

Aalborg Universitet

D5.3 - Load management methods and prototypes

Energy management strategies and supervisory control of building loads

Madsen, Per Printz; Andersen, Palle

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Madsen, P. P., & Andersen, P. (2014). D5.3 - Load management methods and prototypes: Energy management
strategies and supervisory control of building loads. Aalborg Universitet.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 27, 2024

https://vbn.aau.dk/en/publications/1b0389fb-4404-4f69-8c84-48bd3fb62c12

ENCOURAGE

Embedded INtelligent COntrols for bUildings with Renewable generAtion and StoraGE

Grant Agreement No.: 269354

D5.3 – Load management methods and prototypes

Document Number D5.3

Document Title Load management methods and prototypes

Version 1.0

Status Final

Work Package WP5

Deliverable Type Report

Contractual Date of Delivery M28

Actual Date of Delivery M28

Responsible Unit AAU - WP5

Contributors AAU, ISA, ENORD, ATOS, GNERA, ESVAL

Keyword List Energy management strategies and supervisory control of

building loads

Dissemination level CO

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 2/97

Amendment History

Version Date Author Description

0.1 08/02/2012 AAU Initial Draft – Task roles

0.2 24/09/2012

AAU, ISA,

ENORD, ATOS,

GNERA, ESVAL

Internal structure and function

description

0.3 1/09/2013 AAU
Development of control strategies for

building level energy management

0.4 1/9/2013 AAU The lighting control module

0.5 9/9/2013 AAU Merging contributions

0.6 29/9/2013 ISA, ISEP Internal review

1.0 29/9/2013 AAU Finishing

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 3/97

Table of Contents

1. Executive Summary ... 4

1.1. WP5 Objectives ... 5

1.2. WP5 Subtasks .. 6

2. Introduction ... 7

2.1. WP5 in ENCOURAGE Architecture... 7

2.2. Demonstration Sites ... 8

2.3. Literature Survey ... 9

3. Building Loads Classification ... 12

4. Indirect Energy Management Strategy .. 14

4.1. Hierarchical Supervisory Controller for Microgrid Energy Management 15

5. Device Level Controllers ... 16

5.1. HVAC Systems Control .. 16

5.2. Lighting Control .. 17

5.3. Appliances Control .. 31

6. Building Level Controller .. 32

6.1. Model Predictive Controller .. 32

6.2. Problem Formulation ... 33

7. Simulation results .. 36

8. Conclusion ... 39

Appendix A. Building Load Types.. 43

Appendix B. Flexibility Type of Building Loads .. 48

Appendix C. Requirements ... 53

Appendix D. BNF for the ELL language .. 62

Appendix E. ELL Manual ... 68

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 4/97

1. Executive Summary

The target for the ENCOURAGE energy management system is to design and test strategies for

supply and demand side energy management of a microgrid. This will be done by designing a

supervisory controller to manage energy flows so that generated power in the microgrid is mainly

consumed by local consumers and the power trade between the microgrid and the grid is shrunk to

minimum.

Buildings’ role in providing enough flexibility to the supervisory controller is huge as they account

for 41% of total final energy consumption in Europe, followed by transport (32%), industry (24%),

and agriculture (2%) (ODYSSEE-MURE project, 2012). When all building loads are considered as

critical there would be no opportunity to optimize both the electricity sawing and consumption cost.

Optimization of building loads based on electricity price signal includes shedding, shifting or

rescheduling the power consumption pattern. To this aim, loads will be characterized by specific

flexibility patterns. For instance shiftable loads like HVAC systems will be characterized by the

amount of energy that can be shifted in time. This would be, however, at the cost of a wider thermal

tolerance that users give permission for. The wider the thermal tolerance is, the more flexibility will

be provided to the supervisory controller. Load management strategies will be devised such that

thermal comfort and other user-predefined preferences will be satisfied.

A dedicated language was developed to apply the supervisory controller to different houses. This

language is used for implementing a glue layer between the load management controller and the

middleware lager. Beside this interconnection, between the advanced top level controllers, the

dedicated language also handles the curtailable load e.g. the lighting system. Here the main target is

not to enhance the flexibility but to lower the energy consumption.

This deliverable reports description of load types, a strategy for energy management at building

level, designated supervisory controller for the buildings load management and results of simulation

studies.

The concept of microgrid control together with interplaying generation and consumption units is

shown in Figure 1.

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 5/97

Figure 1. Application domain of the ENCOURAGE project: buildings, campuses, neighbourhoods connected in

local microgrids with renewable generation and storage devices

1.1. WP5 Objectives

Embedded intelligent controls for buildings with renewable generation and storage

(ENCOURAGE) aims to develop embedded intelligence and integration technologies that will

directly optimize energy use in buildings and enable active participation in the future smart grid.

The target energy saving for a network of buildings composed of distributed energy consumption,

production and storage units is 20% via design of supervisory control schemes that coordinate

among interplaying energy devices and buildings (Arne Skou, 2012).

As part of ENCOURAGE, we are going to design a supervisory controller that integrates and

manages all energy units in the microgrid. The objectives are as follows:

 Energy needs of the microgrid are, as much as possible, to be provided by local generation units,

which are photovoltaic (PV) cells in our case study. The purpose is to minimize dependency to

the grid power.

 The other objective is to minimize electricity consumption costs of individual households.

 The energy manager i.e. a supervisory controller is supposed to work with the existing single

loop controllers in the building, for instance heating thermostats.

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 6/97

However, the first two objectives might be conflicting, in which case priority would be with

individuals' benefit. For example, there might be time intervals during which power demand of a

house exceeds its production. Assuming that power is provided by the grid at a lower price rate than

the neighbouring production units in island, power would be purchased from the grid. On the other

hand, policies could be enacted to promote trade of power mostly within the microgrid in order to

minimize dependency to the grid. For instance, price of the locally produced power could be kept

always lower than the grid electricity price.

The above mentioned objectives are to be fulfilled via design of a hierarchical control structure that

is shown in Figure 2. The hierarchy is explained later in the report in more details.

Figure 2. Supervisory controller hierarchy

1.2. WP5 Subtasks

According to ENCOURAGE project proposal, WP5 will develop control strategies for optimal

operation of energy generation, consumption, and storage devices connected in a network. The tasks

of this work package include:

Task 5.1 addresses the supply side of the system by developing appropriate monitoring and control

concepts for local generation elements based either on conventional or renewable energy sources.

Task 5.2 aims to develop optimized control strategies for management of internal loads in the

building (demand side). This will include shifting and/or shedding of specific loads.

Task 5.3 develops system optimization strategies integrating both supply and demand sides. The

algorithms will calculate optimal schedules (e.g. start/stop times of individual pieces of equipment)

and set points (e.g. target volume of energy to be generated in a boiler). Another result will be the

optimized use of energy storage over time. The most typical solution interval will be one day, but

the solution will be scalable to both shorter and longer intervals.

This deliverable documents the work done in task 5.2.

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 7/97

2. Introduction

The global movement is toward power production mostly using renewable energy resources rather

than using fossil fuels, which are environmentally polluting and are being depleted very fast. These

renewable energy resources, for instance solar, wind, biomass and geothermal are, by their nature,

highly distributed compared to large concentrated nuclear and fossil-fuel power stations. Regaining

power balance and allocation of resources in such a diverse and distributed energy market will be

two big challenges. Smart grid, as a newly emerging concept to be built upon the existing

infrastructure of power grid, is to facilitate the coordination among all the contributing production,

consumption and storage units. In this scheme, a single small-scale power consumer will be no

longer an inactive component, but potentially will contribute to energy management of the smart

grid by providing flexibility. Making use of local power generation units and storage devices

increase flexibility of the grid nodes.

Several world-wide studies have been conducted recently to propose new market, communication,

and control layouts for the emerging large scale distributed energy system. Encourage, NeogridEU,

iPower and FlexPower are examples of many on-going European and Danish projects that are going

to develop methodologies with different approaches to overcome imbalances of the future smart

grid.

Embedded intelligent controls for buildings with renewable generation and storage

(ENCOURAGE) aims to develop embedded intelligence and integration technologies that will

directly optimize energy use in buildings and enable active participation in the future smart grid.

The target energy saving for a network of buildings composed of distributed energy consumption,

production and storage units is 20% via design of supervisory control schemes that coordinates

among interplaying energy devices and buildings (Arne Skou, 2012).

2.1. WP5 in ENCOURAGE Architecture

ENCOURAGE aims to develop embedded

controls, intelligent hardware devices, and open

service-oriented platform that will allow end-

users to achieve energy savings by

orchestrating various energy generation,

consumption, and storage devices in non-

residential buildings, campuses, and

neighbourhoods, and also enabling the

possibility of exchanging energy surplus with

other entities. The project has been structured

into 8 work packages in order to achieve this

Figure 3. ENCOURAGE structure

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 8/97

main goal.

WP5 will develop control strategies for optimal operation of energy generation, consumption, and

storage devices connected in a network. In order to ensure integration between work packages, WP7

is dedicated to integrate the developed strategies by the other work packages. WP7 conducts tests

on a number of microgrid case studies under real conditions. Interactions between WP5 and the rest

of system setup are via exchange of information through middleware layer as shown in Figure 4.

Figure 4. Data exchange between SC and other modules via middleware

2.2. Demonstration Sites

Among different demonstration scenarios of ENCOURAGE project, the focus of work package 5 is

dedicated to Denmark demonstration site, which is a residential area. However, developed control

strategies are general and can be applied to other case studies. In this section we summarize the

main characteristics of the concerned microgrid case study.

One of the demonstration sites of the Encourage project that we focus on in this study is a network

of eight residential buildings i.e. detached houses located in Gistrup area, Northern Denmark. Each

house is equipped with photovoltaic (PV) cells with capacity of producing 4kW of electricity. Thus,

electricity need of an individual house is provided partly by solar cells and the remainder could be

purchased from both other producers in the microgrid or from the electricity grid, depending on the

energy price provided by each energy source. Indoor air is heated by electrical floor heating in the

houses. Measurements show that electrical space heater, electric water heater, appliances, and

lighting respectively account for highest to lowest power consumption in a building. A satellite

view of the houses taken from Google map is depicted in Figure 5. Aalborg demonstration site. Houses

denoted with red circles are equipped with PV cells.

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 9/97

Figure 5. Aalborg demonstration site. Houses denoted with red circles are equipped with PV cells.

All the houses are similar and very well insulated. The houses are occupied by different types of

family i.e. young couples, families with children and retired people who are couple or single. The

chosen occupancy diversity allows testing different consumption profiles for load control and

energy exchange between the houses, which is the normal case in a medium to large scale power

island. Some houses are occupied mostly in evenings and weekends, while the others consume

power at all times during a week. A power island is a specific part of the power grid that has both

production and consumption. Some power islands can, if necessary, generate, the right amount of

power, even though electrical grid power from the electric utility is no longer present. In our case,

the houses will always be connected to the grid, so it is not necessary to handle the situation with a

disconnection from the grid.

The microgrid is always connected to the grid. Therefore the islanded-mode is never imposed to the

microgrid physically. However, the strategies should be enacted in order to make it as independent

as possible from the grid. Therefore, the power island can purchase and sell electricity from/to the

grid at any time. However, the objective is to make the trade flow in only one direction at a time,

meaning that as long as there is a power demand in the microgrid, no power will be sold to the grid.

The microgrid local power generators are renewable, non-dispatchable sources. There is no specific

energy storage device to store energy for a later use. However, the building thermal mass is a

dynamic energy buffer that can be charged in a controlled way, but the discharge is not controllable,

although is predictable. The stored energy is in thermal form. Thus, this storage capacity makes the

heating and cooling loads flexible to a certain degree, as determined by the building dynamics.

2.3. Literature Survey

There are two mainstream approaches for energy consumption/production management towards a

smarter electric grid, i.e. direct and indirect control. The former relates to a setup where an energy

node in the grid informs the aggregator of its potential flexibility on consumption or production.

The load flexibility is to be provided by means of some storage facilities. In return, the aggregator

controls the unit based on the predicted flexibility within the limits and costs agreed upon in

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 10/97

advance (Biegel, 2012). In the latter approach, price incentives are sent to distributed energy

resources in order to encourage individual units for example detached houses, residential or office

buildings to consume electricity when energy surpluses in the grid by shifting their power demands,

and use local energy resources or the stored energy when there is power congestion or deficit in the

grid (Pinson, 2012), (Moslehi, 2010). A further classification of load control policies for demand-

side management in smart buildings is proposed in (Gehrke, 2013) based on the reaction to external

signals, participation in markets, topology, decision making mechanisms and fault handling.

The direct control concept is inspired from method for optimal use of a power plant portfolio; see

for instance (K. Edlund, 2011). This is also reflected in the terminology where an aggregator is

assumed to control a group of consumers as a Virtual Power Plant, (Nerea Ruiz, 2009), (A. Gomes,

2007) , (Gong, Xie, & Zhang, 2011). Optimal operation of a portfolio of consumers often involves

solving a non-convex optimization problem, for which many approaches may be taken, (Gomes &

Martins, 2007) uses evolutionary algorithms, (Parisio, 2011) use Mixed Integer Linear

Programming (MILP). An agent based solution is used in PowerMatcher, (Hommelberg, Warmer,

Kamphuis, & Kok, 2007), while a sorting algorithm, which match a certain formulation of the

problem has been discussed in (Trangbæk & Bendtsen, 2011), and a similar method is used in

(Biege, Andersen, Pedersen, Nielsen, & Stoustrup, 2013).

The concept of indirect control within the smart grid is conceptually studied and classified in two

main categories in (Heussen K. a., 2012). One type of indirectness involves not direct control

command but only an incentive. Operation of electrical power systems based on nodal price control

was firstly addressed in the studies conducted by Fred Schweppe which is summarized in

(Schweppe, 1988). Many researches were conducted ever since studying different aspects of

market-oriented approach for the electrical power system sector (Jokic, 2009), (Alvarado F. , 1999),

(Alvarado F. , 2003), (Alvarado F. a., 2003). Resent work in (Mitter, 2010), (Mardavij Roozbehani,

2012) and (Juelsgaard, 2013) conclude that passing on the real-time wholesale electricity prices to

the end consumers can lead to increased volatility, lack of robustness and instability. In (Madsen G.

D., 2013) a methodology is described allowing estimating in advance the potential response of

flexible end-consumers to price variations. This response is subsequently embedded in an optimal

price-signal generator, and prices are estimated and broadcast once a day for the following one, for

households to optimally schedule their consumption. (Bosch, 2009) and (Annaswamy, 2011)

suggest price based schemes which ensure economically optimal operation while also respecting

grid constraints. Examples of schemes allowing a consumer to optimally exploit real-time prices

can be found in (Jørgense, 2012) , (Glielmo, 2011) and (Frauke Oldewurtel, 2010).

A novel generalized framework for modeling a storage node in the grid is proposed in (Heussen K.

a., 2012). It models any type of interactions among the energy generators/consumers and storage

devices, energy leakages in transmission lines and due to energy conversions via definition of a

generic power node. It exploits Model Predictive Control (MPC) in combination with Mixed

Integer Linear Programming (MILP) (Bemporad, 1999). Load shifting based on price incentives for

households in a microgrid is addressed in recent studies using optimal controller in (Pedersen,

Andersen, Nielsen, & Staermose, 2011). MPC was previously addressed in (Tahersima F. a., 2012)

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 11/97

for heating load management of a single residential building. Also, (Tahersima F. a., 2011) suggests

an assistant chart that quantifies energy flexibility of households.

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 12/97

3. Building Loads Classification

Depending on the degree of user intervention, various building services can be classified in two

main categories i.e. controllable and non-controllable loads. In the first category loads can be

controlled automatically or manually. Our focus from now on will be on the controllable loads with

both automatically and manually controllable features. Heating, ventilation and air conditioning

(HVAC) systems are usually controlled automatically. Lighting is in a middle category i.e. partly

automatically-manually controlled. Appliances reside in a third class i.e. manually controlled by the

user. A 2006 statistical results reveal that around fifty % of the total energy consumption in a

typical Danish household relates to manually controlled loads as shown in Figure 6 (Røpke, 2010).

Figure 6. Danish household energy consumption in 2006 ((Røpke, 2010)

Loads that are adjusted manually by the users do not contribute to the flexibility automatically with

the currently available infrastructure. However, inflexible loads that are not necessarily critical can

contribute to increasing flexibility by engaging the users’ manual adjustment. For instance, a

schedule for using this type of non-critical devices can be prescribed by the energy management

system to shift consumption according to the grid's condition.

The other type of loads, for instance lighting can be shed automatically by partial home automation.

For example motion-based actuators can be used to turn on/off the lights very efficiently based on

the room's occupation. However, this action is not a pre-planned procedure to be incorporated in the

loads flexibility, but it will often result in a significant energy saving.

Control of the HVAC systems is normally performed automatically in order to accomplish some

user-specified references for instance indoor temperature and humidity. All buildings can

potentially benefit from their thermal mass storage depending on the type of insulations and also the

type of HVAC systems. For example, hydronic floor heating pipes casted into a thick layer of

concrete floor release the buffered heat in several hours such that it can be regarded as a thermal

storage like a hot water tank. The flexibility provided by this category is the most reliable.

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 13/97

Table 1 shows a classification of different load types from the perspective of directly or indirectly

accessed i.e. reliable or unreliable flexible loads, respectively.

Table 1. Taxonomy of a residential building loads

 Automatic Partly automatic/manual Manual
Appliances x
HVAC x
Lighting x
Multimedia x
Consumption 18% 11% 61%

Please see Appendix A for a thorough classification of building loads.

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 14/97

4. Indirect Energy Management Strategy

In this work, the focus is on indirect control strategies of households’ energy consumption. In this

approach, consumption would be shifted using energy storage facilities of the building or shed

provided that power consumption should not be critical at the time. Both shifting and shedding of

the loads are decided based on an a priori known electricity price signal for a future time interval

such that cost of electricity consumption will be minimized. In order to devise a strategy based on

energy flexibility, we need to know potential flexibility or inflexibility of a building.

We have categorized various controllable energy loads in the building to automatically and

manually controllable loads. In each category two types can be realized i.e. shiftable loads and

curtailable loads. Examples of manually controllable loads are appliances and multimedia devices

that are directly interfered with by the user. The two types of shiftable and curtailable loads are

controllable, although different depending on the type of the variable being controlled and

residents’ expectation of comfort. To give an insight, let’s compare heating with lighting; a heater is

controlled normally to maintain a specific thermal comfort criterion that is often specified either by

a profile of reference temperature or two upper and lower boundaries. In either case, time interval of

heating possibly can be shifted depending on inherent heat capacity of the building and thermal

tolerance degree of the building's residents. For example, the larger heat capacity of the building

and the higher tolerance of the occupants, flexibility in time of heating is larger. On the other hand,

light is a non-storable and is an instant load. Therefore, it would only be possible to cut down or

dim the light when it is not needed, for instance when daylight is available or motion is not detected

in the room. For a taxonomy on different type of loads please see (Petersen, 2013), (Fatemeh

Tahersima, 2013).

In this work the focus is on indirect control strategy of household’s energy consumption. A model

predictive controller (MPC) was formulated that systematically finds the energy consumption

pattern of flexible loads provided that knowledge about other loads and productions and the

building dynamics are available. The flexible loads are mainly the shiftable loads and to some

extents the curtailable loads. A cost is formulated based on power consumption and its price which

is minimized by the designed controller. In the proposed scheme electricity can also be sold to the

grid and consumption can be curtailed if convenient. In contrary to the available literature, a

hierarchical controller rather than a centralized one is proposed. The first advantage is that it

exploits the existing stand-alone single-loop controllers which are usually available in the buildings.

The new integrating and optimizing layer connects to the lowest layer by commanding a general

reference signal to the single loop controllers. The system-wide controller is designed in a receding

horizon fashion in order to incorporate building energy flexibilities based on a dynamical model,

future preferences and disturbances. Figure 7 shows the logical structure of the building level

control system. The glue layer, also called Device Level Controllers, takes care of the

interconnection between the high level MPC controller and the low level devices. All the house

specific control logic is placed in this glue layer. This means the MPC controller are a general

propose controller and because of that are the same in all houses.

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 15/97

Figure 7: The structure of building level control

The MPC controller outputs are actuation signals to the HVAC, hot water tank, lighting, etc…, and

consumption profile to the appliances and other non-critical inflexible loads in the building. Its

inputs are measurements like indoor temperature, hot water tank temperature, etc… and forecasts of

power consumption in the building, weather, electricity intraday market price inside and outside the

microgrid, and electricity generation of PVs. In the sequel we describe the controller structure in

more details.

4.1. Hierarchical Supervisory Controller for Microgrid Energy

Management

The control hierarchy as shown in Figure 2 composes three different layers. The task of each layer

and the connection between the layers are described in the following.

 Device layer at the bottom of hierarchy comprises single loop controllers for controllable

(shiftable and curtailable) loads, controllable generation units (not available) and storage

devices (not available). It is responsible for maintaining a set point, light adjustment, etc…

using an on/off or proportional integral (PI) control action.

 Building level at the middle of hierarchy includes a system-wide controller that keeps the

economy and comfort in balance. It minimizes the cost of electricity consumption while

maintaining the comfort levels determined by the user. A priori knowledge about building

dynamics, comfort preferences, weather changes, power generation and price of electricity

are needed as inputs to the controller at this level. This layer receives measured status data

from device-level controllers i.e. heating/cooling thermostats and provides them with

reference signals.

 Microgrid level at the top is responsible for distribution of locally generated energy among

households with energy demands. It receives predictions of power surplus profile (for sale)

and power needs profile (to be purchased) from the system-wide controllers in the middle.

Based on these inputs, it predictively assigns surplus power in the microgrid among the

demanding houses. The system-wide controller is designed such that the power produced by

PVs is consumed by the producing house at the first place. The excess is distributed by the

power trading/scheduler among the other houses with power deficit. It predictively

determines the constraints on the amount of buying energy and selling energy for each house

in the microgrid.

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 16/97

5. Device Level Controllers

The primary energy elements in one house in the basic scenario are:

 PV cells

 Loads categorized mainly in controllable (curtailable, shiftable, schedulable) and non-

controllable

 Interactions with the utility grid

 Interaction with the micro grid’s other solar cell modules

We do not consider any electrical storage device in simulation scenarios; nor are the schedules to

the manually controllable loads generated in the simulations. Among the household loads, an

HVAC system and a hot water tank are categorized as controllable (shiftable), lighting (curtailable)

and home appliances (schedulable) loads. Electricity generated by PVs cannot be curtailed.

Flexibility type of building loads and control options for the loads are classified in tables in

Appendices B and C respectively.

5.1. HVAC Systems Control

HVAC systems in Denmark

demonstration sites are electrical/

hydronic floor heating systems

embedded into a thick layer of concrete

floor. The concrete floor can be regarded

as a heat buffer in the system as the heat

will be transferred to the surface and

thereafter to the air gradually during

several hours. Knowing the dynamics of

the system, this buffering capacity can

be exploited to shift the power

consumption provided that a certain temperature boundary will be respected.

At this level, a single loop controller is designed to maintain a specific temperature reference. This

temperature reference is determined by an upper layer controller at the building level which

orchestrates the power consumption of the whole building. The building-level controller determines

the reference such that the cost of heating will be minimized.

A proportional integral (PI) controller is designed to maintain the temperature reference. The output

of this PI controller can easily be translated to on/off commands suited to relay actuators.

Formulation of the PI controller is given:

 ̇ ()

 ()

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 17/97

In the formula, x is integration state, is the temperature reference, T is the indoor temperature,

 represents the transferred heat to the floor surface, and parameters and are determined

based on a step response of the system.

In the case of a hydronic floor heating system, there are two control variables for adjusting Q. They

are mass flow rate and forward temperature of water i.e. (), in which the

parameters are specific heat of water, flow rate, forward and return temperature of water. The flow

rate is usually controlled based on each zone’s specific temperature preferences. Water temperature

is determined centrally for the whole hydronic system.

5.2. Lighting Control

The task for the lighting control systems is to control the room lighting so the right light level is

maintain without using more energy than needed. (DiLouie, 2008). The lighting control is typically

based on motion sensors (PIR sensors), switches, timers and photocells. Beside of that, lighting

control often makes use of time schedules, states of the house and time of the year.

The lighting system can’t be used for enhancing the flexibility because it doesn’t contain any

storage capacity. On the other hand it is a very important system for minimizing the energy

consumption.

There is a number of lighting control system available on the marked. One example is the Philips

Dynalite system
1
: this system can be used in e.g. houses, offices, hospitals among other. This

system is a distributed system based on special load controllers (dedicated hardware). The

controllers are connected to devices and communicate with other controllers through a proprietary

protocol Dynet based on RS-485.

Another interesting initiative, regarding standardization of communication, is the DALI working

group set up by leading manufacturers and institutions in the field of digital lamp/luminaire control

to promote DALI technology and applications.
2
 DALI stands for Digital Addressable Lighting

Interface and is a protocol set out in the technical standard IEC 62386.

All these awardable lighting control systems are based on proprietary protocols and/or dedicated

hardware. They are, because of that, not directly useable in the ENCOURAGE project.

In ENCOURAGE it has been decided to build a new software control module that was able to run

on the core platform. This control module shall be able to handle the house specific controlling i.e.

the glue layer. This means that it shall take care of the lighting control and, if needed, the local PI

feedback controllers. It is very important that the system is easy to program and setup because the

control requirement and the devices differ from house to house.

1 Source: http://www.lighting.philips.com/main/subsites/dynalite/index.wpd

2 Source: http://dali-ag.org/

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 18/97

The fact, that it shall be easy to setup and program the control system, requires that the system shall

be based on a dedicated way to express the control task and to setup the interface to the rest of the

ENCOURAGE system.

In the following, a dedicated control language for the ENCOURAGE system will be designed. This

language is called the ELL language (Encourage Logical Language). The language shall be able to

implement the so called glue layer.

5.3.1. The ELL language

The task for the Light control sub module is to secure the right light level when needed and on the

other hand minimize the energy consumption for room lighting by dimming the light or by

switching off the light when the room are empty. The developed language shall not only be useable

for the light control module but shall be general enough to handle all the necessary logical control

in an ordinary house. Take this into account, the main task for the system is to increase the comfort

and at the same time to lower the consumption of recourses.

The main problem is: If you want to increase the comfort and at the same time want to lower the

consumption of recourses you must have an intelligent control system, which can interconnect the

different subsystems in an intelligent way. For instance, when you leave the house and lock the

door, then all the light should switch off and the heating system should settle on a lower level and

maybe the ventilation system should ventilate the house if the humidity is too high. Of course all

these control actions shall be executed in a system, which can communicate with the door lock (the

security system), the light, the heat and the ventilation system. In addition to that it is clear that the

control actions depend on the state of the environment, the system itself and the people living in the

house. For instance the control actions depend on whether it is day or night, summer or winter, if

people are home, if they are physically active, reading, watching TV, sleeping and so on.

To overcome these problems it is necessary to have a general and easy to use tool for setting up the

control function of each house. The control function shall be flexible enough so that it can handle,

not only the lighting system, but also all other sub-systems in the house, like the heating system and

the ventilation system if needed.

The lighting system will in the following be the base for specifying the requirement to the ELL

language.

This light control is based on:

 The state of the room e.g. is it empty or is it occupied.

 Motion sensors.

 Time of the day, day of the week or time of the year etc.

 The outside light intensity.

 State of the users of the house (if available). E.g. at work, slipping, making foot, watching

TV and so on.

 And other signals that are telling something about the need for light.

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 19/97

(Meyer, 2004) and (Krogh, 2006) describe different ways to program home control systems

especially finite state machines (FSM). Based on these and the about description the following

requirements for the language can be defined.

Requirements for the tool/control language

 It should be possible to implement finite state machines. (FSM)

 It should be possible to handle logical expressions.

 It should be possible to handle timers and timer logic

 It should be possible to handle hysteresis. (Bang-bang controller).

 It should be possible to include dates and real time in the logical expressions.

 It should be executed on the core platform.

 It should communicate with the IO devices through the ENCOURAGE middleware.

 It should be possible to program for a non-technician with only a short introduction course.

Existing language
Normally logical control tasks are handled by PLC’s (Programmable Logical Controllers). PLC is

programmed by different manufacture specified programming language. Many of these PLC

languages are different kinds of ladder logic.

Windldr
3
 are an example of a common ladder logic language. This language can be used of

programming a group of different PLC’s. Ladder logic is a general propose logical control

language, and, because of that, can be used for programming the light system. Programming Ladder

logic requires a technician that understands traditional hard wires relay implantation. Besides that, it

is difficult to implement FSM’s in Ladder logic.

Another way of programming PLC’s is by State Logic. State Logic utilizes a natural language,

known as ECLiPS or English Control Language Programming Software. This language allows the

programmer to have the freedom of writing commands in natural words. (Dr. John R. Wright,

1999). FSM’s can be handled by State Logic.

These different control language are not directly designed for our purpose and will be difficult to

implement on the ENCOURAGE platform.

Madsen (Madsen, 2007) describes an easy to use language for this kind of control tasks. This

language is hardware independent, easy to learn and has a simple and intuitive communication

interface. The language consists of logical statement, based on input, states and time. The control

structure is designed for describing FSM. ELL will be based on the ideas from (Madsen, 2007).

The ELL (Encourage Logical Language)
An ELL program consists of two parts:

3 http://www.idec.com/language/english/manual/WindLDRTutorial.pdf

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 20/97

1. The Description of the interface to the middleware and predefined constants.

2. The control algorithm, or the program part, consisting of a number of FSM and statements.

5.3.2. Interface to the middleware
The middleware interface consists of four sections, one section for each of the four different types

of I/O values i.e.:

- ON/OFF input signals, also called digital inputs ‘DIGIINPUT’

- ON/OFF output signals, also called digital inputs ‘DIGIOUTPUT’

- Analog input signals, also called digital inputs ‘ANAINPUT’

- Analog output signals, also called digital inputs ‘ANAOUTPUT’

Each of these signals is defined by a symbolic name LightSwitch1_Beedroom and the

MacroCellID, the CellID and the DeviceID e.g.:

MacroCellID: Jadevej

CellID: nr3

DeviceID: device7

The symbolic name is a self-defined variable name. This name shall give an easy understandable

name to each IO signal. This name is used in the rest of the program. The scaling and unit of the

variable are defined by the middleware.

5.3.3. The Program
After the interface part comes the program part. These two parte are separated by the word

PROGRAM.

The program part consists of zero to N FSM and of zero to N statements, where N is only limited by

the amount of memory in the runtime system (The ENCOURAGE core platform).

DIGIINPUT

 LightSwitch1_Beedroom DEV : Jadevej nr3 device7;

 DoorBell DEV : Jadevej nr3 device10;

 Window1Open_Beedroom DEV : Jadevej nr3 device2;

DIGIOUTPUT

 lamp1_Levingroom DEV : Jadevej nr3 device13;

ANAINPUT

 _RoomTemperature_Kitchen DEV : Jadevej nr7 device7;

ANAOUTPUT

 _LightDimmer_Beedroom DEV : Jadevej nr7 device2;

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 21/97

5.3.3.1. Finite state machine (FSM)

To illustrate the syntax for a FSM, a small example FSM, called LivingRoom, is shown below.

This FSM has three states namely INIT, Empty and Occupied. It uses three variables from the

middleware LightSwitchOn, LightSwitchOff and PirSensor.

The INIT state will be the first state to enter when the execution of the program are started. Figure:

9 show a state diagram that illustrates the function of this FSM. It is required that all FSMs have a

INIT state, the naming and the number of all other stats can be chosen freely. In this example the

FSM will, just after starting the program, switch to the empty state.

The two expressions i.e. PirSensor OR LightSwitchOn and DELAY(NOT PirSensor,60*15) OR

LightSwitchOff are governing the transaction from one state to the other. E.g. if the FSM are in the

Empty state and the PIR sensor are on or the light switch are pushed then the FSM will go to

Occupied state.

Figure 9: Simple FSM for determine if the living room are occupied or not

The program for this FSM will be like this:

Occupied

Empty

PirSensor OR LightSwitchOn

DELAY(NOT PirSensor,60*15) OR LightSwitchOff

INIT On

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 22/97

if the FSM is in the state Empty then the statements inside the state are active, which means that the

living room light are off, the living room heating are off and PirSensor OR LightSwitchOn are

check and if true(ON) then the state machine will switch to state Occupied.

There can be as many statements, inside a state, as needed. These statements can be ordinary

statements e.g.:

 Light= lightSwitch AND NOT dayLight;

 Ventilator= Light OR NOT DELAY(NOT Light, 60);

And as many GO TO statements as needed:

 GO TO Empty WHEN DELAY(NOT PirSensor,60*15) OR LightSwitchOff;

Modern houses are equipped with a number of devices. These are for instance light switches, lamps,

motion sensors, temperature sensors, humidity sensors, radiators, floor heating, ventilators, heat

producing systems and so on. The control of all these devices interacts with each other. For instance

the light, the heat and the ventilation system shall cooperate to save energy and to increase comfort.

Furthermore the control depends on the state of the house, the time of the year (State of year), the

state of the people, living in the house and so on.

This lead to the fact that a house control program, in general, consist of cooperating FSMs.

Requirement to the FSMs, implemented in the ELL-language can therefore be extended with these

requirements:

FSM: LivingRoom

 STATE: INIT

 GO TO Empty WHEN ON;

 END

 STATE: Empty

 LivingRoomLight= OFF;

 LivingRoomHeating= OFF;

 GO TO Occupied WHEN PirSensor OR LightSwitchOn;

 END

 STATE: Occupied

 LivingRoomLight= ON;

 LivingRoomHeating= Heating.Running;

 GO TO Empty WHEN DELAY(NOT PirSensor,60*15) OR LightSwitchOff;

 END

END

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 23/97

 It shall be easy to synchronize multiple FSMs.

 It shall be possible to operate with nested FSMs.

Synchronization of multiple FSMs

The ELL language is a modified version of the DL-language defined in (Madsen, 2007). The main

structure for a FSM is like this:

The FSM is named LivingRoom in the example above. This name is used, by the FSM itself or by

other parts of the control system to determine in witch state the FSM is. For instance

LivingRoom.INIT is true if the FSM is in the INIT state, otherwise it is false. After the naming,

two statements are possible, a reset statement and a hold statement. If the RESET is set to ON

(true) then the FSM will go to the INIT state and stay there, no matter what happens. If the HOLD

statement is ON then the FSM stays in the current state unless the RESET is set to ON. The Hold

statement can be used for synchronizing different state machines, but it is seldom used because

there are more straight forward ways to synchronize FSM’s.

As mentioned earlier: LivingRoom.Empty is ON if the state machine LivingRoom is in the

Empty state and LivingRoom.Occupied is ON if the state machine LivingRoom is in the

Occupied state. In both cases otherwise OFF. This will allow the programmer to synchronize

different FSMs by using these in-state signals in the state transition statement e.g. GO TO lightOn

WHEN LivingRoom.Occupied.

FSM: LivingRoom

 RESET= reset;

 HOLD= OFF;

 STATE: INIT

 ..

 END

 STATE: Empty

 ..

 END

 STATE: Occupied

 ..

 END

END

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 24/97

In this example there are two FSMs, HeatingSystem and Ventilationsystem, and a PID-controller,

which are controlling the heat inlet to the room. The HeatingSystem sets the wanted temperature in

the room _TempRoom1Ref. The Ventilationsystem FSM controls the ventilation. The ventilation

starts when the logical value StartVent is set or when the humidity gets higher than

_MaxHumidity and stops again after 300 sec. or when the humidity gets lover than

_MaxHumidity-5. The PID controller is a function that takes the parameters:

_TempRoom1Ref,_TempRoom1, the proportional factor, the Integral factor, the Derivative factor

and the sampling time , _p,_i,_d,_st. The three last terms are preset, a preset value and a dead band,

ON,0,_db. Preset and the preset value are used for manual operation and for cascade coupling of

the controller. The dead band is used for handling noisy measurements.

FSM: HeatingSystem

.

.

 STATE: Hearing

 _TempRoom1Ref= 21.0;

 GO TO Wait WHEN Ventilationsystem.Ventilate;

 END

 STATE: Wait

 _TempRoom1Ref= 0.0;

 GO TO Hearing WHEN NOT Ventilationsystem.Ventilate;

 END

.

.

END

_HeadRoom1 = PID(_TempRoom1Ref,_TempRoom1, _p,_i,_d,_st,ON,0,_db);

FSM: Ventilationsystem

.

.

 STATE: StopVentilate

 Fane= OFF;

 GO TO Ventilate WHEN StartVent;

 GO TO Ventilate WHEN _Humidity > _MaxHumidity;

 END

 STATE: Ventilate

 Fane= ON;

 GO TO StopVentilate WHEN DELAY(ON,300);

 GO TO StopVentilate WHEN _Humidity < _MaxHumidity-5;

 END

.

.

END

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 25/97

Nested FSM’s:

When designing a program for controlling a complex system it is often based on FSM, where state

contains other FSM (nested FSMs). It is not possible in the ELL-language to define FSM inside

FSM, because it will result in large FSMs that are difficult to maintain. The solution here is to use

the reset statement. The RESET statement is a sort of activating/deactivating the FSM. This enables

one FSM to activate/deactivate another FSM.

This results in a number of relatively small FSMs and thereby the FSMs will be easier to survey and

maintain.

5.3.3.2. Expressions

All actions are defined by statements. Statements can be inside a state or outside the FSM’s. If

placed inside a state they are execute when the FSM are in that particular state otherwise not. If the

statements are placed outside the FSM’s then they are executed all the time and in parallel with all

the active states.

There are three kinds of statements:

 Logical assignment: Light= lightSwitch AND NOT dayLight;

 Analog assignment: _temperatureError= _RoomTempSetpoint - _Roomtemp;

 GoTo: GO TO Empty WHEN DELAY(NOT PirSensor,900) OR LightSwitchOff;

FSM: Season

.

.

 STATE: Winter

 Heating = ON;

 GO TO Spring WHEN (3 <= TIME.MONTH) AND (TIME.MONTH <= 5);

 END

END

FSM: HeatingSystem

 Reset= NOT Heating:

.

.

END

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 26/97

The last part of the logical statement e.g. lightSwitch AND NOT daylight; are the logical

expression.

Expressions can be ether logical or analog, depending on the type of the assignment. E.g. for

assignment of digital output logical expressions are used, and for assignment for analog output

analog expressions are used.

A logical expression consists of digital signals, analog signals, logical operators, comparison

operators, functional operators and brackets.

 Logical operators:

 AND

 OR

 NOT

Comparison operators:

 >

 <

 >=

 <=

 =

Functional operators:

 DELAY

 FF

 PID

 TIME.MINUTE

 TIME.HOUR

 TIME.DAY

 TIME.WEEK

 TIME.WEEKDAY

 TIME.MONTH

 SQR

 FLASH

 QFLASH

An analog expression consist of analog signals, functional operators, floating point operations and

brackets.

Functional operators:

 PID

 TIME.MINUTE

 TIME.HOUR

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 27/97

 TIME.DAY

 TIME.WEEK

 TIME.WEEKDAY

 TIME.MONTH

 SQR

Floating point operations:

 +

 -

 *

 /

5.3.3.3. Description of the functional operators

Timer function (DELAY)

This function is used whenever a timer is needed. It takes two arguments are; a logical expression

and an analog expression. The logical expression defines the logical value to be delayed, and the

analog expression defines the amount of time, in sec., the logical value has to be delayed.

Out= DELAY(a,t);

Bang-Bang controller

Bang–bang controller (BBCTRL) also called an on–off controller, are based on a hysteresis element

that switches between two states e.g. ON and OFF. This state is the output from the controller. This

controller can not only be used as a feedback controller but also when a level signal is needed. It

takes two arguments. These are two analog expressions. Where the first argument is the centre of

the hysteresis and the second is the width of the hysteresis.

Output= BBCTRL(_Input – _a, _Hyst);

- t -

Out

a

- t - Time [sec]

OFF

ON

OFF

ON

Time [sec]

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 28/97

Flip-flop

The Set-Reset flip-flop with toggle function is a so-called JK latch. This type of flip-flop is

commonly used in control for handling ON/OFF states based on push-button. It takes two

arguments that are two logical expressions.

JK latch truth table

Set Reset Out Comment

0 0 Out No change

0 1 0 Reset

1 0 1 Set

1 1 Not Out Toggle

out=FF(set,reset);

PID-controller:

The most common feedback controller is the PID-controller. In the absence of knowledge of the

underlying process, a PID controller has historically been considered to be the best controller.

(Bennett, 1993).

This equation shows how the output is calculated.

Input

Output

-Hyst-

a

ON

OFF

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 29/97

 () ∑ ()

 () ()

Where:

: Proportional gain, a tuning parameter

: Integral gain, a tuning parameter

: Derivative gain, a tuning parameter

: Error. The difference between the set point and the measured value.

Dt: The Time between each sample.

Beside of this equation a PID controller contains a number of features that are necessary in real

applications. These are:

 Anti-integral windup on saturation.

 Bump-less transferee between auto and manual.

 Bump-less tuning.

 Deadband handling.

 _Out= PID(_sp, _mv, _kp, _ki, _kd, _st, Auto, _Preset, _db);

Where:

_sp: Are the set point.

_mv: Are the measured value.

_kp: Proportional gain.

_ki: Integral gain.

_kd: Derivative gain.

 Auto: ON/OFF signal that switch between auto and manual.

_Preset: If manual then _out= _Preset;

_db: If the absolute value of the error is less then _db then _out will not change;

5.3.3.4. Program example

A simple ELL program that controls the light in a living room is described below. The light is

dimmed when the outside light is above a specific level. All the lights are switched off when the

room is empty.

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 30/97

#--

DIGIINPUT

 LivingRoomLightButtonOn DEV : Jadevej nr3 device7;

 LivingRoomLightButtonOff DEV : Jadevej nr3 device3;

 LivingRoomMotionDetect DEV : Jadevej nr3 device4;

DIGIOUTPUT

 LivingRoomAllLight DEV : Jadevej nr3 device2;

ANAINPUT

 _OutdoorLight DEV : Jadevej nr3 device6;

ANAOUTPUT

 _LivingRoomLightDimmer DEV : Jadevej nr3 device5;

ANACONST

 _LightLevel = 80;

 _LightP = 3.2;

PROGRAM

FSM: LivingRoomLightBimmer

 STATE: INIT

 _LivingRoomLightDimmer = 100;

 GO TO dimme WHEN NOT BBCTRL(_OutdoorLight - _LightLevel, 5.0)

 AND LivingRoom.Occupied;

 END

 STATE: dimme

 _LivingRoomLightDimmer= (100 - _OutdoorLight)* _LightP;

 GO TO INIT WHEN BBCTRL(_OutdoorLight - _LightLevel, 5.0);

 GO TO INIT WHEN LivingRoom.Empty;

 END

END

FSM: LivingRoom

 STATE: INIT

 GO TO Empty WHEN ON;

 END

 STATE: Empty

 LivingRoomAllLight = OFF;

 GO TO Occupied WHEN LivingRoomLightButtonOn;

 END

 STATE: Occupied

 LivingRoomAllLight = ON;

 GO TO Empty WHEN DELAY(LivingRoomMotionDetect,60*15)

 OR LivingRoomLightButtonOff;

 END

END

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 31/97

5.3. Appliances Control

One of the load types that can contribute dramatically to energy saving and cost minimization are

manually controllable loads including home appliances and multimedia devices. The system-wise

controller can be designed to recommend a certain time period for using a specific device. The idea

is that the controller has access to the pattern of power consumption of an electrical device during a

day.

Here we have described the idea of controlling such electrical devices. Consider three devices with

different pattern as shown in Figure 10. The power consumption can be shifted in batch and not

continuously during a certain time period determined by the user.

Figure 10. Power consumption pattern of three manually controlled loads. The consumption can be shifted in batch

within the time horizon specified in green.

Therefore, the information needed from each load is its consumption pattern during a day, the

pattern of consumption each time the device turns on until it switches off again and the time horizon

during which the consumption can be shifted.

This part of design is not included yet in the simulation results even if, if this feature is desired to be

embedded into the energy management controller, the above mentioned data would be needed for

each device.

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 32/97

6. Building Level Controller

Block diagram of the hierarchical supervisory controller at the building level is depicted in figure

11. A Model Predictive Controller (MPC) was chosen as the system-wide controller (Maciejowski,

2012). The reason for this choice is that all the system disturbances and future references can

systematically be incorporated into the MPC. On the other hand, the middleware has to provide a

foreseen estimate of surplus and demand power to the power scheduler at the top layer. This feature

would already be embedded in the system-wide controller if we choose a receding horizon

controller. At the bottom layer we have designed Proportional Integral (PI) controller for heating

loads and light curtailment is done based on inputs from sensors measuring light or detecting

motion. This will be implemented using the ELL language.

Figure 11. Block diagram of the hierarchical supervisory controller. Inputs to the MPC are: intraday market price of

electricity, pre-set user-defined comfort temperature , forecast of outdoor temperature , Prediction of

electricity generation by PVs , Predicted consumption profile of curtailable and non-flexible loads .

Output control signals are: a reference temperature to HVAC system controller and a coefficient of curtailment

β to the lighting system controller.

6.1. Model Predictive Controller

MPC is based on iterative, finite horizon optimization of a plant model. At time k the current plant

state is sampled and a cost minimizing control strategy is computed (via a numerical minimization

algorithm) for a relatively short time horizon in the future: . Specifically, an online or on-

the-fly calculation is used to explore state trajectories that emanate from the current state and find

(via the solution of Euler-Lagrange equations) a cost-minimizing control strategy until time k+N.

Only the first step of the control strategy is implemented, then the plant state is sampled again and

the calculations are repeated starting from the now current state, yielding a new control and new

predicted state path. The prediction horizon keeps being shifted forward and for this reason MPC is

also called receding horizon control. Although this approach is not optimal, in practice it has given

very good results. A discrete MPC scheme is shown in Figure .

http://en.wikipedia.org/wiki/Euler-Lagrange_equation

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 33/97

Figure 12. Discrete MPC Scheme

6.2. Problem Formulation

In this section the formulation of a model-based predictive controller as the building-level load

controller is described.

6.2.1 System Modelling

Dynamics of a house and its heating loads are governed by the following first order model. This

model is accurate enough for control design purposes in practice.

 ̇ ()

Where:

 : thermal transmittance []

 : surface area]

T is the room temperature and Tout is the outdoor temperature. C is the heat capacity of the floor

material and the houses air, envelope, and furniture. is dissipated heat from floor heating

system or any other system to the room’s air. In the case of electric floor heating is equal to

the electric power put to the floor. Heat flow from an electric floor heating system is controlled

using a PI controller to regulate the building temperature. The PI controller in state space form is

given:

 ̇

()

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 34/97

 ()

Where:

- : Proportion gain.

- : Integration time.

- : Are the reference temperature. [].

- : Integral state.

Considering the sampling time, , closed-loop discrete time system is:

 () () () ()

 () () () ()

 () () () ()

Where:

-

-

-

-

-

 :

-

-

-

:

-

- : Sampling time.

- : thermal capacitance []

Parameters of the above equation are given in the following matrix form:

[
 ()

 ()
]

[

]

[
 ()

 ()
]

[

]

[
 ()

 ()
]

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 35/97

 [

] [

 ()

 ()
] [

] ()

6.2.2. Optimization Problem

Optimization Problem is formulated in a receding horizon framework. An economic solution is

achieved by penalizing purchase from the utility grid in the cost function. Also, discomfort i.e.

deviation from a comfort temperature profile is penalized. The other term in the cost function is

related to curtailment penalty.

 ∑
 | () ()| () () () ()

 () () ()

 () () () ()

 () () () ()

 () () () ()

| () ()| ()

 ()

 ()

 () () () (()) () () ()

In which k is the time instant and N is the prediction horizon.

 and are coefficients of penalty for thermal discomfort and power curtailment of the

appertaining curtailable loads, respectively.

Control variables are curtailment coefficient (), the selling power to the grid () and the

reference temperature of the building ().

Predicted signals and system disturbances include comfort temperature profile (), the buying

and selling price from the grid () and (), the discomfort penalty , the

curtailment penalty ,, the curtailable and inflexible loads and , and electricity

generation of PV cells , all for the next 24 hours.

Boundaries on building temperature and maximum heat flow are the known parameters.

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 36/97

7. Simulation results

Results of two simulation scenarios for energy management of one building are presented and

discussed in this section. Parameters of the building dynamics are chosen based on data from a low

energy building i.e. very similar to the houses in Jadevej case study. The sampling time is one hour,

which is equal to the time interval of variations in predicted price profile. Predicted signals are

assumed to be available one day ahead. This is specifically important for the price profile which is

settled in an hourly basis a day ahead in the Elspot trading system. The power price is determined

by balance between supply and demand and fixed from 12:45 CET each day to be applied from

00:00 CET the next day [19]. Therefor the prediction horizon for MPC is chosen as 1 day. Price

signals are taken from the Nordpool database for a period of one week in February 2013. Weather

data is also taken from Danish Meteorological Institute (DMI). PV cells production data is achieved

from Jadevej case study.

Figure 13. Energy management of one building in a day. Building temperature is

limited between two temperature profiles which are customized based on the user

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 37/97

preferences. is the total predicted power need of curtailable loads and

 is the curtailed power i.e. () . At the peak of price, the

flexible loads are zero and only inflexible load is consuming the expensive power.

In the simulations, there is not considered electricity trading among the buildings yet possible.

Figure 13 depicts energy management by shifting and shedding based on electricity price, weather

data, and prediction of non-flexible loads.

In the simulation, discomfort and curtailment costs in the cost function are chosen such that they are

highest in two time horizon, one from 6:00 to 8:00 AM and the other from 17:00 to 22:00. It is

obvious in figure 13 that during the two time horizons, comfort is mostly fulfilled comparing

daytime or over midnight.

Simulation result over one week is depicted in figure 14. Simulations show that the proposed

controller is 33% more economic compared to an energy minimizing MPC which considers a

constant price in whole one day. Compared to the MPC that only optimizes comfort, the proposed

controller saves app. 50% in electricity consumption cost. However, these savings are excluding

energy tax which in Denmark costs 0.82DKr=kWh.

Figure 14. Energy management of one building during one week.

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 38/97

A building with a higher flexibility potential could benefit from lower electricity consumption costs

in the future smart grid. Energy demands of the flexible loads can be curtailed or shifted to consume

electricity at lower price rates. Therefore the more a building increases the flexibility the more it

can save in electricity bill. Figure 15 shows the amount of savings in electricity bill against

flexibility, which is defined as the boundaries around room temperature.

Figure 15. Percentage of consumption cost saving against flexibility. Saving is

calculated based on consumption cost when thermal comfort is maximum i.e. Ttol

very close to zero.

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 39/97

8. Conclusion

This work defines a framework for energy management on building level. Deliverable D5.4 Energy

management system will describe the total microcell based energy management system. Here the

focus is on the two bottom layers of the proposed supervisory controller and formulated a MPC as

the cell-level controller. The MPC works in combination with device layer controllers by supplying

them with control references. The results show that with reliable price predictions substantial

savings in energy costs are obtainable for a consumer which implements a predictive controller.

The achieved results will be used in the microcell energy management system, where we add other

similar building modules and also the top layer energy balancer. This level of controller will control

energy trade among the buildings and also the utility grid.

The saving depends strongly on how flexible the people living in the house are. Flexibility here

means the size of the acceptable temperature interval around the comfort temperature. If this

interval size are zero then the system has on room for optimizing the consumption, and because of

that it perform like an ordinary control system. On the other hand if the people living in the house

accept a given degree of discomfort then the sawing potential is up to 50 %.

A dedicate language (ELL) for easy deployment and setup of the building level control system has

been developed. A prototype of an integrated development environment for the ELL language

(ellIDE) is implemented. The documentation of ELL and ellIDE are available in the report: ELL

(ENCOURAGE Logical Language) Manual.

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 40/97

Bibliography

A. Gomes, C. H. (2007). A Multiple Objective Approach to Direct Load Control Using an Interactive
Evolutionary Algorithm. IEEE Transactions on Power Systems.

Alvarado, F. (1999). The Stability of Power System Markets. IEEE Transactions on Power Systems, 505-511.

Alvarado, F. (2003). Is system control entirely by price feasible? System Sciences, 2003. Proceedings of the
36th Annual Hawaii International Conference on.

Alvarado, F. a. (2003). Stability analysis of interconnected power systems coupled with market dynamics.
Power Systems, IEEE Transactions on, 695 -701.

Annaswamy, A. K. (2011). Wholesale energy market in a smart grid: Dynamic modeling, and stability. IEEE
Conference on Decision and Control (CDC).

Arne Skou, e. a. (2012, November). Embedded Intelligent Controls for Buildings with Renewable Generation
and Storage. Retrieved from http://www.encourage-project.eu/

Bemporad, A. a. (1999). Control of Systems Integrating Logic, Dynamics, and Constraints. Automatica, 407-
427.

Bennett, S. (1993). A history of control engineering.

Biege, B., Andersen, P., Pedersen, T. S., Nielsen, K. M., & Stoustrup, J. a. (2013). Smart grid dispatch strategy
for on/off demand-side devices. In Proceedings of the European Control Conference 2013. IEEE Pres.

Biegel, B. (2012). Flexibility Interface - Information Modeling for Direct Control. Aalborg, Denmark: iPower:
http://www.ipower-net.dk/Publications.aspx.

Bosch, A. J. (2009). Real-time control of power systems using nodal prices. International Journal of Electrical
Power and Energy Systems.

DiLouie, C. (2008). Lighting controls handbook. Lilburn, Ga. [u.a.]: Fairmont Press [u.a.] .

Dr. John R. Wright, J. (1999). The Debate Over Which PLC Programming Language is the State-of-the-Art.
Journal of Industrial Technology, Volume 15, Number 4.

edersen, T. S. (2011). Using Heat Pump Energy SStorage in the Power Grid. IEEE International Conference on
Control Applications.

Fatemeh Tahersima, P. P. (2013). An Intuitive Definition of Demand Flexibility in Direct Load Control. IEEE
Conference on Control Applications. Hyderabad, India.

Frauke Oldewurtel, A. U. (2010). Reducing Peak Electricity Demand in Building Climate Control using Real-
Time Pricing and Model Predictive Control. 49th IEEE Conference on Decision and Control.

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 41/97

Gehrke, A. M. (2013). An Overview of Load Control Policies in Buildings for Smart Grids. IEEE International
Conference on Smart Energy Grid Engineering.

Glielmo, A. P. (2011). Energy efficient microgrid management using Model Predictive Control. 50th IEEE
Conference on Decision and Control and European Control Conference (CDC-ECC).

Glielmo, A. P. (2011). Energy efficient microgrid management using Model Predictive Control. 50th IEEE
Conference on Decision and Control and European Control Conference (CDC-ECC).

Gomes, A., & Martins, C. H. (2007). A Multiple Objective Approach to Direct Load Control Using an
Interactive Evolutionary Algorithm. IEEE Transactions on Power Systems.

Gong, J., Xie, D., & Zhang, C. J. (2011). Multiple Objective Compromised Method for Power Management in
Virtual Power Plants. Energies.

Heussen, K. a. (2012). Indirect Control for Demand Side Management - A Conceptual Introduction. 3rd IEEE
PES Innovative Smart Grid Technologies (ISGT). Berlin, Germany.

Heussen, K. a. (2012). Unified System-Level Modeling of Intermittent Renewable Energy Sources and Energy
Storage for Power System Operation. IEEE Systems Journal, 140-151.

Hommelberg, M., Warmer, C., Kamphuis, I., & Kok, J. A. (2007). Distributed Control Concepts using Multi-
Agent technology and Automatic Markets: An indispensable feature of smart power grids. 2007
IEEE Power Engineering Society General Meeting.

Jokic, A. a. (2009). Real-Time Control of Power Systems Using Nodal Prices. International Journal of
Electrical Power and Energy Systems, 552-530.

Jørgense, R. H. (2012). Economic Model Predictive Control for Building Climate Control in a Smart Grid.
Innovative Smart Grid Technologies (ISGT).

Juelsgaard, M. A. (2013). Stability Concerns for Indirect Consumer Control in Smart Grids. Proceedings of
European Control Conference (ECC).

K. Edlund, J. a. (2011). Hierarchical model-based predictive control of power plant portfolio. Control
Engineering Practice.

Krogh, G. E. (2006). Programming Discrete Control Systems Using State Machine Templates. The 8th
International Workshop on Discrete Event Systems.

Maciejowski, J. (2012). Predictive Control with Constraints. Harlow, UK: Prentice Hall.

Madsen, G. D. (2013). Chance-Constrained Optimization of Demand Response to Price Signals. IEEE
Transactions on Smart Grid.

Madsen, P. (2007). Dedicated Programming Language for Small Distributed Control Devices. Second IEEE
Conference on Industrial Electronics and Applications. (ICIEA 2007).

Mardavij Roozbehani, M. A. (2012). Volatility of Power Grids Under Real-Time Pricing. IEEE Transactions on
Power Systems.

Meyer, G. (2004). Smart Home Hacks: Tips & Tools for Automating Your House. O'Reilly.

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 42/97

Mitter, M. R. (2010). On the Stability of Wholesale Electricity Markets under Real-Time Pricing. 49th IEEE
Conference on Decision and Control.

Moslehi, K. a. (2010). A Reliability Perspective of the Smart Grid. IEEE Transactions on Smart Grid, 57-64.

Nerea Ruiz, I. C. (2009). A Direct Load Control Model for Virtual Power Plant Management. IEEE
Transactions on Power Systems.

ODYSSEE-MURE project. (2012). Energy Efficiency Trends in Buildings in the EU. Europe: Intelligent Energy
Europe.

Parisio, A. a. (2011). Energy Efficient Microgrid Management Using Model Predictive Control. 50th
Conference on Decision and Control.

Pedersen, T. S., Andersen, P., Nielsen, K. M., & Staermose, H. L. (2011). Using Heat Pump Energy SStorage in
the Power Grid. IEEE International Conference on Control Applications.

Petersen, M. H. (2013). A Taxonomy for Flexibility Modeling and a Computationally Efficient Algorithm for
Dispatch in Smart Gerids. American Control Conference. Washington, DC, US.

Pinson, P. (2012). Indirect Control by Prices - Basic Concepts, Applications and Requirements. Copenhagen,
Denmark: iPower:http://www.ipower-net.dk/Publications.aspx.

Røpke, I. a. (2010). Information and Communication Technologies - A New Round of Household
Electrification. Energy Policy, 1764-1773.

Schweppe, F. C. (1988). Spot Pricing of Electricity. Springer.

Tahersima, F. a. (2011). Contribution of Domestic Heating Systems to Smart Grid Control. IEEE Conference
on Decision and Control.

Tahersima, F. a. (2012). Economic COP Optimization of a Heat Pump with Hierarchical Model Predictive
Control. IEEE Conference on Decision and Control.

Trangbæk, K., & Bendtsen, J. D. (2011). Hierarchical Control for Smart Grids. Proceedings of the 18th IFAC
World Congress.

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 43/97

Appendix A. Building Load Types

Ordinary houses contain a large number of electricity consuming products. All These products are

divided into a number of categories these are:

 Lighting

 Heating and ventilation

 Washing

 Fridge/freeze

 Cooking

 IT and electronic

 Others

In the following each group is described in a more details.

 Coverage [quantity/household]: The number of entities per household

 Consumption [kWh/year]: The average consumption per year

 On [Watt]: The consumption when switch on and if important the standby consumption

A.1. Lighting

Appliances name

Coverage

[quantity/household]

Consumption

[kWh/year] On [Watt]

LED 0,95 8 4

Incandescent Bulb 4,34 394 43

Halogen 5,93 76 34,19

Crystal Buld 0,26 3 4

Light chain 0,59 26 25

Light sensor 0,48 11 1

Fluorescent tubes 1,40 246 35

Compact fluorescent lamps 8,18 28 8

A.2. Heating and ventilation

Appliances name

Coverage

[quantity/household]

Consumption

[kWh/year] On [Watt]

Circulating Pump, self-regulating 263

Circulating Pump, step regulated step 3 525 60

El towel dry 0,41 68

El radiator 0,10 371

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 44/97

El Water heater per person 0,10 850

Floor heating (best insulated housing)

7000 (140m2)

 Floor heating (new houses) 10500 (140m2)

 Floor heating (old houses) 11900 (140m2)

 Heat pump. Air to air 0,02 1460

Heat pump. Air to water 0,03 2400
4

Heat pump: Water to water. 0,01 2800
5

Ventilation without heat recovery

Ventilation with heat recovery

Ventilation with heat pump. 500

Dehumidifier 96 100,00

A.3. Washing

Appliances name

Coverage

[quantity/household]

Consumption

[kWh/year] On [Watt]

Dishwasher 290
6
 1500

Dryer 0,67 218 2500

Washing Machine

333 2000

A.4. Fridge/freeze

Appliances name

Coverage

[quantity/household]

Consumption

[kWh/year] On [Watt]

Ice Machine

Chest Freezer 0,67 312 140

Fridge with freezer box 0,34 240 300

Fridge without freezer box 0,22 197

Upright Freezer 0,57 142

4 http://www.toshiba-aircon.jp/press/2009/img/090731/cat_estia.pdf

5 http://www.jordvarme.dk/produkter/jordvarme-dc.html

6 http://www.goenergi.dk/

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 45/97

A.5. Cooking

Appliances name

Coverage

[quantity/household]

Consumption

[kWh/year] On [Watt]

Blender 4 300

Water boiler 0,65 64 2000

El oven 0,85 11 2367

Exhaust Hood 0,71 76 90

Espresso 0,83 75 184

Food processor 0,12 9 500

Coffee Grinder 0,03 1 250

Coffee Machine 0,21 69 1250

Boiling Plates 0,62 96 1347

Small Oven 0,91 126 1653

Microwave Oven 0,10 96 1500

Food mixer 0,76 19 972

waffle iron 0,40 28 1029

Quooker 0,02 50 3000

Toaster 27 900

Stove, induction hot plates incl. Standby 215

Stove, ceramic hot plates incl. Standby 223

Stove and oven incl. standby 156

A.6. IT and electronic

Appliances name

Coverage

[quantity/household]

Consumption

[kWh/year] On [Watt]

Blue ray player 7

Clock radio 0,65 16 5

DAB radio 0,36 22 7

TV 2,04 171 139

DVD 0,86 6 11

Ghettoblastere 2,04 35 139

Chanel selector 0,38

Parabola 0,33 48 10

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 46/97

Projector 0,13 18 10

Gaming consoles 0,05 96 80

Home audio 0,57 107 124

Surround 0,90 42 14

Video 0,32 56 137

Mobile phone

 10 30

Burglar alarm 0,14 35 5

Laptop 0,49 50

Desktop computer 0,49 225

Printer 370

Monitor 150

Decoder incl. Standby 144 17

ADSL 88 10

Fax incl. Standby 88 10

A.7. Other

Appliances name

Coverage

[quantity/household]

Consumption

[kWh/year] On [Watt]

Sauna 9000

Solarium 0,02

Spa bath 0,03

Vacuum Cleaner 0,92 31 2067

Swimming pool 0,01 2500

Answering machine 0,08 3

Terrace Heater 0,06 1500

Aquarium 54 litres incl. Heating, pump and

light 200

Electric razor 14 10

Battery charger less than 1 3

Motion detector 9 1

Drilling machine 9 750

Drain pump 23 250

Elevation bed 4

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 47/97

Electric hedge trimmer 3 1000

Heated towel rail 183 50

Sources:

http://www.oksolar.com/technical/consumption.html

http://www.goenergi.dk/forbruger/alt-om-energiforbrug/elforbrug/hvor-bruger-du-mest-
stroem

http://www.toshiba-aircon.jp/press/2009/img/090731/cat_estia.pdf

http://www.jordvarme.dk/produkter/jordvarme-dc.html

http://www.goenergi.dk/

http://www.oksolar.com/technical/consumption.html
http://www.goenergi.dk/forbruger/alt-om-energiforbrug/elforbrug/hvor-bruger-du-mest-stroem
http://www.goenergi.dk/forbruger/alt-om-energiforbrug/elforbrug/hvor-bruger-du-mest-stroem
http://www.toshiba-aircon.jp/press/2009/img/090731/cat_estia.pdf
http://www.jordvarme.dk/produkter/jordvarme-dc.html
http://www.goenergi.dk/

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 48/97

Appendix B. Flexibility Type of Building Loads

The flexibility of the appliances in households is assessed based on the following parameters:

 Hours of delay in the start of the operation of the device

 The length of the intermediate interruptions during the operation admitted by the devices

The degree of flexibility has been assessed based on the following table, which shows the hours of

delay in the start of operation, the duration of interruption and the possibility of temporarily storing

energy offered by the devices.

DEGREE OF

FLEXIBILITY

HOURS OF

DELAY IN

THE START

OF

OPERATION

INTERMEDIATE

INTERRUPTIONS

TEMPORARILY

STORAGE OF

ENERGY

High 4-8 Long High

Medium 1-4 Short Medium

None 0 None Low

The following subsections analyse the flexibility of the most common appliances in households.

B.1. Lighting

In general, lighting has no flexibility, as it must be operational when needed.

APPLIANCES NAME FLEXIBILITY

LED None

Incandescent Bulb None

Halogen None

Crystal Bulb None

Light chain None

Light sensor None

Fluorescent tubes None

Compact fluorescent lamps None

B.2. Heating and ventilation

Heating and ventilation allow, in general, a certain degree of flexibility, as they can have some short

periods of interruption or short delay in the start of operation.

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 49/97

APPLIANCES NAME FLEXIBILITY

Circulating Pump, self-regulating Medium

Circulating Pump, step regulated step 3 Medium

El towel dry Medium

El radiator Medium

Hot Water Medium

El Water heater per person Medium

Floor heating (best insulated housing) Medium

Floor heating (new houses) Medium

Floor heating (old houses) Medium

Sun heating None

Sun heating for hot water None

Heat pump. Air to air Medium

Heat pump. Air to water Medium

Heat pump: Water to water. Medium

Ventilation without heat recovery Medium

Ventilation with heat recovery Medium

Ventilation with heat pump. Medium

Dehumidifier Medium

B.3. Washing

Appliances related to washing are the ones which most flexibility permit, as their start can be

delayed.

APPLIANCES NAME FLEXIBILITY

Dishwasher High

Dryer High

Washing Machine High

B.4. Fridge/Freeze

In general, fridge and freeze allow short periods of interruption during their operation, as well as

temporary storage of energy.

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 50/97

APPLIANCES NAME FLEXIBILITY

Ice Machine Medium

Chest Freezer Medium

Fridge with freezer box Medium

Fridge without freezer box Medium

Upright Freezer Medium

B.5. Cooking

Generally speaking, cooking appliances do not allow flexibility, as they must be in operation when

needed.

APPLIANCES NAME FLEXIBILITY

Blender None

Water boiler None

El oven None

Exhaust Hood None

Espresso None

Food processor None

Ice Cube Machine None

Coffee Grinder None

Coffee Machine None

Boiling Plates None

Small Oven None

Microwave Oven None

Food mixer None

Waffle iron None

Quooker Medium

Toaster None

Stove, induction hot plates incl. Standby None

Stove, ceramic hot plates incl. Standby None

Stove and oven incl. standby None

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 51/97

B.6. TV, Video and Audio

These appliances do not offer any degree of flexibility, as their start cannot be delayed.

APPLIANCES NAME FLEXIBILITY

Blue ray player None

Clock radio None

DAB radio None

TV None

DVD None

Channel selector None

Parabola None

Projector None

Gaming consoles None

Home audio None

Surround None

Video None

El lawn mower None

Garden Pool Medium

Garden fountain Medium

Hand Vacuum Cleaner None

Hair dryer None

Antenna amplifier None

Decoder incl. Standby None

ADSL None

Fax incl. Standby None

B.7. Other

APPLIANCES NAME FLEXIBILITY

Sauna Medium

Solarium Medium

Spa bath Medium

Vacuum Cleaner None

Swimming pool without heating Medium

Swimming pool Medium

Answering machine None

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 52/97

APPLIANCES NAME FLEXIBILITY

Terrace Heater Medium

Wireless phone None

Burglar alarm None

Laptop None

Desktop computer None

Printer None

Monitor None

Aquarium 54 litres incl. Heating, pump

and light

Medium

Shaving Medium

Battery charger High

Motion detector None

Drilling machine Medium

Drain pump Medium

Elevation bed None

Electric hedge trimmer None

Heated towel rail Medium

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 53/97

Appendix C. Requirements

The requirements for SCM are defined in WP2 deliverable 2.2. There are 30 requirements for the

SCM. These requirements are divided into three Priorities: 12 of them have Must Priority, 14 have

Should Priority and 4 have Could Priority.

SCM consists of three parts according to the ENCOURAGE architecture. These parts are Energy

manager, Load manager and Local generation control.

In the following the requirement are listed, and it is specified which part of SCM each requirement

are related to.

The 12 ‘Must’ requirements are

1.

ID ATOS1.1.1

Rationale (The reason) Improvement of consume of energy

Supervisory control part Energy manager + Load manager

Action Improve the consumption using the platform in buildings

2.

ID ENO1.1.19a + ESV 1.1.1 + EZM 1.1.44

Rationale (The reason) The system shall monitor real-time disaggregated

consumption

Supervisory control part Energy manager

Action Real-time data plus recorded data

3.

ID ADV.1.1.6

Rationale (The reason) System should provide basic control (ON/OFF) for

individual appliances

Supervisory control part Energy manager + Load manager

Action switch on/off

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 54/97

4.

ID ADV.1.1.9

Rationale (The reason) System has to react to events sent from the middleware

(configurable alarms)

Supervisory control part Energy manager + Load Manager + Local generation control

Action React according rules, e.g. send an alarm to BI & EB or a

message to a user

5.

ID EZM.1.1.30 +EZM.1.1.5 + ENO 1.1.33 + ENO 1.1.34

Rationale (The reason) Supervisory control will define algorithms to control in house

devices (example increase/decrease temperature, floor

heating, water tank temp, home appliances, UPS etc.... send

notification)

Supervisory control part Energy manager + Load manager

Action Control Action Device

6.

ID EZM.1.1.41

Rationale (The reason) All data and user information gathered should be protected

with reference to Data Information Directives / Regulations. It

is important that no information can be attained by

unauthorized parties.

Supervisory control part Energy manager + Load manager + Local generation control

Action Arch requirement

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 55/97

7.

ID EZM.1.1.42

Rationale (The reason) All data transmission must be carried out over a secure

connection

Supervisory control part Energy manager + Load manager + Local generation control

Action Arch requirement

8.

ID EZM.1.1.36 + ENO1.1.6

Rationale (The reason) System needs to monitor external influences (external climate)

Supervisory control part Energy manager

Action External sensors active

9.

ID ENO1.1.34

Rationale (The reason) To make sure the local surplus is used locally

Supervisory control part Energy manager

Action By communication between the local house controls, a

program makes sure that the local surplus is used local

10.

ID ENO1.1.37

Rationale (The reason) To store energy in the heat pump

Supervisory control part Energy manager + Load manager

Action When there is surplus in the grid or financial advantage for the

residents, the house control should tell the heat pump to raise

the temperature in the water storage

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 56/97

11.

ID ENO1.1.4

Rationale (The reason) Energy Manager has to control the heating of the house

Supervisory control part Load manager

Action Wireless temperature transmitters sending room temperature

to the house control

12.

ID ENO1.1.5

Rationale (The reason) Energy Manager has to control the set point of heating in the

house

Supervisory control part Energy manager + Load manager

Action Connection to the heating system with information about

raising or lowering the temperature

The ‘Must’ requirement can be merged into three descriptive requirements.

 Requirements 1, 3, 5, 11 and 12: Sawing energy.

o The energy consumption shall be improved. This improvement shall be done by

controlling the appliance, the light and the heating of the houses. Improvement

means lowering the consumption with atlases 5% without compromising the living

comfort.

 Requirements 2, 9, 10, 11 and 12: Local use of local production.

o SCM shall minimize the mismatch between the locally produced energy and the

locally used energy e.g. by controlling the heating of the houses through controlling

heat pumps and/or setting the set points for room temperature in the individual

houses. The locally production and consumption shall be monitored and logged in

real-time.

 Requirements 4, 6, 7 and 8: Data handling and Security.

o SCL shall handle data and event from the middleware in a secure manner. This

means that all data transmission must be carried out over a secure connection so that

no information can be attained by unauthorized parties. SCM shall, through the

middleware, send the necessary signals to the EB&BI module. SCM shall send

message to a user through a user interface.

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 57/97

The 14 ‘Should’ requirements are

1.

ID ENEL1.1.6

Rationale (The reason) Involve users in efficiency targets

Supervisory control part Energy manager + Load manager + Local generation control

Action The Encourage system should improve the energy efficiency

of the building

2.

ID ENO1.1.15

Rationale (The reason) To turn off lights using motion sensors and/or sound

detectors to make sure the consumers do not use unnecessary

energy

Supervisory control part Energy manager + Load manager + Local generation control

Action Shut down the light in the room.

3.

ID ENO1.1.24 + EZM 1.1.15

Rationale (The reason) The system should be capable of sending event / rules driven

emails, Text message. Private twitter feeds or IM should also

be considered. E.g. Triggered when consumption is over

budget

Supervisory control part Energy manager + Load manager + Local generation control

Action Notification Sent

4.

ID EZM.1.1.3 + EZM.1.1.41

Rationale (The reason) Well recognized industry standards and protocols should be

used throughout

Supervisory control part Energy manager + Load manager + Local generation control

Action Identified what defines types and common protocol

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 58/97

5.

ID ENO1.1.32

Rationale (The reason) To give consumers ideas how to save energy

Supervisory control part Energy manager + Load manager + Local generation control

Action Post ideas with how to save energy regarding the consumption

6.

ID EZM.1.1.34

Rationale (The reason) The system shall monitor real-time multiple generation (co-

generation, wind, solar, grid) in order to create predictive

forecast

Supervisory control part Energy manager + Load manager + Local generation control

Action Real-time data recorded

7.

ID EZM.1.1.45

Rationale (The reason) The system should allow for certain devices to define their

own constraints / critical set points

Supervisory control part Energy manager + Load manager + Local generation control

Action Apply a rule relating to critical devices

8.

 ENEL.1.1.36

Rationale (The reason) To control customers’ inertial loads to achieve peak shifting.

Supervisory control part Energy manager + Load manager + Local generation control

Action Transform high level decision into device orders (e.g. switch

on/off devices)

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 59/97

9.

ID ENO1.1.1

Rationale (The reason) To raise the temperature in the house in case of surplus

production or financial advantage. Otherwise and in case that

solar cells are not producing electricity, the temperature can

be lowered

Supervisory control part Energy manager + Load manager + Local generation control

Action If surplus or financial advantage the house control should

raise the temperature in the house

10

ID ENO1.1.40

Rationale (The reason) To use surplus energy to recharge an UPS system

Supervisory control part Energy manager + Load manager + Local generation control

Action To recharge an UPS system

11.

ID ENO1.1.7

Rationale (The reason) To use the washer and dryer when the electricity is produced

Supervisory control part Energy manager + Load manager + Local generation control

Action Wireless relay on wire to the washer

12.

ID ENO1.1.8

Rationale (The reason) To lower the temperature of fridge and freezer when surplus

production

Supervisory control part Energy manager + Load manager + Local generation control

Action Wireless regulator to control the temperature in the fridge

and freezer

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 60/97

13.

ID ENO1.1.9

Rationale (The reason) To raise the temperature of the hot water tank when

electricity is produced

Supervisory control part Energy manager + Load manager + Local generation control

Action Wireless regulator and wireless communication to existing

regulator to the hot water tank to raise the water temperature

14.

ID ENO1.1.41

Rationale (The reason) To save energy when the residence is empty or residents are

asleep

Supervisory control part Energy manager + Load manager + Local generation control

Action Lover the temperature in the house when the house is in stand

by for a longer period like during nights, holidays etc.

The ‘Should’ requirement can be merged into three descriptive requirements.

 Requirements 1, 3, 4 and 5: Communication with the user.

 Requirements 2, 7, 8, 9, 10, 11, 12, 13 and 14: Controlling.

 Requirements 6: Forecasting.

The 4 ‘Could’ requirements are

1.

ID ENO1.1.36

Rationale (The reason) To find out if the households are using more or less energy

than other similar households

Supervisory control part Energy manager + Load manager + Local generation control

Action "Make a questionnaire that the residents can fill out, with

following questions:

 Size of the residence

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 61/97

 Number of inhabitants

 Construction year

 Heating system

2.

ID ENO1.1.11

Rationale (The reason) Decisions must be performed by a rule-based engine, e.g.: To

Avoid bacterial growth, the temperature in the hot water tank

has to be raised to over 80°C once a week

Supervisory control part Energy manager + Load manager + Local generation control

Action Execute control law: Wireless regulator and wireless

communication to existing regulator to the hot water tank to

raise the water temperature

3.

ID ENO1.1.28

Rationale (The reason) To give prosumers opportunity to buy external supervision of

solar panels and/or heat pumps

Supervisory control part Energy manager + Load manager + Local generation control

Action Sending status data from heat pump and solar panels to

service provider

4.

ID ENEL.1.1.40

Rationale (The reason) Consumers can be represented also by associations and

municipalities.

 Supervisory control part Energy manager + Load manager + Local generation

control

Action Encourage architecture must provide different level of

aggregation (hierarchy) in order to allow associations of

users or municipalities to assume the role of energy manager

of groups of buildings and/or users

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 62/97

Appendix D. BNF for the ELL language

Tokens

<DEFAULT> SKIP : {
" "
| "\r"
| "\t"
| "\n"
}

<DEFAULT> SPECIAL : {
<SINGLE_LINE_COMMENT: "#" (~["\n","\r"])* ("\n" | "\r" | "\r\n")>
}

<DEFAULT> TOKEN : {
<TRUE: "ON">
| <FALSE: "OFF">
| <TRUE2: "TRUE">
| <FALSE2: "FALSE">
| <ANALOG: "ANACONST">

1 | <DIGITAL: "DIGICONST">
| <ANAIN: "ANAINPUT">
| <ANAOUT: "ANAOUTPUT">
| <DIGIIN: "DIGIINPUT">
| <DIGIOUT: "DIGIOUTPUT">
| <BLINK: "FLACH">
| <FBLINK: "QFLACH">
| <DELAY: "DELAY">
| <FF: "FF">
| <PID: "PID">
| <SQR: "SQR">
| <SEKVENS: "FSM">
| <DFREG: "DFREG">
| <BBREG: "BBCTRL">
| <RESET: "RESET">
| <HOLD: "HOLD">

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 63/97

| <TILSTAND: "STATE">
| <INIT: "INIT">
| <GAA: "GO">
| <TIL: "TO">
| <NAAR: "WHEN">
| <SLUT: "END">
| <START: "PROGRAM">
| <MIN: "TIME.MINUTE">
| <HOUR: "TIME.HOUR">
| <DAY: "TIME.DAY">
| <WEEK: "TIME.WEEK">
| <WEEKDAY: "TIME.WEEKDAY">
| <MDR: "TIME.MDR">
}

<DEFAULT> TOKEN : {
<LPAREN: "(">
| <RPAREN: ")">
| <SEMICOLON: ";">
| <COMMA: ",">
| <COLON: ":">
| <SA: "@">
}

<DEFAULT> TOKEN : {
<PLUS: "+">
| <MINUS: "-">
| <MULTIPLY: "*">
| <DIVIDE: "/">
| <OG: "AND">
| <ELLER: "OR">
| <IKKE: "NOT">
| <EQL: "<=">
| <EQG: ">=">
| <EQU: "=">
}

<DEFAULT> TOKEN : {
<REALVAL: <INTVAL> ("." <INTVAL>)? | "." <INTVAL>>

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 64/97

| <INTVAL: (<DIGIT>)+>
| <DEVICEID: "DIV:" <LETTER> (<LETTER> | <DIGIT> | "_" | "." | "/")*>
| <IDENTIFIER: <LETTER> (<LETTER> | <DIGIT> | "_" | ".")*>
| <AIDENTIFIER: "_" (<LETTER> | <DIGIT> | "_")*>
| <#LETTER: ["$","A"-"Z","a"-"z","\u00c0"-"\u00d6","\u00d8"-"\u00f6","\u00f8"-"\u00ff","\u0100"-
"\u1fff","\u3040"-"\u318f","\u3300"-"\u337f","\u3400"-"\u3d2d","\u4e00"-"\u9fff","\uf900"-
"\ufaff"]>
| <#DIGIT: ["0"-"9","\u0660"-"\u0669","\u06f0"-"\u06f9","\u0966"-"\u096f","\u09e6"-
"\u09ef","\u0a66"-"\u0a6f","\u0ae6"-"\u0aef","\u0b66"-"\u0b6f","\u0be7"-"\u0bef","\u0c66"-
"\u0c6f","\u0ce6"-"\u0cef","\u0d66"-"\u0d6f","\u0e50"-"\u0e59","\u0ed0"-"\u0ed9","\u1040"-
"\u1049"]>
}

Non-terminals

program ::= (erklaering)* <START> (statement)* <EOF>

erklaering ::= aconstsektion

| dconstsektion

| aisektion

| aosektion

| disektion

| dosektion

statement ::= simpelstatement

| sequence

aconstsektion ::= <ANALOG> (aconstspes)*

dconstsektion ::= <DIGITAL> (dconstspes)*

aisektion ::= <ANAIN> (aikanalspes)*

aosektion ::= <ANAOUT> (aokanalspes)*

disektion ::= <DIGIIN> (dikanalspes)*

dosektion ::= <DIGIOUT> (dokanalspes)*

aconstspes ::= <AIDENTIFIER> <EQU> <REALVAL> <SEMICOLON>

dconstspes ::= <IDENTIFIER> <EQU> <TRUE> <SEMICOLON>

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 65/97

| <IDENTIFIER> <SA> <FALSE> <SEMICOLON>

aikanalspes ::= <AIDENTIFIER> <SA> <DEVICEID> <SEMICOLON>

realvv ::= <REALVAL>

| <MINUS> <REALVAL>

aokanalspes ::= <AIDENTIFIER> <SA> <DEVICEID> <SEMICOLON>

dikanalspes ::= <IDENTIFIER> <SA> <DEVICEID> <SEMICOLON>

dokanalspes ::= <IDENTIFIER> <SA> <DEVICEID> <SEMICOLON>

simpelstatement ::= <IDENTIFIER> <EQU> logical <SEMICOLON>

| <AIDENTIFIER> <EQU> anaval <SEMICOLON>

sequence ::= <SEKVENS> <COLON> sekstart sekvensctrl inittilstand (tilstand)* <SLUT>

sekstart ::= <IDENTIFIER>

sekvensctrl ::= (resetsek)? (holdsek)?

resetsek ::= <RESET> <EQU> logical <SEMICOLON>

holdsek ::= <HOLD> <EQU> logical <SEMICOLON>

inittilstand ::= stateinitstart handlingsdel (gaatil)* <SLUT>

tilstand ::= statestart handlingsdel (gaatil)* <SLUT>

stateinitstart ::= <TILSTAND> <COLON> <INIT>

statestart ::= <TILSTAND> <COLON> <IDENTIFIER>

handlingsdel ::= (simpelstatement)*

gaatil ::= <GAA> <TIL> <IDENTIFIER> <NAAR> logical <SEMICOLON>

| <GAA> <TIL> <INIT> <NAAR> logical <SEMICOLON>

logical ::= lterm ((<ELLER>) lterm)*

lterm ::= lexp ((<OG>) lexp)*

lexp ::= <IKKE> lelement

| lelement

lelement ::= <IDENTIFIER>

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 66/97

| <TRUE>

| <FALSE>

| <BLINK>

| <FBLINK>

| lfunction

| <LPAREN> logical <RPAREN>

| anacomp

anacomp ::=
2 anaval (">" anaval | "<" anaval | <EQG> anaval | <EQL> anaval |

<EQU> anaval)

lfunction ::= <DELAY> <LPAREN> logical <COMMA> anaval <RPAREN>

| <FF> <LPAREN> logical <COMMA> logical <RPAREN>

| <BBREG> <LPAREN> anaval <COMMA> anaval <RPAREN>

anaval ::= term ((<PLUS> | <MINUS>) term)*

term ::= exp ((<MULTIPLY> | <DIVIDE>) exp)*

exp ::= <MINUS> element

| element

element ::= <AIDENTIFIER>

| <REALVAL>

| <LPAREN> anaval <RPAREN>

| function

| <MIN>

| <HOUR>

| <DAY>

| <WEEK>

| <WEEKDAY>

| <MDR>

function ::= <SQR> <LPAREN> anaval <RPAREN>

 D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Page 67/97

| <DFREG> <LPAREN> anaval <COMMA> anaval <RPAREN>

|

<PID> <LPAREN> anaval <COMMA> anaval <COMMA> anaval <COMMA>
anaval <COMMA> anaval <COMMA> logical <COMMA> anaval <RPAREN>

D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Version 1.0

 Page 68/97

Appendix E. ELL Manual

ENCOURAGE

Embedded Intelligent Controls for Buildings with Renewable Generation and Storage

Grant Agreement No.: 269354

WP5: ELL (ENCOURAGE Logical Language).

Manual

ENCOURAGE

Deliverable D5.3 (Prototype)

D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Version 1.0

 Page 69/97

Table of Contents

1. Introduction ... 70

2. The IDE tool .. 71

3. The ELL interpreter ... 75

4. The ELL language ... 79

4.1. Interface to the middleware .. 79

4.2. Predefined constants ... 80

4.3. The control algorithm ... 80

5. Program example ... 88

Appendix A. BNF for the ELL language .. 90

Appendix B. The ELL interpreter instruction set ... 96

D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Version 1.0

 Page 70/97

1. Introduction

This manual describes the IDE tool and the control language special develop for ENCOURAGE.

This language is called ELL (Encourage Logical Language).

D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Version 1.0

 Page 71/97

2. The IDE tool

Figure 7: The IDE tool

The IDE tool is a dedicated development tool for the ELL language. This tool includes the

necessary and only the necessary features for programming, compiling, executing and debugging

the ELL code. Figure 1 shows the tool. The tool is started by clicking on the ellIDE.jar file or by

using the Java interpreter directly in a command prompt, like this:

 ..> java –jar ellIDE.jar

The window consists of three fields:

1. A menu field

2. An editor frame

D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Version 1.0

 Page 72/97

3. An Error and Warning frame

The menu field contains a:

 File menu: for handling files e.g. Open, save, save as, new, close and exit where exit close

down the IDE tool itself.

 Edit menu with cut, copy, paste and delete. Beside of that it also contain a number of

shorthand’s for programming, like inserting IO sections, a FSM’s, PID controllers and so

on.

 Help menu with only one point: Help. (Not implemented in the prototype).

 Compile menu with only one point: Compile. If clicking on compile then the program in

the edit frame will be compiled to interpretable code, if no error is found. The code can be

executed on the core platform by a dedicated interpreter.

 Run menu: containing a Debug, stop and Run menu point. Debug will start the interpreter

and display all variables in real-time in a separate window. Stop will stop the execution and

Run will start the execution without the debugging window.

The normal key board combinations: Ctrl-x, Ctrl-c and Ctrl-v can be used for cut, copy and paste.

D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Version 1.0

 Page 73/97

Figure 2 shows have the Error are handled by the compiler. The ELL language is case sensitive.

Here the word STATE is spelt wrongly; namely STaTE. It shall be mention here, that the prototype

compiler can’t find all errors. As long as the ELL program can be compile to something that can be

executed, then the compiler won’t necessarily find the errors. Especially doublet definitions will not

be catch by this compiler prototype.

Figure 8: The compiler has found an Error (STaTE should be STATE)

Figure 3 shows an example without any errors. Here there are two warnings of the type: Not

assigned OR defined and Not used. These warnings a very useful when finding runtime errors in the

program. For instance the warning in this example:

Not assigned OR defined ! _LightDimmerLivingRoom

This warning tells the programmer that the variable _LightDimmerLivingRoom, which is an

analog output, has not been assigned. This again tells the programmer that the program might be

uncompleted.

D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Version 1.0

 Page 74/97

Figure 9: A program with no errors, but there is a number warnings.

The output from the IDE is the interpretable code. This code is put in a file in the same directory as

the IDE jar file. If the program is new and hasn’t got a name i.e. it hasn’t been saved under a

specific name, then the code is named: fo.ell.bin. Otherwise the name will be program name

extended by .bin . This interpretable code file contains instructions for a virtual stack machine

called the ELL interpreter

D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Version 1.0

 Page 75/97

3. The ELL interpreter

A standalone version of the ELL interpreter is named EllRun.jar. This file is a runnable jar file

which means it can be executes from a command prompt like this:

..> java –jar EllRun.jar ‘the interpretable code name’

The code file from the IDE tool, shall be placed in the same directory as the interpreter EllRun.jar.

The interpreter implements a virtual stack machine. This stack machine operates on two different

stacks one for the logical statements, a Boolean stack, and another for the analog statements, a

floating point value stack.

The instructions for the logical stack are:

LOD #add : Load memory address #add on to the boolean stack

OUT #add : Move the top of the stack to mem. add. #add.

OR : OR the two top values on the stack and replace them with the result.

AND : Same as OR except using an AND instead of an OR.

NOT : Invert the top of the stack.

And for analog stack:

ALOD #add : Load memory address #add on to the analog stack.

AOUT #add : Move the top of the analog stack to #add in mem.

SUM : Add the two top values of the stack and replace them with the result.

SUB, MUL, DIV : Same as SUM except using subtraction, multiplication and division.

MINUS : Negate the top value on the analog stack.

ACONST #Value : Load a constant on top of the analog stack.

For some instructions both stack are in play. These are:

GRA : If Aanstak[top-1] > ANAstach[top] then put true on top of the Boolean stack.

EGRA : If Aanstak[top-1] >= ANAstach[top] then put true on top of the Boolean stack.

LES, ELES : Same as GRA, EGRA except using < and <=.

Where ANAstack[top] is the top element of the analog stack.

D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Version 1.0

 Page 76/97

Beside this there are a number of instructions for special functions. These are DELAY for

implementing timers, PID for PID-controllers and FF for Flip-Flop functions, BBCTRL for

implementing bang-bang controllers.

The following example shows how the analog and the Boolean stacks are used in combination to

perform a logical control statement. The control action is: Switch on a fan motor when the humidity

is too high and the button is pushed. Switch off the fan when the humidity has gone down 10 % or

the button is pushed again:

In logical terms it could be written like this, which is exactly the same as in the ELL language:

Where: FanM is a ventilation fan motor.

FF is filpflop with a syntax like: FF(Set,Reset).

_Humidity is the measurement in percent (%).

_MaxHumidity is analog value E.g. 80 %

StartVent is a logical start/stop value. E.g. input from a push button.

This small example will result in the following sequence of instructions to the interpreter:

This means load add. 247 and 253 on top of the analog stack. Perform a greater than operation on

these two values, throw them away and place the result on the Boolean stack. Load add. 241 on top

of the Boolean stack. Make an AND on the two values on the Boolean stack. Then again load add.

247 and 253 on top of the analog stack and now load the value 10 on top of the analog stack, make

a subtraction and a less than operation, and thereby remove all three values from the analog stack

and place the result on the Boolean stack. These instructions calculate this part _Humidity <

_MaxHumidity-10. The next part is the OR operation. After this instruction, ORN, the result of the

FanM= FF(_Humidity > _MaxHumidity AND StartVent,

 _Humidity < _MaxHumidity-10 OR StartVent);

ALOD 247

ALOD 253

GRA

LOD 241

ANDN

ALOD 247

ALOD 253

ACONST 10.0

SUB

LES

LOD 241

ORN

FF 0

OUT 240

D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Version 1.0

 Page 77/97

first logical expression _Humidity > _MaxHumidity AND Ventilate is next to the top of the

stack and the result of the last logical expression _Humidity < _MaxHumidity-10 OR Ventilate is

on the top of the stack. The FF instruction uses these two values for set and reset and then they are

deleted from the stack. The result of the FF instruction is placed on the stack. And lastly the top of

the Boolean stack is written out to add. 240 and deleted from the stack.

Besides this dual stack machine the interpreter also have special instructions for implementing finite

state machines (FSM).

These instructions are:

SEK : Mark the start of FSM code block.

ESK : Mark the end of FSM code block.

RES : If the top value of the Boolean stack is TRUE then the FMS transfers to the init

 state.

HOLD : If the top value of the Boolean stack is TRUE then the FMS stays in its current

 state.

STAI #add : Mark the start of the init state. If the mem. Cell given by #add is true then the

 instructions in the state are executed.

STA #add : Mark the start of a normal state. #add is used in the same way as for STAI.

GO #add : Sets the state value given by #add to the top value of the Boolean stack.

Here is an ELL-language example that illustrates how a FSM are handled by the interpreter. ON

and OFF is used for simplicity, of course these values can be exchanged by general logical

expressions. Here there are two states, the INIT state and the st1 state. The FSM always starts in the

INIT state. Each state can contain as many statements as needed. Here each state only contains one

statement, the GO TO statement.

The corresponding interpreter instructions look like this:

FSM: SM1

 RESET= OFF;

 HOLD= OFF;

 STATE: INIT

 GO TO st1 WHEN ON;

 END

 STATE: st1

 GO TO INIT WHEN ON;

 END

END

D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Version 1.0

 Page 78/97

The first five instructions indicate where the FSM starts and tells the interpreter if the FSM is in

reset mode or in hold mode.

Figure 4: The two states of the interpreter.

The next six instructions are the implementation of the two states. The addresses after the STAI and

STA instructions (0 and 2) are the address of the two state values. Figure 4 shows what happens

when entering a state in this part of the code. If the state value is true it always switches to the

active state and if the state value is false it stays in, or switches to, the passive state. When in the

active state the interpreter execute the instructions as normal. If the interpreter is in the passive state

it only reads the instructions and examine the state values. When reaching the end of the FSM,

indicated by ESK, the interpreter switches to the active state. The reset and hold mode of the

interpreter govern the manipulation of the state values. If the interpreter is in reset mode, the state

values related to STAI instructions are set to true and all other state values, inside the specific FSM,

are set to false. This has the highest priority. If the interpreter is in hold mode, the possibility for

GO to set a state value is disabled.

SEK

LODF

RES

LODF

HOLD

STAI 0

LODT

GO 2

STA 2

LODT

GO 0

ESK

D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Version 1.0

 Page 79/97

4. The ELL language

An ELL program consists of two parts separated by the word PROGRAM:

3. The Description of the interface to the middleware and predefined constants.

4. The control algorithm, or the program part, consisting of a number of FSM and statements.

4.1. Interface to the middleware

The middleware interface consists of four sections, one section for the four different types of I/O

values i.e.:

 ON/OFF input signals, also called digital inputs ‘DIGIINPUT’

 ON/OFF output signals, also called digital inputs ‘DIGIOUTPUT’

 Analog input signals, also called digital inputs ‘ANAINPUT’

 Analog output signals, also called digital inputs ‘ANAOUTPUT’

Each of these signals is defined by a symbolic name LightSwitch1_Beedroom and the

MacroCellID, the CellID and the DeviceID e.g.:

MacroCellID: Jadevej

CellID: nr3

DeviceID: device7

 # Part one: The interface to the middleware and predefined constants

PROGRAM

 # Part two: The control algorithm consisting of a number of FSM and statements

D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Version 1.0

 Page 80/97

N.B: All analog values shall start with an _.

4.2. Predefined constants

The predefined constants, gives the programmer the opportunity to use symbolic names for specific

constants and thereby make it easier to maintain the program.

4.3. The control algorithm

After the interface part comes the control algorithm part. These two parte are separated by the word

PROGRAM.

The control algorithm part consists of zero to N FSM and on zero to N statements, where N only is

limited by the amount of memory in the runtime system (The ENCOURAGE core platform).

4.3.1. Finite state machine (FSM)

A FSM starts with the word FSM and after that the name of the FSM.

Then there can be a reset/hold section which controls the execution of the FSM.

DIGIINPUT

 LightSwitch1_Beedroom DEV : Jadevej nr3 device7;

 DoorBell DEV : Jadevej nr3 device10;

 Window1Open_Beedroom DEV : Jadevej nr3 device2;

DIGIOUTPUT

 lamp1_Levingroom DEV : Jadevej nr3 device13;

ANAINPUT

 _RoomTemperature_Kitchen DEV : Jadevej nr7 device7;

ANAOUTPUT

 _LightDimmer_Beedroom DEV : Jadevej nr7 device2;

ANACONST

 _LightLevel = 80;

 _KP = 3.2;

 _KI = 0.67;

 _KD = 0;

DIGICONST

 true = ON;

 false = OFF;

D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Version 1.0

 Page 81/97

The remaining part of the FSM consists of a number of states. The first state shall be named INIT.

This state is the start state. Here, the FSM, will start when the execution are started. The rest of the

stated can be named arbitrarily by the programmer.

If the FSM is in the state Empty then the statements inside the state are active, or in other word the

statements and GO TO statements are executed in parallel and are running until the state gets

passive. This means that PirSensor OR LightSwitchOn are check and if true(ON) then the state

machine will switch to state Occupied.

You can have as many statements and GO TO statements inside a state as you like.

4.3.2. Statements

All actions are defined by statement. Statement can by inside state or outside the FSM’s. If placed

inside a state they are execute when the FSM are in that particular state other vice not. If the

statements are placed outside the FSM’s then they are executed all the time and in parallel.

 There are three kinds of statements:

 Logical assignment: Light= lightSwitch AND NOT dayLight;

 Analog assignment: _temperatureError= _RoomTempSetpoint - _Roomtemp;

FSM: LivingRoom

 RESET= OFF;

 HOLD= OFF;

 STATE: INIT

 LivingRoomLight = OFF;

 GO TO Empty WHEN LivingRoom.INIT;

 END

 STATE: Empty

 LivingRoomLight= OFF;

 LivingRoomHeating= OFF;

 GO TO Occupied WHEN PirSensor OR LightSwitchOn;

 END

 STATE: Occupied

 LivingRoomHeating= Heating.Running;

 GO TO Empty WHEN DELAY(NOT PirSensor,60*15) OR LightSwitchOff;

 END

END

FSM
name.

Reset/hold
section.

A state with
name: Empty.

A statement.

A GO TO
statement.

D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Version 1.0

 Page 82/97

 GoTo: GO TO Empty WHEN DELAY(NOT PirSensor,900) OR LightSwitchOff;

The last part of the logical statement e.g. lightSwitch AND NOT daylight; are the logical

expression

Expressions can be ether Logical or analog, depending on the type of the assignment. E.g. for

assignment of digital output logical expressions are used, and for assignment for analog output

analog expressions are used.

4.3.2.1. Logical expressions

A logical expression consists of digital signals, analog signals, logical operators, comparison

operators, functional operators and brackets.

 Logical operators:

 AND

 OR

 NOT

These three operators are combined like this:(logical expression) AND (logical expression). where

the result are a (logical expression).

This means that it is possible to make arbitrary sequence of digital symbols, logical operators and

brackets, as long the brackets fits together like traditional logical algebra.

Comparison operators can be used for compering analog expressions. The result is a logical

expression.

Comparison operators:

 >

 <

 >=

 <=

 =

These five operators can be used like this:

E.g. (analog expression) > (analog expression). Where the result are a (logical expression).

Functional operators:

 DELAY

 FF

 PID

 BBCTRL

 TIME.MINUTE

D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Version 1.0

 Page 83/97

 TIME.HOUR

 TIME.DAY

 TIME.WEEK

 TIME.WEEKDAY

 TIME.MONTH

 SQR

 FLACH

 QFLACH

4.3.2.2. Analog expressions

An analog expression consist of analog signals, functional operators, floating point operations and

brackets.

Functional operators:

 PID

 TIME.MINUTE

 TIME.HOUR

 TIME.DAY

 TIME.WEEK

 TIME.WEEKDAY

 TIME.MONTH

 SQR

Floating point operations:

 +

 -

 *

 /

These four operators are combined like this:(analog expression) + (analog expression). Where the

result are a (analog expression).

This means that it is possible to make arbitrary sequence of analog symbols, analog operators and

brackets, as long the brackets fits together like traditional algebra.

4.3.3. Description of the functional operators

4.3.3.1. Timer function (DELAY)

(logical value)= DELAY((logical expression), (analog expression));

D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Version 1.0

 Page 84/97

This function is used whenever a timer is needed. It takes two arguments a logical expression and

an analog expression. When the logical expression goes to ON the output value will go to ON after

n seconds, where n is given by the analog expression.

Out= DELAY(a,t);

4.3.3.2. Bang-Bang controller (BBCTRL)

Bang–bang controller (BBCTRL) also called on–off controller, are based on a hysteresis element

that switches between two states e.g. ON and OFF. This state is the output from the controller. This

controller can not only be used as a feedback controller but also when a level signal is needed. It

takes two arguments. These two inputs are both analog expressions.

Output= BBCTRL(Input – a,Hyst);

- t -

Out

a

- t - Time [sec]

OFF

ON

OFF

ON

Input

Output

-Hyst-

a

ON

OFF

D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Version 1.0

 Page 85/97

4.3.3.3. Flip-flop (FF)

The Set-Reset flip-flop with toggle function is a so-called JK latch. This type of flip-flop is

commonly used in control for handling ON/OFF states based on push-button. It takes two

arguments. These are two logical expressions.

JK latch truth table

Set Reset Out Comment

0 0 Out No change

0 1 0 Reset

1 0 1 Set

1 1 Not Out Toggle

out=FF(set,reset);

4.3.3.4. PID-controller (PID)

The most common feedback controller is the PID-controller. In the absence of knowledge of the

underlying process, a PID controller has historically been considered to be the best controller.

(Bennett, 1993).

This equation shows how the output is calculated.

 () ∑ ()

 () ()

Where:

: Proportional gain, a tuning parameter

: Integral gain, a tuning parameter

: Derivative gain, a tuning parameter

: Error. The difference between the set point and the measured value.

Dt: The Time between each sample.

Beside of this equation a PID controller contains a number of features that are necessary in real

applications. These are:

D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Version 1.0

 Page 86/97

 Anti-integral windup on saturation.

 Bump-less transferee between auto and manual.

 Bump-less tuning.

 Deadband handling.

 _Out= PID(_sp, _mv, _kp, _ki, _kd, _st, Auto, _Preset, _db);

Where:

_sp: Are the set point

_mv: Are the measured value

_kp: Proportional gain

_ki: Integral gain

_kd: Derivative gain

 Auto: ON/OFF signal that switch between auto and manual

_Preset: If manual then _out= _Preset

_db: If the absolute value of the error is less then _db then _out will not

change

4.3.3.5. Square root (SQR).

Square root is the only mathematic function that is available in the ELL language.

_Out= SQR (_input);

4.3.3.6. Flash function (FLASH).

Flash generate an alternating value with a frequency of 0.5 Hz. The ON time is 0.8 sec. and the OFF

time is 1.2 sec. This function is mostly used for alert flash.

AllertLamp= FLASH AND alert;

Here the alert lamp will flash if the alert signal is ON.

4.3.3.7. Quick Flash function (QFLASH).

Quick Flash generates an alternating value with a frequency of 1 Hz. The ON time is 0.4 sec. and

the OFF time is 0.6 sec. This function is fast alternative to FLASH.

D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Version 1.0

 Page 87/97

AlarmLamp= QFLASH AND alarm;

4.3.3.8. Time function (MINUTE, HOUR, DAY, WEEK, WEEKDAY, MONTH)

There are a number of real-time functions in ELL. These functions are used for handling time

dependent control. For instance; if the light has to switch ON between 6 o’clock and 10o’clock each

Monday then the ELL code would look like this:

Light= (6<=TIME.HOUR) AND (TIME.HOUR<=10) AND (TIME.WEEKDAY = Monday);

Where Monday are a constant set to 2. Sunday is the first day of the week.

The available timing functions are:

 TIME.MINUTE : are the current minute [0-59].

 TIME.HOUR : are the current hour [0-23].

 TIME.DAY : are the current minute [1-31].

 TIME.WEEKDAY : are the current weekday [1-7].

 TIME.WEEK : are the current week [1-52].

 TIME.MONTH : are the current month [0-11].

D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Version 1.0

 Page 88/97

5. Program example

A simple ELL program that controls the light in a living room is shown below. The light is dimmed

when the outside light is above a specific level. All the light is switched off when the room is

empty.

#--

DIGIINPUT

 LivingRoomLightButtonOn DEV : Jadevej nr3 device7;

 LivingRoomLightButtonOff DEV : Jadevej nr3 device3;

 LivingRoomMotionDetect DEV : Jadevej nr3 device4;

DIGIOUTPUT

 LivingRoomAllLight DEV : Jadevej nr3 device2;

ANAINPUT

 _OutdoorLight DEV : Jadevej nr3 device6;

ANAOUTPUT

 _LivingRoomLightDimmer DEV : Jadevej nr3 device5;

ANACONST

 _LightLevel = 80;

 _LightP = 3.2;

PROGRAM

FSM: LivingRoomLightBimmer

 STATE: INIT

 _LivingRoomLightDimmer = 100;

 GO TO dimme WHEN NOT BBCTRL(_OutdoorLight - _LightLevel, 5.0)

 AND LivingRoom.Occupied;

 END

 STATE: dimme

 _LivingRoomLightDimmer= (100 - _OutdoorLight)* _LightP;

 GO TO INIT WHEN BBCTRL(_OutdoorLight - _LightLevel, 5.0);

 GO TO INIT WHEN LivingRoom.Empty;

 END

END

FSM: LivingRoom

 STATE: INIT

 GO TO Empty WHEN ON;

 END

 STATE: Empty

 LivingRoomAllLight = OFF;

 GO TO Occupied WHEN LivingRoomLightButtonOn;

D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Version 1.0

 Page 89/97

 END

 STATE: Occupied

 LivingRoomAllLight = ON;

 GO TO Empty WHEN DELAY(LivingRoomMotionDetect,60*15)

 OR LivingRoomLightButtonOff;

 END

END

D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Version 1.0

 Page 90/97

Appendix A. BNF for the ELL language

Tokens

<DEFAULT> SKIP : {
" "
| "\r"
| "\t"
| "\n"
}

<DEFAULT> SPECIAL : {
<SINGLE_LINE_COMMENT: "#" (~["\n","\r"])* ("\n" | "\r" | "\r\n")>
}

<DEFAULT> TOKEN : {
<TRUE: "ON">
| <FALSE: "OFF">
| <TRUE2: "TRUE">
| <FALSE2: "FALSE">
| <ANALOG: "ANACONST">

3 | <DIGITAL: "DIGICONST">
| <ANAIN: "ANAINPUT">
| <ANAOUT: "ANAOUTPUT">
| <DIGIIN: "DIGIINPUT">
| <DIGIOUT: "DIGIOUTPUT">
| <BLINK: "FLASH">
| <FBLINK: "QFLASH">
| <DELAY: "DELAY">
| <FF: "FF">
| <PID: "PID">
| <SQR: "SQR">
| <SEKVENS: "FSM">
| <DFREG: "DFREG">
| <BBREG: "BBCTRL">
| <RESET: "RESET">

D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Version 1.0

 Page 91/97

| <HOLD: "HOLD">
| <TILSTAND: "STATE">
| <INIT: "INIT">
| <GAA: "GO">
| <TIL: "TO">
| <NAAR: "WHEN">
| <SLUT: "END">
| <START: "PROGRAM">
| <MIN: "TIME.MINUTE">
| <HOUR: "TIME.HOUR">
| <DAY: "TIME.DAY">
| <WEEK: "TIME.WEEK">
| <WEEKDAY: "TIME.WEEKDAY">
| <MDR: "TIME.MONTH">
}

<DEFAULT> TOKEN : {
<LPAREN: "(">
| <RPAREN: ")">
| <SEMICOLON: ";">
| <COMMA: ",">
| <COLON: ":">
| <SA: "@">
}

<DEFAULT> TOKEN : {
<PLUS: "+">
| <MINUS: "-">
| <MULTIPLY: "*">
| <DIVIDE: "/">
| <OG: "AND">
| <ELLER: "OR">
| <IKKE: "NOT">
| <EQL: "<=">
| <EQG: ">=">
| <EQU: "=">
}

D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Version 1.0

 Page 92/97

<DEFAULT> TOKEN : {
<REALVAL: <INTVAL> ("." <INTVAL>)? | "." <INTVAL>>
| <INTVAL: (<DIGIT>)+>
| <DEVICEID: "DIV:" <LETTER> (<LETTER> | <DIGIT> | "_" | "." | "/")*>
| <IDENTIFIER: <LETTER> (<LETTER> | <DIGIT> | "_" | ".")*>
| <AIDENTIFIER: "_" (<LETTER> | <DIGIT> | "_")*>
| <#LETTER: ["$","A"-"Z","a"-"z","\u00c0"-"\u00d6","\u00d8"-"\u00f6","\u00f8"-"\u00ff","\u0100"-
"\u1fff","\u3040"-"\u318f","\u3300"-"\u337f","\u3400"-"\u3d2d","\u4e00"-"\u9fff","\uf900"-"\ufaff"]>
| <#DIGIT: ["0"-"9","\u0660"-"\u0669","\u06f0"-"\u06f9","\u0966"-"\u096f","\u09e6"-"\u09ef","\u0a66"-
"\u0a6f","\u0ae6"-"\u0aef","\u0b66"-"\u0b6f","\u0be7"-"\u0bef","\u0c66"-"\u0c6f","\u0ce6"-
"\u0cef","\u0d66"-"\u0d6f","\u0e50"-"\u0e59","\u0ed0"-"\u0ed9","\u1040"-"\u1049"]>
}

Non-terminals

program ::= (erklaering)* <START> (statement)* <EOF>

erklaering ::= aconstsektion

| dconstsektion

| aisektion

| aosektion

| disektion

| dosektion

statement ::= simpelstatement

| sequence

aconstsektion ::= <ANALOG> (aconstspes)*

dconstsektion ::= <DIGITAL> (dconstspes)*

aisektion ::= <ANAIN> (aikanalspes)*

aosektion ::= <ANAOUT> (aokanalspes)*

disektion ::= <DIGIIN> (dikanalspes)*

dosektion ::= <DIGIOUT> (dokanalspes)*

D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Version 1.0

 Page 93/97

aconstspes ::= <AIDENTIFIER> <EQU> <REALVAL> <SEMICOLON>

dconstspes ::= <IDENTIFIER> <EQU> <TRUE> <SEMICOLON>

| <IDENTIFIER> <SA> <FALSE> <SEMICOLON>

aikanalspes ::= <AIDENTIFIER> <SA> <DEVICEID> <SEMICOLON>

realvv ::= <REALVAL>

| <MINUS> <REALVAL>

aokanalspes ::= <AIDENTIFIER> <SA> <DEVICEID> <SEMICOLON>

dikanalspes ::= <IDENTIFIER> <SA> <DEVICEID> <SEMICOLON>

dokanalspes ::= <IDENTIFIER> <SA> <DEVICEID> <SEMICOLON>

simpelstatement ::= <IDENTIFIER> <EQU> logical <SEMICOLON>

| <AIDENTIFIER> <EQU> anaval <SEMICOLON>

sequence ::= <SEKVENS> <COLON> sekstart sekvensctrl inittilstand (tilstand)* <SLUT>

sekstart ::= <IDENTIFIER>

sekvensctrl ::= (resetsek)? (holdsek)?

resetsek ::= <RESET> <EQU> logical <SEMICOLON>

holdsek ::= <HOLD> <EQU> logical <SEMICOLON>

inittilstand ::= stateinitstart handlingsdel (gaatil)* <SLUT>

tilstand ::= statestart handlingsdel (gaatil)* <SLUT>

stateinitstart ::= <TILSTAND> <COLON> <INIT>

statestart ::= <TILSTAND> <COLON> <IDENTIFIER>

handlingsdel ::= (simpelstatement)*

gaatil ::= <GAA> <TIL> <IDENTIFIER> <NAAR> logical <SEMICOLON>

| <GAA> <TIL> <INIT> <NAAR> logical <SEMICOLON>

logical ::= lterm ((<ELLER>) lterm)*

D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Version 1.0

 Page 94/97

lterm ::= lexp ((<OG>) lexp)*

lexp ::= <IKKE> lelement

| lelement

lelement ::= <IDENTIFIER>

| <TRUE>

| <FALSE>

| <BLINK>

| <FBLINK>

| lfunction

| <LPAREN> logical <RPAREN>

| anacomp

anacomp ::=
4 anaval (">" anaval | "<" anaval | <EQG> anaval | <EQL> anaval | <EQU>

anaval)

lfunction ::= <DELAY> <LPAREN> logical <COMMA> anaval <RPAREN>

| <FF> <LPAREN> logical <COMMA> logical <RPAREN>

| <BBREG> <LPAREN> anaval <COMMA> anaval <RPAREN>

anaval ::= term ((<PLUS> | <MINUS>) term)*

term ::= exp ((<MULTIPLY> | <DIVIDE>) exp)*

exp ::= <MINUS> element

| element

element ::= <AIDENTIFIER>

| <REALVAL>

| <LPAREN> anaval <RPAREN>

| function

| <MIN>

| <HOUR>

D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Version 1.0

 Page 95/97

| <DAY>

| <WEEK>

| <WEEKDAY>

| <MDR>

function ::= <SQR> <LPAREN> anaval <RPAREN>

| <DFREG> <LPAREN> anaval <COMMA> anaval <RPAREN>

|

<PID> <LPAREN> anaval <COMMA> anaval <COMMA> anaval <COMMA>
anaval <COMMA> anaval <COMMA> logical <COMMA> anaval <RPAREN>

D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Version 1.0

 Page 96/97

Appendix B. The ELL interpreter instruction set

LOD #add : Load memory address #add on to the boolean stack

OUT #add : Move the top of the stack to mem. add. #add.

OR : OR the two top values on the stack and replace them with the result.

AND : Same as OR except using an AND instead of an OR.

NOT : Invert the top of the stack.

ALOD #add : Load memory address #add on to the analog stack.

AOUT #add : Move the top of the analog stack to #add in mem.

SUM : Add the two top values of the stack and replace them with the result.

SUB, MUL, DIV : Same as SUM except using subtraction, multiplication and division.

MINUS : Negate the top value on the analog stack.

ACONST #Value : Load a constant on top of the analog stack.

GRA : If Aanstak[top-1] > ANAstach[top] then put true on top of the Boolean stack.

EGRA : If Aanstak[top-1] >= ANAstach[top] then put true on top of the Boolean

 stack.

LES, ELES : Same as GRA, EGRA except using < and <=.

SEK : Mark the start of FSM code block.

ESK : Mark the end of FSM code block.

RES : If the top value of the Boolean stack is TRUE then the FMS transfers to the

 init state.

HOLD : If the top value of the Boolean stack is TRUE then the FMS stays in its

 current state.

STAI #add : Mark the start of the init state. If the mem. Cell given by #add is true then

 the instructions in the state are executed.

STA #add : Mark the start of a normal state. #add is used in the same way as for STAI.

GO #add : Sets the state value given by #add to the top value of the Boolean stack.

BLK : Sets the value at the top of the boolean stack an alternating value.

 Frequency: 0.5 Hz.

FBLK : Sets the value at the top of the boolean stack an alternating value.

 Frequency: 1 Hz.

BB #BBnr : Run the Bang-Bang controller giver by #BBnr and Sets the value at the top

 of the boolean stack to the output.

FF #FFnr : Run the Flip-Flop giver by #FFnr and Sets the value at the top of the boolean

 stack to the output.

PID #PIDnr : Run the PID controller giver by #PIDnr and Sets the value at the top of the

analog stack to the output. To calculate the output it uses 7 elements from

the analog stack and one from the Boolean stack. i.e. Astack[top - 6],

Astack[top - 5], Astack[top - 4], Astack[top - 3], Astack[top - 2],

Bstack[top], Astack[top - 1], Astack[top] where: Astack[top - 6] are the set

point, Astack[top - 5] are the measurement, Astack[top - 4] are P, Astack[top

- 3]are I, Astack[top - 2] are D, Bstack[top]are the auto/manual signal,

Astack[top - 1]are the preset value, Astack[top] are the deadband.

D5.3 – Load management methods and prototypes

Dissemination level: CO

ENCOURAGE - 269354 Version 1.0

 Page 97/97

MIN : Put the real-time minute value on to the analog stack.

HOUR : Put the real-time hour value on to the analog stack.

DAY : Put the real-time day value on to the analog stack.

WEEK : Put the real-time week value on to the analog stack.

WEEKDAY : Put the real-time weekday value on to the analog stack.

MDR : Put the real-time month value on to the analog stack.

