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LINEAR TIME VARYING APPROACH TO SATELLITE ATTITUDE CONTROL USING ONLY
ELECTROMAGNETIC ACTUATION

Rafał Wísniewski

Aalborg University, Department of Control Engineering,
Bajers Vej 7, DK-9220 Aalborg Ø, Denmark. raf@control.auc.dk

ABSTRACT

Recently small satellite missions have gained consider-
able interest due to low-cost launch opportunities and
technological improvement of micro-electronics. Re-
quired pointing accuracy of small, inexpensive satel-
lites is often relatively loose, within a couple of de-
grees. Application of cheap, lightweight, and power
efficient actuators is therefore crucial and viable. This
paper discusses linear attitude control strategies for a
low earth orbit satellite actuated by a set of mutually
perpendicular electromagnetic coils. The principle is to
use the interaction between the Earth’s magnetic field
and the magnetic field generated by the coils. A key
challenge is the fact that the mechanical torque can
only be produced in a plane perpendicular to the lo-
cal geomagnetic field vector, therefore the satellite is
not controllable when considered at fixed time. Avail-
ability of design methods for time varying systems is
limited, nevertheless, a solution of the Riccati equa-
tion gives an excellent frame for investigations pro-
vided in this paper. An observation that geomagnetic
field changes approximately periodically when a satel-
lite is on a near polar orbit is used throughout this pa-
per. Three types of attitude controllers are proposed:
an infinite horizon, a finite horizon, and a constant gain
controller. Their performance is evaluated and com-
pared in the simulation study of the realistic environ-
ment.

INTRODUCTION

The work is motivated by the Ørsted satellite mission.
The Ørsted satellite is a 60 kg auxiliary payload sched-
uled to be launched by a MD-Delta II launch vehicle
in the late 1997 into a 450 x 850 km orbit with a 96
degree inclination. The purpose of the Ørsted satellite
is to conduct a research program in the discipline of
the magnetic field of the Earth. When the satellite is
firmly stabilized and the ground contact is established,
an8 m long boom is deployed. The boom carries the
scientific instruments that must be displaced from the
electro-magnetic disturbances present in the main body
of the satellite.

Stabilization of the Ørsted satellite is accomplished
by active use of a set of mutually perpendicular coils
called magnetorquers. The interaction between exter-
nal magnetic field of the Earth and the magnetic field
generated in the magnetorquers produces a mechani-

cal torque, which is used to correct the attitude. Mag-
netic control systems are relatively lightweight, require
low power and are inexpensive, however they can only
be successfully applied for the satellites on high in-
clined orbits. The Ørsted’s coils are mounted in the
x, y, and z facets of the main body. A maximum pro-
ducible magnetic moment is 20Am2. The maximum
mechanical torque produced by the magnetorquers is
approximately0:6 � 10�3 Nm above the equator, and
1:2 � 10�3 Nm above the Poles.

After boom deployment the nominal operation phase
controller is activated. The satellite shall be three axis
stabilized with its boom pointing outwards. Formally
a coordinate system fixed in the satellite structure shall
coincide with a reference coordinate system fixed in
orbit. The pointing accuracy is required to be within
10 degrees in pitch, roll, and 20 degrees in yaw.

There is extensive literature covering satellite attitude
control design. Most of the algorithms assume appli-
cation of reaction wheels and/or thrusters for three axis
stabilization, though. Attitude control with sole use
of magnetorquers has the significant challenge that the
system is only controllable in two axes at any time with
the axes being perpendicular to the local geomagnetic
field vector.

The number of internationally published papers on
magnetic attitude control is still rather small. Most
of them deal with momentum desaturation of reac-
tion wheel systems. The available literature on mag-
netorquing for three axis stabilization of satellites in-
cludes Reference1, where a configuration with two
magnetic coils and a reaction wheel were analyzed.
The problem of three axis control using only electro-
magnetic coils was addressed in Reference2. The lo-
cal stabilization of the satellite was achieved via imple-
mentation of the infinite time horizon linear quadratic
regulator. Another linear approach was given in
Reference3, where the linearized time varying satel-
lite motion model was approximated by a linear time
invariant counterpart. Three-axis stabilization with use
of magnetic torquing of a satellite without appendages
was treated in Reference4, where sliding control law
stabilizing a tumbling satellite was proposed. An ap-
proach for three-axis magnetic stabilization of a low
earth near polar orbit satellite based on Lyapunov the-
ory was presented in Reference5.
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The first part of this study addresses linearization tech-
nique for a LEO satellite motion. It is shown that a
satellite on a near polar orbit actuated by a set of per-
pendicular magnetorquers may be considered as a peri-
odic system. In the subsequent sections three types of
controllers are design: an infinite horizon, a finite hori-
zon, and a constant gain controller. Their performance
is evaluated in the simulation study of the realistic en-
vironment.

SATELLITE LINEAR MODEL

The satellite considered in this study is modeled as a
rigid body in the Earth gravitational field influenced
by the aerodynamic drag torque and the control torque
generated by the magnetorquers. The attitude is pa-
rameterized by the unit quaternion providing a singu-
larity free representation of the kinematics. The details
about mathematical modeling of a LEO satellite can be
found in Reference6. In this paper only a satellite lin-
ear model will be investigated.

It has been already mentioned that the control torque,
Nctrl, of the magnetic actuated satellite always lies
perpendicular to the geomagnetic field vector,b, fur-
thermore a magnetic moment,m, generated in the di-
rection parallel to the local geomagnetic field has no
influence on the satellite motion. This can be explained
by the following equality

Nctrl = (m
k
+m?)� b =m? � b; (1)

wherem
k

is the component of the magnetic moment,
m, parallel tob, whereasm? is perpendicular to the
local geomagnetic field.

Concluding, the necessary condition for power opti-
mality of a control law is that the magnetic moment
lies on a 2-dimensional manifold perpendicular to the
geomagnetic field vector.

Consider the following mapping

~m 7!m : m =
~m� b

k b k
; (2)

where ~m represents a new control signal for the satel-
lite. Now, the magnetic moment,m, is exactly perpen-
dicular to the local geomagnetic field vector and con-
trol theory for a system with unconstrained input~m can
be applied. The direction of the signal vector~m (con-
trary tom) can be chosen arbitrary by the controller.
From practical point of view, the mapping (2) selects
the component of~m which is perpendicular to the lo-
cal geomagnetic field vector.

The linear model of the satellite motion is given in
terms of the angular velocity and the first three com-
ponents of the attitude quaternion. Linearization of
the angular velocity is commonplace and based on the
first order extension of the Taylor series. Linearization
of the attitude quaternion is quite different due to the

multiplicative transformation is needed to describe suc-
cessive rotations. Consider two rotations, the first one
from an orbit fixed coordinate system (OCS) to a ref-
erence coordinate system (RCS), the second from RCS
to a satellite fixed coordinate system (SCS)

S
Oq = R

Oq
S
Rq (3)

whereSRq, ROq, SOq mean the quaternion mapping RCS
to SCS, the quaternion OCS to RCS, and the quater-
nion transforming OCS to SCS, respectively.S

Rq can
be considered as a small perturbation from the refer-
ence[0 0 0 1]T . According to Reference7

S
Rq =

2
664

e1sin
��

2

e2sin
��

2

e3sin
��
2

cos ��
2

3
775 ; (4)

thus for small�

S
Rq �

2
664

�q1
�q2
�q3
1

3
775 �

�
�q

1

�
: (5)

As the result, the linearized equation of motion is

d

dt

�
�


�q

�
= A

�
�


�q

�
+B(t)c ~m; (6)

where

A =

2
6666664

0 0 0 �6!o�x 0 0
0 0 !o�y 0 6!o�y 0
0 !o�z 0 0 0 0
1

2
0 0 0 0 0

0 1

2
0 0 0 !o

0 0 1

2
0 �!o 0

3
7777775
;

�x =
Iy � Iz

Ix
; �y =

Iz � Ix

Iy
; �z =

Ix � Iy

Iz
;

B =

2
6666664

I
�1

kbk

2
4 �b2y � b2z bxby bxbz

bxby �b2x � b2z bybz
bxbz bybz �b2x � b2y

3
5

2
4 0 0 0

0 0 0
0 0 0

3
5

3
7777775
;

where!o is the orbital rate, andIx; Iy; Iz are compo-
nents on the diagonal of the inertia tensorI. The matrix
B(t) comes from the double cross product operation
�b(t)� (b(t)�).

Based on the mathematical model provided in this sec-
tion linear attitude control concepts will be developed.
Three controllers will be proposed: an infinite horizon,
a finite horizon, and a constant gain controller.
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Figure 1: The geomagnetic field vector in RCS propa-
gated by a 10th order spherical harmonic model during
24 h in May 1997.

INFINITE HORIZON PERIODIC CONTROLLER

The geomagnetic field is essentially that of a mag-
netic dipole with the largest anomalies over Brazil and
Siberia. The geomagnetic field in RCS, has large y and
z components, while the x component is comparatively
small. The rotation of the Earth is visible via fluctu-
ations of the geomagnetic field vector’s x component
with frequency1=24 1=hours, see Figure 1. The fol-
lowing observation is used for the design of an attitude
controller. The geomagnetic field on a near polar orbit
is approximately periodic with a periodT = 2�=!0.

Due to periodic nature of the geomagnetic field, seen
from RCS, the linearized model of the satellite can be
considered as periodic. It is though necessary to find an
ideally periodic counterpart of the real magnetic field
of the Earth. This is done by averaging the geomag-
netic field over a time interval reflecting a common pe-
riod for the satellite revolution about the Earth and the
Earth’s own revolution. This interval for the Ørsted
satellite corresponds toN = 144 orbits.

Furthermore, the geomagnetic field is parameterized by
the mean anomalyM , since the geomagnetic field and
the mean anomaly have the common periodT

bave(M) =
1

N

NX
i=1

b(M + i � T ): (7)

An averaged B-field vectorbave(M(t)) is depicted in
Figure 2.

The resultant linear periodic system is

d

dt

�
�


�q

�
= A

�
�


�q

�
+ B̂(M)c ~m; (8)

whereB̂(M) is given in Eq. (8) after substituting the
symbolB(t) for B̂(M), and the components of the
vectorb(t) for the components ofbave(M).
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Figure 2: An averaged B-field vector in RCS. Compare
with the realistic magnetic field of the Earth in Figure
1 .

The difference between the time varying matrixB(t)
and the ideal periodic counterpartB̂(M(t)) used for
the controller design is considered an additional exter-
nal disturbance torque acting on the satellite.

The controller gain is calculated from the steady state
solution of the Riccati equation. According to Theorem
6.3 in Reference8, if the pair(A; B̂(M)) is stabilizable
then there exists a stabilizing symmetric periodic solu-
tionP+(t) of the Riccati equation

� _P+(t) = P+(t)A+ATP+(t) (9)

� P+(t)B̂(M)B̂T (M)P+(t) +Q:

The periodic solution of the Riccati equation,P+(t)
is computed from the periodic extension of the steady
state solutionP1(t)

P̂(t) =

�
P1(t) if 0 � t < T

0 otherwise
(10)

P+(t) =

1X
k=0

P̂(t� kT ): (11)

The solutionP1(t) is calculated using backward inte-
gration of the Riccati equation for an arbitrary positive
definite final condition. This solution converges to the
periodic solution. The matrix functionP1(t) corre-
sponding to one orbital passage is stored in the com-
puter memory, and then used for the subsequent orbits.

An example of the periodic matrix functionP+(t) is
illustrated in Figure 3.P+(t0) at fixed timet0 is a
6 x 6 positive definite matrix. The figure depicts the
time history ofP+(1; 1), which is typical for the di-
agonal components. Off-diagonal components change
their amplitudes between positive and negative values.

Again, the mean anomalyM can be used for parame-
terization ofP+(M), since bothP+(t) andM(t) are
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Figure 3: The time history of the (1,1) component of
P+. Notice thatP+ has a period equivalent to the orbit
period.
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Figure 4: An approximation of the (1,1) component of
the gain matrixK+ by 16th order Fourier series. The
discrepancy betweenK+ and its Fourier approxima-
tion reaches 1.5 per cents at most.

T-periodic. Furthermore, the controller gain matrix is
also T-periodic and parameterized with respect to M

K+(M) = �B(M)P+(M): (12)

Implementation

The mean anomaly dependent control gain matrix
K+(M) is computed off-line and stored in the com-
puter memory. The control signalc ~m(t) is then calcu-
lated according to

~m(t) =K+(M)

�

SR(t)
q(t)

�
; (13)

wehere
SR is the angular velocity of the satellite rel-
ative to RCS,q(t) is the vector part of theSRq(t). Fi-
nally, the magnetic moment,cm(t) is obtained by

m(t) =
~m(t)� b(t)

k b(t) k
: (14)
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Figure 5: Performance of the infinite horizon controller
for a satellite modeled as a linear object. The simula-
tion is carried out for “ideally periodic” geomagnetic
field. The initial attitude is40 deg pitch,�40 deg roll
and80 deg yaw.
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Figure 6: Performance of the infinite horizon controller
for the Ørsted satellite on a circular orbit. The initial
attitude is the same as in Figure 5. The steady state
attitude error is below1 deg.

Another option is to representK+(M) in terms of the
Fourier coefficients, benefiting in a reduction of the
data stored. A satisfactory approximation of the gain
matrixK+ has been obtained with 16th order Fourier
series, see Figure 4. The required capacity of computer
memory given in floating point numbers is

Memory =
T �Noelemnts in K+

� OrderFourier series

Sampling time
:

For example with a sampling time of 10 sec and the or-
bital period 6000 sec , then 172800 floating point mem-
ory is required.

Simulation results of the infinite horizon attitude con-
trol are presented in Figure 5, 6 and 7. Figure 5 il-
lustrates performance of the attitude controller for the
linear model of the satellite motion with an ideally pe-
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Figure 7: Performance of the infinite horizon controller
for the Ørsted satellite on its elliptic orbit. The initial
attitude is the same as in Figure 5. The satellite is influ-
enced by the aerodynamic drag for normal solar activ-
ity. The attitude error is below3 deg of pitch and roll.
Yaw varies within6 deg.

riodic geomagnetic field simulator. Figure 6 depicts
performance of the infinite horizon attitude controller
for the Ørsted satellite in a circular orbit. In Figure 7,
the Ørsted satellite is simulated in its elliptic orbit. The
satellite motion is affected by the aerodynamic drag for
normal solar activity. Additionally, the realistic geo-
magnetic field is applied in both Figs. 6 and 7.

Disturbances due to eccentricity of the orbit and the
aerodynamic drag torque act in the pitch direction.
Therefore, both the first component of the quaternion
and the first component of the angular velocity, which
for small angles correspond to the pitch and pitch rate,
are punished slightly more than the remaining compo-
nents of the state. A diagonal weight matrixQ with
the diagonal[10 6 6 10 6 6]T has been implemented
for both linear and nonlinear models of the satellite.
Initial values of the attitude are the same in both exam-
ples corresponding to40 deg pitch,�40 deg roll, and
80 deg yaw.

The simulations show that the controller is stable for a
wide range of operating points, also very much outside
the reference. However, the performance of the infi-
nite horizon controller is relatively poor outside vicin-
ity of the reference, due to influence of the nonlinear-
ities. This can be observed as large variations of the
third and fourth component of the attitude quaternion,
q3 andq4 in Figs. 6 and 7. The result of the distur-
bance torque due to a difference between the geomag-
netic field and its periodic counterpart implemented in
the attitude controller is the steady state attitude error
in Figure 6. Performance of the infinite horizon attitude
controller for the Ørsted satellite affected by the aero-
dynamic torque is illustrated in Figure 7. The satel-
lite motion is influenced by a moderate aerodynamic
drag torque corresponding to normal solar activity. The

aerodynamic drag is equal0:9 10�5 Nm at perigee.
The attitude error is3 deg of pitch and roll, whereas
yaw angle varies within6 deg.

A computational expense for the infinite horizon con-
troller lies in the off-line numeric solution to the Ric-
cati equation, but relatively large computer memory is
required for keeping the gain data for one orbit. The
controller gives a nonzero steady state error also for
simulations without external disturbance torques. It is
concluded that the infinite horizon magnetic controller
is applicable for missions with low pointing require-
ments. The steady state performance could be im-
proved by the finite horizon controller, which incorpo-
rates a realistic model of the geomagnetic field. This
type of a control law is discussed in the next section.

FINITE HORIZON PERIODIC CONTROLLER

The linearized model of the satellite motion is only ap-
proximately periodic. There is a certain difference be-
tween the ideal periodic model of the geomagnetic field
developed in the previous section, and the real mag-
netic field of the Earth. The controller performance
could be improved by incorporating the time history of
the real geomagnetic field into the controller structure.
A new attitude controller based on a transient solution
of the Riccati equation is therefore investigated.

The control algorithm is summarized as:

Procedure 1 1. Calculate the time varying solution
of the Riccati differential equation in the time in-
terval t 2 (� � T; � ]

� _P(t) = ATP(t)+P(t)A�P(t)B(t)BT (t)P(t)+Q(t)
(15)

with the final condition

P(�) = Pf : (16)

2. Implement controller

~m(t) = �BT (t)P(t)

�

SR

q

�
(17)

for t 2 (� � T; � ]:

3. Calculate magnetic moment from the equation

m(t) =
~m(t)� b(t)

k b(t) k
:

4. � becomes� + T .

5. go to 1.

It was stated in Reference6 that if the differenceF =
Pf�P(��kT ) is positive semidefinite fork � 0 then
the procedure given above provides a stable control law
(Theorem 3.4.2). The final condition,Pf is chosen suf-
ficiently large such thatF is positive semidefinite in-
dependently on the deviation of the geomagnetic field
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Figure 9: Performance of the quasi periodic receding
horizon controller for the Ørsted satellite on circular
orbit. The attitude converges asymptotically to the ref-
erence, i.e.SRq! [0 0 0 1]T .

from its periodic model. It should be noted that the
largerPf , the larger is the control torque. The con-
troller shall comply with the power constraints imposed
on the attitude control system, therefore the maximum
value of the final condition shall be confined. The final
condition is considered as a design parameter, that can
be iterated by means of computer simulation.

The attitude control system based on the final horizon
control is illustrated in Fig. 8.

The orbit model provides position of the satellite in or-
bit in terms of longitude, latitude and altitude. This
information is used by the on board geomagnetic field
model (here 10th order spherical harmonic model).
The Riccati equation is computed for the subsequent
orbit. The controller gain is computed and parameter-
ized by the mean anomaly. The controller gain is stored
in a buffer. This procedure is activated once per orbit.
The control gain matrix is taken from the buffer on the
basis of the mean anomaly associated with position of
the satellite in orbit. The controller gain is updated ev-
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Figure 10: Performance of the quasi periodic receding
horizon controller for the Ørsted satellite on the ellip-
tic orbit. The satellite is influenced by the aerodynamic
torque. Performance of the receding horizon is com-
parable with efficiency of the infinite horizon attitude
controller in Fig. 7.

ery sampling cycle, and is implemented in the control
loop.

Implementation

The quasi periodic receding horizon controller has
been validated through computer simulation. The re-
sults are depicted in Figs. 9 and 10. Control param-
eters have been found empirically. Weight matrixQ
has been set to10 E6�6

� , and the final condition
Pf has been calculated from the steady state solution:
Pf = P(�) = 2P1(�). Initial values of the attitude
have again been assigned to40 deg pitch,�40 deg roll
and80 deg yaw.

Fig. 9 depicts the Ørsted satellite motion on a circular
orbit, i.e. there are no external disturbances. The satel-
lite attitude is seen to converge asymptotically to the
reference. The performance of the quasi periodic re-
ceding horizon controller for the satellite disturbed by
the aerodynamic torque is comparable with the perfor-
mance of the infinite horizon controller, see Figs. 10
and 7. This is due to the impact of the aerodynamic
torque is seen to be much larger than the influence of
the torque due to the discrepancy between the geomag-
netic field and its periodic counterpart.

The steady state performance of the infinite horizon
controller on a circular orbit is much better than infi-
nite horizon, however they are seen to have the same
performance for a satellite in an elliptic orbit effected
by the aerodynamic drag. The computational burden
for the finite horizon controller is heavy due to the Ric-
cati equation shall be solved on board (alternatively up-
loaded to the on board computer during every ground

�E6�6 is the6� 6 unit matrix
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multiplier is closest to the origin.

station passage). Therefore, the infinite horizon con-
troller is preferable for the missions like Ørsted with
low pointing accuracy. The necessary computer power
could be additionally limited if the constant controller
was implemented, and had the same performance as the
time varying controllers. This issue is addressed in the
next section.

CONSTANT GAIN CONTROL

Computation of the infinite and finite horizon attitude
controllers are tedious and difficult to implement on
a real-time platform. A simple constant gain attitude
controller could be an alternative. This type of con-
troller is investigated in this section.

The design algorithm consists of replacing the time
varying parameters of the satellite by its averaged val-
ues evaluated over a period of one orbit. This concept
was first presented in Reference3. The theoretical basis
of the method was given in Reference6.

The time invariant counterpart of the time varying lin-
earized satellite motion was

d

dt

�
�


�q

�
= A

�
�


�q

�
+Bc ~m; (18)

where

B =
1

T

Z T

o

B̂(M(t))dt; (19)

andT is the orbit period, and̂B(M) is the control ma-
trix in Eq. (8).

A linear quadratic regulator (LQR) is used for the con-
stant gain controller design. The system is linear, time
invariant and controllable thus a control law can be
based on the solution of the steady state Riccati equa-
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Figure 12: Performance of the constant gain controller
for the Ørsted satellite on circular orbit, i.e. without
external disturbances. The weigh matrix,Q has value
18 � E6�6. Large amplitude of the yaw oscillations
is encountered. The initial attitude is40 deg pitch,
�40 deg roll and80 deg yaw.

tion, see Reference9. The optimal control is given by

~m = �BTP

�
�


�q

�
; (20)

whereP satisfies the Riccati algebraic equation

PA+ATP�PBBTP+Q = 0: (21)

Once the control vector~m in Eq. (20) is calculated,
the magnetic moment,m is computed according to Eq.
(2).

Stability of the control law in Eqs. (20) and (2) for
the time varying linear model of the satellite in Eq. (6)
is determined using Floquet theory, see Reference10.
This check is necessary, since stability of the time
varying system and its time invariant counterpart are
not equivalent. The time invariant system is only
the first order approximation of the time varying one,
Reference6. Furthermore, the sensitivities of those sys-
tems are not equivalent neither, e.g. the disturbance
torque acting on the satellite in the direction of yaw in
a zone near the North nor South poles remains unaf-
fected by the attitude controller (due to lack of control-
lability), whereas it can be arbitrarily damped by an LQ
controller for the time invariant counterpart.

The following closed-loop system is considered for the
Floquet analysis

d

dt

�
�


�q

�
= (A� B̂T (M(t))P)

�
�


�q

�
: (22)

As seen from Eqs. (21) and (22) stability of the closed-
loop system is dependent on the weight matrixQ. Fig-
ure 11 depicts locus of the characteristic multipliers for
Q(�) � �E6�6, where� changes from1 to 80 y. The

yThe weight matrixQ(�) acts on the state space[�
 �q]T . �

is provided inrad=s and�q is given without units.
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Figure 13: Performance of the constant gain controller
for Ørsted satellite on circular orbit. The initial con-
ditions are the same as in Figure 12. The diagonal
weight matrixQ with diagonal[18 18 90 18 18 90]T

is implemented. The amplitude of the yaw oscillation
is reduced comparing with. Figure 12.
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Figure 14: Performance of the constant gain controller
for the Ørsted satellite on the elliptic orbit influenced
by the aerodynamic drag. The initial conditions are as
in Fig. 12. The resultant attitude is within8 deg.

satellite becomes unstable for� = 52. For� = 18, the
largest characteristic multiplier is closest to the origin.

Notice that the averaged geomagnetic field is imple-
mented for the Floquet analysis. Therefore, an ulti-
mate test is the simulation for the nonlinear model of
the satellite in the realistic space environment.

Validation

The constant gain control demonstrated stability for the
entire envelope of the expected satellite initial attitudes
and angular velocities in the science observation mis-
sion phase. The control parameter: the weight matrix,
Q has been found empirically. Its value has been set to
18�E6�6. The simulation results for the Ørsted satellite
on the circular orbit in Figure 12 show large amplitude

of yaw oscillations. A new diagonal weigh matrix with
diagonal[18 18 90 18 18 90]T is proposed. The ampli-
tude of the yaw fluctuations is reduced, see Figure 13.
The last Figure 14 illustrates the satellite motion on im-
pact of the aerodynamic drag and the torque due to the
eccentricity of the Ørsted orbit. The performance of the
constant gain controller is very much the same as the
infinite and finite horizon attitude controllers in Figs. 7
and 10. The attitude error is within8 deg, which com-
plies with required bond of�10 deg of pitch and roll,
20 deg of yaw.

CONCLUSION

This paper presented work on the magnetic attitude
control based on the steady state and the transient solu-
tion of the Riccati equation. It was shown that a satel-
lite on a near polar orbit actuated by a set of perpendic-
ular magnetorquers could be described by a set of pe-
riodic differential equations. Three attitude controllers
were designed: the finite horizon, the infinite horizon,
and the constant gain controller. The control strategies
presented were evaluated in the simulation study.

The performance of the designed controllers was com-
parable for a satellite in an elliptic orbit effected by the
aerodynamic drag. The computer expense was smallest
for the constant gain controller, therefore it was cho-
sen for on board implementation in the Ørsted satel-
lite. This controller was seen to be stable for a wide
envelope of initial values of the attitude, though it had
inherently low bandwidth, with time constants on the
order of one orbit.

This work is believed to contribute to application of the
theory of periodic linear systems to magnetic attitude
control problem. It provides solution useful for small
satellites with loose requirements on pointing accuracy.
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