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ABSTRACT

The removal of suspended solids and attached pollutants is one of the main treatment 

processes in wastewater treatment. This thesis presents studies on the hydraulic 

conditions of various particle removal facilities for possible ways to increase their 

treatment capacity and performance by utilizing and improving hydraulic conditions. 

Unlike most traditional theses which usually focus only on one particular subject of study, 

this thesis contains four relatively independent studies which cover the following topics: 

a newly proposed particle settling enhancement plate, the redesign of the inlet zone of a 

high-flow rate clarifier, identify the hydraulic problems of an old partially functioned 

CSO facility and investigate possible ways to entirely eliminate untreated CSO by 

improving its hydraulic capacity and performance. In order to be easily understood, each 

part includes its own abstract, introduction and conclusions as well as the study results. 

All studies were carried out with a combination of numerical model and measurements.  

In the first part of the thesis a new concept of using a vortex to increase particle removal 

from liquid was proposed and the new particle settling enhancement plates, Vortex Plate, 

were tested under various flows and settling conditions. Structure of the Vortex Plate 

consists of multiple long narrow parallel slots which are built on a flat plate. Vortices are 

generated by cross-flow passing the long narrow parallel slots. The Vortex Plate can be 

used in the same way as the widely used lamellar plates with cross flow configuration. 

However, the Vortex Plate takes advantage of high flows, which generate stronger 

vortices and entrainment of solids in the downward direction inside the slots, the sliding 

particles are protected from the strong incoming main flow field. The study results show 
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that under the tested flow conditions and particles the new Vortex Plate outperforms the 

conventional lamellar plate, especially for higher inflow rates and smaller particle size.  

Part two presents a numerical approach to redesign of the inlet structure of a high-rate 

stormwater clarifier. The inlet zone of an existing rectangular stormwater clarifier was 

redesigned to improve the fluid flow conditions and reduce the hydraulic head loss in 

order to remove the lamellar plates and adapt the clarifier to the needs of high-rate 

clarification of stormwater with flocculant addition. Conventional design methods based 

on surface loading rate, mean residence time and other parameters do not provide enough 

detailed hydraulic information to guide the improvement of the performance of the 

clarifier. This inconsistency in the traditional approach is discussed in the thesis.  The 

redesign procedure was directed according to 3-dimensional flow and particle behavior as 

simulated with hydrodynamic and particle transport models under various configurations 

of the hydraulic structure. 

In part 3, the performance of a combined sewer overflow (CSO) storage/treatment facility 

in North Toronto (NT), Ontario, Canada was investigated by conjunctive numerical and 

physical (hydraulic) modeling.  The main objectives of the study were to assess the 

feasibility of increasing the hydraulic loading of the CSO facility without bypassing and 

major structural modification. Numerical simulations identified excessive local head 

losses and helped to select structural changes to reduce such losses. The analysis of the 

facility showed that with respect to hydraulic operation, the facility is a complex, highly 

non-linear hydraulic system. Within the existing constraints, a few structural changes 

examined by numerical simulation could increase the maximum treatment flow rate in the 

CSO storage/treatment facility by up to 31%. 
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In the last part, the same CSO facility as studied in part 3 was re-investigated with both 

the numerical and physical models. In order to keep the self contained format and to be 

easily understood, some background introductions about the NT CSO facility may 

overlap with the content of part 3. The main goal of this study is to upgrade the hydraulic 

capacity of the facility to totally eliminate the untreated CSO overflow (not only the 

bypass as the study goal in the part 3). A new and more powerful CFD model was used in 

this project. The study started with verifying the new model against measured data from a 

physical model. Two possible scenarios of structural changes were proposed and 

examined in detail by both physical and numerical models. Even though the study was 

focused on a particular CSO facility, the hydraulic conditions in the facility should 

represent general flow conditions in a typical water treatment facility. The numerical 

modeling method used in the study could be applied to solve a wide range of hydraulic 

problems faced in environmental and hydraulic engineering. Obviously, traditional 

design methods based on many simplified assumptions would not predict the actual 

operational performance as well as the new method outlined in the thesis. 
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Part 1: A Vortex Plate for Enhancing Particle Settling 

1.1 Abstract: 

The conventional inclined lamellar plate has been proven to be an efficient mean of 

increased particle removal and it has been used in a wide range of water clarification 

applications for many years. The functions of the inclined plate are to reduce particle 

traveling distance before reaching the boundary and thereby increasing the frequency of 

particle collisions to prompt particle flocculation. However, one of the problems with 

conventional inclined lamellar plate is that particles landing on the plate surface are 

directly exposed to incoming flows, especially for lighter particle under high flow load. A 

new proposed particle settling enhancing plate called the “Vortex Plate” is presented and 

discussed in this paper. In addition to functionalities of the conventional lamellar plate, 

the new plate also utilizes vertical vortices, generated by horizontal cross inflow, to 

entrain and transfer the particles from the outer fast flow to the relative quiescent corner 

of a long slot in which the particle slides down along the plate surface. Long parallel 

narrow slots are used to generate vortices and provide a quiescent flow regime protecting 

particles from disturbances during the period of particles downward movement. This flow 

regime enhances the removal of small and lighter particles, especially, for high-rate 

treatment. Numerical CFD models were used in this study to investigate flow conditions 

around the Vortex Plate. Measurements were also conducted in a rectangular tank to 

compare the effectiveness of particle removal with the newly proposed Vortex Plate, 

traditional lamellar plate and an empty tank. In general, the Vortex Plate performed better 
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than the conventional inclined lamellar plate, or the conventional settler, especially under 

high inflows.

1.2 Introduction 

A gravity clarifier is the most economical and environmentally friendly method of 

removing suspended solids from flow because it uses gravity as a free source of energy, 

and it does not produce any side impacts. The efficiency of a discrete particle settling 

depends on the clarifier surface area and hydraulic loading. Hence, for a given discharge, 

the efficiency can be improved by increasing the clarifier area. A common method widely 

adopted in practice to achieve this is to use closely spaced inclined plate. This idea was 

suggested originally by Hazen (1904) over century ago and was further explored by 

Camp (1946) and many others (Culp G. et al. 1968, Yao 1973). During the last few 

decades there were hardly any new activities on developing new inclined plates.  

The inclined plate settling system can be constructed in one of three ways with respect to 

the direction of the liquid flow relative to the direction of particle settlement: counter-

current, co-current, and cross-flow. With the counter-current flow, wastewater suspension 

in the basin passes upward through the plate module and exits from the clarifier above the 

plate modules. The solids that settle out within the plate space move by gravity against 

the current downward, which reduces the solids settling velocity since they have to move 

against the upward current. In a co-current design, the solids and current are introduced 

above the inclined surface and flow down through the plates. This cause a potentially 

more serious problem of resuspending collected solids in the exit stream. In a cross-flow 

settling design, the flow is horizontal and does not interact with the vertical settling 
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velocity. However, since the solids are directly exposed to the current, they are still 

vulnerable to be swept away by a strong incoming flow, especial in the case of less dense 

solids.

Therefore, in a clarifier flow conditions have to be well controlled in order to achieve 

settling efficient close to theoretical limits. Attention must be given to providing equal 

flow distribution to each settler, producing good flow distribution within each settler, and 

collecting settled solids while preventing re-suspension. Comprehensive theoretical 

analyses of the various flow geometries have been made by Yao (1970). Yao’s analysis is 

based on flow conditions in the channels between the inclined surfaces being laminar 

which requires the Reynolds number less than 800.   However, even with all precautions 

taken in designing an inclined plate clarifier, the removal of small and lighter solids 

under high flow loads is always challenging. Consequently, in practice, most high-rate 

clarifications applications have to employ both physical and chemical treatment processes.  

In the physical settling process the turbulence is often considered as a negative factor 

disturbing particle settling and causing sediment re-suspension, which is particularly true 

in the settling region far from the boundaries or near a sediment bare bed. However, in 

the boundary layer it may not always be the case. For instance, in flume experiments 

conducted by Cuthbertson et al (1998) to study settling characteristics of non-cohesive 

fine grained sediment (150-500 microns) in a turbulent open channel flow over a rough 

porous bed, measured particle settling velocities near the channel bed, water turbulent 

flow conditions, were generally up to 2.5 times greater than the measured settling 

velocities in still water conditions. The reason was that vortices generated by the rough 
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bottom enhanced the transfer of particles from the high speed outer flow to the near-bed 

low-speed flow.

Research on particle behaviours in the wall region of turbulent boundary layers with the 

coherent structure (Marchioli and Soldati, 2002) revealed that coherent sweeps and 

ejections, generated by quasi-streamwise vortices, were efficient transfer mechanisms for 

particles. For instance, it is widely accepted that heavy particles have a tendency to 

migrate toward the wall (Caporaloni et al. 1975; Reeks 1983; McLaughlin 1989; Brooke 

et al. 1992) and that, when in the wall layer, they segregate preferentially in regions 

characterized by streamwise velocity lower than the mean velocity (Pedinotti et al. 1992; 

Eaton & Fessler 1994; Pan & Banerjee 1996). Particle behaviour in turbulent boundary 

layers can be explained by the relationship between the turbulence structure and particle 

dynamics. Once a particle is entrained in a sweep, i.e. there is a fluid downwash toward 

the wall, it is expected to continue within the sweep and to approach the wall. In the near 

wall region, the rear end of a quasi-streamwise vortex that is very close to the wall in 

preventing particles in the proximity of the wall from being re-entrained by the pumping 

action of the large forward end of a following quasi-streamwise vortex. The local flow 

structure produced by this couple prevents a number of the particles that have entered the 

wall layer from being entrained toward the outer flow.  In particular, even though the 

strongly coherent sweep events required to drive particles to the wall are associated with 

strongly coherent ejections capable of driving the particles toward the outer flow, the 

offspring vortex acts as to reduce the width of the ‘ejection channel’. In practice, only 

particles which enter the wall layer with a specific trajectory curvature may be able to be 

entrained back into the outer flow.
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The hypothesis that pits function as preferred-particle collection devices for benthic 

organisms were investigated by Yager et al. (1993) under different flow conditions and 

pit geometries. Particle deposition experiments using pits and low-excess-density 

particles in a small annular flume indicated a significantly enhanced deposition rate 

compared to smooth, flat patches of the same diameter because pits altered the local fluid 

and depositional environment. Experiments also showed that with the same surface 

velocity, adding gravel to the bed dramatically increased particle flux to the pit. With a 

hydraulically smooth bed, deposition rates were low since few beads had any significant 

component of motion toward (rather than parallel to) the bed. A change in bed roughness 

increased the number of particles deposited to the bed over time since particle motion 

near the bed had an increased vertical component and also since the beads could come to 

rest in the quiet spaces (or mini-pits) between gravel particles. Under some conditions, 

pits, like ripple troughs, tend to fill in with finer-than background sediments (Risk and 

Craig, 1976; Nelson et al., 1987). 

All the above research results have shown that near the boundary vertical vortices would 

increase suspended particle flux toward to the boundary, the critical question is how to 

keep the approaching particles staying on the boundary (bottom bed) without being re-

suspended. To explore the answer, in this thesis a new boundary structure the so called 

Vortex Plate, designed to generate vertical vortices with boundary mean flow energy and 

to convey the trapped particles to proper location, is presented. The goals of this study are 

to investigate with numerical model and experiments: (1) flow conditions generated by 

the proposed Vortex Plate, (2) the particle removal efficiency of the proposed Vortex 
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Plate and comparing it with the efficiency of the well-known lamellar plate under various 

flow conditions.

1.3 Vortex Phenomenon 

The vortex is a phenomenon that can be plagued with confusion and misunderstanding. 

The intensity of a vortex can be characterized by Vorticity which could be described with 

a 3D vector. Each of the three components represents the vorticity associated with flow in 

a 2-d plane normal to the respective component. The x-component of the vorticity ( ) is 

perpendicular to the y-z plane, the y-component of the vorticity ( ) is perpendicular to 

the x-z plane, and the z-component of the vorticity ( ) is perpendicular to the x-y plane. 

Positive values of the vorticity components follow the right-hand rule. Meteorologists, in 

general, are most accustomed to dealing the vertical component of vorticity ( ). The 

strong  is not necessary associated with strong vertical velocity and induced velocity 

does not have to be in the same direction as  .The vortex can be generated by either 

curved flow or sheared flow and its hydrodynamic condition can be very complex.  

The phenomena associated with the vortex are everywhere around us. For example, water 

draining from the bath tub flows through the plug hole in the spiraling vortex fashion. 

Water will always try to follow the path of the least resistance. This is what the vortex 

enables to do. It reduces resistance by curving more and more inwards, thereby avoiding 

the confrontational resistance of straight motion and it also makes the flow change 

direction much easier. This is the fundamental reason for the plug hole vortex 

phenomenon. 
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For a circular vortex, except in the center core where the velocity is zero at the center and 

increases with the radius R , the tangential velocity  of a rotation flow at the radius can 

be simply expressed as  

tV

)1(
2
1 2a
R

Vt ,

where  is a constant and 2a  is the flow rotation angular speed. From this equation, it 

appears that in general the flow tangential velocity in a vortex is proportional to the 

inverse of the radial distance R . The pressure, P , due to circular vortex can also be given 

as

)2(
8 2

42

R
aP ,

where  is the pressure at infinity, and  is the water density. 

A characteristic feature of a vortex (except in the center core) can be deduced from 

equations (1) and (2) that the outside of the vortex moves slowly and the centre moves 

fast, resulting in a reduced pressure gradient from outside to inside of a vortex. As water 

is imploded in a vortex, suspended particles, which are denser than water are sucked into 

the centre of flow, frictional resistance is reduced and the speed of the flow increased. 

However, it has to be pointed out and easily derived from equation (2) that under a slow 

rotation angular speed , the center suction effect is very limited. Therefore, the 

proposed Vortex Plate in this study is not mainly based on this principle to enhance the 

particle settling.

Since in natural phenomena, such as hurricanes and tornados, the vortex is often 

associated with strong vertical forces, usually generated by a sharp gradient of a physical 

parameter such as temperature, sometimes, it might give a wrong impression that 
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horizontal swirl motions always induce strong vertical velocities and forces. This 

incomplete image of the vortex is often reproduced in many products, for instance, a 

solid-liquid separator or a clarifier built with a bottom closed cylindrical container and 

having swirled flow passing through it can not actually generate a major vertical flow 

movement and strong central suction effect. The flow behaviours in such cylindrical 

container are very much similar to that in a stirred tea-cup. The sediment would be 

pushed toward the center of the cup bottom due to friction of the container bottom. 

However, this flow pattern is not necessary to enhance solids settling.

In general, a small-scale eddy or swirl in flow is considered as an unwanted turbulence 

phenomenon in most solid separation because of random characteristics of turbulent 

flows. However, if utilizing a spatially fixed vortex properly, it could have a positive 

effect on particle settling by changing particle travel trajectory toward a more favourable 

direction within the vortex.

1.4 Particle Movement in a Vortex 

The mechanisms of particle suspension and transport in turbulence are quite complex, 

involving interaction of particles with a complex and incompletely understood turbulent 

flow. In view of the complexity of the particle suspension process, substantial 

simplifications are often used by only including the major forces acting on particles to 

describe the motion of suspended particles. In most situations involving solid particles in 

general flow conditions, the particle motion will be determined by the effects of inertia, 

viscous drag, and gravity (Lazaro and Lasheras, 1989), with all the other forces being at 

least one order of magnitude smaller. For a particle moving in the vortex field, the drag 
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force created by the radial inward fluid motion due to pressure gradient would tend to 

balance the centrifugal force, thereby preventing the particle from being ejected. A 

similar argument concerning a balance between the centrifugal and drag force was put 

forward by Maxworthy (1968).

In actual vortex cells there is always some degree of turbulence present, so that there will 

always be some turbulent exchange across trajectories of particles. In such a case, the 

region of particle retention must gradually lose some of its particles by turbulent 

exchange with the outside region, the rate of loss depending upon the degree of 

turbulence.

1.5 Proposed Vortex Plate Structure 

The structure and layout of the tested Vortex Plate is shown in Fig. 1.1. It has many 

uniformly spaced slots along the face of a 100 cm (long) x 50 cm (wide) smooth flat plate, 

the slots were about 2 cm wide and 2 cm deep, running along the full length of the Vortex 

Plate. In the actual operation, the inclined Vortex Plates are placed in the settling tank at 

60 degrees about the horizontal, with flow velocities parallel to the plate. The ambient 

flow passing the top opening of the slots generates vortices in the narrow parallel long 

slots, which entrains particles and make them slide downward along slots. Because the 

vortex is generated by cross flow, the faster the cross flow is, the stronger the vortex is 

produced.  Thus, the Vortex Plate is potentially more effective in removal of suspended 

solid under high flows than the traditional smooth lamellar plates. Also, because the slots 

protect the particles inside the slot against flow disturbances, even lighter particles 
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probably have an improved chance to move downward, compared to the smooth plate 

design.

1.6 Numerical Study of the Vortex Plate 

As mentioned before the vortex is a complex physical phenomenon, which is difficult to 

study experimentally, especially, small-scale weak vortices, because of the possible 

interference with the measurement device. In order to examine the effectiveness of vortex 

generation by the newly proposed Vortex Plate and to better utilize the vortex for 

enhancing particle settling as proposed, it is important to understand hydraulic conditions 

in the vicinity of the Vortex Plate. Toward this end, a commercially available CFD 

software was used in this study as a primary investigation tool to evaluate the 

performance of the proposed Vortex Plate. Since low particle concentrations were used in 

particle transport simulations, the influence of suspended particle on its carrier can be 

neglected, which allows simulation being carried out in two steps: first, the flow field was 

calculated with the 3D hydrodynamic single phase model and the k-  turbulent model, 

and then, the Lagrangian particle tracking model was used on the basis of obtained flow 

information to simulate particle settling rates under different inclined plates. The 

dispersion of particles in the fluid phase due to turbulence can be predicted using a 

stochastic tracking model. The stochastic tracking (random walk) model includes the 

effect of instantaneous turbulent velocity fluctuations on particle trajectories. At the same 

time, particles do not directly impact the generation or dissipation of turbulence in the 

continuous phase. When particles reach the boundary it is assumed, in particle tracking 

simulations, that 50% of the momentum carried by particles will be lost. Details of the 
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model can be found in He et al. (2004). It was realized that some physical phenomena of 

particle transport could not be realistically simulated by numerical modelling, such as 

particle behaviours after they reach the boundary and the particle re-suspension at the 

bottom for a strong bottom flow. Therefore, in the numerical study the particle transport 

simulation mainly focused on investigating flow condition effects on the particle settling 

under different particle settling enhancement plate designs instead of looking for the 

absolute particle removal. The experiments were also carried out to compare the 

performance of the proposed Vortex Plate with that of the conventional lamellar plate, 

and such results are presented later. 

The numerical simulations were done for particles traveling in a closed top 100 cm (L) x 

26 cm (W) x 40 cm (D) rectangular tank fitted with either two Vortex Plates or two 

lamellar plates, positioned in the settling chamber at a 60 degree angle from the 

horizontal and the structural arrangements shown in Fig. 1.2. The inlet and outlet are 

located at top of the tank upstream and downstream ends, and the size of the particle 

settling enhancing plate is 60 cm (L) x 50 cm (W). The main flow patterns for the two 

different plate designs are represented as streamlines in Figs. 1.2A and 1.2B. It is not 

surprising that the main flow patterns are similar for the two different situations. With an 

inflow velocity of 0.5 m/s used in the simulation, around 60% of flow passing through 

the top part of the tank directly. However, some flow, as indicated in both Fig. 1.2A and 

Fig. 1.2B, could reach all the way down to the tank bottom before bending upward to exit 

from the outlet. These curved flows could affect the direction of the induced vertical flow 

along the slots of the Vortex Plate, which will be discussed below in detail.
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Fig. 1.3 shows the simulated velocity in the individual slot of the Vortex Plate. For the 

sake of clarity, only a few slots are shown in Fig. 1.3, the velocity patterns in all slots are 

quite similar and negative vortices induced by horizontal flow can be seen clearly in all 

the slots, which confirms the design concept. Also, from the vector lengths in Fig. 1.3 it 

seems, at first glance, that the velocity at the vortex center is the smallest and will 

increase with radius until reaching the wall, which seams difference from the assumed the 

velocity distribution in a circular vortex described in the section of vortex phenomena. 

However, by closely examining the velocity amplitude distribution at the same cross-

section as shown in Fig. 1.3 with a colour contour map (not shown here because it is not 

very useful when displayed as a black-white map), it was found that the simulated 

tangential velocities increased from the center to about the midpoint between the center 

and wall, and then started decreasing toward the slot wall, which matches a general 

velocity pattern in a circular vortex. At the two bottom corners of slot, as expected the 

velocity was almost zero, which provides a potential quiescent channel allowing particles 

to slide down easily along the slot. 

The vortex distribution along the whole Vortex Plate can be better displayed with contour 

lines as shown in Fig. 1.4. Density of the contour lines indicates the intensity of vortex. 

The vortices generated in the top part of the plate were stronger than those near the 

bottom, because of a faster horizontal flow in the upper part. Based on simulated flow 

patterns it was expected that once nearly horizontally moving suspended solids enter 

swirl flow, their trajectory would be changed. As mentioned before the movement of 

particles along either vortex direction (a nearly vertical direction) should be easier due to 

less hydraulic resistance. The vertical velocity contours in three horizontal cross-sections 
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are displayed in Fig. 1.5. The arrows are used to show the vertical velocity direction in 

different regions. It can be seen that there are quite strong nearly vertical flows in the 

parallel slots, the negative vertical velocity (downwards) is generated in the upstream part 

of the tank and a positive vertical velocity (upwards) occurs in the downstream half of the 

tank. The size of arrows indicate that vertical velocity at the two ends of the Vortex Plate 

was strongest and it would be gradually reduced towards the middle of the Vortex Plate, 

the similar vertical flow distribution in the settling tank could also be seen from main 

flow velocity distribution in Fig.1.2. Therefore, the strong vertical flow was mainly 

generated by vertical component of mean stream flow instead of by the vortex itself.  

Obviously, the downwards vertical velocity would increase particle settling speed. In the 

region with upwards velocity in the sliding slots, particle settling process should also be 

enhanced based on the principle of lamellar plate settling with the counter current setting 

to enhance the settling, however, it has much weaker flow to against because main flow 

maintains in the horizontal direction. To investigate the particle transport behaviour under 

hydraulic conditions generated by the Vortex Plate, the Lagrangian particle tracking 

model was used to evaluate the performance of particle removal under both lamellar and 

the Vortex plates. 

With the consideration of computer running time, the particle tracking model was run to 

simulate 60 seconds real-time event. The time step was 0.01 and a total of 75000 particles 

were tracked in the tank during the simulation period, which should be large enough to 

represent particle movement under the given conditions. With the 0.5 m/s inflow velocity, 

for a particle moving straight forward with the carrier speed would take only 2 seconds to 

reach the exit. So, a simulated 60 seconds real-time event would be long enough to test 
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particle behaviour under the influence of the settling enhancing plates in a 100 cm 

rectangular tank. The simulated particle capture rates for different settling enhancing 

plates are shown in Fig. 1.6. It shows that if only the flow condition influence on 

suspended solid movement (the model could not realistically simulate the boundary 

effects) is considered, the simulated particle capture rate of the Vortex Plate is about 8% 

higher than that of  the lamellar plate, which was most likely attributed to the vortices 

generated in the slots of the Vortex Plate. With such promising simulation results, further 

studies were pursued with experiments to confirm what has been found in the numerical 

study and experiment results are be presented in next section.

1.7 Experiments 

Two sets of experiments were carried out to investigate the particle removal efficiency of 

the proposed Vortex Plate. The first group of tests focused on comparing the performance 

of different individual particle settling enhancement plates, only one plate was placed in 

the testing tank at a time under the various flow rates tested. However, because the 

structure of the new proposed Vortex Plate was built on the top of a flat plate, it occupies 

extra space compared to the lamellar plate, which would reduce the effective width of 

flow path in the testing tank if the multiple Vortex Plates are used together as an array, 

which results in increased flow speed and reduced particle residence time. Therefore, 

even if measurement results have shown that the individual Vortex Plate performs better 

than others, it is still necessary to find out how effective it is when used in a multi plate 

system, which was investigated in the second group of the tests.
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1.8 Testing a Single Plate 

The experiments were conducted in a 1500 cm (L) x 30 cm (W) x 60 cm (D) open-top 

tank. The surface sizes of both the Vortex Plate and the lamellar plate were the 100 cm (L) 

x 50 cm (W) built with epoxy-coated marine plywood. On the back of both plates there 

were two re-enforcing metal bar to keep the plate straight. The structure and layout of the 

tested Vortex Plate is shown in Fig. 1.1. As tested, the slots were about 2 cm wide and 2 

cm deep, running along the full length of the Vortex Plate. In the actual operation, the 60 

degree inclined Vortex Plates were placed in the settling tank, with flow parallel to the 

plate.  The plates were firmly retained in the position with screws to prevent vibration 

caused by the strong incoming flows. During the testing, the water surface under 

maximum inflow rate reached about the same height as the top edge of the plates.

The inlet structure of the testing tank was constructed with a U shape channel, the width 

of the channel was 10 cm and on the wall of the outside channel between the inlet and the 

settling tank there were three narrow openings with a horizontal baffle on the top of each 

opening, which forced flow entering to the settling tank to be more evenly distributed in 

both vertical and horizontal directions (He and et al., 2005). The lengths of the settling 

chamber and outlet section were 1200 cm and 10 cm, respectively. A 50 cm high wall 

separated the settling chamber and the outlet channel, and as shown in Fig. 1.7. During 

the experiment particles were released from top of the upstream end of the inlet channel, 

just in front of the inflow entering the inlet. In such a way, the particles would be very 

well mixed with incoming fast, strong turbulent flow. The flow carrying particles passes 

the particle enhancing plate in the settling chamber and eventually exits from the bottom 

opening of the outlet channel.  Before flowing into the large particle capture tank, 
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effluent has to pass a screen preventing particles from escaping. Water was pumped back 

through a 2 inch pipe from the capture tank to the inlet. Between the pump and the inlet, 

there is a flow meter and a control valve to regulate inflow rates.

Recognizing that large light particles are more sensitive to flow conditions than small 

heavier particle, crushed walnut shell particles (density = 1.35 g/cm3 and average size = 

350 m) were chosen for most of the experimental studies. Also, larger particles are 

much easier to handle with respect to preventing their re-entry into the circulation system 

in the experiments. Other advantage of using the crushed walnut shells is that because of 

their brownish color, their movement in the flow is easy to be observed, which helps to 

understand and improve the flow conditions in the settling tank. The duration of all 

conducted experiments was 11 minutes, and 300 g of  crushed walnut shells were used in 

each experiment, they were divided into 10 even amounts and released by hand in 1 

minute time interval. After all particles have been released at the end of 10 minutes, the 

pump was kept running for one more minute before it was turned off. So, even the last 

entered particles had chance to pass through the particle settling enhancing plate in the 

settling chamber. After the experiment was finished, the flow was drained off through the 

bottom holes in both the settling chamber and the inlet channel. The particles were 

captured by a 62 m screen before they could escape into the capture tank from draining 

hole. The collected particles were put in an oven with temperature around 40oC for over 

night drying. All the experiments were carefully operated, there were no signs that any 

particles had re-entered the circulation system. 

The main purpose of the experiment was to compare the particle removal efficiency 

under three different particle settling settings: 1) a tank with a Vortex Plate, 2) a tank 
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with a lamellar plate, and 3) a tank with no plates. Five flow rates, 4, 5, 6, 7 and 8 L/s, 

were used in the experiments, respectively. The corresponding surface loadings are 

around 40 m/h – 80 m/h, which represents very high values in stormwater treatment 

applications. The experimental results in Fig. 1.8 indicated that the Vortex Plate 

performed better than the lamellar plate for all inflow rates. The dash and solid lines in 

Fig. 1.8 were measured results for the case of the lamellar plate and the Vortex Plate 

tilted in the same direction and flows passing on the left side of the particle settling 

enhancing plate face when looking down from upstream (negative vortices are generated 

in the slots, thus the Vortex Plate in this position is called the negative Vortex Plate in the 

following text). The average particle capture rate has been improved by 4% between the 

solid curve and the dash curve, which may not appear very significant, but considering 

that only one plate was used in this test, at least half of the tested particles were not 

affected by the plate at all. Improvements in the solids removal would be larger if more 

Vortex Plates are used. Depending on the tilt direction, the same Vortex Plate can 

generate positive or negative vortices in the slots. The solid line with point symbols in 

Fig.1.8 represents the particle capture rate of the same Vortex Plate with the same 

experiment setting, except that the Vortex Plate was tilted in the other direction, 

generating positive vortices in the plate slots (thus called a positive vortex plate). In 

principle, in a uniform flow field, the positive or the negative vortices would have similar 

effects on particle vertical movement because the particle rotation direction should not 

affect the particles movement in vertical direction. However, the measured results in Fig. 

1.8 showed that the particle capture rate of the positive Vortex Plate was notable higher 
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than that of the negative vortex plate, for all flow rates, which has to be investigated 

further.

To find possible answers, the two vertical profiles of flow velocity without any settling 

enhancement plate presenting in the settling chamber were measured. The measurement 

locations were from 5 cm above the bottom to the top of the tank, with 10 cm increments, 

at the middle section of the settling chamber and 5 cm from each side wall. The 

measurements were done with an ADV (Acoustical Doppler Velocity) probe measuring 

all the three velocity components. The measured velocity component profiles are shown 

in Fig. 1.9 for a 6 L/s inflow rate; the left side (front of the tank) and the right side (back 

of the tank) follow the convention of looking down stream. The measurements showed 

that the x-component (along the tank) of the velocity profiles at two side-walls were very 

similar. However, for the other two velocity components, the differences were 

unexpectedly large. A possible explanation for the large velocity deviation in the 

rectangular tank was, after carefully examining the tank physical structure, the lack of 

accuracy in the construction of the inlet compartment. The three narrow rectangular 

openings on the wall between the inlet and the settling tank were spaced unevenly. The 

opening height at the two ends was not the same, which made the flow rate and flow 

direction slightly varies along the opening, and might also induce a flow rotation motion, 

when passing through the tank. Fig. 1.10 shows the velocity profiles measured at the 

same measurement locations after the opening structure has been corrected. The velocity 

differences at the two locations for both y and z components were smaller than those 

shown in Fig. 1.9, even though there were still some room for further improvement. It 

may also have to be recognized that with such a short settling chamber and strong 
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turbulent flow, it is almost impossible to achieve ideal laminar flow in the settling 

chamber. The additional measurements of particle removal for both the negative and 

positive Vortex Plates were done after the structure has been fixed and the results (not 

given here) showed that the removal rates were similar and have been improved slightly 

in the negative setting case. The above exercise has demonstrated that the performance of 

the Vortex Plate is quite sensitive to flow conditions.

It has been observed during the experiments that large amounts of particles, after sliding 

off the plate were carried away by a strong current along the bottom. To reduce this 

phenomenon, four lateral baffles extending to the full tank width were placed evenly in 

the settling chamber to reduce the bottom flow circulation.  

It can be seen in Fig. 1.11 that after changing flow conditions in the settling tank by 

adjusting the inlet structure and inserting the bottom lateral baffles, particle capture rates 

for both the lamellar plate and the Vortex Plate have notably increased. It can be 

concluded that the performance of solids removal of the Vortex Plate is quite sensitive to 

flow condition, which could be a complex issue and can also be exploited in practice, if 

done properly. In order to fully understand the performance of the Vortex Plate under 

various flow conditions, further more comprehensive tests would be needed, which is 

beyond the scope of this study. 

So far, all experimental results indicated that the proposed Vortex Plate used in a single 

plate configuration would contribute to settling more particles than the lamellar plate, 

under the same test conditions. The simple explanation should be that sediment particles 

interact with the vortex structure, which lead to a stronger settling motion of particles on 

the downside of vortices, transferring the particles from the high-speed outer flow to the 
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near slot bed low speed flow. Then, particles slide down along the quiescent upstream 

corner of parallel slots, which was observed from all experiments with the Vortex Plate.  

The Vortex Plates with different slot structure patterns were also tested in this study to 

explore the effects of slot geometry. There could be many different slot designs to 

generate the vertical vortex and various hydraulic conditions. Based on the same vortex 

principle, two slightly modified Vortex Plates shown in Fig. 1.12 and Fig. 1.13 have been 

tested. The design shown in Fig. 1.12 has angled slots paralleled to each other with a tilt 

angle of 70 degree. The purpose of this kind of structure arrangement is to generate small 

downward flow along the slot as illustrated in Fig. 1.14. In practice the Vortex Plate is 

placed in such a way that the one component of horizontal incoming flow would have the 

same direction as the slot, which would push particles downward. Another potential 

benefit with this kind of design is that the majority of sliding particle would be 

concentrated at the bottom inside corner (downstream bottom corner of a vortex), which 

would increase the chance of particle collision and also make the particle collection 

easier to preventing particles being washed away by strong current along the bottom. 

Testing results showed that for single plate this Vortex Plate performed a little better than 

the original one, possibly due to extra downward flow effect. However, if it is used in an 

array, much too strong downward flows could be generated and would increase the risk 

of particle resuspension on the bottom or being washed away before they reach the 

bottom. Extra efforts have to be made to solve the return flow without disturbing too 

much particles. 

The second modified plate tested is shown in Fig. 1.13. The idea of this structural 

configuration is to generate smaller sized vortices in the slot as illustrated in Fig. 1.15, so 
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the lower edge of the vortex does not reach all the way to the bottom of slot. Therefore, 

particles sliding down along the bottom of slots may be less likely to be disturbed by the 

above vortex. However, the testing results showed that the plate with this type of slot 

arrangement performed much worse than the original one. One possible explanation is 

that the vortex generated with this Vortex Plate was not strong or stable enough to 

effectively entrain particles from outer fast flow in the tank.

1.9 Testing plate array 

As mentioned before the protruding structure of the proposed Vortex Plate is about 2cm 

above the flat smooth surface. In practice, in order to maximize the particle separation, 

multi-plates are often used together as an array in a limited size tank. In this arrangement, 

the cross-section of the flow path would be reduced, resulting in an increased flow speed 

and reduced residence time, which may diminish the effectiveness of the Vortex Plate. 

Therefore, arrays of the Vortex Plate and smooth flat plate were built and tested in the 

same experimental setting as mentioned above. 

The experimental setting is shown in Fig. 1.16 and the schematization of cross-section of 

plate array in the testing tank, viewed from downstream, is displayed in Fig. 1.17. The 

dash lines in Fig. 1.17 represent the slot height of the Vortex Plate and the units of 

measurement are centimetres.  Both sets of tested plate arrays consisted of 5 parallel 

plates with the same horizontal surface sizes which were 2 x 14 cm x 80 cm, 2 x 28 cm x 

80 cm and 1 x 50 cm x 80 cm. The plates being placed around 63 degrees from the 

horizontal were mounted on a support with two 10 cm high walls above the tank bottom 

blocking the whole the cross section to reduce the bottom current. In order to prevent 
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particles being washed away by strong current, a small isolated settling chamber was 

built between the front wall of the tank and a transparent plastic sheet with three 

horizontal openings as shown in Fig. 16. Lower ends of the three top particle enhancing 

plates were inserted into a separate chamber, so particles sliding down from the plates 

were minimally disturbed by strong inflow. In order to minimize the possible flow 

circulation induced by downward flow from the parallel slots in the isolated settling 

chamber, seven vertical walls were used to divide the isolated settling chamber into eight 

smaller sections.   

The extra space occupied by the Vortex Plate due to slid slots could be estimated with a 

simple geometry calculation as about 360 cm2. Due to the reduced cross-sectional area by 

the Vortex Plates, the water level in the testing tank was also increased by about 1.5 cm. 

Therefore, the total tank effective cross-section has been reduced, in term of percentage, 

by about 35%, which could, in principle, increase the flow velocity by 35%. To quickly 

assess the influence of the Vortex Plate array on velocity changes, a Pitot tube was used 

to measure flow velocity between two parallel plates under the two different plate arrays. 

The velocity measurement setup can be seen in Figs. 1.16 and 1.17. Results showed that 

the flow velocities at the measurement location indicated by a circle with a cross inside in 

Fig. 1.17 were 16 cm/s and 21 cm/s, respectively, for the lamellar plate array and the 

Vortex Plate array. In the latter array, the flow velocity increased by about 37.5 %, which 

is consistent with the above estimate. With such a large flow velocity increase, it was 

natural to raise the question, whether the Vortex Plate could still outperform the lamellar 

plate, when used in an array. 
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To answer this question, a series of tests were conducted with both the Vortex Plate and 

lamellar plate arrays under various flow rates and particles, the results were listed in 

Table 1. Initially, crushed walnut shells were used again as testing particles. The results 

showed (rows 1 to 4 in Table 1) that the particle removal rates of the Vortex plate and 

lamellar plate array under both tested inflow rates were about the same, which indicated 

that the particle removal efficiency of the Vortex Plate used in an array has been reduced 

due to the blocking effect of the Vortex Plate structure, thus, the attractiveness of the 

proposed Vortex Plate for use in practice removal seemed to be much reduced.  

Further investigations were carried out with glass beads of two average sizes, 66 m and 

150 m. Because the density of glass beads (2.5 gm / cm3) is much higher than that of 

walnut shells, small size glass beads had to be used in order to bring down the particle 

settling velocity. The main purpose of using glass beads as sample was to evaluate the 

performance of the Vortex Plate with small and slow settling particles. In order to prevent 

small particle from escaping from the test system, a 32 m screen mesh was used to 

capture the particles in the effluent. The testing results (rows 5 to 8 in Table 1) showed 

that with 66 m glass beads, and for both tested flow rates, the Vortex Plate array 

performed better than the lamellar plate array. However, for larger size glass beads (150 

m), the results were not quite the same as above, even though for a higher flow rate of 8 

l/s (rows 10 and 12 in Table 1)  the Vortex Plate still outperformed the lamellar plate. But 

at a lower flow rate (5 l/s), the test results (rows 11 and 13) indicated that the lamellar 

plate array and the Vortex Plate array captured about the same amount of particles, which 

was a finding very similar to that in tests with crushed walnut shells. By closely 

examining the particle settling velocities of the crushed walnut shell and 150 m glass 
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bead, it appears that they are about the same, which might explain why their behaviour is 

similar under the same hydraulic conditions. The possible physical explanation for two 

different plate arrays performing similarly under lower inflow rates with larger particles 

could be that in such a situation the likelihood of the particle landing on the lamellar plate 

and being flushed away by the incoming flow were much smaller than in the case of 

small particle settling in a larger inflow, resulting in the Vortex Plate losing the 

advantage of the “shade” effect. Also large particles are much more likely to land on the 

lamellar plate surface, with the entrainment effect of the Vortex Plate becoming the less 

important.  For the smaller particles or under higher flow rate, both “shade” and 

“entrainment” functions of the Vortex Plate became more effective, and therefore, it was 

not surprising to see that the Vortex Plate performed better. This experiment verified the 

design hypothesis that the Vortex Plate should work better for smaller particle or under 

higher flow rates than the lamellar plate. Actually, in the testing of the single plate this 

tendency has been shown, as indicated in Fig. 1.11. For higher flow rates the Vortex Plate 

performance compared to lamellar plate was notably better than for lower flow rates. 

Also, it is worth while to mention here that when the surface load was less than 50 m/h, 

the two tested plates have very similar particle removal rates, which was implied by the 

similar values of both performance curves for low flow rate in Fig. 1.11. This result was 

consistent with that measured in the plate array (listed in rows 1 to 4 in Table 1).                     

1.10 Conclusions 

A numerical study and experiments were carried out under various inflow rates and 

different particles to investigate the particle removal by the proposed Vortex Plate, in 
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comparison to that of the well known and widely used lamellar plates. In general, large 

and light particles settling would be more affected by the flow conditions than small and 

high density particles. Therefore, crushed walnut shells were chosen as test particle in 

experiments as well as glass beads. The concepts of the newly proposed particle settling 

plate were based on:

(1) Use of the flow energy to generate a steady vortex at a desired location to change the 

particle movement direction and to make the particle slide downward easily with less 

disturbance by fast horizontal flow.

(2) Reduced particle traveling distance by increasing the contact surface area, which 

would enhance the particle settling. The surface area of a Vortex Plate has been doubled 

compared to the traditional lamellar plate.  

(3) Increase the particle collision frequency within the swirling flow to prompt particle 

flocculation.

Numerical modeling and experimental observations verified that strong vortices were 

generated in the parallel slots of the Vortex Plate, as expected. The generated vortices 

captured the passing by particle and retained some of them in slots, by providing a 

quiescent settling zone. Both the simulation and measured results showed that the new 

particle settling enhancing plate outperformed the traditional lamellar plate under the 

same test conditions, especially for lighter particles with large inflow rates. Most particles 

were sliding down the Vortex Plate along the upstream slot bottom corner, because of 

less flow activities in this region, which would also increase particle collisions. The 

vertical slot flow mainly generated by the main flow can help push particle to slide down 

to the settling tank bottom along the parallel slots, however, it may also induce a stronger 
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bottom current sweeping particle away before they have a chance to settle on the 

sediment bed. Thus, extra care should be taken to reduce the bottom flow circulation. 

Main purpose of this study intended to propose a new concept with additional mechanism 

(i.e., vortex force) for particle settling. The numerical modeling and experiments 

provided the general assessments about performances of the Vortex Plate, instead of 

trying to give the optimum design of the plate layout. Further studies of the various flow 

hydraulic conditions and their effects on the particle movement along the particle settling 

enhancing plate could help better understand and improve the performance of the Vortex 

Plate.
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1.12 Notation 

The following symbols are used in study 1: 

a  = a constant;

P  = pressures; 

R  = radii;

tV  = tangential velocity; 

 = angular speed; 

 = water density; 
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 = flow pressure at infinite. 
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1.14 Tables:

Table 1: Testing results of Vortex and smooth plate array under various inflow rates and 
particles. 

Plate Type Inflow (l/s) Sample Type Settling Vel. (m/s) Input(gm) Recovered(gm)
Vortex 5 WT(350 m) 0.0167 500 330.6
Vortex 8 WT(350 m) 0.0167 500 233.3
Smooth 5 WT(350 m) 0.0167 500 334.5
Smooth 8 WT(350 m) 0.0167 500 234.9
Vortex 5 GB(66 m) 0.0025 600 243.1
Vortex 8 GB(66 m) 0.0025 600 152.5
Smooth 5 GB(66 m) 0.0025 600 229.1
Smooth 8 GB(66 m) 0.0025 600 120.9
Vortex 5 GB(150 m) 0.0133 600 491.3
Vortex 8 GB(150 m) 0.0133 600 386.4
Smooth 5 GB(150 m) 0.0133 600 500.8
Smooth 8 GB(150 m) 0.0133 600 353.8
Note: WT= Crushed Walnut Shell, GB=Glass Beads. 

1.15 Figures 

Fig. 1.1: Picture of the tested Vortex Plate in a 1500cm (L) x 50cm (W) x 60cm (D) 
rectangular tank with transparent glass in front and partial experiment setting. 
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Fig. 1.2: Streamlines represent numerical simulated flow field with two particle settling 
enhancing plates in a top closed rectangular tank, (A) with proposed Vortex plates in the 
settling chamber, and (B) with two lamellar in the settling chamber. 

Fig. 1.3: Typical computed flow pattern in the individual long narrow slot on the surface 
of the proposed Vortex Plate. The strong swirl flow is generated by horizontal flow. 
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Fig. 1. 4: The vortex distribution in the vicinity of the Vortex Plate displayed with the 
contour lines. Density of the contour line tells the intensity of vortex. 

Fig. 1.5: Simulated contours of vertical velocity magnitude on vertical cross cut plan at 
depth 11cm, 30 cm and 45 cm from the tank bottom.   
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Fig. 1.6: Simulated particle removal rates of the proposed Vortex Plate and the flat 
smooth plate using Lagrangian particle tracking model. 

Fig. 1.7: Schematic of experiment arrangement for testing particle removal of different 
particle settling enhancing plates. 
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Fig. 1.8: Measured particle removal rates of the Vortex and lamellar plates under various 
inflow rates. 
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Fig. 1.9: Vertical profiles of three flow velocity components measured from 5 cm above 
the bottom to the top with 10cm increment at the middle section of the empty settling 
chamber and 5 cm away from each side wall were collected. The flow was measured 
before the inlet structure being fixed. 
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Fig. 1.10: The same flow measurement as in Fig. 1.9 except for that the flow was 
measured after the inlet structure being fixed. 
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Fig. 1.11: Remeasured particle removal rates of the Vortex plate, lamellar plate and 
empty settling chamber under various inflow rates after the inlet structure was fixed. 
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Fig. 1.12: The Vortex Plate with angled parallel slots on the flat surface. Intention of this 
design is to generate the downward pushing flow from horizontal incoming flow. 

Fig. 1.13: The Vortex Plate with straight parallel slot and tilted slot wall on the flat 
surface. The induced vortex would be concentrated on up part of slot, and it may have 
less disturbance on bottom sliding particles. 
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Fig. 1.14: Illustrate that an along slot downward velocity component can be generated 
from incoming horizontal flow when it passes through the angled parallel slot. 

Fig. 1.15: Showing that the smaller size vortex could be generated in the slot with tilted 
wall, so the low edge of the vortex does not reach all the way to the bottom of slot, 
resulting in less chance to disturb sliding particles by above the vortex. 
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Fig. 1.16: Picture of experiment setting for testing plate array and measuring velocity in a 
1500cm (L) x 50cm (W) x 60cm (D) rectangular tank with an isolated chamber. 

Fig. 1.17: The schematization of cross-section of plate array in the testing tank viewed 
from down stream. The label of the cross in a circle indicates the location of flow 
measurement.  
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Part 2: Evolutionary Design of the Inlet Structure of a High-
Rate Stormwater Clarifier 

2.1 Abstract:
A computational fluid dynamics (CFD) model was used for redesigning a lamellar 

clarifier for high-rate stormwater treatment.  Flow patterns in the clarifier were simulated 

using a volume of fluid (VOF) model and the simulated flow fields were analysed for 

various layouts of the inlet structure.  The results showed that the hydraulic conditions in 

the clarifier could be improved by spreading the flow uniformly in both the horizontal 

and vertical directions, and reducing vertical circulation in the clarifier by attaching 

horizontal trailing baffles to the top edges of the inlet opening slots. Hydraulic 

improvements then resulted in better solids removal efficiency.  Computer simulations 

and field data showed that compared to the original clarifier, the new inlet design 

produced two benefits: (a) improved flow conditions in the settling zone and (b) greatly 

reduced energy head losses (increase the treatment capacity).  In chemically aided 

clarification, the conventional clarifier with the new inlet design produced better 

suspended solids (SS) removal than the original conventional clarifier, even at a three 

times higher surface load rate.  The field data also indicated that the SS removal 

efficiencies of the original clarifier with lamellar plates and the modified clarifier, 

without lamellas but with the new inlet design, were comparable.  Thus, the main goal of 

this study, reducing maintenance (cleaning) costs of chemically aided high-rate 

clarification of stormwater by removing the lamellar plates, without a significant loss of 

settling performance, was achieved.  Finally, it was noted that the numerical CFD model, 

compared with conventional methods of hydraulic clarifier design, was a flexible, 
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powerful tool providing distinct advantages with respect to the speed, efficiency and 

reduced analysis costs, and a better understanding of the clarifier operation.  

2.2 Introduction 

Settling is one of the most common unit processes applied in wastewater, combined 

sewer overflow (CSO) and stormwater treatment.  In this process, separation of 

suspended solids (SS) is achieved in settling tanks (clarifiers), and this has been 

extensively studied for wastewater treatment applications (Krebs, 1991).  There is a great 

wealth of information on the optimal design of wastewater clarifiers, addressing such 

issues as surface loading rates (SLRs) typically ranging from 1.4 to 2.5 m/h (Metcalf and 

Eddy, 2003), geometry of circular and rectangular clarifiers (Deininger et al., 1998; Zhou 

and McCorquodale, 1992), special clarifier structures including inlets, feedwells and 

baffles (Krebs et al., 1995; Ueberl and Hager, 1997), modes of operation with or without 

sludge return (Kinnear, 2000), and high-rate operation involving chemical additions and 

ballasted flocculation (Metcalf and Eddy, 2003). 

The settling of stormwater differs from typical wastewater settling with respect to the 

lower concentrations of suspended solids (typically 100 mg/L – USEPA, 1983), high and 

variable SLRs of settling facilities (50 m/h or more), and the expected levels of 

suspended solids removal ranging from 60 to 80% (MOE, 2003).  Consequently, only 

some of the information produced primarily for wastewater clarifiers can be applied in 

stormwater settling and further research is needed.  In view of the low TSS 

concentrations, stormwater clarifiers behave similarly to primary clarifiers and the 

density effects typical for final clarifiers can be neglected (Krebs et al., 1998).  The 
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intermittent use of stormwater settling facilities imposes cost constraints on such facilities, 

which may be achievable with high-rate clarification techniques employing lamella plates 

or tube settlers and chemical addition.   

Stormwater settling in various facilities was described extensively in the literature, as 

reviewed e.g., by Wood et al. (2005).  However, the literature data are of limited help, 

because the clarifier performance for low SS concentrations without density effects are 

based on such factors as tank geometry; surface-loading rate; inlet, outlet and settling 

zone configurations; sludge collection; and incoming solids density and settling regime 

(Kinnear, 2000). These are typically not reported in the literature, because for most of 

these factors there is no simple way to describe them.  Most of these factors were kept 

constant in the earlier phases of the study described here, and the TSS removals were 

reported as 5, 26 and 84%, for a conventional clarifier (SLR=15 m/h), a lamella clarifier 

(SLR=15 m/h), and a lamella clarifier with polymer addition at 4 mg/L (SLRs ranging 

from 10 to 36 m/h) (Wood et al. 2005).  

While lamellar settling with polymer additions exceeded the target TSS removal (60-

80%), there were concerns about laborious cleaning of lamellar plates after every storm 

event.  To eliminate this expense, the lamella plates had to be removed while improving 

the clarifier hydraulics, in order to maintain the target TSS removal.  Towards this end, 

clarifier modifications, which focused on the redesign of the inlet zone, were carried out 

in this study using a numerical model. The modified clarifier performance in SS removal 

was verified in two ways: (a) by computational fluid dynamics (CFD) simulations of 

velocity fields and particle transport for various clarifier configurations, and (b) by 

comparing the actual field performance of the modified and original clarifiers in SS 
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removal.  Such analyses served to verify the performance of a new inlet design and to 

demonstrate the usefulness of CFD modelling in (high-rate primary) clarifier design.

2.3 Clarifier Studies 

The study partners, the City of Toronto, the National Water Research Institute (NWRI, 

Environment Canada) and the Ministry of the Environment (MOE) have been operating a 

pilot-scale demonstration project on high-rate stormwater clarification with a polymeric 

flocculant addition, which holds a promise of cost-effective mitigation of stormwater 

pollution (Wood et al., 2005).  The main objective of this project was to evaluate an 

innovative compact treatment of stormwater flows and thereby support the 

implementation of the City of Toronto’s Wet-Weather Flow Management Master Plan.   

The focus of the stormwater treatment study was to evaluate the removal of suspended 

solids and associated pollutants by flocculant-aided clarification, under controlled 

experimental conditions.  Constant flow rate experiments were conducted in a pilot-scale 

clarifier vessel with and without lamellar plates, and with and without varying dosages of 

a cationic polymer flocculant.  At high surface loads, the cross-flow lamellar plates 

represented an essential component of the process apparatus.  The total suspended solids 

(TSS) removal performance of the clarifier during the 2001 to 2003 operating seasons 

was encouraging (Wood et al., 2005), but with more than 50 stormwater events treated 

annually the cost and difficulty of cleaning the upper and lower surfaces of the lamellar 

plates was of concern.  Therefore, the study team examined the feasibility of removing 

the lamellas, modifying the clarifier inlet structure, and evaluating the resulting flow 

patterns in the clarifier by numerical modeling.   
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The dimensions of the commercially supplied clarifier vessel are 3 x 1.4 x 2 m (length x 

width x depth) and its configuration is shown in Fig. 2.1.  The clarifier vessel consists of 

three comparably sized zones. The original inlet zone was fitted with a series of 

horizontal louvers and vertical baffles designed to promote a uniform, low-turbulence 

flow field across the separation zone, which contained a removable lamellar plate pack. 

The outlet (withdrawal) zone, which was not changed in the new design, contains a 

skimmer plate for the retention of floating material.  The relatively fast inflow enters the 

clarifier through two 100 mm diameter pipes and impacts the horizontal inlet deflector 

louvers.  The function of these louvers is to reduce the inflow speed and disperse the flow 

by angled baffles (louvers) with small openings that can be seen in Fig. 2.1.  The 

potential problem associated with this configuration is that flow direction distribution at 

the deflector exit is highly non-uniform and generates strong turbulence.  However, at the 

same time this arrangement increases the energy head loss.  

After flow passes through the inlet louvers, it enters the inflow energy dissipater, which is 

shown in enlarged detail in the upper left corner of Fig. 2.1.  The dissipater consists of 

two rows of vertical baffles placed in two parallel vertical planes, 50 mm apart.  The two 

rows of baffles are offset so that the downstream baffles block the flow passing through 

the slots between the upstream baffles.  However, the flow exiting from the downstream 

baffles contains lateral velocity components disrupting flow conditions in the settling 

zone.  The dissipater also causes a large head loss, which limits the hydraulic capacity of 

the clarifier.  The maximum SLR in the original clarifier before reducing the height of the 

inlet energy dissipater was about 30 m/h, well below the proposed maximum 

experimental rate of 50 m/h.  Unsatisfactory hydraulic conditions in the clarifier with 
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respect to limited flow capacity, high turbulence and high velocity fluctuations were 

reported by Marsalek and Doede (1997), who measured 3D velocity distributions in the 

clarifier. These unfavourable hydraulic conditions were improved by using a removable 

lamellar plate pack, which is shown in Fig. 2.2.  

The principle of suspended solids removal in lamellar plate clarifiers is well described in 

the literature (Metcalf and Eddy, 2003) and was further tested in the original clarifier, 

where the lamellar plates were found very effective in improving suspended solids 

removal (Wood et al., 2005).  However, the original lamellar plate pack was not designed 

for easy cleaning of the lamellas when polymer flocculants are used.  Polymer addition 

makes the produced sludge sticky and the cleaning of plate undersides is very labourious.  

Furthermore, the higher surface loading rates attainable with flocculants generate several 

times more sludge than unaided tests.   

2.4 Hydraulic design considerations 

High-rate clarifier design and particle separation considerations are a challenge because 

of high flow volumes and complex flow conditions, large hydraulic head loss, and fast 

flows with associated high turbulent energy in the particle separation zone.  The inlet 

structure of a high-rate clarifier needs to dissipate the turbulent energy within a small 

space without sacrificing too much head loss and plays a very important role in 

determining the flow characteristics in the downstream particle separation zone. 

In the conventional method (Metcalf and Eddy 2003) of settling tank design, the smallest 

settleable particle size under the expected flow rate is selected first, and then the 
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corresponding settling (terminal) velocity  is calculated according to the particle 

physical properties from the Stokes law as

cv

cv  = )1(
18

)1( 2
pp dsgg

Where g,  and are the gravity acceleration constant, particle specific gravity, and 

diameter of the smallest settleable particle, respectively, and 

psg pd

 is the kinematic viscosity. 

The particle settling may occur in different flow regimes, laminar, transitional or 

turbulent, and adjustments of velocities calculated from equation (1), valid for laminar 

flow, may be required (Metcalf and Eddy, 2003).      

Finally, based on the terminal velocity, the size of the settling tank can be estimated so 

that all particles with settling velocities equal to or greater than terminal velocity  will 

settle, and particles with settling velocities smaller than either pass through the tank or 

will be partly removed. The terminal velocity, residence time (RT), and settling tank 

depth (D) are related as follows: 

cv

cv

cv  = )2(
RT
D

and RT can be estimated by the formula: 

RT = )3(
Q
V

Where Q and V are the inflow rate and the tank volume, respectively.  Equation (2) can 

be expressed in terms of the surface loading rate (SLR) by substituting Equation (3) for 

RT and assuming a rectangular tank, for which  ADV , where A is the surface area 

of the tank: 
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Therefore, the surface area, A, can be easily obtained from above relationship after 

terminal velocity and treated flow rate have been determined. However, equation (4) 

also implies that the settling tank depth is unimportant in settling tank design, which is 

obviously not true in practice. The problem appears to be that in the estimation of the 

SLR, it is assumed that the entire flow passes through the settling tank along the tank 

surface. However, in the residence time calculation, it assumes that the active flow would 

occupy the whole tank volume. Obviously, neither assumption reflects reality and is 

questionable (Zhou and McCorquodale, 1992; Bretscher et al., 1992).  Thus traditional 

design methods, which treat the various physical variables as simple averaged parameters 

without considering the hydrodynamic behaviour of the fluid particle carrier are 

inadequate for producing an optimal clarifier design, especially, for particle removal at 

high flow rates with high turbulence.

cv

2.5 Numerical Modeling Strategies 

Models based on a mass-balance analysis are widely used to investigate bulk hydraulic 

flow characteristics and performance of primary and secondary clarifiers (Ott 1995; 

Dochain and Vanrolleghem 2001 ) since the flow speed and turbulence are usually small 

in those facilities. However, they are inadequate to diagnose detailed hydraulic conditions, 

turbulent intensity and other critical information needed to optimize the performance of 

different zones of a clarifier.  Fluid-dynamic models (Kluck 1996; Krebs 1995; Pollert 

and Stransky 2003) have also been used to study various simple low SLR stormwater 
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settling facilities. Most of them only focused on improving hydraulic conditions without 

further analyzing particle transport modeling. 

In this study, commercially available CFD software was used to evaluate alternative 

clarifier designs by simulating flow conditions and particle transport in different 

structural configurations of the clarifier. The main objective of numerical simulations was 

to correct the observed problems in the original clarifier, rather than comparing the 

original and new designs.  Therefore, simulation of hydraulic conditions in the original 

clarifier was not addressed in this study. 

In order to calculate a 3-dimensional flow field, resolve the air and water interface, 

account for the hydraulic pressure effect on flow behaviour and simulate mass particle 

transport in a structure with complex geometry within a reasonable time frame, a two-

stage approach was adopted by ignoring the interaction between the particles and their 

carrier.  Thus, flow patterns were simulated first by means of a volume of fluid (VOF) 

model and subsequently formed a basis for simulating particle transport by the discrete 

phase (DP) model.  This approach was found feasible by Adamson et al. (2003) for flows 

with low SS concentrations (< 1000 mg/L), which would be met in most practical 

situations.    

After obtaining the flow field from the VOF model, the particle transport model was run 

on the basis of flow simulation data.  The Lagrangian particle tracking method was used 

to track individual particle movement by calculating the balance of forces on the particle, 

which is written in a Lagrangian reference frame.  Since this procedure includes more 

forces in the calculation of particle movement, it usually gives a better prediction of 

particle movement than the models using particle concentration changes to simulate the 
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particle transport, but with higher computing times.  The Lagrangian particle tracking 

approach assumes that the suspended particles are spherical and do not interact with each 

other.  Even though the actual stormwater solids might not be discrete, or spherical, it 

was felt that this approach would still give good insight into the hydrodynamics of 

suspended solids inside the clarifier. Furthermore, since the focus of this study is to 

examine the particle removal rate for different inlet structures, it is not necessary to know 

the absolute particle removal rates for specific structural configurations.  Therefore, the 

verification of simulated absolute particle removal rates using the particle tracking model 

was omitted.  Also, in order to simulate flow behaviour and particle transport in realistic 

time, 30 minute simulations for real events were carried out for both flow hydrodynamic 

and particle tracking simulations.  Such durations of simulations were sufficient to show 

the removal rate variations for different designs.    

2.6 New Clarifier Inlet Zone Designs 

In the original rectangular horizontal-flow clarifier (Fig. 2.1), the suspension enters at the 

upstream end and the treated water exits at the downstream end.  The inlet flow structure 

must quickly generate a flow distribution that maximizes the opportunity for particles to 

settle.  Therefore, the redesigning process started with modifying the internal inlet zone 

structure of the original clarifier.  As stated earlier, the lamellar pack, one of which 

functions is to condition clarifier flow, was to be excluded in the new design.  Therefore, 

it was essential that the new inlet zone structure provided maximum dissipation of kinetic 

energy and equalized the flow distribution over a minimum distance.  
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After many numerical simulations, three inlet designs with similar “U-shaped” structures 

(Figs. 2.3-2.5) were selected for more detailed studies.  For all three proposed inlets, fast 

inflows exiting from three 0.075 m diameter pipes strike an impact baffle, which is 0.20 

m downstream of the inlet pipe ports.  The flow is forced downward through the entrance 

section of the duct, for about 0.9 m, and then it turns upward into the exit section of the 

duct through a bottom opening slot which is 0.25 m high.  In the exit section, flow moves 

upward and this process should convert some turbulent kinetic energy into gravity 

potential energy.  The exit duct has the same width as the entrance duct, 0.2 m (i.e., 

measured in the longitudinal direction), but the size of the bottom opening slot 

connecting the two duct sections is slightly larger than the width of the two side ducts to 

account for additional hydraulic resistance in the right-angle corner.  In such an 

arrangement, the flow would travel at the same speed along the direction of the inlet 

structure with minimum lateral movement, which reduces the risk of generating 

turbulence.  The structural differences among the three inlet designs were: (a) presence or 

absence of openings in the wall separating the inlet duct and the settling zone, and (b) 

configurations of the openings, which strongly influence flow conditions in the particle 

settling zone as described below.

In Design 1, there are no slot openings in the wall between the inlet duct and the settling 

zone (Fig. 2.3A), which is a common design feature of inlet structures used for releasing 

flow into the settling tank.  One of the possible hydraulic advantages to this configuration 

is that there is little disturbance of the bottom sediment under low flow rates because the 

main flow stream is far from the vessel bottom.  However, for high flows this reasoning 

may not be so plausible and has to be verified by numerical simulations.  It can be seen 

49



from the simulated velocity pattern in Fig. 2.3B that without any openings in the 

separation wall, most of the flow passes directly through the clarifier in a very narrow 

surface layer.  There are large recirculation zones in the clarifier, with poor hydraulic 

utilization of the clarifier volume, and this contributes to high flow velocities in the fast-

flow surface layer.  Therefore, for most of the flow, the hydraulic residence time is short, 

which explains the low simulated particle capture rates indicated by cross symbols in Fig. 

2.6.

Design 2 (Fig. 2.4A) features three horizontal slot openings spanning the full width of the 

clarifier. These slots were proposed on the basis of many numerical simulations discussed 

later.  The height of each of the three slot openings is 0.10 m, the space between two 

adjacent slots is formed by solid vertical walls, 0.10 m high. The openings are used to 

distribute the inflow uniformly in the vertical direction, instead of allowing the entire 

flow to enter the particle settling zone at the top of the wall, which would utilize only a 

small cross-sectional area of the clarifier and result in high velocity flows and shorter 

residence times.  The size of the slot openings has a large influence on flow distribution 

along the vertical axis and it is difficult to choose the “best” size, because of the 

sensitivity to the inflow rate.  The 0.10 m opening was chosen as the final size on the 

basis of numerical simulations with SLRs of 50 m/h.  The simulated velocity pattern 

showed that the region of the “active” flow in Design 2 becomes much larger than in 

Design 1, and this feature should reduce the flow speed and increase the particle settling 

rate.  The simulated results on particle removal rates are shown in Fig. 2.6 as circle 

symbols, and indicate some improvement when compared to Design 1.  However, a 

closer examination of the velocity pattern in Fig. 2.4B shows that the flows exiting from 

50



the three slot openings move upward, rather than longitudinally.  This upward flow is 

undesirable, because (a) it reduces the thickness of the active flow layer, with most flow 

passing through the clarifier in the surface layer, and (b) it induces a strong, tank-scale 

vertical circulation due to the negative pressure generated from upwards moving flow in 

the vicinity of the inlet, which may disturb bottom sludge.  In order to improve this flow 

pattern, a third set of simulations with modified opening slot configurations were carried 

out.

Design 3 (Fig. 2.5A) is similar to Design 2, but with horizontal trailing baffles added at 

the top of each slot opening to force the flow exiting the slots to travel in the horizontal 

direction. The length of these baffles in the horizontal direction, as used in simulations, 

was about 0.15 m (see Fig. 2.5A).  When comparing the flow pattern in Fig. 2.4B (Design 

2) to that in Fig. 2.5A (Design 3), a more uniform flow distribution becomes apparent in 

the latter case.  The size and strength of the vertical eddy was reduced, which resulted in 

better particle removals presented as a solid line in Fig. 2.6.

To further improve flow conditions by directing flow in the longitudinal direction and 

suppressing lateral flow components, three vertical baffles were placed in the downward 

and upward inlet ducts, dividing them into four sub-channels.  In such a configuration 

common to Designs 1-3, the turbulence associated with horizontal flow movement would 

be minimized. 

In spite of the hydraulic improvements described above, even in Design 3, the flow 

distribution along the vertical axis is highly non-uniform, with only 50% of the total flow 

passing through the three slot openings and the remaining 50% over the top, for the 

simulated case with an inflow corresponding to SLR of 26 m/h, and even less (26%) for a 

51



larger SLR of 50 m/h. Forcing more flow through the horizontal slot openings should 

further reduce the longitudinal velocities in the clarifier and possibly improve the 

opportunity for particle settling.  This could be achieved by extending the horizontal 

baffles (Design 3) upstream inside the duct.  The length of such extensions would vary 

and increase from bottom to top. The optimal flow distribution among the three openings 

and the top for maximum particle removal is a complex issue and highly depends on the 

inflow rates and other factors, which will be instigated in future. 

To further understand the particle removal performance for the three proposed inlet 

configurations, the flow residence time was calculated and used as a performance 

indicator. Obviously, the conventional calculation of clarifier residence time 

(volume/flow rate) yields the same residence time for all flow conditions and does not 

provide any meaningful information for further analysis. Since the particle settling zone 

was sub-divided into three similar narrower chambers, the hydraulic conditions among 

them would not be expected to vary much, and flow conditions in the middle chamber 

should be representative of those in the adjacent chambers.  The velocity distributions 

along the clarifier longitudinal axis are shown in Figs. 2.7-2.9, indicating the vertical 

profiles in the settling zone near the inlet, in the centre and near the outlet, respectively.  

Fig. 2.7 displays the flow velocity profile near the inlet and shows that Design 1 produces 

the largest surface velocity (concentrated in the top 0.2 m surface layer) as indicated by 

cross symbols.  As expected, in Design 3 (i.e., an inlet with three openings with 

horizontal trailing baffles), the active flow occupies a much larger portion of the flow 

depth with lower velocities represented by asterisk symbols in Fig 2.7.  Design 2, 

designated by circular symbols in Figs. 2.7-2.9, shows an interesting feature occurring in 
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front of the solid walls between the adjacent slot openings (their locations can be 

identified by zero velocities corresponding to the Design 3 curve) - the velocity is larger 

than that in front of the slot openings, which indicates a strong upwelling flow from an 

opening without a horizontal trailing baffle.  

When flows reach the mid point of the clarifier length (after travelling about 1. m), the 

velocity profiles shown in Fig. 2.8 are similar to that near the inlet in the top half of the 

settling zone.  A steep velocity gradient is observed for both Design 1 and Design 2, with 

maximum velocities much larger than in the case of Design 3.  Strong opposite flows 

generated in Designs 1 and 2 indicate the presence of a strong vertical circulation. The 

maximum negative velocity near the bottom indicates that the vertical eddy extends all 

way to the sediment bed, which may potentially resuspend some of the settled particles.  

However, with the addition of trailing horizontal baffles (Design 3) the flow conditions 

were significantly improved, which can be documented by small variation in the velocity 

distribution curve with a much smaller range of velocities (Fig. 2.8) for all depths, and 

the absence of a large vertical eddy.  When the flow reached the outlet after travelling 

another 1 m the velocity profiles maintained the same magnitude as that found at the mid 

point of the tank, except that the maximum velocities were reduced due to flow 

momentum dissipation, as seen in Fig. 2.9.  Because of the scum baffle (or outlet tank 

wall), all velocity distribution curves indicate a flow direction reversal near the surface.  

The comparison of locations of the maximum negative velocities (along the vertical) for 

Designs 1 and 2 in Fig. 2.8 to those in Fig. 2.9, indicates that the maximum velocities in 

the latter case are found at higher depths, and this shows that the flow is at the edge of a 

large vertical eddy. 
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Fig. 2.10 shows the lateral distribution of longitudinal velocities at the mid-point of the 

tank.  It is obvious that surface velocities in Design 3 are much smaller than those in the 

other two designs, because of the horizontal baffles on top of the openings forcing the 

flow to spread across a larger vertical space.  Design 2 shows only a marginal surface 

flow velocity reduction compared to Design 1.  Small lateral variations in flow velocities 

indicate that flows in the longitudinal plane of the each settling zone are relatively similar 

and uniform, which is favourable for particle settling. 

Using the information in Figs. 2.7-2.9, the flow detention time can be estimated for the 

three different inlet structures. As a result of the complex flow patterns in the settling 

chamber, some simplifications have to be made before the detention time can be 

estimated. From Figs. 2.7-2.9 it can be seen that the vertical circulation exists in all the 

three designs. After this motion is established it may be reasonable to assume that the 

new inflow only provides the momentum to keep the circulation continuing without 

participating recirculation in the settling zone and negative velocity could be ignored in 

flow detention calculation. It can be approximated in Figs. 2.7-2.9 that the positive 

velocities occupy a space from the depth of 0.8m to water surface (1.6m) in all three 

locations for all three designs. The zero velocity point is about 0.8 m below the water 

surface, which is about the same depth as that of the lowest opening slot. Since the 

sections of all positive velocities are relatively linear, the detention time can be easily 

calculated by dividing the tank length by the averaged positive velocity. The calculated 

detention time is 23, 23 and 55 seconds for Designs 1, 2 and 3, respectively. It is not 

surprising to see that Design 1 and Design 2 have the same flow detention time since they 

share similar velocity profiles in the settling zone. With a minor modification of the inlet 
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structure, consisting in adding the horizontal baffle on top of each opening slot, the flow 

detention time can be doubled. Such a modification is more efficient than doubling the 

tank length, because it also minimizes the vertical circulation generated by fast surface 

flow.  

Having addressed the hydraulic flow conditions in the clarifier settling zone for each inlet 

structure design, the remaining concern for the U-shaped inlet was the conveyance of 

large particles which may accumulate in the inlet channel during clarifier operation. 

These materials would reduce the effective channel cross-section, and thereby increase 

hydraulic resistance and ultimately cause a partial blockage of the inlet channel.  This 

problem had to be addressed before the proposed clarifier inlet design could be 

implemented in the pilot installation.   

The pilot clarifier was fed directly with stormwater by a pump, without grit removal.  In 

field operation, gravel, brick and concrete chips were transported into the clarifier.  

During field tests with inlet Design 3, debris particles accumulated on the bottom 

horizontal surface (see Fig. 2.5) because of dead flow zones in the compartment corners.  

The initial inlet design included a few circular holes in the bottom of the U shaped inlet 

channel for grit removal, which were blocked quickly and made cleaning the vessel at the 

end of a test difficult.

After many additional numerical simulations, the most promising and practical design for 

continuously transporting large particles (grit and gravel) out of the inlet channel was to 

use part of the available fluid flow energy for this purpose.  The revised design featured a 

V-shaped floor, with a 35 mm slot opening in the centre, extending across the full vessel 

width (Fig. 2.11).  In order to reduce simulation times, only the inlet section and a small 
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portion of the settling zone were included in numerical simulations.  Large grit particles 

were directed into the sludge zone via the bottom grit outlet of the inlet structure, and 

continued towards an inlet bottom wall, which prevented excessive flow from directly 

entering the settling zone and potentially stirring up settled sludge.  Furthermore, an 

existing vertical baffle could be employed to prevent flow passing through the grit 

opening moving longitudinally into the vessel.  This original vertical baffle was not 

extended to the tank bottom because the captured material was removed via a sludge 

wasting outlet situated at the upstream end of the clarifier.  The size of the opening 

between the vertical baffle and floor of the clarifier is about 0.3 m which could be 

retrofitted with a sliding gate and closed if there is too much flow passing through during 

storm events.  However, in field trials it was found that the bottom opening of this lateral 

tank wall became blocked by the accumulated sediment soon after the event started.  The 

flow pattern in the inlet and part of the settling zone with the modified inlet structure is 

also shown in Fig 2.11 with 3-dimensional velocity vectors.  Simulations at a flow rate of 

60 L/s show that about 16% of total inflow passes through the inlet structure grit 

discharge slot. 

2.7 Clarifier Performance in Stormwater Treatment 

In a pilot-scale demonstration project of high-rate treatment of stormwater by 

clarification with a polymeric flocculant aid, the modified clarifier with the newly 

developed inlet structure (Design 3) was built and operated on line.  In this project, 

suspended solids removals were measured under various inflow rates, polymer dosages 

and clarifier structure configurations during a four 4 year period study (Wood et al., 
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2005).  The clarifier performance data discussed here focus just on the performance of 

the clarifier with the lamella pack and the modified clarifier with a redesigned inlet.  

Details of the pilot installation, stormwater characteristics and treatment results can be 

found elsewhere (Wood et al., 2005).

A comparison of chemically aided lamellar plate clarification, at a total vessel SLR of 35 

m/h, and conventional clarification (without the lamellar plate pack) at a total vessel SLR 

of 43 m/h in the modified clarifier with the new inlet baffle system (Design 3) is 

presented in Fig. 2.12.  Total suspended solids (TSS) concentrations are indicated for 

samples of the influent (raw stormwater) and polymer treated effluents of the lamellar 

and conventional clarification processes.  Each curve represents cumulative frequency of 

non-exceedance for “n” grab samples (n is listed in the legend) collected during storm 

events at 10 minute intervals and analysed for TSS.  All tests were conducted at a 

constant rate of inflow, in a steady state mode.  Both the lamellar plate clarifier and 

conventional clarifier tests employed a polymer dosage of 4 mg/L.  The lamellar plate 

clarification test series shown in Fig. 2.12 totalled 56 hours of operation during 11 

stormwater events, while the conventional clarifier test series was operated for 49 hours 

during 13 stormwater events.  Stormwater concentrations of TSS for the lamellar plate 

and conventional clarification tests were comparable during the test periods.  The overall 

mean effluent TSS concentration of the lamellar test series was 57 mg/L while that of the 

conventional clarification effluent was 49 mg/L. 

In the earlier conventional clarification tests (prior to the installation of the new clarifier 

inlet baffle system), seven tests conducted with the conventional clarifier at 4 mg/L 

polymer dosage and a total vessel surface load of 15 m/h, produced an average of 67% 
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TSS removal (Wood et al., 2005).  Thirteen tests completed in 2004 with the new clarifier 

inlet baffle system at a 4 mg/L polymer dosage were conducted at a total vessel surface 

load of 43 m/h and the average TSS removal efficiency was 77%. Thus the new design 

offers a 10 % improvement in TSS removal compared with the conventional clarifier 

even with a surface loading rate which was almost three times higher. 

2.8 Conclusions 

A CFD model was found to be an effective tool for the examination of alternative inlet 

structures for a high-rate clarifier.  A VOF model was used to simulate flow patterns in 

the clarifier and the flow fields simulated for various inlet structures were analysed. To 

select the most favourable flow conditions for suspended particle removal among the 

various inlet configurations, a particle tracking model was applied to determine particle 

removal rates. The results showed that the hydraulic conditions in the original clarifier 

could be improved by spreading the flow in both the horizontal and vertical directions 

uniformly and reducing vertical circulation flow with the addition of horizontal trailing 

baffles on top of each flow opening slot. This resulted in better particle removal 

efficiency.  Computer simulations and field data showed that, compared to the original 

clarifier (with or without lamellar plates), the new inlet design has two advantages: (a) 

improved flow conditions in the settling zone inducing more effective settling, and (b) 

greatly reduced energy head losses. In chemically aided clarification, the conventional 

clarifier with the new inlet design produced better suspended solids (SS) removal than the 

original conventional clarifier, even at three times the surface loading rate.  The field data 

also indicated that the TSS removal efficiencies of the original clarifier with lamellar 
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plates and the clarifier without lamellas but with the new inlet design were comparable.  

Thus, the main goal of this study, reducing maintenance costs by removing lamellas, but 

without sacrificing settling efficiency, has been achieved.  Finally, the numerical CFD 

model, compared with conventional hydraulic design methods, was found to be a 

powerful tool providing distinct advantages with respect to the speed, efficiency and 

lower costs of analysis, and a better understanding of the clarifier operation.
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2.10 Notation 

The following symbols are used in study 2: 

Q  = inflow rate; 

A  = tank surface area; 

V  = tank volume;  

D = tank depth; 

g = gravity acceleration constant; 

psg  = particle specific gravity; 

pd  = smallest particle diameter; 

 = kinematic viscosity  
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cv  = terminal velocity.      
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2.12 Figures 
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Fig. 2.1: Original design of pilot-scale cross-flow plate clarifier.
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Fig. 2.2: Structure of the removable lamellar plate pack used in the original clarifier. 

Fig. 2.3: (a) Inlet Design 1 with one vertical baffle between the inlet and particle settling 
zones, (b) Simulated clarifier flow patterns depicting strong surface flow.

Fig. 2.4: (a) Inlet Design 2 with three openings (slots) in the baffle between the inlet and 
particle settling zones, (b) Simulated clarifier flow patterns indicating large vertical 
circulation extending to the bottom of the clarifier. 
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Fig. 2.5: (a) Inlet Design 3 with three open slots in the baffle between the inlet and 
particle settling zones and horizontal trailing baffles at the top of slots, (b) Simulated 
clarifier flow patterns showing improved longitudinal flow conditions in the particle 
settling zone. 
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Fig. 2.6: Discrete particle removal rates for the three numerically modelled inlet 
structures.
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Fig. 2.7: Comparison of vertical profiles of horizontal velocities at 0.2 m downstream of 
the inlet structure for the three inlet designs studied.  
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Fig.2.8: Comparison of vertical profiles of horizontal velocities at the mid point of the 
particle settling zone for the three inlet designs studied. 
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Fig. 2.9: Comparison of vertical profiles of horizontal velocities near the clarifier outlet 
for the three inlet designs studied.  
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Fig. 2.10: Surface horizontal velocities across the clarifier in the middle of the particle 
settling zone for the three inlet designs studied.     
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Fig. 2.11: Proposed configuration of the redesigned inlet with an added gravel outlet and 
the simulated flow patterns. 
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Fig. 2.12: Lamellar and conventional clarifier performance, both with chemical additions 
(2003-2004 seasons). 
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Part 3: Case Study: Refinement of Hydraulic Operation of a 
Complex CSO Storage/Treatment Facility by Numerical and 
Physical Modeling 

3.1 Abstract:

The performance of a combined sewer overflow (CSO) storage/treatment facility in 

North Toronto (NT), Ontario, Canada was investigated by conjunctive numerical and 

physical (hydraulic) modeling.  The main objectives of the study were to (a) assess the 

feasibility of increasing the hydraulic loading of the CSO facility without bypassing, and 

(b) establish a verified numerical model of the facility for future work. The numerical 

model (a commercial CFD, PHOENICS) was validated and verified using results from a 

hydraulic scale model (1:11.6).  The results obtained show that the CFD model can 

simulate hydraulic conditions in the facility well, as demonstrated by accurate 

reproduction of the filling rate, water levels at various locations, flow velocities in feed 

pipes, and overflows from the inflow channel.  Numerical simulations identified 

excessive local head losses and helped select structural changes to reduce such losses. 

The analysis of the facility showed that with respect to hydraulic operation, the facility is 

a complex, highly non-linear hydraulic system. Within the existing constraints, a few 

structural changes examined by numerical simulation could increase the maximum 

treatment flow rate in the CSO storage/treatment facility by up to 31%. 

3.2 Introduction 

Older parts of many Canadian and U.S. cities are serviced by combined sewer systems, 

which convey both municipal sewage and surface runoff.  In wet weather, such systems 
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are overloaded by high inflows of runoff and, to prevent flooding of downstream sewer 

reaches and the sewage treatment plant, combined sewer systems are equipped with flow 

regulators, which are set to divert excess flows into nearby receiving waters in the form 

of combined sewer overflows (CSOs).  CSOs represent a highly polluted mixture of raw 

sewage, urban stormwater and resuspended sewer sediment, and their uncontrolled 

discharges into receiving waters represent a major environmental problem (US EPA 

2004).  Consequently, municipalities with CSO problems have developed or are 

developing CSO control and treatment programs, following guidance documents 

produced by government agencies (MOE undated; US EPA 1995).   

Over the years, many measures for the abatement of CSO pollution have been proposed 

and some tested in municipal practice.  One of the early abatement measures was storage 

of CSOs, with subsequent return of stored flows to the central STP for treatment, after 

flows in the system subsided and the plant developed a spare capacity to accept additional 

inflow (US EPA 1995).  Such a storage facility has been operated by the City of Toronto 

at a North Toronto site for more than 12 years (Marsalek et al., 2004).  In recent years, it 

was however noted that the facility does not meet the current expectations on CSO 

control, because too many events (30-40 per year) exceed the facility capacity and 

overflow without appropriate treatment (Averill et al. 2001).  In view of these 

shortcomings, the City is examining the ways of increasing the facility’s effectiveness in 

CSO control by optimizing the hydraulics of the flow through CSO treatment tanks, and 

thereby reducing the requirements on storage volume.  Such measures would serve to 

optimize the utilization of the existing facility and are recommended as one of the first 
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steps in improving the combined sewer system effectiveness in pollution abatement 

(O’Connor and Field 2002; Marsalek et al. 2004).

Initially, analysis of the hydraulics of the NT CSO facility was based on physical scale 

modeling of the facility.  After the study started, an opportunity presented itself to extend 

this approach by applying computational fluid dynamics (CFD) modeling as well, and 

taking advantage of benefits from both approaches.  Recent publications indicate the 

continuing reliance on physical modeling when dealing with complex flow problems, 

such as e.g., forces on blocks in stilling basins (Nakato 2000), or flushing of sediments 

from CSO tanks (Guo et al. 2004).  In other studies, both physical and numerical models 

were used, e.g., for wastewater sludge flow (Bechtel 2003), and ogee-crested spillway 

(Savage and Johnson 2001).

Many examples of CFD modeling of CSO structures were reviewed in the literature 

(Kluck 1996; Faram and Harwood 2002, Harwood 2002; Saul 2002) focusing on flow 

pattern simulation, particle tracking and multiphase flows.  Compared to the more 

traditional physical modeling, all authors credit CFD modeling with the following main 

advantages: (a) speed and efficiency, (b) cost savings (in the development of new 

products or modification of the existing structures), (c) producing a better understanding 

of flow conditions, and (d) amenability to trouble shooting (e.g., the poor performance 

can be corrected using CFD results). However, most of the 3D numerical CFD modeling 

studies of the hydrodynamic behavior of CSO facilities were limited to simulating a 

single part of the entire facility due to its complexity. In this study, the entire facility had 

to be simulated because the flow behavior was influenced by all parts of the facility. On 

the other hand, it is important to note that numerical modeling results always contain 
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uncertainties arising from both approximations of actual processes and numerical 

schemes, and consequently, some verification of modeling results is desirable. 

The main objectives of the case study of the NT CSO facility were to examine the 

feasibility of increasing the facility’s hydraulic capacity without major reconstruction or 

large reduction in storage volume of the downstream tank, and to verify the effectiveness 

of CFD modeling against the results obtained in a physical model.  

3.3 The NT CSO Facility 

Upgrading of the NT CSO facility requires a good understanding of the relatively 

complex hydraulics of the existing facility. In wet weather, CSOs escaping from an 

adjacent combined sewer enter the inlet channel of the facility (see Fig. 3.1), and 

continue through four connecting pipes into a distribution channel, and over inlet weirs 

into three parallel storage tanks.  The inlet weir elevations are such that the storage tanks 

are filled sequentially.  Overflow from the CSO tanks is conveyed by the effluent channel 

into a stormwater tank where it mixes with the stormwater discharge from a separate 

storm sewer.  When the stormwater tank is filled, a CSO and stormwater mixture 

overflows the final effluent weir to be blended with the secondary effluent from the North 

Toronto Water Pollution Control Plant (WPCP) before being discharged to the nearby 

Don River. After storms, the wastewater retained in the NT CSO Facility (approximately 

6,000 m3) is pumped to the WPCP for treatment.  

For larger volume events (V > 6,000 m3), the facility overflows. Ideally, all inflows 

should undergo settling in the CSO storage tanks. However, because of the limited 

transport capacity of the pipes connecting the inlet and the distribution channels, when 
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the inflow rate exceeds about 4 m3/s the excess flows are diverted from the inflow 

channel via a bypass weir directly into the stormwater tank without undergoing any 

settling (see Fig. 3.1).

Reducing overflows via the bypass weir of the inflow CSO channel has been a long time 

goal of the City of Toronto. Unfortunately, there is no easy solution to this problem due 

to the complexity of the hydrodynamic characteristics of the NT CSO treatment facility. 

The distribution of flows between the three CSO tanks and the overflow from the inflow 

channel bypass weir is controlled by the elevations of several weirs, including the three 

tank outflow weirs, the inlet channel bypass weir, and the final effluent weir.  For 

example, the elevation difference between the inlet channel bypass weir and the CSO 

tank outflow weirs controls how much flow passes through the three CSO tanks without 

overflows from the inlet channel.  Also, the final effluent weir elevation controls (but not 

exclusively, as discussed later) the backwater pressure in the effluent channel, which, in 

turn, affects the maximum flow that can be treated in the CSO tanks. 

A proposal has been put forward to increase the flow through CSO tanks (to reduce inlet 

channel overflows) by reducing the elevation (overall height) of the final effluent weir. 

Before implementing such changes, several questions had to be answered: (a) How much 

should the final effluent weir height be reduced? (b) What are the effects of such a weir 

height reduction with respect to flow increase? (c) Is it sufficient just to reduce the weir 

height without taking other measures?  Such questions were answered by modeling.

3.4 Numerical Model 
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Since most of the flows in the CSO storage/treatment facility are open channel flows and 

their hydraulics are controlled by water head (hydrostatic pressure), it is essential to 

employ a model which can accurately predict the water surface profile throughout the 

facility and its changes with time, for varying inflows. Obviously, the single phase model 

could not be used to resolve the air-water interface.  The Commercial CFD, PHOENICS 

(Rosten and Spalding 1984), contains several multi-phase models developed for this 

purpose. Based on its applicability, reasonable computational time, stability, and 

suitability to simulate particle transport (to be addressed in the future), the “Algebraic-

slip” method referred to in the PHOENICS documentation was selected. 

The choice of turbulence models tested in this study was limited to two options, which 

best described the case studied; (a) the well-known standard two equation k-  turbulence 

model described, e.g., in Launder and Spalding (1974), and (b) the zero equation LVEL 

turbulence model that is better suited for low turbulence flows in open channels and pipes 

(Rosten and Spalding 1984). Due to the complex nature of the CSO facility studied, 

neither of these two turbulence models can fully represent the wide spectrum of 

turbulence in the facility, but both should perform adequately.  Testing results showed 

that the k-  model results agreed with measurements slightly better than those from the 

LVEL turbulence model, and consequently, the k-  turbulence model was adopted in this 

study, in spite of longer computer running times. 

The numerical accuracy of flow simulations increases with the number of cells in the grid, 

but so does the computation time.  For structures with complex geometry, a very large 

number of cells may be needed, and the correspondingly large computer running time 

may become unacceptable.  Thus, some balance has to be struck between computing time 
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and the accuracy of the simulation by examining simulation results with different mesh 

sizes.

Also, the choice of the modeling grid is very important for numerical modeling.  It not 

only directly affects computer running time and the accuracy of final results, but it also 

greatly affects model stability.  Adjustments have to be made in various regions of the 

schematization to avoid sudden changes in cell sizes, by creating more cells in regions 

with important hydraulic features.  Although the depth of the CSO facility is much 

smaller than its whole surface area, in order to predict the air-water interface more 

accurately (which directly affects overall simulations) and also to be able to better 

represent the sloped tank bottom with the structured mesh, in this study, 55 x 45 x 25 

uneven fixed nodes were used in the X, Y, and Z directions, respectively. The time step 

was 0.182 seconds, with 15 iteration sweeps and the typical simulation running time of 

24 hours was acceptable. A similar, but higher resolution grid with 65 x 55 x 30 nodes 

was also tested, but the results were practically the same as those simulated with 55 x 45 

x 25 nodes. Therefore, the simulation results can be regarded as independent of the grid 

choice and are true results of the mathematical model simulations.      

3.5 Model Verification 

Although most of the models in commercial CFD software have been validated to a 

certain degree, it is a good practice to check model results against observations because 

the applications and parameter settings can be quite different in each case. Especially, 

when using a relatively complex multiphase model, particular care has to be taken on the 
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boundaries to prevent mass leakage, which can happen due to model settings and other 

factors, rather than the finite volume method itself.  

In order to check flow leakage from the structure boundary in the numerical model, water 

mass conservation was tested. In this test a constant 5 m3/s inflow rate was used in 

numerical simulations for 25 minutes to reach steady state, and it produced a simulated 

outflow at the end of the effluent channel of 4.97 m3/s, or 99.4% of the inflow.  Various 

inflow rates and running times were also tested and produced similar results, with 

outflows agreeing with inflows within 1%, which should be expected from a finite 

volume based model using proper parameter settings.    

Filling rates and water levels simulated at various locations were compared to the 

available physical model measurements.  These tests were particularly important in this 

study, in which the numerical model was used to predict water levels throughout the 

entire system to find out how structural changes would increase the system capacity. Fig. 

2 shows a comparison of simulated and measured (in the physical model) water levels at 

various locations in the facility and water level changes with time.  The locations are 

indicated in Fig. 3.1 as black round dots labeled 1 to 5.  The flow rate applied in this test 

was 5 m3/s and the water depths plotted in Fig. 3.2 were measured from the tank bottom 

at each reference point.  Because of tank depth variations, all water surface levels were 

not identical, even after reaching steady state flow conditions.  

At all locations shown in Fig. 3.2, simulated and observed (in the physical model) time-

varying water surface profiles agreed quite well with the rms errors from 0.11 to 0.23.  

Thus, the numerical model was capable of accurately predicting the filling time and water 

levels for both transient and steady-state flows in the whole system.  It took about 18 
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minutes for the entire system to fill up (i.e., for an inflow of 5 m3/s), as shown by all 

profiles reaching a constant elevation at that time. When water starts flowing into the 

CSO tanks, the water level at upstream locations reaches a plateau, until each tank has 

been filled up, so both the measured and modeled profiles display a step-wise shape.  

Thus, the curves in Fig. 3.2 can be characterized by four steps; the first three correspond 

to filling the CSO tanks 1, 2 and 3, in sequence, and the last step represents the 

attainment of the steady-state flow.  

The flow velocities at the center of each of the four distribution channel feed pipes were 

measured with a Pitot tube in the scale model and compared to modeled values. The 

results are shown in Table 1.  In this table, the measured velocities represent point 

velocities along the longitudinal axis of pipes, but because of limited spatial resolution of 

the numerical model, the modeled velocities represent average velocities for the entire 

pipe cross section.  This explains why the modeled velocities are slightly smaller than the 

measured ones.  Another numerical model approximation used in the adopted Cartesian 

coordinate system is that the round feed pipes were represented in the numerical model as 

square conduits, which have a slightly larger cross section. This approximation was 

accounted for in the modeled velocities listed in Table 1.  The total discharge through 

feed pipes was about 4.96 m3/s, or 99.1% of the inflow rate. 

In an overall evaluation, the numerical model was found capable of simulating flow 

physical characteristics quite well, compared to the observations, especially for situations 

controlled by the hydrostatic pressure.  Comparisons of numerical results with 

observations in the scale model were helpful in explaining numerical results and were 
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conducted throughout the study. Thus, the PHOENICS model was found to be suitable 

for evaluation of the performance of the CSO storage and treatment facility.  

3.6 Numerical Modeling of Flow Rates 

In the initial series of PHOENICS runs, the final effluent weir height was set equal to 

zero (i.e., the weir was removed).  Under such circumstances, the CSO tank outflow weir 

crest should be always above the water level in the effluent channel, and there should not 

be any backwater influencing water levels in the CSO tanks.  The numerical model was 

run with different inflow rates, until the water level in the inlet channel reached the crest 

of the bypass weir and the system reached steady state, as shown in Fig. 3.2F.  In this 

figure, the straight horizontal line indicates the elevation of the bypass weir, and the 

curve represents simulated water levels just upstream of the bypass weir.  The results 

show that the maximum inflow rate to this treatment facility is about 5.46 m3/s, which 

agrees with measurements in the physical model, within the range of measurement errors.  

However, in the actual facility, there is a noticeable effect of the final effluent weir, 

which produces a backwater and raises the water level in the CSO tanks.  Increased water 

levels in these tanks then cause overflow over the bypass weir, well before the maximum 

flow can be attained.  With the existing final effluent weir position, numerical 

simulations indicate a maximum (no bypass) flow rate of about 3.9 m3/s.  Thus, because 

of the facility configuration and the final effluent weir, the maximum treatment capacity 

of the existing facility is reduced by 29% from the free-flow state.  

Reducing the height of the final effluent weir seems to be an obvious choice for 

increasing the treatment capacity of the system.  However, if the final effluent weir is too 
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low, the storage/treatment function of the stormwater tank would be diminished, and any 

flow overflowing the inlet bypass weir would not be treated at the NT CSO facility. To 

balance both requirements (increasing the treatment rate and preserving the storm tank 

volume), three different height reductions (20, 40 and 60 cm) of the final effluent weir, 

were considered and the results of such simulations are shown in Fig. 3.3.  The reduction 

of 60 cm is the maximum that would be allowed by the regulatory agency. 

The horizontal straight line in Fig. 3.3 denotes the elevation of the inlet tank bypass weir 

and the curves displayed represent water levels simulated in the inlet tank next to the 

bypass weir, for different final weir heights.  In all simulations, the inflow rate was set at 

5.46 m3/s.  It can be seen that all water surface profiles overtop the bypass weir after 18 

minutes of inflow.  This means that even if the final weir height is reduced by 60 cm, 

bypassing from the inlet channel would still occur.  It was noted that the water level 

variation in the inlet channel was not very sensitive to changes in the final effluent weir 

height.  For example, a 40 cm reduction in the weir height (i.e., moving from a 20 cm 

height reduction to a 60 cm reduction), reduced the water level in the inlet channel by just 

10 cm.  Since the water level difference between the inlet channel and the effluent 

channel should be similar for the same inflow, this indicates that the water level in the 

effluent channel also changes much less than the final effluent weir height.  This finding 

prompted further investigations of flow hydraulic characteristics in the region between 

the CSO tank outflow weir and the final effluent weir.

Water levels in the effluent channel and in the stormwater tank were plotted in Fig. 3.4 

for different heights of the final effluent weir.  Recognizing that the reduction of the final 

effluent weir height by 20 cm was insufficient to significantly improve the system 
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capacity, the discussion of numerical simulations focuses on reducing the final effluent 

weir by 40 and 60 cm, respectively.  The plots in Fig. 3.4 represent water level profiles 

starting from the final effluent weir and moving upstream (see Fig. 3.1A) against the flow 

direction indicated by an arrow.  In both panels of Fig. 3.4, curve A indicates the water 

level for the existing facility without any modifications, except for reducing the final 

effluent weir height. Water surface profiles indicate that additional hydraulic resistance 

generated by the 90o bends causes two water level peaks in the effluent channel.  In order 

to overcome this obstruction, the flow level upstream of the bend has to rise to increase 

the hydrostatic pressure differential between the entry and exit sections of the bend.  By 

reducing the final effluent weir height, the velocity in the effluent channel will increase, 

as will the hydraulic head needed to pass a higher flow through the bend.  Consequently, 

the influence of reducing the final effluent weir height on water levels in the CSO tanks 

becomes much smaller, because of the obstruction effect of the two 90o abrupt bends.  

Therefore, the hydraulic resistance at the two bends needs to be reduced in order to 

improve flows. 

The second (downstream) 90o bend, which is directly connected to the stormwater tank, 

can be fixed more easily either by widening the exit cross-section of the channel, or by 

cutting the downstream (left) sidewall of the bend at an angle larger than 45o.  However, 

due to space limitations and structural considerations, the outside dimensions of the 

upstream 900 bend cannot be enlarged.  Therefore, the only acceptable modifications of 

this bend have to be made inside the channel, e.g., by curving the inner corner and/or 

adding curved flow conditioning baffles.  Computer simulations were used to explore 

both alternatives for improving the hydraulic efficiency of this bend.
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The hydraulics of the upstream 90o bend was studied in two steps.  The first step focused 

on simulation of the flow passing through the bend in a simplified setting, which included 

the bend itself and some upstream and downstream sections of the flow channel.  In all 

simulations, the inflow rate was 5 m3/s.  The purpose of this step was to find the most 

effective modification of the bend.  With fewer structural components simulated and a 

higher node density, the accuracy of numerical simulations was increased and the 

computer running time was reduced.  In total, six different bend geometries (A-F) were 

tested (see Fig. 3.5), and the corresponding water level profiles in the effluent channel are 

shown in Fig. 3.6.

Case A refers to a straight channel, which simulates flow conditions without any bend 

influence and is used as a reference for the other test cases.  It does not show any flow 

obstruction, as expected for a straight channel.  Case B refers to a channel with a 90o

bend, without any modifications.  The simulation results show that the water level 

upstream of the bend is about 13 cm higher than in case A, due to the effect of the bend. 

Cases C and D represent situations, in which curved baffles were inserted into the 

channel outer corner, with radii of 1.5 and 1.0 m, respectively.  Modeling produced 

somewhat surprising results; curved baffles placed in the outer corner barely affected 

water levels in the effluent channel.  In fact, curves C and D in Fig. 6 are almost identical 

and similar to curve B, which represents the 90o bend.  This lack of effectiveness can be 

attributed to the reduction of the flow cross-sectional area due to the placement of the 

curved baffle in the outer corner, even though water flow trajectories in the corner should 

become hydraulically more favorable.  Similar tests with curved baffles (R = 0.5 m) were 

80



done in the physical model for different flow rates and also confirmed that these outer 

corner baffles barely influenced water levels.  

Case E represents the layout in which the geometry of the inner corner was rounded, with 

a radius of 0.5 m.  This modification brought about a significant reduction in the water 

levels in the effluent channel, as shown in Fig. 3.6.  It was felt that the effect of this 

improvement might have been slightly exaggerated in the numerical simulation.  Physical 

model experiments confirmed that inner corner modifications were more effective in 

reducing local head losses than changes of the outer corner.  The flow velocity fields at 

the corners shown in Fig. 3.7 provide an explanation.  For the inner corner of the 90o

bend, illustrated in the upper part of Fig. 3.7, the flow will produce negative pressure 

downstream of the inner corner, and thereby generate an eddy, which then functions as a 

flow obstruction and reduces the effective flow width.  After rounding the inner corner, 

the eddy caused by the negative pressure disappeared, as shown in the middle panel of 

Fig. 3.7.  Consequently, it was now easier for flow to pass through the bend, and a lower 

hydraulic head was needed to force water through the bend, as confirmed by the smaller 

difference between the crest and trough of water profile curves in Fig. 3.6.  At the same 

time, the modeling results in the middle panel of Fig. 3.7 indicate that the velocity (and 

the corresponding head loss) along the outer corner is much smaller than that near the 

inner corner.  This may explain why curved outer baffles do not contribute significantly 

to reducing the hydraulic resistance of the bend, even if the flow pattern has been 

improved (see the bottom panel in Fig. 3.7). 

In the second step of the analysis, the knowledge about the hydraulics of 90o bends was 

applied to numerical simulations of the actual facility with modified bends.  The resulting 
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water level profiles in the effluent channel are presented in Figs. 3.4A and 3.4B as curves 

B and C, in both panels.  The water level in the effluent channel with an improved 

downstream bend (Curve B) was reduced significantly compared to Curve A, for both 40 

and 60 cm  reductions of the final effluent weir height.  The water level in the region 

downstream of the first bend decreased more than that upstream of the bend.  This can be 

explained by the fact that the first (upstream) bend acts as a bottleneck, which would 

require a greater hydraulic pressure build up to convey the increased discharge.  This 

finding is also indicated by the increasing water level oscillations at the upstream bend in 

Figs. 3.4A and 3.4B.

Curve C in Figs. 3.5A and 3.5B (both panels) shows the simulated water surface profiles 

for the case in which the downstream bend was “opened” and the upstream bend inner 

corner was rounded.  Water levels were reduced even further, but the upstream bend was 

still causing head-loss problems requiring more study. 

After addressing the bend problems, further work focused on finding the relationships 

between the maximum attainable inflow rate (without bypassing), Qin, and various 

heights of the final effluent weir, under three conditions: (a) no changes of the effluent 

channel (existing max Qin = 3.9 m3/s), (b) correcting the downstream bend only (max Qin

= 4.15 m3/s), and (c) correcting both bends (max Qin = 4.25 m3/s).  These three cases were 

then re-examined for reductions of the final effluent weir height by 20, 40 and 60 cm 

respectively, and the results were plotted in Fig. 3.8. Discrete symbols represent the 

maximum flow rates measured in the physical scale model and solid lines represent 

modeled data.  It can be seen in Fig. 3.8 that the numerically modeled maximum flow 
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rates were slightly smaller (< 5%) than the measured ones, except for one point. However, 

these minor discrepancies were considered insignificant. 

The numerical simulations indicate that by lowering the final effluent weir by 60 cm and 

modifying both 90o bends, the maximum inflow rate could be increased from 3.9 m3/s to 

5.12 m3/s, which corresponds to about a 31% improvement of the system treatment 

capacity.  An important finding can be made from Fig. 3.8 - the slopes of all water 

profiles decline with the decreasing final effluent weir height.  In other words, the rate of 

improving the maximum inflow rate diminishes as the height of the final effluent weir is 

decreased, which also reduces the storage/treatment capacity of the stormwater tank.  

Depending on how much significance is assigned to maintaining the storage volume in 

the stormwater tank, it may be preferable to improve the system capacity by reducing the 

final effluent weir height by some intermediate value (e.g., 40 cm) and correcting the 900

bend problems at the same time.  

The low sensitivity of the flow increase to the final effluent weir height reduction 

deserves further discussion.  It is well known that the higher the flow velocity through the 

corner, the larger energy head required, but it is not obvious that when increasing the 

flow through the right angle corner by a fixed increment a larger head difference is 

required for a higher flow than for a lower flow.  Since the flow field around a corner is 

very nonlinear, it is almost impossible to produce an analytical solution for flow rate 

changes using water head difference at a corner, however, an answer can be found with a 

numerical model.  The numerical experiment setting is the same as shown in Fig. 3.5b, 

and the simulation results for different flow rates are presented in Fig. 3.9 as a solid line.  

In the numerical simulation, flow rates were increased from 1 m3/s to 5 m3/s, with 1 m3/s
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increments. The almost straight line suggests that the gradient dQ/dh (flow rate change vs. 

water head change) is about constant and independent of the flow rate. Thus, the 

influence of the corner does not provide an answer for the above question.  

The second feature requiring some examination is the straight effluent channel, even 

though it is unlikely to contribute to the problem discussed.  The flow structure in a 

straight effluent channel with a constant width is much simpler than that in a corner bend.  

The relationship between the flow rate and water head can be easily derived, as shown 

below. If diffusion and wall friction are ignored, a steady lateral uniform flow in a 

channel with a constant width should satisfy the momentum equation 

)1(
dx
dhg

dx
duu

where u is the flow velocity along channel x direction, g is the acceleration due to gravity, 

and h is the water depth.  By integrating both sides of equation (1), along the flow 

direction from location x1 to location x2, the following simple relationship is obtained

1
2

22
2

1
2( )u u g h ( )

In equation (2),  is the water head difference between locations x1 and x2.  The water 

depths at x1 and x2 can be expressed as h2+ h and h2, and to preserve continuity, this 

relationship can be written as

h
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Substituting equation (4) into equation (2) and using flow discharge Q to replace velocity, 

the relationship between water discharge and water head difference is 
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The relationship described by equation (6) can be examined visually in Fig. 3.9, where it 

was plotted as a dashed line.  Since the slope of the curve is almost constant, it indicates 

that the water head increase for increasing flow rates is independent of the flow rate itself. 

Therefore, the effluent channel is also unlikely to cause the phenomena mentioned above. 

The third possible cause to be examined is the final effluent weir.  After analyzing Fig. 

3.4 closely, it can be noted that, when the final weir height is decreased by 20 cm, the 
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water level in the storm tank is reduced by only 10 cm.  To explain the behavior of the 

final effluent weir, its flow structure has to be examined.   

Among the many weir formulas found in the literature, a widely accepted one is based on 

the assumption of outflow from a stilling basin, as given in Chow et al.  (1988): 

Q Cbh gh
2
3

2 7( )

where C = the discharge coefficient, which depends on weir geometry, b = length of the 

weir, and h = water depth above the weir. 

The above formula may be valid for a weir in a stilling basin, where gravity is the sole 

force driving flow over the weir and the outflow direction is perpendicular to the weir 

plane. In the North Toronto CSO facility, the flow from the effluent channel is forced 

into the stormwater tank by hydraulic pressure, which generates a strong current in the 

stormwater tank, and numerical simulation showed that there is a strong flow component 

parallel to a portion of the final effluent weir.  Thus, the stormwater tank can not be 

considered as a stilling basin of the final effluent weir, because the flow over the weir is 

caused by both gravity and inertia forces. It was also noted that a side weir formula, 

assuming the approach flow direction parallel to the weir, did not apply to the situation 

studied, because of complex flow circulation in the storm tank caused by the flow jet 

from the effluent channel. It is clear that under such a situation, the upstream hydraulic 

conditions greatly influence water levels in the storm tank, instead of being exclusively 

determined by weir height as is the case in a stilling basin. Thus, because the water level 

in the effluent channel is determined by both the water level in the stormwater tank and 
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the discharge from the channel, the magnitude of the final effluent weir height reduction 

can not be fully reflected in the water level change in the effluent channel because of the 

limiting discharge.  In turn, this will affect how closely the water level in the stormwater 

tank will follow the height reduction of the final effluent weir.

The discussion of the relationship between the flow rate change and the final effluent 

weir height indicates that, by considering the influences of the corners, the effluent 

channel and the final effluent weir separately, it can be stated that the final effluent weir 

is the main cause for diminishment of flow rate improvement with a decreasing weir 

height.  If all of these factors are considered together, the real reasons for the observed 

hydraulic system behavior are the complex hydraulic interactions among these factors.  In 

any case, an aggressive reduction in the final effluent weir height could not be 

recommended, because of potential impairments to the stormwater tank function and the 

lack of effectiveness in improving the treatment system capacity.   

3.7 Conclusions

The assessment of flow behavior in the North Toronto CSO Storage/Treatment Facility 

by numerical and physical modeling provided a good insight into the facility operation 

and performance improvements by structural changes.  The main objective of this study 

focused on increasing the maximum flow capacity. Numerical modeling was 

accomplished using a 3-D hydrodynamic model PHOENICS, which was run on a PC. 

The results demonstrated that the 3-D multiphase model in the PHOENICS package was 

clearly capable of simulating water level, flow velocities and other physical flow 

characteristics in this complex structure with many hydraulic interconnections.  Most of 
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the numerical model results were verified by measurements in a 1:11.6 physical scale 

model, and the differences between the numerical model output and measured results 

were less than 5%, in most cases.  The analysis of the facility showed that with respect to 

passage of flows, the facility is a complex, highly non-linear hydraulic system. 

When examining the feasibility of increasing the facility flow capacity, several problems 

were identified.  Water profiles through the facility were affected by the 90o bends in the 

effluent channel and by flow control weirs.  Modeling results showed that: 

(a) reducing the height of the final effluent weir may only be a partial solution for this 

complex system.  A more comprehensive plan may be needed and should address the 

effluent channel bend problems;  

(b) the rates of flow change in the system also depend on the height of the final effluent 

weir itself.  For lower weirs, increases in flow rate become smaller when reducing the 

final effluent weir by a constant step, because the water level in the stormwater tank 

is also affected by the hydraulic conditions upstream.  Thus, even if further reductions 

of the final effluent weir height may appear feasible, considering the decreasing 

efficiency of this measure and the environmental consequences of sacrificing the 

stormwater tank storage, a more balanced approach combining effluent channel 

improvements and lowering the final effluent weir should be taken. 

Finally, it was concluded that the numerical model, used in tandem with a physical model, 

was a very flexible, powerful tool that could provide a distinct advantage in future 

investigations of the North Toronto CSO Facility.         
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3.9 Notation 

The following symbols are used in this paper: 

b  = length of the weir; 

C  = discharge coefficient;

g  = gravitational acceleration; 

h  = water depth; 

h  = water head difference; 

Q  = flow discharge; 

inQ  = inflow rate; 

x  = distance in x direction; 

u  = velocity in x direction; 
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3.11 Tables: 
Table 1. Numerically modeled and measured flow velocities in the connecting pipes 

between the inlet and distribution channels. 

Pipe1 Pipe2 Pipe3 Pipe4

Measured Vel. (m/s) 2.28 2.18 2.31 1.28 

Modeled Vel. (m/s) 2.14 2.14 2.17 1.21 

Difference (%) 6.14 1.83 6.06 5.47 
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3.12 Figures: 

g

Fig. 3.1. 3-D Schematization of the North Toronto CSO Facility used in numerical 
modeling.
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Fig. 3.2. Comparison of numerically modeled and measured water level changes in time, 
at various locations. Solid lines represent numerical model output, broken lines represent 
measured results. (2A) Inlet tank (2B) Distribution channel (2C) CSO Tank 1 (2D) CSO 
Tank 2 (2E) CSO Tank 3, and (2F) by the bypass weir.
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Fig. 3.3. Numerically simulated water levels in the CSO influent channel for different 
heights of the final effluent weir. 

0 20 40 60 80 100 120
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

W
at

er
 L

ev
el

(m
)

Distance(m)

A
B
C

Final Effluent Weir Second Bend First Bend 

A

Elevation of CSO Tank 

0 20 40 60 80 100 120
1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

W
at

er
 L

ev
el

(m
)

Distance(m)

A
B
C

Final Effluent Weir Second Bend First Bend 

Elevation of CSO Tank 

B

Fig. 3.4. Water levels in the effluent channel and the adjacent part of the stormwater tank 
for different bend conditions and final effluent weir height reductions. (4A) Weir height 
reduction by 40 cm, (4B) Weir height reduction by 60 cm. 
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Fig.3.5. Different corner arrangements (A-F) used in numerical simulations. 
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Fig. 3.6. Simulated water levels in the effluent channel and the adjacent part of the 
stormwater tank for different corner bend arrangements (A-F). 
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Fig. 3.7. Simulated velocity patterns of three different corner arrangements. 
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Part 4: Hydraulic Optimization of the North Toronto CSO 
Storage Facility Using Numerical and Physical Modelling 

4.1 Abstract: 

Many older CSO (combined sewer overflow) storage facilities have insufficient 

capacities to meet the current performance standards for control and treatment of CSOs 

occurring in older parts of Canadian cities.  The resulting CSOs represent a major cause 

of deterioration of water quality in receiving waters and impairment of their beneficial 

uses. One way of remediation of this problem is to increase the facility capacity by 

hydraulic optimization, as described in this study for the North Toronto CSO storage 

facility.  Towards this end, a commercially available 3D hydrodynamic CFD 

(computational fluid dynamics) model (Star CD) was used to investigate hydraulic 

upgrading options for this facility and numerical modelling was verified against the data 

collected in a physical model (scale 1:116).  The need for using both models was given 

by the complexity of the CSO facility, which comprises several interconnected tanks.  

One of the main functions of the physical model employed in this study was to verify the 

numerical model results. The verified numerical model was then applied to analyze 

hydraulic conditions in the whole facility for major structural modifications aimed to 

reduce or eliminate untreated overflows from the facility. Two scenarios were proposed 

and tested in the study. The results showed that both scenarios can possibly meet the 

design requirement for handling the 60 m3/s flow rate. Even though the study focused on 

a particular CSO facility, hydraulic conditions in the studied facility represent general 
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flow conditions in typical wastewater settling tanks. Hence, the numerical modelling 

methods used are applicable to solving a wide range of hydraulic problems encountered 

at similar facilities.  It is apparent that traditional design methods based on many 

simplifying assumptions could not adequately predict the operational performance of the 

modified facility.  The results obtained also demonstrate that calibrated and verified 

numerical models represent very useful and flexible tools for investigating and 

optimizing older CSO storage and treatment facilities. 

4.2 Introduction 

Combined sewer overflows (CSOs) represent a major cause of deterioration of water 

quality in receiving waters and impairment of beneficial water uses (Weatherbe and 

Sherbin 1994).  Although during the past 50 years all new sewers in Canada were built as 

separate sewers, CSOs can be found in older areas serviced by combined sewers and the 

abatement of CSO pollution remains to be one of the priorities of all large Canadian cities 

with combined sewers (XCG 2004).  The means of CSO abatement are varied but can be 

classified into four broad categories: (a) control of inflow of stormwater into combined 

sewers, (b) sewer separation (requiring many other measures as well), (c) CSO storage 

and/or treatment (serving to increase the system collection efficiency and treat stored 

flows at central or peripheral wastewater treatment plants), and (d) increased collection 

efficiency by improved system operation (e.g., real time control).   

In Canadian practice, CSO treatment options have received increased attention of 

municipal engineers in recent years, particularly retention treatment basins (RTBs) 
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serving to store and treat CSOs by settling (XCG 2004).  In RTBs, the efficiency of 

treatment depends on CSO settleability and the hydraulic conditions in the basin (Li et al. 

2003).  The hydraulics of RTBs has been traditionally considered in a simplified manner, 

by addressing the “lumped” properties of the basin, typically described in general terms 

by the surface loading rate (SLR) defined as the inflow divided by the surface area of the 

sedimentation basin (Metcalf and Eddy 2003).  During the past 10-15 years, research has 

shown that the efficiency of CSO settling can be affected by the settling basin hydraulics, 

and consequently, research into basin hydraulics was conducted using computational 

fluid dynamics (CFD) modelling (Saul and Ellis 1992).  Saul and Ellis (1992) reported 

that the internal geometry of an on-line CSO storage tank influenced the efficiency of 

settling of a particular wastewater. The length to width ratio, the longitudinal and 

benching gradients, and the dry weather flow channel were the most significant 

geometrical properties affecting sedimentation. Other CFD applications to CSO 

hydraulics problems followed. Svejkovsky and Saul (1993) used the 3D CFD model to 

model the StormKing™ Hydrodynamic Separator, Pollert (1999, 2003) modeled a CSO 

overflow structure with free surface flow, and Hrabak et al. (1999) evaluated the general 

hydraulic performance of a CSO side weir structure. Harwood and Saul (1999) listed the 

advantages of CFD modelling, which include: (a) no need for laboratory test facilities, (b) 

the CSO structure geometry in CFD tests can be changed quickly, thus avoiding the time 

and costs associated with reconstructing a physical model, and (c) flow parameters, such 

as pressure and velocity, are calculated at all points within the facility, which may not be 

attainable in physical models. 
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But, most of the 3D numerical modeling studies on hydrodynamic behavior of CSO 

facilities were limited to simulating a simple part of the entire system due to complexity 

of the structure. However, in this study, the entire facility had to be simulated because the 

flow behavior was influenced by all parts of the entire facility. On the other hand, it is 

important to note that numerical modeling results always contain uncertainties arising 

from both approximations of actual processes and numerical schemes, and consequently, 

some verification of modeling results is desirable. For this purpose a hydraulic scale 

model of the facility was built which provided the opportunity to verify the prediction of 

the numerical model. 

The numerical modeling studies on the same facility have been done before with different 

objectives and numerical models (He et al., 2004, He et al., 2006), they were mainly 

focused on possibly increasing particle settling by improving flow hydraulic conditions in 

CSO settling tank through reducing turbulent energy and on investigating a simple way to 

improve the facility treatment capacity with minor structure changes. However, all the 

previous studies did not address a solution to eliminate the untreated CSO overflow 

problem under the heavy storm events and showed that major structure modification 

should be considered in order to effectively control the unwanted CSO overflow problem. 

Based on information from previous study, the goal of this project is to explorer the 

various hydraulic upgrading options for the NT CSO Facility to greatly reduce or even 

totally eliminate CSO overflow. The study included a combination of numerical and 

physical models, and various structural modification scenarios were developed and 

evaluated. The results have been used by City of Toronto in decision making for 

upgrading of the NT CSO facility.  
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4.3 The NT CSO facility 

The original NT CSO facility, consisting of the inlet channel and the stormwater storage 

tank, (see Fig. 4.1) was built in 1924. In 1991 three CSO storage and settling tanks were 

added to the facility connected by four pipes to improve the treatment capacity of the 

undersized CSO retention basin. In wet weather, CSOs escaping from an adjacent 

combined sewer enter the inlet channel of the facility and continue through four 

connecting pipes into a distribution channel, and over inlet weirs into three parallel 

storage tanks.  The inlet weir elevations are such that the storage tanks are filled 

sequentially.  Overflow from the CSO tanks is conveyed by the effluent channel into a 

stormwater tank where it mixes with the stormwater discharge from a separate storm 

sewer.  When the stormwater tank is filled, the CSO and stormwater mixture overflows 

the final effluent weir and is blended with the secondary effluent from the North Toronto 

Water Pollution Control Plant (WPCP) before being discharged to the nearby Don River. 

After storms, the wastewater and sludge retained in the NT CSO Facility (approximately 

6,000 m3) is pumped to the trunk sewer and thereby to the Ashbridges Bay WPCP for 

treatment.  

For larger volume events (V > 6,000 m3), or in the case of back to back events the facility 

overflows. Ideally, all CSO inflows should undergo settling in the CSO storage tanks. 

However, because of the limited transport capacity of the pipes connecting the inlet and 

the distribution channels, when the inflow rate exceeds about 4 m3/s the excess flows are 

diverted from the inlet channel via a bypass weir directly into the stormwater tank 

without undergoing any settling (see Fig. 4.1).
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Reducing or eliminating overflows has been a long time goal of the City of Toronto. 

Unfortunately, there is no easy solution to this problem due to the complexity of the 

hydrodynamic characteristics of the NT CSO treatment facility.   

4.4 What we know from past studies 

Numerical and physical modelling studies have been carried out during the past few years 

to investigate the most feasible options for improving the hydraulic performance of the 

facility (He et al. 2004, He et al. 2006). One of the main goals was to increase the 

treatment capacity without major structural changes. The proposal to increase the flow 

through the CSO tanks (to reduce inlet channel overflows) by reducing the elevation 

(overall height) of the final effluent weir was investigated, and several problems were 

identified. Modeling results showed that: 

a) The treatment capacity of the three CSO tank components of the facility was 

controlled by the combination of the inlet connecting pipe size, effluent channel 

size, the two 90o bends in the effluent channel and flow control weirs equipped 

with upstream scum baffles. 

b) Reducing the height of the final effluent weir may only be a partial solution for 

this complex system.  A more comprehensive plan was needed, which would 

address the whole structure configuration of the facility. 

c) The increasing rates of flow going through CSO tanks also depend on the height 

of the final effluent weir itself.  For lower weirs, increases in flow rate become 

smaller when reducing the final effluent weir by a constant step, because the 

water level in the stormwater tank is also affected by the hydraulic conditions 
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upstream.  Thus, even if further reductions of the final effluent weir height may 

appear feasible, considering the decreasing efficiency of this measure and the 

environmental consequences of sacrificing the stormwater tank storage, a more 

balanced approach combining effluent channel improvements and lowering the 

final effluent weir should be taken. 

The numerical simulations indicated that by lowering the final effluent weir by 60 cm and 

modifying both 90o bends of the effluent channel, the maximum inflow rate could only be 

increased from 3.9 m3/s to 5.12 m3/s, which does not have a significant effect on the 

reduction of overflow. Therefore, in order to truly reduce or eliminate the CSO overflow, 

the consideration of modifying the whole structure is inevitable. 

4.5 Facility Upgrading Considerations 

It has been estimated by City of Toronto that the maximum inflow rate to the NT CSO 

facility can be as high as 60 m3/s, and for this inflow, the existing structure is unlikely to 

achieve acceptable solids removal by gravity only. Therefore, the polymer flocculant 

addition was suggested in this CSO facility upgrading project to enhance particle settling 

for short hydraulic residence times. 

Improvements in clarification efficiency with the use of polymeric flocculants (Averill et 

al, 2001, Wood et al. 2005, Wood et al. 2006) at this facility and in other CSO and 

stormwater facilities in Toronto have demonstrated acceptable treatment performance at 

high surface loads and with minimal residence times.  The use of a polymer flocculant 

has increased the required hydraulic capacity of a clarification vessel by a factor of 10 or 

greater compared to clarification without flocculants.  A recent study with stormwater 
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showed that surface loads of 46 m/h with a short 1-minute residence time provided TSS 

(total suspended solids) removal of 77%, using a polymer flocculant in pilot tests with a 

3(L) x 1.4(W) x 2(D) m rectangular clarifier (Wood et al. 2005). 

Therefore, the objectives for upgrading the NT CSO facility were set as follows: 

1. On a seasonal basis, a maximum CSO inflow of 60 m3/s, resulting from a 

thunderstorm event, would be anticipated for the duration of 30 minutes or less per 

year (or less than 1% of the time). Thus, the maximum facility capacity of 60 m3/s

should be targeted for the upgrading scenarios.

2. A CSO flow of 60 m3/s would impart a surface load of 110 m/h considering the 

available total vessel surface area of 1,940 m2. Based on the performance of full –

scale experiments at the NTCSO facility with polymer flocculant addition and only 

one CSO tank on-line (Wood et al., 2006) TSS removals above 50% would be 

achieved at surface loads of 50 m/h with an 8-minute hydraulic residence time. 

Compared to the Etobicoke stormwater pilot testing (Wood et al., 2005) mentioned 

above, the two series of tests had roughly the same surface load, but very different 

residence times, and achieved similar TSS removal rates.  This indicates that with 

polymer addition high TSS removal can be expected if some minimum residence time 

is satisfied.  In this study, three-minute residence time will be set as the minimum 

residence time which should provide a good level of treatment at a surface load of 

110 m/h, as long as the settling tanks are reasonably hydraulically efficient.

Sludge removal requirements after storm events is also a very import factor for the 

upgrading scenarios since removal of TSS with the polymeric flocculant is achieved by 

105



both settling and flotation processes and the expected amount of sludge is much greater 

than for conventional gravity settling processes.  

4.6 Study Methods 

A 1:11.6 scaled physical model of the original facility structure built for a previous study 

was used in this study. A physical model could provide the accurate and reliable 

hydraulic information about the facility. However, since the ultimate goal of the study 

was to explore the best way to solve the overflow problem by increasing the capacity of 

an existing CSO facility, various scenarios were examined. Due to lack of flexibility, 

time requirements and costs to modify a physical model, it may not be the best choice to 

use a physical model only in this kind of experimental study. Also, under certain 

circumstances a physical model has difficulty to realistically simulate the true situations, 

which will be illustrated in a later section. Therefore, a numerical model was adopted in 

the study as a supplementary tool to first assess modification scenarios. The 

measurements from the physical model can also be used to calibrate the numerical model 

and a very well verified numerical model can be easily, quickly and accurately applied to 

search answers of various hydraulic problems. The study will provide a good example 

illustrating that the use of a physical and numerical model together can take advantage of 

both models and supplement the shortcomings of each in solving a complex hydraulic 

problem.  

4.7 Physical Model 
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The physical model was built with epoxy-coated marine plywood for easy modifications 

and to reduce the construction cost. The physical model has been modified a few times to 

accommodate the previous studies. Fig. 4.2 shows the first version of the physical model 

which did not include the storm tank and part of effluent channel of the original structure. 

Inflows were provided from the circulation system of the NWRI hydraulics laboratory, 

the flow rate was measured with a V-notch weir on the downstream side of catch tank 

wall when the flow rate was less than 30 L/s. Otherwise, a magnetic flow meter mounted 

on a 6” inlet pipe was used to determine the flow during large flow capacity tests. In 

order to represent the real structure as close as possible, many details such as slopes on 

the bottom of tanks were incorporated in the physical model. One important thing worthy 

to be mentioned here is that because the whole physical model structure was made with 

the wood, it was inevitable to have some degree of structural distortion, the hydraulic 

conditions in NTCSO facility were mainly determined by the water head and weir heights, 

which was very sensitive to minor structure changes, especially so in scaled down 

physical model, the structure elevations had to be checked out and adjusted from time to 

time during the entire project.  

4.8 Numerical Models

A general purpose computational fluid dynamics model (Star CD) capable of solving a 

variety of complex fluid flow problems using unstructured mesh was chosen for this 

study. The mathematical description of the flow consists of the continuity equation and 

three components of the Reynolds equations. The resulting equations of conservation of 

mass, momentum, and energy are solved using a finite difference method employing a 
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control volume. Full details of the CFD software and its use can be found elsewhere (Star 

CD user manual, 2004) 

Since the flow in the NT CSO facility is open channel flow driven by hydraulic head at 

most locations, it is critical to chose a model that can resolve the water and air interface 

in order to accurately calculate the capacity of the facility. Unfortunately, there is no 

model available on the market that is able to predict the exact location of water free 

surface in a complex system such as the NT CSO facility, which includes both pressured 

and free surface flows. The available models in commercial CFD package can only 

predict the water and air interface in a narrow water-air transition region. There are 

several multiphase models which have been developed for this purpose. In this study, a 

so-called VOF (Volume of Fraction) model with unstructured mesh was chosen, which 

can resolve water-air interface sharper than the Algebraic-slip model did in the part 3.  

The VOF model has been used widely in commercial CFD software for simulating 

multiphase flows. Its formulation is based on the concept of two or more mutually 

insoluble fluids (or phases) occupying a computational cell. For each additional phase, a 

new variable is introduced, describing the volume fraction of the phase in the 

computational cell. In each control volume, the sum of all volume fractions of all phases 

equals one. The fields for all variables and properties are shared by the phases and 

represent volume-averaged values, as long as the volume fraction of each phase is known 

at each location. The VOF model calculates the VOF variable, which ranges in value 

from 0 to 1, in every cell. For the two phase case such as air and water, if the value is 0, 

the cell is filled with only air, and a value of 1 indicates that water occupies the entire cell. 

Within the water and air interface transition region the VOF variable is in the range of 0 
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< VOF < 1. For the VOF model the time step size has to be very small in order to resolve 

the interface of the two phases with a large density difference. In this study 0.01 second 

was used as the time step in all flow field simulations with a segregated solver (explicit 

scheme), which would satisfy the criterion of Courant number less than 1 criterion. The 

details of VOF modeling are beyond the scope of this paper. 

Considering the fact that turbulent fluid intensity varies greatly in the NT CSO facility 

under strong inflow event, the RNG two equation turbulent model was chosen in this 

study because, in general, it is more suitable and give better simulation results for wide 

range of turbulence phenomena than the widely used k- model does.

4.9 Model Verification 

During previous numerical studies on the NT CSO facility, one of the main applications 

of the 1:11.6 scale physical model was to verify the numerical model. Even though most 

of the commercial CFD models have been verified in one way or others, the CFD model 

used in this study is a new model to us, and also numerical models do not behave always 

the same under different circumstances and some parameters have to be adjusted 

accordingly. Therefore, it is necessary to evaluate the model before it can be confidently 

applied in the study. 

In a study 3, the flow velocities in the four connecting pipes were measured in a 

simplified version of the physical model as shown in Fig. 4.2, the corresponding structure

arrangement built on computer for numerical simulation is shown in Fig. 4.3. The 

measurement location can be seen in Fig. 4.1 as indicated by the four small red dots on 

the connecting pipes. The interesting reason for simulating velocity in the four 
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connecting pipes is that because there are two manholes on the pipe 4, the velocity in it 

should be different compared with the three straight connecting pipes, which would test 

the models ability to simulate a pressurized flow. The comparison of measured and 

simulated velocities with 5 m3/s inflow rate are list in table 1, very good agreements were 

achieved for velocities in the three straight connecting pipes, and in the pipe 4 connected 

with the manhole the agreement was also reasonably good. 

As mentioned before, the hydraulic condition in the NTCSO facility is mainly controlled 

by hydraulic head difference, it is critical for the model to be able to predict the water 

level accurately. The comparison between simulated and measured water level under 

maximum inflow rate in the existing structure has been made. The 3D structure and mesh 

of the existing structure used for numerical modeling are displayed in Figs. 4.4 and 4.5. 

Modeling of the NT CSO facility with the existing structural configuration is not only 

able to utilize the information obtained in the previous study, but also able to set a basis 

for modified structure to compare with. The simulated water level in the whole facility 

with 3.9 m3/s inflow rate is shown in Fig. 4.6. The red and blue colors represent the water 

and air, respectively. In the previous study, the measurements indicated that the 

maximum flow rate of the existing NT CSO facility before overflowing of the bypass 

weir was about 3.9 m3/s ( water level in the inlet tank has the same height as the bypass 

weir). The solid curve in Fig. 4.7 shows the simulated vertical profile of the VOF value in 

the inlet tank just beside of bypass weir under 3.9 m3/s inflow rate, the straight line 

represents the height of the bypass weir. The region with 0 < VOF < 1 represents water-

air transition area which roughly covers from -2 m to -0.5 m, however, the solid curve in 

Fig. 4.7 does not exactly illustrate the water-air interface. How to explain the simulated 
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results from VOF model? First of all, since the VOF value only delineates the water-air 

transition region, the above simulation setting is not completely correct because the 

measurement was done when the water level in the inlet tank just reached the same height 

as the bypass weir. However, in the numerical simulation water would start overtopping 

the bypass weir before true water level reached the height of bypass weir because of the 

spread of the water-air interface. Therefore, the simulated water level may be lower than 

the measurement estimated from the scale model. In order to find out and to correct this 

problem the simulation was redone by extending the bypass weir height all the way to the 

top (effectively blocking the bypass weir), the simulated VOF curve is shown in Fig. 4.7 

by solid curve with cross symbol. It can be seen that the water level in inlet tank is 

slightly increased indicated by higher VOF value at top part of the curve. The VOF value 

at cross point of the VOF curve and the straight solid line is around 0.42, which value 

would be used for representing the true water level in this numerical study. The accuracy 

of the simulated VOF curve can be checked with the following simple calculation, 

)1(112/))(( 11 NiVOFVOFZZWL iiii
i

Where andWL Z  are, respectively, water level and vertical height of vertices of 

simulated cells,  is the computed VOF value at the vertices i  and  is the total 

number of vertices in the vertical direction at calculated location. The water level 

calculated with above formula is shown in Fig. 4.7 with straight dash line which is just 

slightly lower than height of the bypass weir. Considering the factors that there were 

possible some small construction errors and structure changes due to building material 

distortion existing in physical model, and especially, that it was difficult to level the 

iVOF N
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whole physical model structure with water in it, the measured and computed water level 

shown in Fig. 4.7 agreed very well.

It has been observed that once or twice per year, the NT CSO inlet tank was completely 

overtopped or flooded due to excessive inflow. Reducing or even eliminating the 

flooding events by increasing the capacity of the NT CSO facility is one of the main 

goals of this hydraulic upgrade project. In order to provide necessary reference 

information in structure upgrading and to verify the numerical model, the physical model 

was used to determine the exact maximum capacity of the existing NT CSO facility 

before it was flooded. The measured results indicated that under around 25 m3/s inflow 

rate the structure started to overflow. Numerical modeling result in Fig. 4.8 shows that 

under 25.0 m3/s inflow rate water in the inlet tank may begin to splash out as indicated by 

the zone of other than dark blue surface colors. Fig. 4.9 is enlarged side view of the inlet 

tank, it can be clearly seen that large waves have been generated due to the strong inflow, 

which is consistent with those observed in operation. However, at this flow rate the water 

level in the inlet tank has not yet reached the top of the inlet tank. Further comparisons 

between scale model measurements and numerical simulations will be given in later 

sections.

4.10 NT CSO Facility Upgrading Options 

The main focus of the current study was on exploring the best ways to eliminate overflow 

and to maximize the treatment capacity of the NT CSO facility, which requires a good 

understanding of the relatively complex hydraulics of the existing facility. It is infeasible 

to test many alternative structural modifications by direct field measurement due to 
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numerous uncontrolled factors, and also the scaled physical model is not very efficient to 

test many possible structures modification, therefore, the numerical model is a natural 

choice in these studies as a flexible and supplement tool to investigate the hydraulic 

conditions of the facility under different structural configurations once the numerical 

model has been verified

Two major scenarios were proposed and examined in the study, they were listed below. 

The simulations started with examining the scenario 1 which could achieve the largest 

hydraulic capacity, but might also be the most costly to be implemented in practice.

4.11 Scenario 1:

The configuration of this scenario is shown in Figs. 4.10 and 4.11, and differs 

substantially from the original structure, Thus it requires the most retrofit work compared 

with other possible modifications. A new inlet channel 40m (L) x 8m (W) x 5m (D) has 

to be built, the upstream ends of the CSO storage tanks need to be opened and connected 

together. Both sidewalls of the inlet tank have to be removed to let flow freely pass from 

the CSO tanks to the stormwater tank. The idea behind this design was to integrate 

various parts of the facility into one large settling tank, the flow enters the facility from 

one end and leaves from another end without any obstacles in between, which could 

disturb particle settling, therefore, the flow capacity is mainly controlled by the water 

head differential at two ends of the facility. Under such a configuration the highest 

treatment capacity could be achieved and flow could have the longest residence time. 

Because of this reason the physical model was modified correspondingly and used as the 

main tool to investigate this structure layout. Fig. 4.10 shows the modified physical 

model used for testing this scenario. To meet the target of 60 m3/s maximum treatment 
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capacity for the retrofitted NTCSO facility, the available 1:11.6 scale physical model 

would have had to be able to handle 120 L3/s inflow (flow scale = 11.62.5) without 

overflowing the structure. Unfortunately, because of a limitation in the water supply 

system in the NWRI hydraulics laboratory, the maximum available flow for use in the 

physical model under present physical model setting was around 65 L3/s which was about 

one half of required flow rate. In order to quickly examine the full ranges of flow 

capacity of the modified facility without doing more construction in the laboratory, a 

simple indirect method combining measurements and calculations was adopted. To do so, 

two manometer tubes were installed on the side wall of the two ends of the physical 

model to monitor the water level. After water levels at two locations were recorded under 

different inflow rates, the polynomial least squares fit was used to fit the measured low 

flow data and extrapolate them to a larger flow range. The test results in Fig. 4.12 showed 

that the flow capacity of the scenario 1 was about 43 m3/s (95 L3/s in the physical model). 

The symbol of crosses and circles in Fig. 4.12 represent the flow level measured at the 

upstream and downstream ends, respectively. Since the top elevation of the facility 

structure was the same everywhere, the overflow events in most of cases would occur in 

the upstream region, due to higher water levels, as shown in the Fig 4.12. The solid 

straight line at the top of Fig 4.12 indicates the height of the structure; therefore, the 

intersection between the straight line and dash fitted curve would indicate the maximum 

flow that the physical model can handle under the tested condition, before overflowing 

the structure.  

The accuracy and reliability of the indirect method could be assessed with numerical 

model. Three different inflow rates, 38 m3/s, 42 m3/s and 47 m3/s, were used in 
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simulations. For the 38.0m3/s, simulations showed almost no sign of water splashing out 

as indicated in Fig. 4.13.  At the 47.5 m3/s flow rate, it could be seen clearly in Fig. 4.14 

that flow started splashing out at locations in the inlet channel and just upstream of the 

scum baffle, even though the overflow probably was not very large. Fig. 4.15 displays 

simulation results with an inflow rate of 42 m3/, it was just about indicating overflow in 

the inlet channel, which agreed with the indirect method result. The good agreement for 

the hydraulic capacity of the facility between measurements and numerical model 

indicated that the indirect calculating method should be reliable. Actually, it should not 

be surprising that the above combination method worked well, because the hydraulic 

condition in the facility under scenario 1 was very simple and similar to those in a 

channel flow, only the scum baffle makes hydraulic conditions slightly more complex. 

Obviously, the scum baffle would restrain the flow freely passing through the NTCSO 

facility because in the original structure the distance between scum baffle and the final 

weir was about 0.6m, which was too small to allow large amount of flow passing through 

smoothly. Additional experiments were conducted without the scum baffle and the result 

was showed in Fig. 4.16 using the same indirect method to obtain capacity of the facility. 

It apparently showed that there was still a lot of room before the flow surface reaches the 

structure top under inflow rate of 60 m3/s (120 L3/s in physical model). Without the scum 

baffle the water levels at two ends measured in the physical model were about the same, 

therefore, in Fig. 4.16 the flow level at only one location was plotted. For a channel flow 

its hydraulic condition can be described by a simple linear equation: 

)2(
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dhg
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Where , andh u x  are the flow height, flow velocity and distance along the channel, 

respectively. g  is the gravity acceleration. Solution of the linear equation (2) represents a 

linear line for relationship between flow rate (or velocity) and water height. In Fig. 4.16 

the almost straight fitting line for measured data implied that without scum baffle the 

flow in NTCSO facility was indeed similar to an open channel flow.  

If the scum baffle is moved about 1m upstream from the original position, it would 

reduce the flow restriction caused by distance between the scum baffle and the 

downstream weir, A graph of flow levels against the inflow rate, after modifying the 

scum baffle position, are shown in Fig. 4.17. which indicates that the facility can handle 

flow rate larger than the targeted 60 m3/s.

In the above measurements the inflow weirs of the CSO tanks (see Fig. 4.1 for location) 

were removed with the objective to achieve the maximum flow capacity for the facility. 

If the original inflow weirs were left untouched, they could retain the sludge from small 

CSO events in the zone of the original CSO tanks, which would greatly reduce the 

cleaning efforts. The measurements showed that there was no real difference in the flow 

capacity of the facility, with or without the original inflow weirs of the CSO tank, 

because the weirs were deeply submerged under large flow rates. 

In general practice, particle settling is enhanced by increasing the flow residence time 

and/or by reducing flow turbulence in the facility. Both observations in the physical 

model and numerical simulation (shown in Fig. 4.18) indicated that for the structure 

tested, most of the flow went through the CSO Tank 1, because of the momentum of the 

inflow deflected by end wall of the new inlet.  
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To improve the flow distribution and characteristics, in the physical model a few straight 

parallel baffles with different extension lengths were placed into the inlet channel at 

entrances to each CSO Tank to intercept the flow going into each CSO tank accordingly 

and arrangement of these baffles is illustrated in Fig. 4.19. However, experiments in the 

1:11.6 physical model showed that the baffles did not work very well, as tested. This was 

caused by a short length of the inlet channel section in the physical model between the 

water supply pipe and the upstream wall of the CSO Tank 3; less than 1 meter. Because 

of very strong inflow, even with a horizontal tube array diffuser at the outlet of the water 

supply pipe, the highest flow velocities in the inlet channel were concentrated along the 

center part of the channel and, therefore, several of the upstream intercepting baffles 

situated near the inlet of each of the three parallel tank section did not intercept much of 

the inlet channel flow. In the prototype structure there is a 40 m long channel feeding 

inflow into the facility, therefore, the inlet flows at the end of this long channel should be 

much more evenly distributed across the channel width than in the physical model. To 

correct the inlet part of the physical model, the entire model structure would have to be 

reconstructed, which would not be a trivial task. An alternative way to evaluate the effect 

of the flow conditioning baffles is using a numerical model, which has provided accurate 

and realistic results in the previous study (He et. al, 2004) and indicated improved 

hydraulic conditions for various baffle designs. Simulated velocity distribution at the 

entrance of the CSO tanks with flow conditioning baffles in place is displayed in Fig. 

4.20, and the baffle structural arrangement is similar to that tested in the physical model 

(illustrated in Fig. 4.19). There are a total of 9 straight flat baffles in this proposed design, 

the length of baffles gradually increase in the downstream direction (0.9 m), extending 
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into the inlet tank to form multiple narrow flow channels. The purpose of the baffles is to 

force inflow to enter the CSO tanks through small parallel flow channels with desired 

equal proportions. By comparing these flow patterns with the case without baffles Fig. 

4.18, it is apparent that flow conditions are significantly improved, flow rates in the three 

CSO tanks are about the same and flow pattern in the three tanks become more uniform. 

All of these intercepting baffles would equalize the flow residence time and reduce 

turbulence, thus contributing to better particle settling.  

One interesting hydraulic phenomenon after inserting the flow conditioning baffles is that 

there are small eddies at the entrances of the first a few baffles and the intensity of the 

eddies decreases with downstream distance and, eventually they are totally dissipated. 

The possible explanation is due to flow momentum. After flow mass was reduced 

because of escaped flows from the first a few intercepting baffles, there was not enough 

momentum to continue to generate eddy by left flows, even though the flow velocity is 

about the same indicated from similar length of velocity vectors. 

As mentioned before because of the limitations of water supply in the NWRI Hydraulics 

Laboratory, it is difficult to directly measure the maximum hydraulic capacity of the 

proposed Scenario 1 in a 1:11.6 physical model as well as to test the flow conditioning 

baffles. In order to further verify the above conclusions, a 1:23.2 scale physical model, 

reproducing the same facility structure (Scenario 1) as the 1:11.6 physical model was 

built. Measurements show that the maximum hydraulic capacity of the 1:23.2 physical 

model is around 26.3 L/s which would equal to the maximum capacity of 149 L/s and 68 

m3/s in a 1:11.6 physical model and the prototype structure, respectively. To check the 

accuracy of the hydraulic capacity predicted from the 1:11.6 model with the above 
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mentioned indirect method, the water level was calculated for a 149 L/s inflow rate from 

the best-fit curve in Fig. 4.17.  This result is marked by an asterisk in Fig. 4.17, which 

shows an almost perfect prediction from the 1:11.6 physical model. The flow 

conditioning baffles were also tested in the 1:23.2 physical model and observations 

showed that they worked well and confirmed what the numerical model indicated.        

4.12 Scenario 2: 

As mentioned above Scenario 1 could achieve the maximum hydraulic capacity of the 

facility, but with high cost, because it requires building a new long inlet channel (about 

40 m (L) x 8 m (W) x 5 m (D)) connected to the facility. However, if there is another 

scenario, the capacity of which can satisfy the targeted flow rate of 60 m3/s, but with 

much less construction cost, it could be also very attractive. The structural arrangement 

of Scenario 2 is shown in Fig. 4.21. Because the numerical model is much more flexible 

to be modified than the physical model, in studies of scenario 2 only the numerical model 

was used.  By comparing Scenario 2 with the structural layout of Scenario 1 (as shown in 

Fig. 4.11), it can be seen that the main differences between the two cases are that in 

Scenario 2, one CSO settling tank is used as a part of the inflow channel and the two 

remaining CSO settling tanks were modified as the outflow channel, instead of using all 

three CSO settling tanks for conveying outflow in Scenario 1. The flow enters the facility 

through the existing inlet channel, then takes a 90 degree turn flowing through the 

original CSO tank 3, at the end of the CSO tank 3 it turns into CSO tank 1 and 2, and 

finally flows out through the stormwater tank. As mentioned before the existing exit 

weirs of the CSO storage tank, located between the CSO storage tank and the stormwater 

tank, have little effect on the hydraulic capacity of the facility because they are much 
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lower than the height of the stormwater tank weir, therefore, the original CSO tank inflow 

weirs were kept and a new scum baffle was added upsteam of the existing CSO tank 

inflow weirs to keep floating materials and sludge in the CSO tank for easier cleaning. 

The existing cleaning method can be applied on this new configuration and for small 

storm events the whole CSO volume will stay in the CSO tanks, without the need to clean 

other parts of the facility. With these changes, the numerically estimated maximum 

capacity of the facility is about 60.0 m3/s as indicated in Fig. 4.22. Under this inflow rate, 

flow at the 90 degree bend connecting the original inlet channel and the CSO tank 3 

begins to be overtopped lightly as indicated by the scattered red colour on the flow 

surface due to the strong incoming flow hitting the wall corner. Flow patterns of the 

whole facility are displayed by streamlines in Fig. 4.23 indicating that flow is not very 

evenly distributed when it passes through the facility, which can be seen more clearly 

from Fig. 4.24 with velocity vectors at the water level 0.5 m below the surface near the 

upstream end of the three CSO storage tanks. High CSO flows had difficulty passing 

through the 180 degree turn entering into Tank2 from Tank3, resulting in uneven flow 

velocity distribution, due to the flow momentum, inducing a permanent eddy at inner-side 

corner of the CSO tank 2 and due to strong shear. The eddy functions as a block reducing 

the effective width of the CSO tank. Therefore, more flows with a better spatial 

distribution were passing through the CSO Tank 1 than Tank2, which may reduce the 

flow residence time in the facility. To improve the flow conditions, a few minor structural 

modifications were proposed and examined by numerical model. In the first test an 

angled baffle was added as shown in Fig. 4.25. The installation of a baffle at this location 

was intended to restrict a certain amount of flow to enter the Tank 1 to make flow more 
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evenly distributed between Tank 2 and 1. The simulated result in Fig. 4.26 indicates (by 

the size of velocity vectors) that about the same amounts of flow are passing through the 

two CSO tanks. However, flow is very unevenly distributed in both tanks; a large eddy 

with similar pattern exists in both tanks, which reduces the effective tank width. Due to 

the added baffle, the hydraulic resistance at this location was increased, which caused 

more water splashing out as indicated by the simulated water level in Fig. 4.27. It is 

questionable whether this baffle design has achieved the desired hydraulic improvement. 

Two other baffle designs illustrated in Figs. 4.28 and 4.29 were also tested. The purpose 

of each of these baffle arrangements was the same as for the first tested baffle to increase 

the flow passing through the CSO Tank 2. The simulated velocity fields are shown in 

Figs. 30 and 31, and do not indicate any real improvements, compared to the earlier 

discussed baffle design 1. The flows are still very unevenly distributed in the both CSO 

tanks. The simulated water level also reveals a similar story as before with the baffle in 

place, the hydraulic capacity of the system was reduced slightly as shown in Figs. 4.32 

and 4.33 with more water splashing out over the structure wall.

The difficulty of improving flow conditions in Scenario 2 is caused by the 180 degree 

turn when flow is passing from Tank3 and Tank2. Unless, more baffles are added at the 

180 degree turn to force the flow to enter the CSO Tank 1 and 2 uniformly, which would 

greatly increase the flow resistance and reduce the facility hydraulic capacity, there is no 

simple solution for greatly improving flow conditions at the entrances of the CSO Tanks 

1 and tank2.

However, since the purpose of upgrading the NTCSO facility is to treat all inflows and 

often the facility has to be operated under very high flow rates, it is very difficult to 
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achieve the desired total suspended solids removal rate, if relying only on physical 

settling. Therefore, chemical addition to enhance the solid settling during short flow 

residence time may be the only realistic choice serving to obtain the required total 

suspended solid removal. In order to make flocculant chemical addition work more 

effectively, a certain degree of mixing is required to increase the chance of chemical 

contact with suspended solids, which possibly also reduces the amount of chemical 

residuals remaining in the effluent. In practice, the common way to generate flow mixing 

is to utilize flow turbulent energy, which can be generated by static mixers. However, in 

Scenario 2, the turbulent flows at both 90 degree bends between the inlet channel and the 

CSO Tanks 3 and the downstream end of the CSO tank3 and the CSO Tanks 1 and 2 

could provide the strong mixing energy to serve as natural flow mixer. The unevenly 

distributed flow in the CSO tank may impair only slightly particle settling because with 

chemical addition the suspended solid settling speed increases greatly due to larger 

particle size. After solids settle out from the strong surface flow layer (about 1 meter 

thick within a 40 m travel distance) into a less active region below the height of the CSO 

tank inflow weir, they will possibly continue settling until reaching the tank bed. 

Therefore, with chemical addition and the CSO tank inflow weir in place, the suspended 

solid settling process in the CSO tanks may not be very sensitive to the flow hydraulic 

conditions. In addition, it was pointed out before that if flow residence time in an 

upgraded structure was longer than 3 minutes, the suspended solid removal rate could be 

expected to be higher than 50% with the addition of chemical. Fig. 4.34 shows the picture 

of the simulated particle traces during a 3-minutes travel time in Scenario 2, for 60 m3/s

inflow rate, simulated with Lagurange particle tracking model and the released particles 
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having the same density as the carrying flow. It can be seen clearly that after 3 minutes 

no particles have escaped from the facility, which indicates that flow residence time, in 

general, should be longer than the 3-minutes targeted time. Therefore, the Scenario 2 

could still be a valuable attractive alternative, especially, if construction costs are of large 

concern in the upgrade project.

4.13 Conclusions: 

In this study, both the physical and numerical models were used to investigate two 

scenarios to improve hydraulic conditions in an older under-performing CSO facility 

located in North Toronto. The study showed that the physical and numerical models can 

well complement each other to solve complex hydraulic problems accurately. Two 

scenarios were proposed and tested. The results showed that both scenarios can possibly 

meet the design requirement for handling the 60 m3/s flow rate. The scenario 1 has the 

following advantages: 

1) Straight forward structural layout enables this design to possibly attain the 

maximum hydraulic capacity which is much larger than the targeted capacity of 

60 m3/s.

2) Flow conditions in the three CSO tanks can be easily controlled by adding some 

flow baffles.

3) Since the outgoing flows pass through the three CSO tanks instead of the two 

CSO tanks in Scenario 2, the flow residence time in the facility could be slightly 

longer.
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However, considering all the simulation results and other factors, the facility 

modification utilizing the existing inlet channel (Scenario 2) can also be an attractive 

alternative based on the following reasons: 

1) The capital costs would be much smaller compared to Scenario 1 which would 

require to build a new 40 metres long inflow channel from the interceptor sewer 

and other appurtenances

2) Even though the maximum capacities of Scenario 2 for various flow baffle 

arrangements are smaller than those of Scenario 1, it is conceivable from the 

numerical modelling results that the flow capacities of Scenario 2 would satisfy 

the design expectation of 60 m3/s. Since chemical addition enhancing particle 

settling would be used in the upgraded facility to treat high flow loads, the non-

uniform flow conditions in the surface layer of the two CSO tanks should not 

have large influence on particle settling, especially, after suspended solids fall 

down below the height of the CSO tank inflow weir.

3) Scenario 2 using the existing inflow channel offers the greatest flexibility, 

because all the modifications done for this scenario can be fully utilized in 

Scenario 1, should further needs for increased capacity be addressed in the future 

by installing Scenario 1.  Thus, Scenario 2 provides a good opportunity for 

implementing the project in two phases. 
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4.15 Notation 

The following symbols are used in this paper: 

g = gravitational acceleration; 

h = water depth; 

x = distance in x direction; 

v = velocity in x direction; 

VOF = volume of flow fraction; 

WL = water level in the facility; 

Z = vertical height of vertices; 
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4.17 Tables: 

Pipe 1 Pipe 2 Pipe 3 Pipe 4 

Measured Velocity (m/s) 2.28 2.18 2.31 1.28

Modeled Velocity (m/s) 2.29 2.19 2.20 1.42

Difference (%) 0.4 0.5 4.9 10.4

Table 1: Measured and modeled velocities in the four connecting pipes 
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4.18 Figures: 
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Fig. 4.1. 3-D Schematization of the North Toronto CSO Facility used in numerical 
modeling.
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Fig. 4.2. The picture of the 1:11.6 scale physical model (first version) of the North 
Toronto CSO facility used in study to measure various hydraulic conditions and verify 
the numerical model. 
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Fig. 4.3. The simplified structure used in velocity measurement in the four connecting 
pipes and obtaining other hydraulic information of the facility. 
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Fig. 4.4. The 3D structure of the existing NT CSO Facility used in the numerical 
modeling.
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Fig. 4.5. One of the 3D unstructured meshes used for numerical modeling, the vertical 
mesh resolution in the top layer is much higher than below it in order to very well define 
water-air interface. 
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Fig. 4.6. Simulated water levels in the NT CSO facility, the red and blue colors represent 
water and air, respectively 

0 0.2 0.4 0.6 0.8 1
5

4

3

2

1

0

VOF

D
ep

th
(m

)

Bypass weir is open
Bypass weir is blocked
Bypass weir high
Simulated water level 

Fig. 4.7. Simulated water level represented by curve at a location beside the bypass weir.
Straight line indicates the height of the bypass weir. 
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Fig. 4.8. Model simulation at 25.0 m3/s CSO inlet flow rate, indicating waves 
overtopping inlet channel structure walls and CSO bypass. red colour = water, blue 
colour = air interface. 

Fig. 4.9. Enlarged side view of inlet channel of the same simulation as shown in Figure 
4.8.  Strong waves (depicted in green and yellow), which have been observed in field 
operations, are generated in the original facility configuration at 25.0m3/s CSO inlet flow. 
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Fig. 4.10. modified physical model. The inlet channel was opened up to connect the CSO 
settling tanks with the stormwater tank. 

Scum baffle retained

Sump

relocated

Effluent channel 
could be used

New inlet

Fig. 4.11. Configuration for Scenario 1.  A new inlet is connected to the original outlet 
ends of the CSO storage tanks. Red dashed lines represent the locations of walls removed 
from the original structure.
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Fig. 4.12. least squares curve fitted to measured low flows, with the scum baffle in the 
original location. The maximum flow rate was calculated by extrapolating the curve. 

Fig. 4.13. Simulated water level for Scenario 1 with the inflow rate of 38.0 m3/s and the 
original scum baffle; no signs of overflow.
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Fig. 4.14. Simulated water levels for Scenario 1, with the inflow rate of 47.5 m3/s and the 
original scum baffle; no signs of overflow 
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Fig. 4.15. Simulated water level for Scenario 1, inflow rate = 42.0 m3/s and the original 
scum baffle in place, no signs of overflow from the settling tank, slight water splashing in 
the inlet channel due to a very fast inflow. 
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Fig. 4.16. The least-squares curve fitted to measured low flows, the scum baffle was 
moved. The maximum flow rate was calculated by extrapolating the curve. 
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Fig. 4.17. The least-squares curve fitted to measured low flows, the scum baffle was 
moved back by 1 metre. The maximum flow rate was calculated by extrapolating the 
curve.
.

Fig. 4.18. Flow distribution in the inlet section of the facility at the depth of 0.5 m below 
the water surface.
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Fig. 4.19. The arrangement of the flow conditioning baffles in the modified structure 
(Scenario 1). Flows were forced into multiple parallel narrow channels.  

Fig. 4.20. Simulated flow patterns at the entrance to the three CSO tanks, with flow 
conditioning baffles.
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Fig. 4.21. Structure layout of Scenario 2: one CSO settling tank is used as the inlet 
channel and the other two tanks provide space for outflow. 

Fig. 4.22. Simulated water levels for Scenario 2, inflow rate = 60.0 m3/s, no scum baffle. 
There are no signs of overflow from the settling tanks, except for some water splashing in 
the upstream corner of the inlet channel and the CSO tank wall, due to fast inflow hitting 
the front wall. 
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Fig. 4.23. Flow patterns in the whole facility described by streamlines. Flows at the near 
end of the CSO tanks are not evenly distributed due to a sharp turn. 

Fig. 4.24. The same flow field as in Fig. 13, characterized by velocity vectors at the depth
of 0.5 m below the water surface. 
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Fig. 4.25: One of the simulated baffle arrangements for flow conditioning. 

Fig. 4.26: Simulated flow distribution for baffles shown in Fig. 4.25. 
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Fig. 4.27. Simulated water levels for Scenario 2; inflow rate = 60.0 m3/s, with flow 
conditioning baffles in place. Possible overflow is shown in Tank 3 and may be caused 
by the increased hydraulic resistance resulting from putting the baffle in. 

Fig. 4.28. The second numerically tested structural arrangement of the flow conditioning 
baffle. 
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Fig. 4.29: The third numerically tested structural arrangement of the flow conditioning 
baffle. 

Fig. 4.30: Simulated flow distribution for the second baffle arrangement, at the depth of 
0.5 m below the water surface.  .  

Fig. 4.31: Simulated flow distribution for the third baffle arrangement at the depth of 0.5 
m below the flow surface.
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Fig. 4.32  Simulated water levels for the second baffle arrangement, with an inflow rate = 
60.0 m3/s.

Fig. 4.33: Simulated water levels for the third baffle arrangement, with an inflow rate = 
60.0 m3/s.
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Fig. 4.34: Particle traces for 3 minute travel in the upgraded structure of Scenario 2, 
simulated with a particle tracking model. 
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Summary

This thesis presents four relatively independent studies on the hydraulic conditions of 

various particle removal facilities for possible ways to increase their treatment capacity 

and performance by utilizing and improving hydraulic conditions. The studies cover the 

following topics: a newly proposed particle settling enhancement plate, the redesign of 

the inlet zone of a high-flow rate clarifier, identify the hydraulic problems of an old 

partially functioned CSO facility and investigate possible ways to entirely eliminate 

untreated CSO by improving its hydraulic capacity and performance, and all studies were 

carried out with a combination of numerical model and measurements.  

In the first part of the thesis a new concept of using a vortex to increase particle removal 

from liquid was proposed and the new particle settling enhancement plates, Vortex Plate, 

were tested under various flows and settling conditions. Structure of the Vortex Plate 

consists of multiple long narrow parallel slots which are built on a flat plate. Vortices are 

generated by cross-flow passing the long narrow parallel slots. The Vortex Plate can be 

used in the same way as the widely used lamellar plates with cross flow configuration. 

However, the Vortex Plate takes advantage of high flows, which generate stronger 

vortices and entrainment of solids in the downward direction inside the slots, the sliding 

particles are protected from the strong incoming main flow field. The study results show 

that under the tested flow conditions and particles the new Vortex Plate outperforms the 

conventional lamellar plate, especially for higher inflow rates and smaller particle size.  

Part 2 presents a detailed numerical approach to redesign of the inlet structure of a high-

rate stormwater clarifier. The inlet zone of an existing rectangular stormwater clarifier 
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was redesigned to improve the fluid flow conditions and reduce the hydraulic head loss in 

order to remove the lamellar plates and adapt the clarifier to the needs of high-rate 

clarification of stormwater with flocculant addition. The redesign procedure was directed 

according to 3-dimensional flow and particle behavior as simulated with hydrodynamic 

and particle transport models under various configurations of the hydraulic structure. The 

new inlet design has two advantages: (a) improved flow conditions in the settling zone 

inducing more effective settling, and (b) greatly reduced energy head losses. The field 

data also indicated that the TSS removal efficiencies of the original clarifier with lamellar 

plates and the clarifier without lamellas but with the new inlet design were comparable.  

Thus, the main goal of this study, reducing maintenance costs by removing lamellas, but 

without sacrificing settling efficiency, has been achieved.

In part 3, the performance of an old combined sewer overflow (CSO) storage/treatment 

facility was investigated by conjunctive numerical and physical (hydraulic) modeling.  

The main objectives of the study were to assess the feasibility of increasing the hydraulic 

loading of the CSO facility without bypassing and major structural modification. 

Numerical simulations identified excessive local head losses and helped to select 

structural changes to reduce such losses. The analysis of the facility showed that with 

respect to hydraulic operation, the facility is a complex, highly non-linear hydraulic 

system. Within the existing constraints, even though a few structural changes examined 

by numerical simulation could increase the maximum treatment flow rate in the CSO 

storage/treatment facility by up to 31%, but its treatment capacity is still too small to 

effectively reduce amount of by passing flows.  
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In the last part, the same CSO facility as studied in part 3 was re-investigated because 

only the limited treatment capacity could be increased if only doing few simple structure 

changes as indicated by the results of study 3. The main goal of this study was to 

investigate major structure upgrading options to totally eliminate the untreated CSO 

overflow. Two possible scenarios of structural changes were proposed and examined in 

detail by both physical and numerical models. The results showed that both scenarios can 

possibly meet the design requirement for handling the 60 m3/s flow rate with its own 

advantages. Even though the study was focused on a particular CSO facility, the 

hydraulic conditions in the facility should represent general flow conditions in a typical 

water treatment facility. The numerical modeling method used in the study could be 

applied to solve a wide range of hydraulic problems faced in environmental and hydraulic 

engineering.
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