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Observer Design for Boundary Coupled PDEs: Application to
Thermostatically Controlled Loads in Smart Grids

Scott Moura, Member, IEEE Jan Bendtsen, Member, IEEE Victor Ruiz

Abstract— This paper develops methods for state estima-
tion of aggregated thermostatically controlled loads (TCLs) in
smart grids, via partial differential equation (PDE) techniques.
TCLs include on/off controlled devices, such as heat pumps,
HVAC systems, and deep freezers. Control of aggregated TCLs
provides a promising opportunity to mitigate the mismatch
between power generation and demand, thus enhancing grid
reliability and enabling renewable energy penetration. However,
persistent communication between thousands of TCLs to a
central server can be prohibitive. To this end, this paper
focuses on designing a state estimation scheme for a PDE-
based model of aggregated TCLs, thus reducing the required
communication. First, a two-state linear hyperbolic PDE model
for homogenous TCL populations is presented. This model is
extended to heterogeneous populations by including a diffusive
term. Next, a state observer is derived, which uses only
measurements of how many TCLs turn on/off at any given time.
The design is proven to be exponentially stable via backstepping
techniques. Finally, the observer’s properties are demonstrated
via simulation examples. The estimator provides system-critical
information for power system monitoring and control.

I. INTRODUCTION

One of the main challenges in achieving significant pene-
tration of renewables in future power systems is their inherent
variability. To this end, demand side management (DSM)
has gained attention in recent years as a means to balance
power supply and demand [1], in the presence of intermittent
power sources. In particular, one may exploit the flexibility
and large number of thermostatically controlled loads (TCLs)
to enhance grid reliability and enable renewable energy
penetration [2], [3]. However, to leverage the full potential
of DSM schemes, one requires mathematical models that
describe their dynamical behavior [3], [4], [5], [6], [7].

In this paper we examine estimation of the distribution of
temperature in aggregated TCL populations. This informa-
tion can be utilized to confidently manipulate the temperature
set points to shape the aggregated TCL power consumption.
That is, the population can be used as a fast “virtual power
plant” which provides control services to the grid. This
includes frequency control reserves and peak shaving, where
energy in the form of displaced consumption can be traded
on electricity spot markets. Precise information about the
available storage reserves provides the system operator with

S. Moura is with Civil and Environmental Engineering, University of
California, Berkeley, CA 94720, USA smoura@berkeley.edu

J. Bendtsen is with the Department of Electronic Systems, Au-
tomation and Control, Aalborg University, 9210 Aalborg, Denmark
dimon@es.aau.dk

V. Ruiz is with the Department of Mechanical and Aerospace Engineer-
ing, University of California, San Diego, La Jolla, CA 92093-0411, USA
viruiz@ucsd.edu

greater flexibility for providing such services in a reliable
manner while ensuring quality of service to consumers.

We consider a large population of TCLs and derive
a partial differential equation (PDE)-based model of the
temperature distribution evolution. Such PDE models of
TCL populations were also studied in [6] and [8]. The
latter papers, in particular, presented models that account
for heterogeneity among the TCLs by including a diffusion
term in the PDEs, along with various methods for parameter
identification. Markov chain models are also used to account
for parameter heterogeneity and design Kalman filtering state
estimation schemes [9].

In this paper, we extend the aforementioned work by
presenting an observer design for online monitoring of the
PDE state (i.e. distribution of TCL temperature) using min-
imal sensing and communication. That is, individual TCLs
only send data when switching between heating and cooling.
Mathematically, these measurements manifest themselves as
PDE boundary measurements. Consequently, the observer is
designed via PDE backstepping methods [10], [11]. Math-
ematically, this paper develops a boundary observer for
boundary-coupled parabolic equations, a unique contribution
to the authors’ knowledge.

The outline of this paper is as follows. In Section II we
briefly recall the models on which we base the observer de-
sign. Section III presents the observer design and associated
stability analysis. Finally, Section IV presents simulations
and Section and V summarizes the contributions.

II. MODELING AGGREGATIONS OF TCLS

We first consider the following hybrid ODE model of a
single TCL. Let the internal and ambient temperatures of
the i’th TCL affected by the action of the heating/cooling
hardware be denoted Ti and T∞,i, respectively. Assume the
hardware is purely on/off-regulated. The temperature dynam-
ics are governed by

Ṫi(t) =
1

RiCi
[T∞,i−Ti(t)− si(t)RiPi] , i = 1,2, . . . ,N, (1)

si(t) =


0 if si(t− ε) = 1 and Ti(t)≤ Tmin,i

1 if si(t− ε) = 0 and Ti(t)≥ Tmax,i

si(t− ε) otherwise
(2)

for some small time ε . The symbol Ci ∈ R+ is the thermal
capacitance (kWh/◦C) of the consumer, Ri ∈ R+ is the
corresponding thermal resistance (◦C/kW) and Pi ∈ R is the
(constant) heating/cooling power supplied by the hardware
when switched on. Variable si ∈ {0,1} is a Boolean-valued
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Fig. 1. Evolution of temperature for 25 TCLs from (a) homogeneous and (b) heterogeneous populations. In each case, the population was initialized with
all TCLs in the off state, with temperatures quadratically distributed around 20◦C. Note the TCLs remain in synchrony for the homogenous population. In
contrast, the temperature distribution diffuses in the heterogeneous case. This observation motivates the heterogeneous model in Section II-B.

variable that switches status whenever the internal temper-
ature encounters the limits of a pre-set temperature span
[Tmin,i,Tmax,i]⊂ R, denoting the cooling or heating state.

The temperature limits Tmin,i and Tmax,i are related to the
i’th TCL setpoint Tsp,i through the fixed relations,

Tmin,i = Tsp,i−
Θ

2
, Tmax,i = Tsp,i +

Θ

2
,

where Θ is the width of the temperature interval. Fur-
thermore, the cumulative power consumption of the entire
population at any given time t can be computed as

P(t) = ∑
i

1
ηi

Pisi(t) (3)

where ηi is the coefficient of performance for the i’th
heating/cooling unit. Assuming that it is possible to adjust the
setpoint Tsp,i of a large number of TCLs, it becomes possible
to intelligently shape the aggregated power consumption.
Thus, Tsp,i is of interest for control purposes. However,
since this paper’s focus is on estimation, we will disregard
controllable setpoints in this model.

A. Homogeneous population

Now consider a large population of the individual
TCLs described above. Let the continuously differentiable
functions u(T, t) and v(T, t), both defined on the spaces
[Tmin,Tmax]× R+ → R+, denote the distribution of loads
at temperature T and time t in the on and off states,

respectively. By considering the ‘flow’ of TCLs along the
temperature axis in either the positive or negative directions,
and taking limits, it is possible to derive the following PDE
model for a homogeneous population of TCLs [6], [8]:

ut(T, t) = αλ (T )uT (T, t)+αu(T, t), (4)
vt(T, t) =−αµ(T )vT (T, t)+αv(T, t), (5)

u(Tmax, t) = q1v(Tmax, t), (6)
v(Tmin, t) = q2u(Tmin, t), (7)

where subscripts (·)T and (·)t indicate partial derivative of
(·) w.r.t. temperature and time, respectively. The parameters
α,λ (T ),µ(T ),q1,q2 are given by

α =
1

R̄C̄
> 0, (8)

λ (T ) =−(T∞−T − R̄P̄)> 0, µ(T ) = T∞−T > 0, (9)

q1 =−
T∞−Tmax

T∞−Tmax− R̄P̄
, q2 =−

T∞−Tmin− R̄P̄
T∞−Tmin

.

(10)

Since all the TCLs are assumed to be identical, R̄, P̄ and C̄
are the population-wide values for Ri,Pi and Ci, respectively.

The power consumption of the entire population may be
obtained by integrating the distribution of TCLs in the on-
state:

P(t) =
P
η

∫ Tmax

Tmin

u(T, t)dT, (11)
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where P̄ is the (constant) power delivered to each TCL in
the on state and η is the coefficient of performance.

Figure 1 demonstrates the aggregated behavior for 25
identical TCLs. The left plots show how the TCLs alter-
nate between the on and off states while remaining within
the operation band. The TCLs were initiated at random
temperatures, quadratically distributed around 20◦C, all in
the off state. As can be seen, the power exhibits undamped
oscillations, since the TCLs are synchronized.

The right plots in Fig. 1 show a similar situation, but
instead of being identical, the time constants of TCLs have
now been drawn from a random distribution, thus making
the population heterogenous. Due to different time constants,
and hence variations in the duty cycles, the individual TCLs
gradually de-synchronize and the oscillations in power con-
sumption damp out. Similar effects occur if other parameters,
such as Θi or T∞,i, are allowed to vary across the TCL
population.

B. Heterogeneous population

Next we consider a PDE model for heterogenous pop-
ulations of TCLs. Motivated by the diffusive phenomenon
observed in the Monte Carlo simulations of heterogeneous
populations, we consider the following novel diffusion-
advection model [8]:

ut(T, t) = αλ (T )uT (T, t)+αu(T, t)+βuT T (T, t), (12)
vt(T, t) =−αµ(T )vT (T, t)+αv(T, t)+βvT T (T, t), (13)

u(Tmax, t) = q1v(Tmax, t), (14)
v(Tmin, t) = q2u(Tmin, t), (15)

uT (Tmin, t) =−vT (Tmin, t), (16)
vT (Tmax, t) =−uT (Tmax, t). (17)

This model adds diffusion terms to PDEs (4)-(5) to incorpo-
rate parameter heterogeneity. The two boundary conditions
(16)-(17) are added to preserve well-posedness of the PDE
system. Figure 2 illustrates the improved modeling capabil-
ities of adding the diffusive term.

III. OBSERVER DESIGN

A. Low-bandwidth measurement feedback

Monitoring aggregations of TCLs, using the PDE models
derived above, requires measurement feedback. If the TCLs
are equipped with sophisticated measurement equipment, it
is possible to measure the temperature online and contin-
uously transmit data to a central server. However, if the
TCL populations grow large, this strategy may place an
intractably heavy load on the communication infrastructure
[9]. Therefore, we propose a unique strategy that requires
significantly less communication bandwidth, oriented toward
boundary measurements of the PDE model (12)–(17); see
Figure 3.

Figure 3 illustrates the temperature response of a single
TCL. The local controller records the timing t ′1 when the
temperature crosses a pre-set value slightly smaller than
Tmax. Then the TCL’s power switches on at time t1, when
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Fig. 2. Comparison of aggregate TCL power for the homogeneous and
heterogeneous populations, using the 1,000 individual TCLs in the Monte
Carlo (MC) model and the PDE models. The heterogeneous PDE model
captures the damped oscillations exhibited by the heterogeneous MC model.

0

t

t ′1 t1 t ′′1 t ′2 t2 t ′′2

T

Tmin

Tmin +δ

Tmax

Tmax −δ

Fig. 3. Illustration of TCL measurement feedback. The TCL records the
temperature just before (t ′i ), at (ti) and just after (t ′′i ) the temperature reaches
Tmax. A similar process is performed around Tmin. The gray area indicates
that cooling power is turned on.

the temperature reaches Tmax. Finally, the local controller
records the timing t ′′1 when the temperature drops below
Tmax−δ . A similar procedure is carried out when the tem-
perature reaches Tmin+δ . These measurements are submitted
as they occur to the central server, allowing estimation
of u(Tmin),v(Tmax), as well as the corresponding spatial
derivatives uT (Tmax),vT (Tmin) based on t ′i and t ′′i .

B. Preliminaries

First we normalize the spatial coordinate to simplify our
analysis

x =
T −Tmin

Tmax−Tmin
, (18)

which renders the heterogenous PDE into,

ut(x, t) = αλ̆ (x)ux(x, t)+αu(x, t)+ β̆uxx(x, t), (19)

vt(x, t) =−αµ̆(x)vx(x, t)+αv(x, t)+ β̆vxx(x, t), (20)
u(1, t) = q1v(1, t), ux(0, t) =−vx(0, t), (21)
v(0, t) = q2u(0, t), vx(1, t) =−ux(1, t), (22)
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where the parameters λ̆ (x), µ̆(x), β̆ are given by

λ̆ (x) = x− T∞−Tmin−RP
Tmax−Tmin

, (23)

µ̆(x) =
T∞−Tmin

Tmax−Tmin
− x, (24)

β̆ =
β

(Tmax−Tmin)2 . (25)

To reduce notational clutter, the breves are henceforth
dropped from λ̆ (x), µ̆(x), β̆ . Additionally, we drop the ar-
guments of the states, when they are clear from context.

C. Observer Design

In the following observer design, we assume availability
of u(0),v(1),ux(1),vx(0) for measurement, as described in
Section III-A. Consider the following observer design,

ût(x, t) = αλ (x)ûx(x, t)+α û(x, t)+β ûxx(x, t)

+p1(x) [u(0, t)− û(0, t)] , (26)
ûx(0, t) = −vx(0, t)+ p10 [u(0, t)− û(0, t)] , (27)
û(1, t) = q1v(1, t), (28)
v̂t(x, t) = −αµ(x)v̂x(x, t)+α v̂(x, t)+β v̂xx(x, t)

+p2(x) [v(1, t)− v̂(1, t)] , (29)
v̂(0, t) = q2u(0, t), (30)

v̂x(1, t) = −ux(1, t)+ p20 [v(1, t)− v̂(1, t)] . (31)

This renders the following dynamics for the error system
ũ = u− û,

ũt = αλ (x)ũx +α ũ+β ũxx− p1(x)ũ(0), (32)
ũx(0) = −p10ũ(0), (33)
ũ(1) = 0, (34)

and error system ṽ = v− v̂,

ṽt = −αµ(x)ṽx +α ṽ+β ṽxx− p2(x)ṽ(1), (35)
ṽx(0) = 0, (36)
ṽx(1) = −p20ṽ(1). (37)

Note that the error systems are decoupled. Consequently, we
may design the observer gains for each system separately.

Before proceeding with the observer design, we apply the
following invertible “gauge” transformations to eliminate the
advection terms,

ξ (x, t) = ũ(x, t)e
α

2β

∫ x
0 λ (s)ds

, (38)

η(x, t) = ṽ(x, t)e
α

2β

∫ 1
x µ(s)ds

. (39)

The transformed states ξ and η satisfy the following
reaction-diffusion PDEs,

ξt = βξxx +g(x)ξ (x, t)− pξ

1 (x)ξ (0), (40)

ξ (0) = pξ

10ξ (0), (41)
ξ (1) = 0, (42)

ηt = βηxx +h(x)η(x, t)− pη

2 (x)η(1), (43)
η(0) = 0, (44)

ηx(1) = pη

20η(1), (45)

where

g(x) = α

[
1− λ ′(x)

2

]
− α2λ 2(x)

4β
, (46)

pξ

1 (x) = p1(x)e
α

2β

∫ x
0 λ (s)ds

, (47)

pξ

10 =
α

2β
λ (0)− p10, (48)

h(x) = α

[
1+

µ ′(x)
2

]
− α2µ2(x)

4β
, (49)

pη

2 (x) = p2(x)e
α

2β

∫ 1
x µ(s)ds

, (50)

pη

20 = − α

2β
µ(1)− p20. (51)

Remark 1 Note that this transformation does not assume
the advection dynamics are negligible. Instead, it absorbs
the advection terms into the reaction terms and boundary
conditions. This will simplify our observer design, and
renders the error dynamics into a form which leverages
existing results [10]. C

1) Backstepping Transformation: Next we apply the PDE
backstepping approach [10]. That is, we consider the follow-
ing transformations for the error system states

ξ (x, t) = w1(x, t)−
∫ x

0
p(x,y)w1(y, t)dy, (52)

η(x, t) = w2(x, t)−
∫ 1

x
q(x,y)w2(y, t)dy, (53)

where w1(x, t) and w2(x, t) are the states for the target
systems, described next.

2) Target System: We seek transformations (52)-(53)
which transform the error systems (40)–(45) into the expo-
nentially stable (for c1,c2 ≥ 0) target systems,

w1t(x, t) = βw1xx(x, t)− c1w1(x, t), (54)
w1x(0, t) = w1(0, t), (55)
w1(1, t) = 0, (56)
w2t(x, t) = βw2xx(x, t)− c2w2(x, t), (57)
w2(0, t) = 0, (58)

w2x(1, t) = −w2(1, t). (59)

The parameters c1 and c2 can be adjusted to tune the
observers’ convergence speed. To characterize convergence
speed, consider the spatial L2 norms as Lyapunov functions,
that is V1 =

∫ 1
0 w2

1(x, t)dx and V2 =
∫ 1

0 w2
2(x, t)dx. One can

show that the derivatives of V1 and V2 along the solution
trajectories are upper bounded by

V̇1 ≤ −
[

1
2

β +2c1

]
V1, (60)

V̇2 ≤ −
[

1
2

β +2c2

]
V2. (61)
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Using the comparison principle, we obtain an upper bound
on the evolution of the states’ L2 norms

‖w1(x, t)‖L2 ≤ ‖w1(x,0)‖L2e−[
1
2 β+2c1]t , (62)

‖w2(x, t)‖L2 ≤ ‖w2(x,0)‖L2e−[
1
2 β+2c2]t , (63)

where the convergence speeds increase as c1 and c2 increase.
3) Kernel PDE: Next, we determine the kernel functions

p(x,y) and q(x,y) in (52) and (53), which transform the error
dynamics into the target systems. After substituting (52) into
(40)-(42), we obtain a set of conditions for p(x,y),

β pxx(x,y)−β pyy(x,y) = − [c1 +g(x)] p(x,y), (64)

p(x,x) = − 1
2β

∫ 1

x
[c1 +g(s)]ds, (65)

p(1,y) = 0. (66)

These conditions constitute a hyperbolic PDE, defined over
the triangular domain D1 = {(x,y)|0 < y < x < 1}. The ob-
server gains are given by the solution of p(x,y) as follows,

pξ

1 (x) = −β [p(x,0)+ py(x,0)] , (67)

pξ

10 = 1− p(0,0). (68)

Similarly, we substitute (53) into (43)-(45) to obtain a PDE
for kernel q(x,y),

βqxx(x,y)−βqyy(x,y) = − [c2 +h(x)]q(x,y), (69)

q(x,x) = − 1
2β

∫ x

0
[c2 +h(s)]ds, (70)

q(0,y) = 0, (71)

defined over the triangular domain D2 =
{(x,y)|0 < x < y < 1}. The observer gains for the η

subsystem are given by

pη

2 (x) = −β [q(x,1)+qy(x,1)] , (72)
pη

20 = q(1,1)−1. (73)

D. Main Results
The following lemma states that the kernel PDEs (64)-

(66) and (69)-(71) are solvable. Moreover, it states that the
transformations (52)-(53) are invertible, which means that
stability of the target systems implies stability of the (ξ ,η)
system, and consequently the original (ũ, ṽ) system.

Lemma 1 (Well Posedness and Invertability [10]): The
kernel PDEs (64)-(66) and (69)-(71) have unique C2(D1)
and C2(D2) solutions, p(x,y) and q(x,y), respectively. The
kernels r1(x,y) and r2(x,y) of the inverse transformations

w1(x, t) = ξ1(x, t)+
∫ x

0
r1(x,y)ξ (y, t)dy, (74)

w2(x, t) = η(x, t)+
∫ 1

x
r2(x,y)η(y, t)dy, (75)

also have unique C2(D1) and C2(D2) solutions, respectively.
Proof: It has been shown in [10] that PDEs (64)-(66)

and (69)-(71) are well posed. Equations (64)-(66) match a
special case of (16)-(18) in [10]. Equations (69)-(71) match
a special case of (39)-(41) in [10] as well. Therefore, well
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Fig. 4. The output injection gains p1(x) and p2(x) are provided in (a)
and (b), respectively. Subplot (c) demonstrates how the L2 norms of the
estimation error, ‖ũ‖,‖ṽ‖, decay toward zero.

posedness of these PDEs and invertability of transformations
(52) and (53) follow immediately.

We are now positioned to state our main result on expo-
nential stability of the estimation error system.

Theorem 1 (Exponential stability): Let p(x,y) and q(x,y)
be the respective solutions of kernel PDEs (64)-(66) and (69)-
(71). Consider any initial condition ũ0(x), ṽ0(x) ∈ L2(0,1).
Also consider output injection gains p1(x), p10, p2(x), p20
given by (47), (48), (50) (51), (67), (68), (72) (73). Under
these conditions, ũ(x, t), ṽ(x, t) have unique C2,1((0,1) ×
(0,∞)) solutions. Additionally, the origins ũ(x, t)= ṽ(x, t)= 0
are exponentially stable in the L2(0,1) norm, as characterized
by (62)-(63), for tunable parameters c1,c2 ≥ 0.

IV. SIMULATION EXAMPLE

Next we examine the observer’s performance via simu-
lations. In these simulations, we select target system pa-
rameters c1 = c2 = 10. The TCL model parameters are R =
2◦C/kW, C = 10 kWh/◦C, P= 14kW, T∞ = 32◦C, Tsp = 20◦C,
Θ = 1◦C, η = 2.5, β = 0.0145 [3], [5]. For the purpose
of demonstrating the results, model data is generated from
the heterogeneous PDE (12)-(17). The observer is initial-
ized with an incorrect state, namely û(T, t0) = v(T, t0) and
v̂(T, t0) = u(T, t0). To solve the kernel PDEs (64)-(66) and
(69)-(71), we convert these equations to integral equations
and use the method of successive approximations [11]. The
resulting solutions for the output error injection gains p1(x)
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observer is initialized with an incorrect state, namely û(T, t0) = v(T, t0) and v̂(T, t0) = u(T, t0). Subplot (b) depicts how the output error injection corrects
the “outlet” end of the flow, whereas the system’s natural advection corrects the “inlet” end.

and p2(x) are depicted in Fig. 4(a) and (b), respectively. The
scalar gains are p10 = 55.17 and p20 = 115.83.

Figure 4(c) demonstrates how the L2 norms of the esti-
mation error, ‖ũ‖,‖ṽ‖, decay toward zero. Figure 5 displays
two snapshots of the true and estimated states, at times t0 = 0
min and t1 = 45 min. These plots exemplify how the observer
corrects the model dynamics. Note that p1(x) and p2(x) have
greater magnitude at the “outlet” end of the temperature
domain. The interpretation is the observer corrects the “out-
let” end of the flow, whereas the system’s natural advection
corrects the “inlet” end. Consequently, the aggregated TCL
observer converges to the true temperature distribution by
intelligently combining (low-bandwidth) measurements and
the population’s natural dynamical properties.

V. CONCLUSIONS

This paper examines modeling and state estimation of
aggregated TCL populations, for monitoring in demand-
side management programs, e.g. frequency control reserves,
peak shaving. We present two PDE models of aggregated
TCLs, for both homogenous and heterogeneous populations.
The main contribution is the derivation of an observer for
online monitoring of the PDE ‘state’ (distribution of TCL
temperature). The design uses only boundary measurements
in the form of data transmitted when a TCL switches
between heating and cooling, thus keeping communication
requirements low. The observer is constructed using PDE
backstepping methods. Simulation studies demonstrate the
observer’s convergence properties, and provide intuition for
its behavior. Further studies investigate model uncertainty,
measurement noise, and performance on real-world data.

REFERENCES

[1] G. Strbac, “Demand side management: Benefits and challenges,”
Energy Policy, vol. 36, no. 12, pp. 4419–4426, 2008.

[2] R. Malhame and C. Chong, “Electric load model synthesis by diffusion
approximation of a higher-order hybrid-state stochastic system,” IEEE
Transactions on Automatic Control, vol. 30, no. 9, pp. 854–860, 1985.

[3] D. Callaway, “Tapping the energy storage potential in electric loads to
deliver load following and regulation, with application to wind energy,”
Energy Conversion and Management, vol. 50, no. 9, pp. 1389–1400,
2009.

[4] S. Kundu and N. Sinitsyn, “Safe protocol for controlling power
consumption by a heterogeneous population of loads,” in Proc. of
2012 American Control Conference, June 2012.

[5] C. Perfumo, E. Kofman, J. Braslavsky, and J. Ward, “Load manage-
ment: Model-based control of aggregate power for populations of ther-
mostatically controlled loads,” Energy Conversion and Management,
vol. 55, no. 1, pp. 36–48, 2012.

[6] S. Bashash and H. Fathy, “Modeling and control of aggregate air
conditioning loads for robust renewable power management,” IEEE
Transactions on Control Systems Technology, vol. 21, no. 4, pp. 1318–
1327, 2013.

[7] W. Zhang, J. Lian, C.-Y. Chang, K. Kalsi, and Y. Sun, “Reduced-order
modeling of aggregated thermostatic loads with demand response,” in
Proc. of 51st IEEE Conference on Decision and Control, Dec. 2012.

[8] S. Moura, J. Bendtsen, and V. Ruiz, “Modeling Heterogeneous Popula-
tions of Thermostatically Controlled Loads Using Diffusion-Advection
PDEs,” in Proceedings of the 2013 ASME Dynamic Systems and
Control Conference, Stanford, California, Oct. 2013.

[9] J. L. Mathieu, S. Koch, and D. S. Callaway, “State estimation and
control of electric loads to manage real-time energy imbalance,” IEEE
Transactions on Power Systems, vol. 28, no. 1, pp. 430 –440, Feb.
2013.

[10] A. Smyshlyaev and M. Krstic, “Backstepping observers for a class
of parabolic PDEs,” Systems & Control Letters, vol. 54, no. 7, pp.
613–625, 2005.

[11] M. Krstic and A. Smyshlyaev, Boundary Control of PDEs: A Course
on Backstepping Designs. Philadelphia, PA: Society for Industrial
and Applied Mathematics, 2008.

6291


