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Abstract—Stationary collectors reading wireless, battery pow-
ered smart meters, often operate in harsh channel conditions
to cut network installation cost to a minimum, challenging the
individual link to each meter. The desired performance measure
is reliable reception of at least some data from as many as
possible meters, rather than maximizing the number of received
packets from one meter. We consider a method for improving
the reliable reception in a metering system that operates under
the constraints of the popular Wireless M-Bus protocol. We
develop a framework for reliable reception in which we use the
deterministic protocol structure to obtain side information and
group the packets from the same meter. We derive the probability
of falsely pairing packets from different senders in the simple case
of no channel errors, and show through simulation and data from
an experimental deployment the probability of false pairing with
channel errors. The pairing is an essential step towards recovery
of metering data from as many as possible meters under harsh
channel conditions. From the experiment we find that more than
15% of all conducted pairings are between two erroneous packets,
which sets an upper bound on the number of additional meters
that can be reliably recovered.

I. INTRODUCTION

Large-scale deployments of battery-powered wireless smart
meters for the heat, cooling, and water market, puts unusual re-
quirements on the infrastructure for efficient system operation.
Meters are mainly transmitter-only, broadcasting devices, and
reliable reception cannot be achieved using feedback [1]. The
meters send a relatively small amount of data (temperature,
volume, energy, etc.), and a relevant reliability measure is
the number of individual meters, i.e. meters from which at
least one packet is received. The dominant wireless protocol
for battery-powered meters in Europe is the Wireless M-Bus
standard [2], with around 20 million deployed meters.

Considering the constraints induced by the standard, such
as power-limited operation in the 868MHz ISM and the
established protocol structure, the room for optimization is
primarily at the receiver’s side. In such a setting, we extract
side information about the data in the packets by using the
timing structure in the access protocol. The use of protocol
actions to encode data has been termed protocol coding [3],
and is defined by the use of metadata inherently included
in a protocol. A seminal example of protocol coding is
“bits through queues” [4]. In our case, we use the inherent
nature of the packet transmission time interval. The interval in
Wireless M-Bus has a deterministic structure as a consequence
of other design choices. In its recent revision, the focus
has been on increasing the power-efficient operation of the

Strict timing

Fig. 1: Packets with predictable transmission intervals.

meter, but also to allow for battery-powered receivers. In this
process, a procedure for accurate intervals between broadcast
packet transmissions was introduced to allow for a receiver to
synchronize to the transmission scheme for a meter, thereby
allowing the receiver to sleep and only start a receive window
right before a transmission. In addition, a meter can possibly
repeat the identical data set multiple times. Even if the data is
encrypted, then the same encrypted payload can be transmitted
multiple times (up to 300 seconds). This is a feature that is used
by many devices, as it allows to skip the encryption process
before each transmission, thereby saving energy. Meters that
operate in this way are supplied by, for example, Kamstrup.

In this paper we utilize the timing structure in the trans-
mission interval, such that the receiver maps/groups the erro-
neously received packets from the same sender based on the
packet transmission time. An example of this is in Fig. (1),
where just by observing the arrival times on the receiver, and
knowing the transmission interval, it is possible to readily
group the packets arriving from distinct senders. This grouping
is a natural first step towards the recovery of meter data, as it
allows the receiver to apply various packet recovery algorithms
to combine two or more erroneously received packets [5].
This is relevant under heavily error-prone channel conditions,
where packets experience high error rates, if they arrive at
all, and where also the sender address is not reliable to pair
packets. To cut deployment cost in heat, cooling, and water
Automatic Meter Reading (AMR) infrastructures, this type of
harsh channel conditions are often seen for meters acquired
close to the receiver sensitivity threshold.

The optimal pairing can be achieved by joint decoding of
packets based on their arrival times. Instead, a feasible and
practical, progressive pair/no pair approach is proposed which
we call the Slot/Matching (SM) algorithm. The SM algorithm
judges upon every arrival at the receiver, if a previous, er-
roneously received packet was registered, for which the next
packet is expected to arrive at the time of the current arrival.
The outcome can be pair when the algorithm decides for the
packets to originate from the same sender, or alternatively no
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The values of xi in the square brackets are the requirement
for the packet (i+ 1) to arrive in the particular slot.

pair. In the event of pair between two erroneous packets, the
gain follows in a subsequent recovery process working across
packets, potentially restoring the otherwise unrecoverable data.
The idea of combining multiple arrivals from the same sender
to a jointly recovered packet is well studied with multiple
approaches: 1) diversity through independent observations
using multiple antennas, 2) recovery through ARQ repetitions
[6], and 3) recovery through message passing in interference
cancellation algorithms [7]. The approach in this paper is
somewhat similar to that of 1), but for timely separated arrivals
as in 2). Yet, the distinctive feature of our approach remains
the use of side information encoded in the protocol structure.

The system model is in the next section. The proposed
packet pairing algorithm is described in Sec. (III), followed by
an analysis of the probability of false detection in Sec. (IV),
being the case where the algorithm outcome is pair, when the
packets do not originate from the same meter. Data from an
experiment operating under severe channel conditions is given
in Sec. (V), followed by a discussion on the implementation
feasibility in Sec. (VI). Lastly, the conclusion is in Sec. (VII).

II. BACKGROUND AND SYSTEM MODEL

For a single meter, the interval from packet i to the next
packet from the same meter (i + 1) depends on a specific
field in the ith packet: The Access Number (ACC) field xi.
The field is 1 byte, and for each transmission from a meter,
the access number is incremented with overflow in modulo
L = 256; that is xi+j = (xi+j) (mod L). The interval is then
t+ ∆(π(xi)), where t is the average transmission interval and
π(xi) =

∣∣xi − L
2

∣∣ is a jitter index, and where ∆(·) specifies
the time offset relative to the nominal interval for a given jitter.

The L possible values of xi each represent a slot where
the next packet (i+ 1) with ACC xi+1 should be transmitted.
Note that each possible slot is not uniquely separated in time,
but separated in time and by the code given in the ACC xi. A
resulting full ACC cycle for a reduced value of L = 8 is shown
in Fig. (2). From the figure it is clear that the interval varies
per transmission, following the cyclic behaviour in Fig. (3)
with L

2 + 1 jitter values. The L possible slots in where packet
(i + 1) can arrive if xi is considered unreliable make up a
(timely partitioned) window. Each transmitted ACC xi from
a meter has the received counterpart yi, where each bit in yi
is randomly and independently in error with probability ε. In
addition, a packet from a meter can also be dropped without
being received at all (erasure) with probability p.

For a base packet i transmitted at time ti with ACC xi,
the nominal interval to a future packet (i+ j) from the same

meter is tnomxi (j) =
∑j−1
j′=0 [t+ ∆(π(xi+j′))]. This nominal

transmission start time falls within the associated slot time
boundaries, where we define θxi(j) to be the time relating to
ACC xi such that the slot for window j starts at time ti +
tnomxi (j)− θxi(j). The slot has width τxi(j). For Wireless M-
Bus, θxi(j) and τxi(j) are:

θxi(j) = tnomxi (j)νa + γa,

τxi(j) = tnomxi (j)(νa + νb) + γa + γb,

where νa describes a cumulative jitter and γb a non-cumulative
jitter. νa = 30ppm, νb = 110ppm under normal operating
conditions. The non-cumulative jitter is 1ms per packet so
γa = γb = 2ms when considering any two packets.

III. PACKET PAIRING

The objective of the packet pairing is to provide a first step
towards packet recovery on otherwise unrecoverable erroneous
receptions where packets are combined across transmissions
from the same meter with the same metering data. The
objective of the packet pairing is to relate an unreliable ACC
observation yi, with a, to be transmitted later, ACC observation
yα which w.h.p. comes from the same meter. Any other known
parts from the received packets could also be used for the
pairing in addition to the ACC , for example the sender address,
which would only increase the reliability of a correct pairing.
Any such addition is however not included in the analysis.
Remarkably, even though the ACC field is only 8 bits, it is
actually possible, as we shall see later, to distinguish many
more than 256 devices with high reliability.

While the ACC field is considered in this work because
the transmission interval between two packets depends on this
field, the work can be extended to many different flavors
depending on the analyzed protocol. An example is fixed
interval, which corresponds almost to a TDMA schedule.
The trouble with such a setup is that it requires two-way
communication to align transmissions from all devices in
time. What the ACC jitter approach gives, is that two-way
“scheduling” is not needed, as if two devices at one time have
a colliding transmission, they will w.h.p. be separated in time
at the next transmission. In fact, for two meters to continue
having colliding transmission, they have to have the exact same
ACC at the same transmission time, which is an unlikely event.

A. Error Events

A transmitted ACC from a meter is incremented for each
transmission, and its value affects the transmission interval.
This introduces a dependency on the error across any two
packets i and (i + j) from the same meter. A packet is said
to be in error if it fails to comply with some error detection
mechanism such as CRC, and the ACC part of the packet
should be considered unreliable. Take one unreliable ACC
observation yi with the underlying actually transmitted ACC
xi. Let H(a, b) denote the Hamming distance between a and b,
then with the independent bit error model over log2(256) = 8
bits, we have H(xi, yi) = 0 with probability (1 − ε)8.
H(xi, yi) = 1 with probability 8(1−ε)7ε, etc. This uncertainty
has a direct impact on when to expect the next packet from
the same meter. To capture this uncertainty, we will introduce
the notion of a virtual slot, representing a possible slot in the
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Fig. 2: ACC cycle for L = 8 transmissions from a meter.

future for the next transmission from the same meter. For one
erroneous ACC yi, a maximum of L virtual slots can exist.
The probability of the next transmission (i+1) from the same
meter to fall within a specific virtual slot, is a function of the
number of bit errors incurred by picking the slot. Specifically,
from one base packet i the set of virtual slots which imposes
b bit errors in yi are: Xb(j) = {ξ : H(yi, ξ − j) = b}, where
Xb(j) is the set of virtual slots with b “known” bit errors after
j steps. Clearly |Xb(j)| =

(
log2 L
b

)
. For L = 256 and relevant

low values of ε this means that there is one favorite virtual slot
at step j, namely ξ = yi + j. There are 8 less likely virtual
slots, one for each possible single bit error in yi, etc.

There are the following error events: 1) Bit error in yi intro-
ducing uncertainty about the arrival time of the next packet, 2)
bit error in yi+j which together with the virtual slot specifies
how likely the packets are to originate from the same meter, 3)
false detection, where a packet arrives from a different meter in
a virtual slot setup for yi, such that the pairing decides for them
to come from the same meter. The two first events are used
next, and the false detection event is analyzed in Sec. (IV).

B. The Slot/Matching Algorithm

The SM algorithm is the basis in the pairing of packets
from the same meter presented in this paper. While there
are many different ways to conduct the pairing, the SM
algorithm is simple and puts a relaxing set of requirements
to the receiver. The algorithm operates in three steps, all
triggered on the arrival of a packet i. The steps depends
on a storage structure comprising of virtual slots created for
erroneously received packets. Specifically, a virtual slot in the
SM algorithm specifies: 1) Time boundaries (start and end
time), 2) Reference to the erroneous base packet who initiated
the creation of the virtual slot, 3) The number of bits in error
in yi being the value of b in Xb in which the slot belongs, 4)
Expected ACC for packet to arrive in the slot, 5) Step count
j, specifying the number of intervals since the base packet.

Virtual slots are created when an erroneous packet is
received. The number of virtual slots created depends on the
threshold policy used. A simple policy is: If the total Hamming
distance on two packets j steps apart:

D = H(ξα − j, yi) +H(ξα, yα), (1)

is less than or equal M bits, then pair the packets. In D, i
is the base packet and ξα is the expected ACC registered for
the virtual slot. This gives, if M = 0, then only one virtual
slot is created per arriving erroneous packet i, namely the slot
uniquely given by yi which is ξ = yi + j. Any other possible
slot would have caused us to allow a bit error in yi. If M = 1
is the threshold value, a total of 9 virtual slots are created, etc.

An example of the 9 virtual slots created for M = 1
when an erroneous packet is received with ACC yi = 40h
is in Tab. (I). In this case X0(1) = {41h} and X1(1) =

ξ H(yi, ξ − j) Step Start time Duration
41h 0 1 ti + tnom40h

(1)− θ40h(1) τ40h(1)
42h 1 1 ti + tnom41h

(1)− θ41h(1) τ41h(1)
43h 1 1 ti + tnom42h

(1)− θ42h(1) τ42h(1)
45h 1 1 ti + tnom44h

(1)− θ44h(1) τ44h(1)
49h 1 1 ti + tnom48h

(1)− θ48h(1) τ48h(1)
51h 1 1 ti + tnom50h

(1)− θ50h(1) τ50h(1)
61h 1 1 ti + tnom60h

(1)− θ60h(1) τ60h(1)
01h 1 1 ti + tnom00h

(1)− θ00h(1) τ00h(1)
C1h 1 1 ti + tnomC0h

(1)− θC0h(1) τC0h(1)

TABLE I: Virtual slots created upon receiving erroneous
packet i with ACC yi = 40h.

{42h, 43h, 45h, 49h, 51h, 61h, 01h,C1h}. H(yi, ξ − j) is the
Hamming distance between the received ACC yi and the ACC
registered for the virtual slot minus the step count (ACC
increment). Note from the table that there can be multiple
slots ξ for the same base packet describing the same time
interval. In the example this is true for ξ = 41h and ξ = C1h
as their jitter index are equal: π (40h) = π (C0h). One could
think that for the virtual slots representing the same time, but
with different ξ, that it is sufficient to only store the virtual
slots with the shortest Hamming distance. However, if the step
count j is incremented in the event where the packet is not
found in the jth window, then the time for the virtual slots
diverges: π (40h) = π (C0h) but π (41h) 6= π (C1h).

The algorithm upon receiving a packet i is as summarized:

1) If there are any virtual slots registered where the
arrival time for packet i is included in the slot
boundaries, then for each virtual slot:
Determine if candidate is sufficiently good according
to Eqn. (1), and if so, pair and remove all virtual slots
Xb(·) created by the same packet as now matches i.

2) For virtual slots where the slot boundary end time has
passed, recompute slot start time, duration, increment
ξ and increment step count. If step count is too large
(timeout), remove the virtual slot.

3) If packet i is erroneous, then add new virtual slots.

A proper timeout on the number of times a virtual slot
is recomputed depends on: 1) If the pairing should be used
for packet recovery, the timeout should not be larger than the
expected number of times the same packet payload may be
transmitted from the same meter, and 2) by increasing the
timeout, the receiver will require more memory as virtual slots
can remain longer in the system (more on this later).

IV. FALSE DETECTION PROBABILITY

The SM algorithm makes an instantaneous decision about
whether a pairing is valid or not upon the arrival of a packet,
and it is therefore relevant to find the probability of false
detection: The probability for a pairing to be established
between two packets not originating from the same meter. The
analysis will make the following assumptions:



• Collisions do not occur and transmissions are consid-
ered instantaneous.

• The pairing decision will only use the 8 ACC bits,
and ignore any improvement which can be added to
further reduce the probability of false detection.

• Infinite population allowing to model the transmission
rate for all meters as Poisson with load λ = n

t , n being
the number of meters in range of the receiver.

• Equal erasure probability p for all meters.

• No drift in the transmission interval on a meter, hence
the lead time is known and θxi(j) for all meters.

The first assumption may seem controversial and reflects the
case where a receiver, in parallel, is able to simultaneously
receive multiple packets, and where the errors incurred by this
operation can be modelled with ε and p. Any other receiver
where only one packet can be received at a time, will have
a false detection probability lower than what we find in this
section, as the number of registered arrivals in the critical
periods are fewer. The assumption on Poisson arrivals reflect
a normal operating system with no memory, where all arrivals
except the one we expect are random and untracked. For the
SM algorithm this is a valid approximation when there are
no adversarial behaving meters, but for any more advanced
algorithm considering all meters, clearly the full state space of
all meters should be considered as a whole.

We will derive the false detection probability for the
case where the bit error rate ε = 0, and where the erasure
probability is p = 0. First with a motivating example for
M = 0 and then for any M . Through simulation the false
detection probabilities for various values of p and ε are found.

A. False Detection Probability with M = 0, p = 0, and ε = 0

When M = 0, only one virtual slot is created per
erroneously received base packet, namely the slot ξ for which
H(yi, ξ − 1) = 0 (or equivalently ξ = yi + 1). Given ε = 0
and p = 0, we know that the desired packet will arrive. Also
we know that the time from the slot start boundary to the
arrival of the desired (true) packet from the same meter is
θξ−1(1) = θyi(1). Abbreviate this time σ, and the probability
of false detection is completely given by the probability of
a packet arriving during σ having the exact same ACC ξ as
being expected for the slot. Assume uniform distribution of the
received ACCs for all other meters which can arrive during σ,
then the probability of an arriving packet to have exactly the
same ACC as the true packet (i+1) is 1

L . It must be the exact
same, otherwise a bit error is acceptable which is not the case
for M = 0. For k arriving packets during σ, the probability of
any of them picking the same ACC is 1−

(
1− 1

L

)k
. Summing

the probability for k > 0 Poisson arrivals where any of the
k arrivals have the problematic ACC and the false detection
probability for M = 0 follows as:

q0 =
∞∑
k=1

(λσ)k
e−λσ

k!

(
1−

(
1− 1

L

)k)

= 1− e−λσ
[
1 +

∞∑
k=1

(
λσ
(
1− 1

L

))k
k!

]
= 1− e−

λσ
L .
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Fig. 4: Virtual slots for M = 1 when yi = 40h and yi = 20h.

B. General False Detection Probability with p = 0 and ε = 0

Now the sum of bits in error must be less than or equal
M . Let X = ∪Mb=0Xb(1). Only the virtual slots in X located
before the desired transmission is relevant when p = 0 and
ε = 0. Define the sets:

A = {a ∈ A : a = {ξ ∈ X : π(ξ − 1) = s}∀s = 0, . . . , π(yi)− 1}
B = {ξ ∈ X : π(ξ − 1) = π(yi)}
C = A ∪ {B},

where each element in the sets corresponds to a “timebin”
which can contain multiple virtual slots. A contains the time-
bins of full virtual slots located before the desired transmission,
and B is similar but for the virtual slots overlapping in time
with the desired transmission. Examples of A and B are in
Fig. (4). Now define U(ξ) = {u : H(ξ, u) ≤M−H(yi, ξ−1)}
to be the surjective function defining the set of possible ACC
combinations for slot ξ, such that the threshold policy of M
bits is satisfied. Then the total number of ACC combinations
allowed for a timebin in C for a false detection is:

d(c) = |∪ξ∈cU(ξ)| .

In the example in Fig. (4a) d(a) = 1 for all a ∈ A, and
d(B) = 9 as the “error contribution” from the virtual slot
ξ = C1h is implicitly included in the one bit error combinations
of ξ = 41h. We will use the number of combinations to divide
the slot time before the arrival into parts, depending on the
possible number of error combinations. Let the part allowing
for β ACC combinations have duration:

σβ =
∑

a∈A:d(a)=β

τ ′a + δ[d(B)− β]θyi(1), (2)

where τ ′a is the duration of timebin a, and where δ[·] is the
Kronecker delta ensuring that the duration of the last timebin
is included in the duration allowing d(B) false ACC combi-
nations. There is a maximum of L parts, where most of them
have a duration of zero if the number of error combinations is
not defined, hence

∑L
β=0 σβ is the total duration of timebins

before the expected arrival.

Lemma 1. The probability of false detection is:

qM = 1− e−
λ
L

∑L
β=1 βσβ ,

when ε = 0 and p = 0, with σb defined as in Eqn. (2).
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Proof: Let Kβ be the r.v. describing number of arrivals
within the part with duration σβ allowing β erroneous ACC
combinations, and let Fβ , 0 ≤ Fβ ≤ Kβ , be the r.v. describing
the number of arriving, erroneous ACC combinations. From
the definition that all events span the entire probability space:

∞∑
k=0

∑
k1+···+kL=k

k1∑
f1=0

· · ·
kL∑
fL=0

P (K0 = k0, F0 = f0, . . . ,KL = kL, FL = fL) = 1,

that is, there can be any number of arrivals within
∑L
β=0 σβ

and they can distribute in any number of ways in the L possible
parts, and in any part, there can be as many in error as there
arrives. The probability of false detection is given by the events
where

∑L
β=0 fβ > 0. Alternatively, and using that the events

over time are independent observations:

qM = 1−
∞∑
k=0

∑
k1+···+kL=k

L∏
β=0

P (Kβ = kβ , Fβ = 0).

The arrivals during σβ are random and Poisson with rate λσβ .
Continuing with (1− qM ):

1− qM =

∞∑
k=0

∑
k1+···+kL=k

L∏
β=0

(λσβ)
kβ e

−λσβ

kβ !

(
1− β

L

)kβ
=

∞∑
k=0

e−λ
∑L
β=0 σβ

∑
k1+···+kL=k

L∏
β=0

(
λσβ

(
1− β

L

))kβ
kβ !

=

∞∑
k=0

e−λ
∑L
β=0 σβ

k!

 L∑
β=0

λσβ

(
1− β

L

)k

where the last equality follows from the multinomial theorem.
Continuing with the exponential power series, and inserting:

qM = 1− e−λ
∑L
β=1 σβe

∑L
β=1 λσβ(1− βL ),

which concludes the proof.

The probability of false detection for the full range of
possible ACCs is plotted in Fig. (5a) for meters having an
average transmission interval of 16 seconds. In the figure the
straight lines are for M = 0, where for M = 1 the probability
depends on the number of slots (and their duration) before the
correct arrival which again depends on the ACC . It can be seen
that the increase of M from M = 0 to M = 1 increases the
possibility of false detection with a little more than a decade.

Relating back to the statement in Sec. (III) about reliably
deciding to pair packets from the same sender for many more
than 256 devices, one can find from Fig. (5a) that the receiver
can distinguish around 2000 devices, and only make a false
decision in less than 0.1% of the pairings for M = 0.

C. Simulated False Detection for Various ε and p

We will now consider simulated experiments in the same
setting as for the analytic work, but with nonzero bit error
probability ε and erasure probability p. The synchronization
word in Wireless M-Bus is 32 bits, and typical receivers, for
example the cc1101 allows up to two bit errors in this sequence
for the start of packet event to be detected. We therefore run
the experiments for values of ε = 0, 1

32 ,
2
32 . The simulated

results are in Fig. (5b) and Fig. (5c) averaged over the possible
ACC values. It is clear that the simulated results matches the
analytical result for ε = 0 and p = 0. Also it is interesting to
see that the effect of p is not as significant as the effect of ε
when it comes to affecting the probability of false detection.

The results indicate that the SM algorithm should be
parameterized with a low value of M = 0 for correct operation,
and for relevant values of nonzero ε and n = 200 meters a
false detection will be made in the region around 0.1%− 1%
no matter the erasure probability p.

V. DEPLOYMENT EVALUATION

We have tested the SM algorithm on a receiver operating
in harsh channel conditions. The results are in Tab. (II),
where the challenging conditions are clear from the number of
erroneously received packets (detected by CRC). The meters
are Kamstrup Multical 402 where each transmitted packet
with updated metering data is repeated six times every (on
average) 16 second. The experiment has run for 628 minutes,
corresponding to ≈ 2350 transmissions from each meter within
range. Since the transmissions are from actual meters, there is
no way to explicitly track the event of an erroneous pairing.
Instead we run the SM algorithm, and for each pairing event,
we compare the two packets according to other fields within
the packets, and from this decide for the pairing validity.

The SM algorithm is run with M = 0 and all arrivals,
no matter if the arrival is erroneous or not, triggers the
setup of a virtual slot. This allows us to separate the pairing
capability between a Correct/Erroneous base packet and a
Correct/Erroneous arrival in a virtual slot. For error correcting
algorithms running on top of the SM algorithm, the interesting



Experiment duration 628 minutes
No. of different meters observed 53
No. of erroneously received packets 29794
No. of correctly received packets 59683

(a) Overall experiment values.

Step 1 2 3 4 5 6 7 8 9 10
C→C 43599 3627 573 121 63 37 19 26 8 2
C→E 5036 962 264 112 42 33 11 38 8 4
E→C 5047 916 278 87 42 32 17 29 11 4
E→E 9166 3738 1879 1029 611 425 298 361 142 89
E→E 41 39 18 36 34 22 22 26 17 13
f.d. % 0.45 1.03 0.95 3.38 5.27 4.92 6.88 6.72 10.69 12.75

(b) Packet pairings per Correct and Erroneous. Last row is false positives.

TABLE II: Experment values.

measure is that for E→E, as the other three combinations
immediately allow for receiving the payload data from at least
one of the two packets in the pairing. If we only consider
the first step, ≈ 15% of all pairings are E→E pairings (the
number increases to ≈ 18% if two steps are considered). Of
these pairs it is likely that not all can be readily recovered,
but it is clear that a potential packet recovery gain exists. Also
in the first step, 0.45% of E→E pairings are false detections.
This is around 5 times larger than expected from Fig. (5b).
This difference stems from a series of sources. Firstly, the
judging upon if the two considered packets are in fact from
the same meter is conservative. Secondly, the effect of block
errors as contrast to i.i.d. errors seems to play a role when
observing the recorded data. Thirdly, even though the receiver
allows for 2

32 bits to be in error in the synchronization word,
under these severe conditions, it is difficult for the receiver to
retain synchronization. Lastly, there exist repeating devices in
the deployed network, forwarding a meters transmission to the
end receiver. These repetitions does not follow the synchronous
transmission scheme, and their arrival likely influence the per-
formance number of the SM algorithm in a negative direction.

A final note to the results is the variation in probability of
false detection for different steps. The reason for this is from
the mechanism in SM where a virtual slot is not setup for the
next step, if a candidate is found for the current step. This
gives that the number of pairings for higher steps decreases,
while the number of false detections largely remains the same,
and hence the relative ratio increases.

VI. IMPLEMENTATION FEASABILITY

The overhead put on the receiver to perform the pairing
should be fairly limited, if further processing for packet
recovery should be possible upon a pairing decision. The
virtual slots created when receiving an erroneous packet clearly
imposes memory requirements, but also the search for relevant
virtual slots for an arriving packet can be a time consuming
task. The memory requirement implicitly gives an indication
of the search time, as the number of elements to search
is proportional to the number of virtual slots. In Fig. (6),
the simulated average maximum number of simultaneously
registered virtual slots per number of participating meters is
shown for various values of M , ε, and p. Clearly for M = 1 the
number of slots required is much greater than for M = 0. For
ε = 0 and p = 0 the values are as expected 1 or 9 virtual slots
depending on M . An increase of the bit error rate ε leads to
a significant increase in the number of virtual slots, because
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Fig. 6: Average maximum number of simultaniously registered
virtual slots per meter in the system.

virtual slots created for an erroneously received ACC will,
w.h.p., not match the next transmitted packet from the same
meter. As a consequence, the virtual slot is recomputed to find
a candidate in the next window, hence it will remain in the
storage for a longer time (up to a maximum of 10 steps),
causing an increase in the number of virtual slots used per
user. For an increase of p the number of virtual slots decreases,
because an erasure does not lead to virtual slots being created.

VII. CONCLUSION

We show how the transmission interval between broadcast
transmissions, allows a receiver to derive the sender of the
packet, even though the packet payload itself is unreliable.
The focus of the analysis is the Wireless M-Bus protocol
which provides strict timing in packet transmissions, and we
show that pairing validity depends on the number of meters
within range of the receiver, the number of tolerable bit errors,
the bit error rate, and the packet erasure probability. The
proposed pairing algorithm is a first step towards data recovery
across packets. Experimental results supports the use of a
pairing mechanism for later recovery, as more than 15% of the
conducted pairings on the receiver are between two erroneous
packets, leaving room for a substantial reception gain.

REFERENCES

[1] J. Massey and P. Mathys, “The collision channel without feedback,”
Information Theory, IEEE Transactions on, vol. 31, no. 2, pp. 192–204,
March 1985.

[2] European Standard, “Communication systems for meters and remote
reading of meters - part 4: Wireless meter readout (radio meter reading
for operation in the 868 mhz to 870 mhz srd band),” EN13757-4:2013.

[3] P. Popovski, Z. Utkovski, and K. F. Trillingsgaard, “Communication
schemes with constrained reordering of resources,” Communications,
IEEE Transactions on, vol. 61, no. 5, pp. 2048–2059, May 2013.

[4] V. Anantharam and S. Verdu, “Bits through queues,” in Information
Theory, IEEE International Symposium on, June 1994, pp. 371–.

[5] A. Willig, “Memory-efficient segment-based packet-combining schemes
in face of deadlines,” Industrial Informatics, IEEE Transactions on, vol. 5,
no. 3, pp. 338–350, 2009.

[6] O. Ur-Rehman, N. Zivic, S. Hossein, and A. E. Tabatabaei, “Iterative en-
hanced packet combining over hybrid-arq,” in Wireless Communication
Systems (ISWCS), 8th International Symposium on, 2011, pp. 21–25.

[7] G. Liva, “Graph-based analysis and optimization of contention resolution
diversity slotted aloha,” Communications, IEEE Transactions on, vol. 59,
no. 2, pp. 477–487, 2011.


