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Effective Stresses in Soil and Rock and Consolidation in Three Dimensions

LARS ANDERSEN

ABSTRACT. In the following, the continuum model for a fully saturatedrous material
is presented. The theory is mainly due to M.A. Biot [3, 4]. WWelsonly consider a two-
phase system consisting of a solid skeleton and a singleflpidee.g.water. The theory
for three-dimensional consolidation is developed. Amgat permeability of the material
is allowed, but for simplicity the analysis is restrictedisotropic linear elastic material
behaviour. However, the theory is easily extended to giéessticity. Finally, it will be
shown that the effective stresses in a porous material maeieral not be calculated
as proposed by Terzaghi. Whereas highly accurate reseltachieved for residual soils,
i.e. sand, silt and clay, poor results are obtained for cementeénals such as concrete
and rock. Here it is recommended to follow the stress apprpagposed by Biot.

1. BAsIC DEFINITIONS

A porous material, or matrix, with the total volumeéis considered. The material is
fully saturated, and the pores are assumed to be distrilbatetbmly in space so that the
material on a macroscopic level may be described as a camtinlihe volume is divided
into two parts,

V=Vs+Vy, (1)
whereV is the volume of the solid phaseg. the grain skeleton, and; is the volume of
fluid. In geotechnical engineering, the subsciips generally substituted by the subscript
w, since the pore fluid is usually water. In saturated poroueriads,e.g.soil, a part of the
pore fluid is constrained. For example, a part of the watelaipis chemically bound to the
clay mineral, and in rock or granular soil some of the watey tmatrapped in cracks that
are not connected to the primary system of pores. This panedfuid belongs to the solid
phasei.e.to V;, since it cannot move relatively to the solid matrix. Herardy the volume
of interconnected voids is included in the definitionlgf cf. Fig. 1. Unfortunately, in real

soil or concrete etc. it may be difficult to determine whichitpd the pore fluid is free to
move relatively to the solid skeleton.

Bt
I solid Fixed fluid [ _] Free fluid

FIGURE 1. Definition of the porosityp, in a saturated porous material.
The volume of the free fluid in the interconnected pore¥jis= nV,
and the volume of the solid (including fixed fluid)¥ = (1 — n)V.

5



6 LARS ANDERSEN

Theporosityof the porous material, or matrix, is defined as
n="Vi/V, 2)

i.e. as the volume fraction taken up by interconnected poresas$aaally, in the interna-
tional literature on porous materials, the porosity is dedd, ¢ or 3, but in the Danish
geotechnical literature the symbuols usually applied. Given that the soil is fully saturated,
the mass density of the matrix material constituted by thid smd the fluid becomes

p=(1-n)ps+npy, 3)

wherep, is the mass density of the solid phase, wheygais the mass density of the fluid
phase. In standard geotechnical engineerings most often the average density of the
minerals constituting the grains in the soil. This is nottase in the present formulation,
since any fluid that is not allowed to move freely between treng is considered part
of the solid phase as illustrated in Fig. 1. In other wordds the volume fraction of
interconnected pores. With this definitiom,is occasionally referred to as tledfective
porosity.

In the present theory, it is assumed that the pores arehdistid randomly, so that
the matrix material may be considered homogeneous on a sw@pi level. Hence, in
accordance with Eq. (2) for a cross section with the totah arethe aread; = nA will
be constituted by the free pore fluid, whereas the solid pfiaskiding fixed pore water)
constitutes the ared, = (1 — n)A.

Next, the pore pressurg,= p(x,t), is defines as the pressure in the free pore fluid.
Whereas the mean total stress+ oy, is defined as positive in tension, the pore pressure
is positive in compression. This definition is common piaeih geotechnical engineering.
The total stresses;; are now divided into two parts,

Oij = O—'Ej - P5ij- 4)

Hereo;; are referred to as theffective stresse®Vhile the pore pressure is present in both
the fluid and the solid phase, the effective stresses ariedawlely by the solid skeleton.
Given that the solid phase only constitutes the fractionn of the entire matrix, the total
stress in the solid phase is actuadty; /(1 — n) — pd;;, whereas the total stress in the
pore fluid is—pd;;, cf. Fig. 2. In Section 3 the definition of effective stressefurther
discussed, in particular with respect to the formulationaristitutive laws.

The displacements of the grain skeleton and the fluid in tterdonnected pores are
denotedu; andwv;, respectively. In addition to the full displacement of thaefluid, a
relative velocity is introduced in the form

ow; ( ov;  Ou;
= =n

ot ot ot

w; ) ) wi =n (v; — u;). )
The quantityw; = w;(x,t) is referred to as theeepage velocityEvidently,w; is the
average relative velocity of the fluid flow in the matrix indlaog both the fluid and the
solid phase. Thus, in the particular cage= 0 the definitioni; = ¢;/A applies, where;
is the fluid flow, or flux, through the cross section areim coordinate direction, cf. Fig 3.
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FIGURE 2. Stresses acting on a cross section in a poroelastic medium
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FIGURE 3. Flow velocity over a cross section in a poroelastic medium

2. CONSTITUTIVE LAWS IN POROELASTICITY

Firstly, an elastic material is considered. A linear relaship between the strain and
stress rates is assumed. Hence, the constitutive law maydressed in terms of the
generalized Hooke’s law

0ij = Cijri€ni- (6)

Hereér, = €r1(x, t) is thestrain rate tensor
R e . 7
€ 2 (&v] + 6:01) ’ i ot ( )

whereu; = u;(x,t) denotes the displacement field. In general témgent stiffness tensor
Cijm = Cijri(x,t) may account for elastoplastic material behaviour as weteslogical
and thermoelastic respons&.[However, in any case only the elastic strains will conité
to the development of stresses, and for the present purpasdastic model will suffice. In
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particular, for an isotropic and linear elastic materilag tonstitutive law simplifies to

Gij = M5 + 2péij, (8)
whereA, = A,(x, t) is thedilation rate,
. oy
A, =% 9
di; is theKronecker delta
1 for i=3j
52’]’{ 0 for i#j (10)

and\ = A\(x) andu = p(x) are the so-calledamé constantsvhich are related to Young's
modulusE = E(x) and Poisson’s ratio = v(x) as

vE E
— - = 11
AT aswy T ey (11)
The inverse relationships are given as
F= M7 R, S (12)
A4 2(A+p)

The Lamé constant is also identified as thehear moduluswhich is often denoted:.
Secondly, in a porous material the effective stresses andded by the constitutive
law for the matrix material,e. the saturated grain skeleton. In the case of linear isatropi

material behaviour the stress—strain relationship islamid Eq. (8). However, it must
be taken into consideration that a change in the pore presdlidead to a change in the
volume of the solid constituenite. the grains or the porous solid, which does not involve
a change in the effective stresses. Hence,
Gl = Nédij +2uél;,  where &= ¢y — %A{;&Zj, Ar=-L @3
Hereé;; are the components of the strain rate tensor given by Egaf)) andy are the
Lamé constants of the matrix material. Note that these maybstantially different from
the Lamé constants; and s of the solid material as further discussed below. Finally,
AI; is the dilation rate in the solid phase due to the pore predgasitive in expansion),
whereask, is the bulk modulus of the solid constituent. In a linear gtaisotropic ma-
terial the following relationship applies betweéh and the Lamé constants and . of
the solid constitueng.g.the grains or the rock mineral:

Ko= ot i (14)
In granular materials such as residual sollsand . are typically much greater than
A andu, e.g.the Lamé constants of sand are much smaller than those dsaqurgistal.
Hence, the reduction in the volume of the solid phase resuftiom an increase of the
pore pressure is generally negligible. In this situatibh may be disregarded and the
approximatior¢;; ~ ¢;; applies. On the other hand, in concrete, intact rock andaimi
cemented materials the bulk modulus of the solid constifu€p, and that of the matrix
material K, are typically of the same order of magnitude. Thereforthése materialAfg
becomes significant, and the full definition provided by B®)(@pplies. Finally, it is noted
that in the general nonlinear case, an additional contdhub the total strain raté;;, but
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nottoé¢;;, stems from creep and thermoelastic behaviour. Howevierirtieversible term
is disregarded in the present theory.

Thirdly, for the pore pressure, a constitutive equationvegent to Eq. (13) is achieved
by consideration of the volumetric strain of the matiie, the dilatation. Making use of
Egs. (7) and (5), the total dilatation rate for the matrix,, may be expressed as

Ay =(1—n)A, Ar=—-"+_-—"" where A, =—-—7, A;=—-—=. (15

( n) o f amk + 6xk 6xk f 6xk ( )

Defining K ; as the bulk modulus of the fluid, the following constitutieevs are obtained
with regard to the volumetric strains of the solid and thedflpinase, respectively:

1 o’ 1.77'/ A P -/7(-7;% A L
Heres’ is the mean effective stress rate, and the quastityl — n) — p is identified as
the actual mean stress rate in the solid phase, given theffdative stresses are carried by
the solid skeleton alone as discussed above.

Insertion of Eq. (16) into Eq. (15) provides a relation whatgfines the pore pressure

rate in terms of the matrix material velocity and the seepage velocity,

Ay =

; oy, | Ouy, o D P P

A,,,L:a—m—i—a—m:E—(l—n)——n—%—n—f. a7)
Note that only the volumetric strain rateg. the dilation rate, occurs in Eq. (17), that is
the constitutive law for the pore fluid is independent of aimga deformations in the solid
constituent or the fluid. On the righthand side of Eq. (17)as lbeen assumed that the
volumetric strain rate in the solid phase is much smallenttiee dilatation rate in the
pore fluid. This approximation is valid for most granular eréls such as soil, given that
nK, > (1 —n)Ky. This is the case for sand, whetés typically around 0.2 to 0.3 and
K, =~ 20Ky (K¢ ~ 2 GPa for water). However, for rock-like materialsnay be close to
zero, and in this case the contributions to the total dilatafrom the solid phase and the
fluid phase may be of the same order of magnitude.

3. ALTERNATIVE DEFINITION OF EFFECTIVE STRESSES—BIOT THEORY

The total stresses;;;, may be divided into the pore pressysend the so-called effec-
tive stressesy;;. According to Eq. (4)

Ugj = 045 + pdij. (18)

This definition of effective stresses was proposed by K. dghz and the components;
are occasionally referred to as therzaghi effective stressels is noted thap is positive
in compression, whereas the stresses are defined as positvsion.

With the definition given by Eq. (18), the constitutive law fbe effective stresses is
given in terms of “effective strains” according to Eq. (18his implies that the volumetric
strain of the solid skeleton due to a change in the pore preséli not provide any change
in the effective stresses. Alternatively, for an isotrolaear elastic material one may
define the rate of change in the effective stresses as

Gii = Negndij + 2ués, (19)
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i.e.in terms of thetotal strain rate. A comparison of Eqgs. (13) and (19) implies thdhe
general casé;; # o;;, and therefore!, # o;; + pdi;. Hence, Terzaghi's definition of
effective stresses is invalid when the constitutive equiais defined in terms of effective
stresses and total strains. In order to prove this, the nféztiee stress raté’ is computed
from Eg. (13). Making use of the fact th&{, = 3, the following result is obtained:

L, 1 2

: 1.
o = gU;ck = 5)\621-6% +3

Here K and K, are the bulk moduli of the matrix material and the solid cinent, re-
spectively,

pél, = Ké, = K (ekk + Kﬂ) . (20)

S

2 2
Next, similarly to Eg. (20), the mean effective stress rdtés found as
1 1 2
¢’ = g('fgk = g)\é“‘(skk + gﬂékk = Képp. (22)

Comparison of Egs. (20) and (23) provides the result éffat= ¢/ — (K/K,)p. Since a
change inp provides the same change in all normal stress componentsaolkange in
the shear stress components,

Gij = 035 — 0y = (23)
Next, Eq. (23) is integrated over time in the interva& [to, ], wherer is the integration

variable. This leads to the equation

K
o (%, 1) — 075 (x, t0) = 07;(%, ) — 07;(x, ) + 5in (p(x,t) —p(x,t0)) . (24)
Sincety may be chosen arbitrarily, the stresses at timmust fulfill the equation

ol =0l -4 K

ij = %i i g P (25)

Thus, as an alternative to the Terzaghi effective stresses ¢y Eq. (23), one may

apply the definition

f= oyt Bphy,  f=1- (26)
This formulation was originally proposed by Biot. A comysm of Egs. (13) and (19)
suggests that thBiot effective stressdsad to much simpler constitutive models than the
Terzaghi effective stresses which must be defined in terrfeffgictive” strains.

It is worthwhile to note that for both granular soil and clatigated with water, the
bulk modulus of the minerals constituting the solid partteé taterial is much greater
than the bulk modulus of the matrike. K > K. In particular, for normally or under
consolidated clayey soil with large water contefits 1, see Table 1. Hence, the Biot and
the Terzaghi effective stresses are equivalent.

Finally, in saturated porous rock and concrefeand K ; are of the same order of
magnitude, and values ¢f as low as 0.5 may be expected. This fact is often neglected
in geotechnical engineering practice. Here Eqgs. (18) afyldfe usually applied with the
erroneous assumption thgf = o;,. Unfortunately, the Terzaghi effective normal stresses
provided by Eq. (18) are smaller than, or equal to, the Bifgatize normal stresses given
by Eg. (26). Therefore, elastoplastic constitutive lawsdabon Terzaghi effective stresses

ag,
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TABLE 1. Compressibility of soil, rock and concrete [1].

Bulk Modulus? (MPa)

Material K K 6= (1-K/K)
Quartzitic Sandstone 17,000 37,000 0.54
Quincy Granite (30 m deep) 13,000 52,000 0.75
Vermont Marble 5,600 71,000 0.92
Concrete (approximately) 5,000 40,000 0.88
Dense Sand 56 36,000 0.9985
Loose Sand 11 36,000 0.9997
London Clay (over consolidated) 13 50,000 0.99975
Gosport Clay (normally consolidated) 1.7 50,000 0.99997

@ Bulk moduli atp = 98 kPa (atmospheric pressure); watéf; = 2040 MPa.

and total strains will generally provide an overestimatibthe shear strength of saturated
granular materials such as soil, and in particular roclgwehe phreatic surface.

4. THREE-DIMENSIONAL CONSOLIDATION IN SOIL AND ROCK

A poroelastic continuum is considered. Disregarding aaytiaforces, the incremental
form of the equilibrium equation for the matrix material mas put as
065 . . 0g;
a_ i = 0; i = )
oz, P9 9=
whereg; = g;(x, t) are the specific body forces. In soil mechanjcis usually the gravity
field. Furtherp = p(x) is the mass density of the matrix material, cf. Eq. (3).
In a similar manner, the equilibrium for the fluid phase isyided by the equation

, 9p
—w; = kij (6‘7 + Pfgj) ; (28)
j

wherew; is the seepage velocity, cf. Eq. (5), ahd = k;;(x) is a second order tensor
with the Sl units (M-skg~1) representing the permeability of the material. In the gahe
casek;; is fully populated and asymmetric. However, in orthotropiaterials only the
diagonal terms have none-zero values. Typically, in diedtisoil k11 = koo # k33, that
is the vertical permeability is different from the horizahpermeability. In the particular
simple case of isotropic porous materi&)s = d;;k. Thus, the permeability is defined by
a single parametek,

Equation (28) is identified as the generalized Darcy’s lawfligid flow in a porous
medium. Itis observed that a gradientin the pore presguvehich is not counterbalanced
by gravitation forces, will lead to seepage with the velpdit. The speed of the fluid flow
increases with the permeability of the matrix. Further, misatropic materials the flow
may not necessarily be in the opposite direction of the gratdiThis is evidently the case
for isotropic and orthotropic materials, sinkg only contains diagonal terms.

In contrast to théydraulic conductivityy = gp sk, with Sl units (ms™!), the parame-
ter k is independent of the fluid density and the gravitationatkeration,g. However, the
components ok;; still depend on the dynamic viscosity of the pore flyid, with the SI

(27)
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TABLE 2. Permeability of various soil and rock materials [2].

Relative Pervious Semi-Pervious Impervious
Permeability

Unconsolidated Well Sorted Well Sorted Sand Very Fine Sand, Silt

Sand & Gravel Gravel or Sand & Gravel Loess, Loam

Unconsolidated Peat Layered Clay Fat / Unweathered Clay

Clay & Organic

Consolidated Highly Fractured Rock Oil Reservoir Fresh Fresh Fresh

Rocks Rocks Sandstone Limestone, Granite
Dolomite

K (cm?) 10° 10* 10° 10° 107 10% 10° 10710 107" 1012 103 10'* 10715

« (milli-darcies) 108 107 10° 105 10* 10° 100 10 1 0.1 001 103 10*

units (kgm~1.s71). An alternative measure of the permeability that only aejseon the
geometry of the soil skeleton may be defined as

k= k. (29)
This parameter is coined ttpermeability coefficienand has the Sl units (), but it is
usually measured idarcy(d), or more commoniynilli-darcy (md) (1 darcy~ 10~1? m?).
Typical values for soil and rock are listed in Table 2.

Finally, mass balance of the flow is ensured by Eq. (17). Mgkise of Egs. (7) and
(28), the balance equation (17) may in turn be written

y . .
a%t{k” (%erfgj)}Jr;s(ln)KpsnKifASO, (30)
whered’ is the effective mean stress rate, cf. Eq. (20), ands the dilation rate in the
solid phase, cf. (15).
Next, for the purpose of analysing consolidation in a fuljusated porous elastic ma-
terial it is useful to divide the total pore pressuie, t) into the steady state pore pressure
ps = ps(x) and the excess pore presspge= p.(x, t), thatis

P = Ps + Pe. (31)
In the steady state, the volume of pore fluid inside a givercbrblume will be constant,
i.e.independent of time. Therefore, according to Eq. (28),

0w, 0 { ( Ops ) }
= ow " \aw, )T (32)
steady state Oz; T\ Oz j f93

5‘:@
Inserting this result into Eq. (30), the governing equat@rhe development of the excess
pore pressurgs., over time is achieved in the form
. . .
%{kijgla;}—i—;—s—(l—n);—z—né;—ASZO, (33)
where use has been made of the fact that 0, i.e.p = p..

Equation (33) may be solved simultaneously with the equaifequilibrium (27). For
complicated geometries, the coupled equations (27) andn{d$ be discretized over the
volume and solved by means of, for example, the finite diffeesor the finite element
method. Initial values must be provided for the displacetfiefd and the seepage over
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(a) Iy (b)

FIGURE 4. Poroelastic domaiif), with division of the boundary,, for
the definition of boundary conditions concerning (a) forgeilbrium,
and (b) seepage.

the entire volume. Further, Dirichlet or Neumann condigsionust be supplied for both
the displacement and the seepage velocity along the bophdaf. Fig. 4. Thus, for the
equilibrium equation (27) the boundary conditions must ivergin the form:

w;, =u; for xely,

Sy e XerT} where T,Ul, =T A TI,NIL,=0, (34)

wherer; = a,gjnj defines the surface traction afd;, 7;) denote the prescribed values.
Heren; = n;(x) are the components of the unit outward normal to the boundlary
Similarly, for the seepage velocity

pi =p; for xel,

G =q for xqu} where T,Ul', =" A TI,NT, =0, (35)

Hereq;, = 0w, /0x; n; is the flux of pore water through the boundary. Along imperbtea
surfaces, the flux ig; = 0, i.e.there is no flow of pore fluid through the boundary. On the
other hand the pore pressure will be known along free swsfdemally it is noted that in
general there is no relation between the boundary sufigt$'; ) and(T',,T',). However,
since the traction and the pore pressure are likely to beritbesicalong the same part of
the boundarye.g.at a free surface, most oftéiy = I', andl', = I'.

5. DRAINED AND UNDRAINED CONDITIONS

As indicated in Table 2, the permeability of highly fractdmeck and well sorted sand
and gravel is very high. Therefore, the pore water draing/almost immediately when
the matrix material is subjected to stress. In other woltsgtis no excess pore pressure,
i.e.p. = pe. = 0, and the pore pressupe= p, is governed by Eq. (32). Clearly, the steady
state pore pressure is decoupled from the displacemente akeleton. Thug; may be
calculated first, and subsequently the displacement fiéddcomputed by solution of the
equation

daj; _Op
al‘j 83:,-

K
+pgi =0, 01 = Aekrdij + 2p€i; + 2 Pdij (36)
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with known p. For the analysis of nonlinear behaviour of the soil skeletq. (36) may
instead be solved in incremental form. Here it may be utlliteatp = 0, that is the entire
stress increment is carried by the soil skeleton as effestiesses.

Finally, clay subject to rapid loading is almost fully unihed. Thusk;; ~ 0 (see
Table 2) and according to Eq. (28) the seepage velociiy is 0. Hence, by Egs. (7) and
(17) it follows that

y . .
9 =1 P YORRS¥

K. €xk = (1 n) K. + TLKf = p= " €kk (37)
In the approximation it has been assumed that the bulk medlthe solid phase is very
high compared with the other quantities. This is realisticdiay minerals.

Now, by Egs. (4) and (13) the total stress in the matrix matenay be written as

K
d’ij = )\ekkéw + 2[LL€.Z']' + <? — 1) péw (38)
Inserting the pore pressure defined by Eq. (38), the govgremuation for the undrained
poroelastic material is expressed in terms of total steeasd strains:

00 . . . . Ky
%j + pgi =0, Oij ~ )\Ekk(sij + 2,LL€ij + 76]@]@5”'. (39)
Here, it has been assumed tat > K. As discussed above, this is a fair approximation
for clay with a high porosity; but for intact rock the firstitein the parenthesis in Eq. (38)
has to be included. However, the approximation in Eq. (37) st be valid.

6. CONCLUSIONS

The theory for a saturated poroelastic material has beeseptred. Firstly, the defi-
nition of effective stresses has been discussed, and itdmas shown that the stress ap-
proach originally proposed by K. Terzaghi is accurate fayckand and similar residual
soils. However, constitutive models for saturated rock emmkcrete are better formulated
in terms of the effective stress measure proposed by M.A. BBecondly, the theory for
the consolidation process in three dimensions has beeniegdl Based on Darcy’s law
for the quasi-static flow in a porous medium, the governingagigns for the develop-
ment of excess pore pressure have been derived. Finallggtngbrium equations for the
particular cases of perfectly drained and undrained bebhatiave been presented.
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EXERCISE THE LIGHTHOUSE ON THEROCK

An old lighthouse stands on a small granite rock in the AttaBea near Stavanger,
Norway. The rock raises 25 metres above the seabed and aatedion Fig. 5 it is per-
meable and fully saturated with seawater—also above theagtibrlevel. Four triaxial
compression tests have been carried out on a dry intactdridal specimen of the rock.
The chamber pressueg in the four tests is equal to 100, 200, 300 and 400 kPa, respec-
tively. Note thatcompression is defined as positiia each test, the chamber pressure is
kept constant while the piston pressure, is increased. This results in a stress deviation
q = o1 — o3 which will eventually lead to failure in the material. Theests—strain curves
obtained in the four compression tests are plotted in Figpigawith the volumetric strain
history. Since the specimen is dry, all stresses in theigfigast are effectives.g.q = ¢'.

Question 1. Based on the triaxial compression tests, deterniinend v for the matrix
material,i.e. the rock. Further, verify that the bulk modulé&s ~ 15 GPa. Do you get the
same result from the hydrostatic step and the triaxial cesgion step?

Question 2. Failure in the rock is assumed to be governed by the MohitdDalicriterion.
In terms of the effective stress deviatigh= o} — 0%, and the effective confining pressure,
o4, the failure criterion takes the form (compressive stresse defined as positive):

q (1 —sin¢) — 204 sin g — 2ccos ¢ = 0.

Determine the value of the cohesi@enand the angle of frictionp, from Fig. 6.

FIGURE 5. A lighthouse on a nearly cylindrical rock.
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FIGURE 6. Stress—strain curves and volumetric strain recordetbir-t
ial compression tests for different values of the chambesgurers.

The rock is simplified as a circular cylinder with the dianmét@ m. It is fully saturated
and extends 5 metres above the phreatic level and 20 metoeg beis assumed that the
vertical normal stresses are distributed uniformly ovepdzwontal cross section and that
no effective stresses are developed in the horizontaltibres;i.e. o, = o4 = 0. Further,
the lighthouse has the total weigfit and the solid granite has the bulk modukis = 50
GPa and the densify, = 2700 kg/m?®. Finally, the porosity ig: = 0.05.

Question 3. Sketch the pore pressure and the total vertical normadssirethe rock as
functions of the depth below the sea level. The actual vataesot be determined at this
stage, since the weight of the lighthouég s yet unknown.

Question 4. Plot the verticallerzaghieffective normal stresg;|, as function of the depth
beneath the sea level. What is the maximum possible weigthtedighthouse before the
rock collapses based @i} ando}?

Question 5. Plot the verticaBiot effective normal stressy{, as function of the depth
beneath the sea level. Determine the maximum possible wefdghe lighthouse= on the
basis ofo] ands’. Compare and discuss the results of Questions 4 and 5.
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SOLUTION

Question 1. Young's modulusF, is determined as the ratio between the increment in axial
stresses and strains at constant chamber pressute, o3 = constant. The stress—strain
curves for the triaxial compression tests have almost idaglopes, independently of the
chamber pressure. From the, ¢’)-curve foros = 400 kPa (see Fig. 7) we get that

_dg 0.84-10°

~ dey ~ 0.037-10-3 —0.008 - 103

dq' = Ede, = ~ 29 GPa

Secondly, an increment in the volume strain, i.e. the ditgtduring the elastic part of
the triaxial compression test is given as
des = deg = —vdey = de, = deq + dea + des = (1 — 2v) de;.
Hence, Poisson’s ratio may be found from the slope of themaetuic strain curve,
. _3 _— . _3
1,:1 17@ %1 170.045 10 0.026 - 10 ~ 017,
2 dey 2 0.037-10-3 — 0.008 - 10—3

A Poisson ratio of about 0.15 to 0.2 is expected for cemerteki i.e. the valuer = 0.17
appears to be realistic.

_q'(MPa)

a3 = 400 kPa

4

0.8

\\\
AN
/>
3= 300 kPa

03 =200 kPa
03 =100 kPa

0.6

0.4

0.2
21 (o)

d.Ol 0.02 0.03 0.04 0.05 0.06 0.07

0.01 S~

0.02

0.03 S~o

0.04 |- T~\

~ o
-
—_———

0.05F

Y&, (%)

FIGURE 7. Points on the stress—strain curve and the volumetrimstra
curve utilised for the determination of Young’s modulus d&asson’s
ratio, respectively.
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Finally, based on Young’s moduls and Poisson’s ratio, tHk imodulus of the matrix

material is determined as 5

K=———"~15GPa
3(1—2v)

Alternatively, the bulk modulus is determined from the y&tatic part of the triaxial test.
Again making use of the results fey = 400 kPa, we get
dos 400107
de, ~ 0.026-1073
whereo is the mean stress. Clearly we obtain the same results inytir@static step and
the triaxial compression step.

dos =do=Kde, = K= ~ 15 GPa

Question 2. By inspection of the results of the triaxial compressiagidewe observe that
q,.(c3=100 kPa ~ 0.81 MPa= 810 kPa andy,, (03 =300 kPa ~ 1.02 MPa= 1020 kPa
(see Fig. 8). Then, we get the linear relationship
q,(o3) = %03 + 810 kPa— % - 100 kPa= 1.0503 + 705 kPa
Next, the failure criterion may be written as

2sin ¢ 2cos ¢
1-— singi)a3 1-— sin(,zbc'

q (1 —sing) — 204sing —2ccosp =0 = ¢ (03) =

A MP2) 3 = 400 kPa
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FIGURE 8. Points on the stress—strain curve used for evaluatioheof t
friction angle and the cohesion of rock.
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Thus, comparing the coefficient in the linear term, the angfeiction is obtained as
2 si 1.05
7SH.1¢ =105 = sing=——
1 —sing
and by comparison of the constant terms we get the cohesion,

2 cos ¢ 1 —sing
—cC= kPa =—
1-— sin¢>C 705 - 2cos ¢

¢~ 20°,

- 705 kPa~ 250 kPa

Question 3. The mass density of the solid phasgjs= 2700 kg/m® and the mass density
of the pore fluid (sea water) is estimatedsgs= 1020 kg/m*. Hence, with the porosity
n = 0.05 and application of Eq. (3), the total density of the matrixtenial becomes

p=(1—-n)ps+nps = (1—0.05)- 2700 kg/m® + 0.05 - 1020 kg/m® = 2616 kg/nT".

The specific weight of rock and water is determined by muégilon with the gravitational
accelerationi.e.

v = prg = 1020 kg/m’ - 9.82 m/s* = 10.02 kKN/m?,

v = pg = 2616 kg/m® - 9.82 m/S* = 25.67 KN/m>.

The rock has the height, = 5 m above the sea level ahgd = 20 m below the surface.
At the bottom of the cliff, the total vertical stress is congulias

O1,bottom = (hl + h2)’Y + G/A = 642 kPa+ G'/A7 A= 77'7“27

wherer = 5 m is the radius of the cylindrical rock arte is the weight of the lighthouse.
Similarly, at the top of the rock, the total stress is equakiol.

The pore pressure is zero at the mean water table, which éqjihiealent of the ground
water table. Above the mean water table, the pore pressmegtive due to capillarity,
and below the mean water table, the pore pressure is assarbhe@gual to the hydrostatic
pressure. Thus, any dynamic contributions from ocean wawesrrent are disregarded,
and the pore pressure at the top and bottom of the cliff become

Prop = —h1vs = —B0OKPa and ppottom = hoyy = 200 kPa

respectively. These values are utilised to plot the vaniatif the pore pressure and total
vertical stresses with depth in Fig. 9.

Question 4. A visualisation of the Terzaghi effective stresses is ted in Fig. 9. Clearly,
the greatest value ef} is expected at the bottom of the cliff. According to the datiwns

in the answer to Question 2 and wit) = 0, the rock collapses if the vertical effective
stress reaches the valté = ¢/, = 705 kPa at the bottom of the sea. Then, with Terza-
ghi’s definition of effective stresses, the maximum weigtthe lighthouse is found as the
solution to the equation

q; = O1,bottom — Pbottom = 642 kPa— 200 kPa+ G/A = 705 kPa

We then get tha& = 20.7 MN. It has been assumed that no other forces than the self-
weight due to gravitation act on the lighthouse and the rétks is obviously very unreal-
istic, and in reality a great contribution to the stressdkstgém from wave and wind forces

on the structure and the cliff.
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FIGURE 9. Vertical stresses and pore pressure as functions of fite de
below the top of the cliff. Note that the Terzaghi effectitresso| =

o1 — p is greater than the Biot effective stres$ = oy — [p at the top
of the cliff and smaller at the bottom of the cliff.

Question 5. Firstly, we calculated = 1 — K/K, = 1 — 15/50 = 0.7. Next, with Biot’s
effective stresses are sketched in Fig. 9, and it is notadnbeease ot} with depth is
slightly greater than that of Terzaghi’s effective stregs,Hence, at the bottom of the cliff
o} > of and the weight of the lighthouse is determined by

q;’ = 01, bottom — ﬁpbottom = 642 kPa— 0.7 - 200 kPa+ G/A =705 kPa

which providesz = 15.9 MN. Again it has been assumed that no other forces than gravit
act on the lighthouse and the rock.

Comparing the results of the computations with the two déding of effective stresses,
it becomes clear that Terzaghi's definition leads to a sicguifily higher load-carrying
capacity than Biot's definition. Assuming that the lightkeus made of concrete, the
construction material has a specific weight of approxinys28lkN/m?. Then, Terzaghi’s
theory provide the erroneous result that approximately @3®f concrete can be used,
whereas only about 640%htan be used according to the exact theory by Biot.






ISSN 1901-7286
DCE Lecture Notes No. 14



