter estimation accuracy is evaluated using the MSE. As for
the model selection, the probability of construction error (PCE):

is adopted with being the number of failing
model selection trials. All the results provided are averages of
1000 independent runs.
In the simulation, we consider two kinds of signal from

channels: single-tone and multiple-tone, if not men-
tioned additionally. The multi-channel single-tone signal
is: , where

, , and the
noise levels of are set equal:

. For the multi-channel mul-
tiple-tone signal, the data length is also , and the
parameter setting is shown in Tables I, II, and III, which indi-
cates that there exist distinct sinusoidal poles in these
channels: ,

, where
and are fully-common poles shared by all chan-

nels. For the multiple-tone signals, the noise levels are set
as . All
the above are made with respect to the SNR of the 1st
channel, defined as with the signal power

.

Fig. 1. PCDs of detection of distinct multi-channel sinusoidal poles versus
SNR (a) single tone and (b) multiple tones.

A. Detection of Distinct Sinusoidal Poles

Before investigating the performance of the proposed
MC-MOE, we construct and stack the data matrix

for each channel, and also extend the single-
channel MUSIC [18] and ESTER [19] order estima-
tors to the multi-channel scenario, which are called the
multi-channel MUSIC (MC-MUSIC) and multi-channel
ESTER (MC-ESTER) methods, respectively. In addition, in
developing the MC-MUSIC estimator, we utilize the root
MUSIC technique [1] instead of spectral MUSIC [18] to avoid
the 2-D search for the frequencies and damping factors. In
the evaluation, comparison is made with the MC-MUSIC and
MC-ESTER methods. In [42] it is shown that the best shift-in-
variance characteristic of signal subspace is achieved when
the data matrix is as square as possible. So here the number of
rows of each data matrix is set as with
denoting the largest integer less than , which is also found
empirically to result in good performance. Note that the major
computational complexities of these three methods lie in the
SVD of the data matrix, which is .
Fig. 1 shows the PCDs of the proposed approach together

with the MC-MUSIC and MC-ESTER methods for the estima-
tion of the number of the distinct multi-channel sinusoidal poles
with respect to . It is seen that for the single-tone signals,
all methods perform perfectly from , that is with
PCD of 100%. As for the multiple-tone signals, their order esti-
mates are consistent asymptotically with respect to the SNR. In
detail, the detection of the MC-MOE achieves a 100% success
rate above the threshold , while the MC-ESTER
andMC-MUSIC methods are perfect when and

, respectively. That is, there is a threshold SNR
advantage of the MC-MOE over the other two methods by more
than .
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Fig. 2. MSEs for single-tone signals versus SNR (a) frequency and (b) damping
factor.

B. Frequency and Damping Factor Estimation

Having estimated the number of the distinct multi-channel
sinusoidal poles, , we then determine the frequencies and
damping factors of the distinct sinusoidal poles in the multiple
channels. In Section III-B, we develop the MC-WLP estimator
to conduct optimum parameter estimation. In many cases, the
sinusoidal parameters of the fully-common sinusoidal poles,
which are shared by all the channels, are of much interest [4],
[27]. Therefore, for the sake of simplicity, here we adopt the
average MSEs of the parameter estimates of the fully-common
poles for performance evaluation. Apart from the CRLB [27],
comparison is made with the subspace-based method [2], [4]
and the average of the single-channel WLP (SC-WLP) [26]
method for all channels. To observe the impact of the detection
of distinct multi-channel sinusoidal poles to estimation, here we
use the model order estimate in the MC-MOE, , to conduct
MC-WLP parameter estimation. As illustrated at the beginning,
it is necessary to know the number of the cisoids in each channel
and that of the fully-common sinusoidal poles prior to using the
subspace-based method. So to facilitate the comparison, we as-
sume them as known when using the subspace-based
method. We also make similar order assumption for the use of
the SC-WLP method.
Figs. 2 and 3 show the frequency and damping factor es-

timation performance for the multi-channel single-tone and
multiple-tone signals, respectively. It is observed that the
threshold SNR for estimation accords with that for detection.

Fig. 3. MSEs for multiple-tone signals versus SNR (a) frequency and (b)
damping factor.

This is because the MC-WLP estimator is a parametric method,
which depends on the exact order estimate. In Fig. 2, it is
seen that when the SNR is sufficiently high, the MSEs of the
MC-WLP frequency and damping factor estimates are equal to
their theoretical counterparts and CRLBs. Note that the MSE of
the MC-WLP damping factor estimate begins to deviate from
the CRLB when . In fact, with the decrease of
the SNR, there will occur the threshold behavior for nonlinear
parameter estimation [29]. Meanwhile, the subspace-based
and SC-WLP methods are not optimal, and there are about

and gaps between their empirical MSEs and CRLB,
respectively.
In Fig. 3, we find that in the perfect detection with

range of , the MSEs of the frequency and damping
factor estimates of the MC-WLP method still attain the CRLBs,
and the MC-WLP estimator is optimum. By comparison, the
MSE of the SC-WLP method is about higher, which
demonstrates the estimation refinement of the multi-channel
setup. In addition, the MSE of the subspace-based method has
about 4 dB deviation from the CRLB. Similar phenomena have
also been observed from the estimation results of the other
sinusoidal poles. Moreover, it is seen from Fig. 3(a) that the
MSE of the subspace-based method becomes larger, and cannot
keep linear versus for , indicating that
the two-stage subspace-based method has a disadvantage in the
threshold performance. Of course, the subspace-based method
is more computationally efficient than theMC-WLPmethod be-
cause the former only needs three eigenvalue decompositions.
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Fig. 4. Distribution of statistical quantities for hypothesis tests (a)
and (b) .

C. Sinusoidal Model Selection for Each Channel

Nowwe have obtained theMC-WLP estimates for the param-
eters of the multi-channel sinusoidal poles . The
next step is sinusoidal model selection for each channel, namely,
to match the sinusoidal poles to their corresponding channels.
Before model selection, it is necessary to validate the theoret-
ical asymptotic distribution of the statistical quantity
and used in the hypothesis tests, (54) and (76), by com-
paring with the results from Monte Carlo simulations.
Fig. 4(a) shows the distribution results of at
, where the considered multi-channel signals are parame-

terized with the same setting as that of the multiple-tone signals
at the beginning of this section. In detail, “Empirical 1” stands
for the probability distribution from the Monte Carlo simula-

tions and using the weighting matrix computed with the
true parameter values; “Empirical 2” stands for the simulation

result while using the estimated ; “Theory” denotes the the-
oretical asymptotic distribution by (54). Note that “Empirical 1”
and “Empirical 2” correspond to the ideal stochastic field
defined in (45) and the practical one we consider in the simula-
tion of model selection, respectively. From Fig. 4(a), it is seen
that the probability distribution of the maximum of the ideal
stochastic field accords with that of the practical one perfectly.
So it is reasonable to construct the stochastic field with the es-
timated weighting matrix. Moreover, when is large and the
probability of incorrect model selection, ,
is small, the theoretical distributions also accord with the ones
from simulations, which verifies the derived threshold value for

, namely, of (58).
Fig. 4(b) shows the distribution results of with

being white Gaussian noise, where
“Empirical” and “Theory” denote the experimental and theo-
retical distribution of , respectively. It is observed that the
theoretical distribution of (76) and the experimental align
well asymptotically in , which supports the devised threshold
value for , namely, of (77) in the sinusoidal existence
hypothesis test. In addition, it is worth mentioning that the

Fig. 5. Threshold performance of existence hypothesis test for undamped
single tone.

same outcomes also apply to the quantities and
for the other channels. So, it is reasonable to use the parameter
estimates in the model selection as long as the SNR is high
enough for optimum parameter estimation.
Next, we show the threshold performance of the ex-

istence hypothesis test for the undamped single-tone signal:
, with and

for different data lengths , in
Fig. 5. The probability of incorrect model selection is set
as . It is observed that the PCE is 0 at high SNR.
When the SNR decreases, the PCE performance will break-
down at some SNR value, and increases rapidly to 100%
afterwards. As expected, the threshold SNR will be low-
ered down with the increase of the data length . Mean-
while, according to (86), the theoretical threshold SNRs are:

for
, respectively. By comparison,

there is about difference between the theoretical threshold
SNR and actual value, which is due to the noise in the moderate
SNR zone.
Fig. 6 shows the sinusoidal model selection (including the

existence hypothesis test) performance of the EVT selector for
each channel with respect to SNR. Here, the probability of in-
correct model selection, , is set as 0.02. Fig. 6(a) shows the
performance for the single-tone signals, which becomes perfect
at for all the channels. The results for the case
of multiple-tone signals are demonstrated in Fig. 6(b). It is seen
that when the SNR is sufficiently high, the PCEs for the multiple
channels will all become convergent around 4%, which corre-
sponds to the preset value of . However, for different noise
levels and tone numbers, the thresholds of the sinusoidal model
selection for different channels are also different. In detail, the
PCEs for the 1st, 2nd and 5th channels converge to 4% from

. By comparison, the threshold for the
3rd and 4th channels is higher: , and the EVT
selector performs more poorly for the 3rd channel than the 4th
one. Considering the parameter setting for the multiple-tone sig-
nals, the stronger noise and the larger tone number are disadvan-
tageous to the performance of the proposed model selector. For
comparison, we also extend the ESTER method in [19] to con-
duct the sinusoidal model selection by estimating the order of
the signal in each channel, and show the results in Fig. 6(c). It
is seen that the ESTER selector performs more poorly than the
EVT selector. The former has the higher threshold SNR. In ad-
dition, note that the ESTER selector can be utilized to perform
model selection when the signal is present, meanwhile the EVT
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Fig. 6. PCEs of sinusoidal model selection versus SNR (a) single tone, (b)
multiple tones (EVT selector), (c) multiple tones (ESTER selector).

selector can be used to perform the existence detection of sinu-
soidal signal.

VI. CONCLUSION

In this paper,we have proposed to perform themodel selection
and parameter estimation together for modeling damped sinu-
soids from multiple channels, and have devised the MC-MOE,
MC-WLP estimator and EVT selector for the detection of dis-
tinct multi-channel sinusoidal poles, frequency and damping
factor estimation of the multi-channel sinusoids and sinusoidal
model selection for each channel, respectively. The performance
of the proposed methods has been analyzed, and simulations
are conducted to validate that the MC-MOE performs with
lower threshold SNR than the multi-channel versions of other
common detection methods. The MC-WLP estimator is statisti-
cally efficient and attains the optimum MSE performance when
the SNR is sufficiently large. The EVT selector is consistent
asymptotically in data length for the detection of the undamped
single-tone signal, and the sinusoidal model selection is real-
ized with a high probability for small noise.
In future work, we will go on with this topic, and extend the

multi-channel sinusoidal modeling methodology to deal with
joint DOA and multi-pitch estimation for audio and speech sig-
nals under the microphone array scenario.
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