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Effective Stresses in Soil and Rock and Consolidation in Three Dimensions

LARS ANDERSEN

ABSTRACT. In the following, the continuum model for a fully saturatedporous material
is presented. The theory is mainly due to M.A. Biot [3, 4]. We shall only consider a two-
phase system consisting of a solid skeleton and a single porefluid, e.g.water. The theory
for three-dimensional consolidation is developed. Anisotropic permeability of the material
is allowed, but for simplicity the analysis is restricted toisotropic linear elastic material
behaviour. However, the theory is easily extended to elastoplasticity. Finally, it will be
shown that the effective stresses in a porous material may ingeneral not be calculated
as proposed by Terzaghi. Whereas highly accurate results are achieved for residual soils,
i.e. sand, silt and clay, poor results are obtained for cemented materials such as concrete
and rock. Here it is recommended to follow the stress approach proposed by Biot.

1. BASIC DEFINITIONS

A porous material, or matrix, with the total volumeV is considered. The material is
fully saturated, and the pores are assumed to be distributedrandomly in space so that the
material on a macroscopic level may be described as a continuum. The volume is divided
into two parts,

V = Vs + Vf , (1)

whereVs is the volume of the solid phase,i.e. the grain skeleton, andVf is the volume of
fluid. In geotechnical engineering, the subscriptf is generally substituted by the subscript
w, since the pore fluid is usually water. In saturated porous materials,e.g.soil, a part of the
pore fluid is constrained. For example, a part of the water in clay is chemically bound to the
clay mineral, and in rock or granular soil some of the water may be trapped in cracks that
are not connected to the primary system of pores. This part ofthe fluid belongs to the solid
phase,i.e. to Vs, since it cannot move relatively to the solid matrix. Hence,only the volume
of interconnected voids is included in the definition ofVf , cf. Fig. 1. Unfortunately, in real
soil or concrete etc. it may be difficult to determine which part of the pore fluid is free to
move relatively to the solid skeleton.

Solid Fixed fluid Free fluid

1-n

nVf

Vs

FIGURE 1. Definition of the porosity,n, in a saturated porous material.
The volume of the free fluid in the interconnected pores isVf = nV ,
and the volume of the solid (including fixed fluid) isVs = (1 − n)V .

5



6 LARS ANDERSEN

Theporosityof the porous material, or matrix, is defined as

n = Vf/V, (2)

i.e. as the volume fraction taken up by interconnected pores. Occasionally, in the interna-
tional literature on porous materials, the porosity is denotedf , φ or β, but in the Danish
geotechnical literature the symboln is usually applied. Given that the soil is fully saturated,
the mass density of the matrix material constituted by the solid and the fluid becomes

ρ = (1 − n)ρs + nρf , (3)

whereρs is the mass density of the solid phase, whereasρf is the mass density of the fluid
phase. In standard geotechnical engineeringρs is most often the average density of the
minerals constituting the grains in the soil. This is not thecase in the present formulation,
since any fluid that is not allowed to move freely between the grains is considered part
of the solid phase as illustrated in Fig. 1. In other words,n is the volume fraction of
interconnected pores. With this definition,n is occasionally referred to as theeffective
porosity.

In the present theory, it is assumed that the pores are distributed randomly, so that
the matrix material may be considered homogeneous on a macroscopic level. Hence, in
accordance with Eq. (2) for a cross section with the total area A, the areaAf = nA will
be constituted by the free pore fluid, whereas the solid phase(including fixed pore water)
constitutes the areaAs = (1 − n)A.

Next, the pore pressure,p = p(x, t), is defines as the pressure in the free pore fluid.
Whereas the mean total stress,σ = σkk, is defined as positive in tension, the pore pressure
is positive in compression. This definition is common practice in geotechnical engineering.
The total stressesσij are now divided into two parts,

σij = σ′

ij − pδij . (4)

Hereσ′

ij are referred to as theeffective stresses. While the pore pressure is present in both
the fluid and the solid phase, the effective stresses are carried solely by the solid skeleton.
Given that the solid phase only constitutes the fraction1 − n of the entire matrix, the total
stress in the solid phase is actuallyσ′

ij/(1 − n) − pδij , whereas the total stress in the
pore fluid is−pδij , cf. Fig. 2. In Section 3 the definition of effective stressesis further
discussed, in particular with respect to the formulation ofconstitutive laws.

The displacements of the grain skeleton and the fluid in the interconnected pores are
denotedui andvi, respectively. In addition to the full displacement of the pore fluid, a
relative velocity is introduced in the form

ẇi =
∂wi

∂t
= n

(

∂vi

∂t
−

∂ui

∂t

)

, wi = n (vi − ui) . (5)

The quantityẇi = ẇi(x, t) is referred to as theseepage velocity. Evidently, ẇi is the
average relative velocity of the fluid flow in the matrix including both the fluid and the
solid phase. Thus, in the particular caseui = 0 the definitionẇi = qi/A applies, whereqi

is the fluid flow, or flux, through the cross section areaA in coordinate directioni, cf. Fig 3.
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+ + +

A

−p̃ σ̃′
−p−p σ′/(1− n) σ′

FIGURE 2. Stresses acting on a cross section in a poroelastic medium.

A

˙̃v v̇ ẇ

FIGURE 3. Flow velocity over a cross section in a poroelastic medium.

2. CONSTITUTIVE LAWS IN POROELASTICITY

Firstly, an elastic material is considered. A linear relationship between the strain and
stress rates is assumed. Hence, the constitutive law may be expressed in terms of the
generalized Hooke’s law,

σ̇ij = Cijkl ǫ̇kl. (6)

Hereǫ̇kl = ǫ̇kl(x, t) is thestrain rate tensor,

ǫ̇ij =
1

2

(

∂u̇i

∂xj

+
∂u̇j

∂xi

)

, u̇i =
∂ui

∂t
. (7)

whereui = ui(x, t) denotes the displacement field. In general, thetangent stiffness tensor
Cijkl = Cijkl(x, t) may account for elastoplastic material behaviour as well asrheological
and thermoelastic response [?]. However, in any case only the elastic strains will contribute
to the development of stresses, and for the present purpose an elastic model will suffice. In
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particular, for an isotropic and linear elastic material, the constitutive law simplifies to

σ̇ij = λ∆̇sδij + 2µǫ̇ij , (8)

where∆̇s = ∆̇s(x, t) is thedilation rate,

∆̇s =
∂u̇k

∂xk

, (9)

δij is theKronecker delta,

δij =

{

1 for i = j
0 for i 6= j

(10)

andλ = λ(x) andµ = µ(x) are the so-calledLamé constants, which are related to Young’s
modulusE = E(x) and Poisson’s ratioν = ν(x) as

λ =
νE

(1 + ν) (1 − 2ν)
, µ =

E

2 (1 + ν)
. (11)

The inverse relationships are given as

E =
µ (3λ + 2µ)

λ + µ
, ν =

λ

2 (λ + µ)
. (12)

The Lamé constantµ is also identified as theshear modulus, which is often denotedG.
Secondly, in a porous material the effective stresses are provided by the constitutive

law for the matrix material,i.e. the saturated grain skeleton. In the case of linear isotropic
material behaviour the stress–strain relationship is similar to Eq. (8). However, it must
be taken into consideration that a change in the pore pressure will lead to a change in the
volume of the solid constituent,i.e. the grains or the porous solid, which does not involve
a change in the effective stresses. Hence,

σ̇′

ij = λǫ̇′kkδij + 2µǫ̇′ij , where ǫ̇′ij = ǫ̇ij −
1

3
∆̇p

sδij , ∆̇p
s = −

ṗ

Ks

. (13)

Hereǫ̇ij are the components of the strain rate tensor given by Eq. (7),andλ andµ are the
Lamé constants of the matrix material. Note that these may besubstantially different from
the Lamé constantsλs andµs of the solid material as further discussed below. Finally,
∆̇p

s is the dilation rate in the solid phase due to the pore pressure (positive in expansion),
whereasKs is the bulk modulus of the solid constituent. In a linear elastic isotropic ma-
terial the following relationship applies betweenKs and the Lamé constantsλs andµs of
the solid constituent,e.g.the grains or the rock mineral:

Ks = λs +
2

3
µs. (14)

In granular materials such as residual soils,λs andµs are typically much greater than
λ andµ, e.g. the Lamé constants of sand are much smaller than those of quarts crystal.
Hence, the reduction in the volume of the solid phase resulting from an increase of the
pore pressure is generally negligible. In this situation∆̇p

s may be disregarded and the
approximationǫ̇′ij ≈ ǫ̇ij applies. On the other hand, in concrete, intact rock and similar
cemented materials the bulk modulus of the solid constituent, Ks, and that of the matrix
material,K, are typically of the same order of magnitude. Therefore, inthese materialṡ∆p

s

becomes significant, and the full definition provided by Eq. (13) applies. Finally, it is noted
that in the general nonlinear case, an additional contribution to the total strain ratėǫij , but
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not to ǫ̇′ij , stems from creep and thermoelastic behaviour. However, this irreversible term
is disregarded in the present theory.

Thirdly, for the pore pressure, a constitutive equation equivalent to Eq. (13) is achieved
by consideration of the volumetric strain of the matrix,i.e. the dilatation. Making use of
Eqs. (7) and (5), the total dilatation rate for the matrix,∆̇m, may be expressed as

∆̇m = (1 − n)∆̇s + n∆̇f =
∂u̇k

∂xk

+
∂ẇk

∂xk

, where ∆̇s =
∂u̇k

∂xk

, ∆̇f =
∂v̇k

∂xk

. (15)

DefiningKf as the bulk modulus of the fluid, the following constitutive laws are obtained
with regard to the volumetric strains of the solid and the fluid phase, respectively:

∆̇s =
1

1 − n

σ̇′

Ks

−
ṗ

Ks

= ∆̇′

s + ∆̇p
s, σ̇′ =

σ̇′

kk

3
, ∆̇f = −

ṗ

Kf

. (16)

Hereσ̇′ is the mean effective stress rate, and the quantityσ̇′/(1 − n) − ṗ is identified as
the actual mean stress rate in the solid phase, given that theeffective stresses are carried by
the solid skeleton alone as discussed above.

Insertion of Eq. (16) into Eq. (15) provides a relation whichdefines the pore pressure
rate in terms of the matrix material velocityu̇i and the seepage velocitẏwi,

∆̇m =
∂u̇k

∂xk

+
∂ẇk

∂xk

=
σ̇′

Ks

− (1 − n)
ṗ

Ks

− n
ṗ

Kf

≈ −n
ṗ

Kf

. (17)

Note that only the volumetric strain rate,i.e. the dilation rate, occurs in Eq. (17), that is
the constitutive law for the pore fluid is independent of any shear deformations in the solid
constituent or the fluid. On the righthand side of Eq. (17) it has been assumed that the
volumetric strain rate in the solid phase is much smaller than the dilatation rate in the
pore fluid. This approximation is valid for most granular materials such as soil, given that
nKs ≫ (1 − n)Kf . This is the case for sand, wheren is typically around 0.2 to 0.3 and
Ks ≈ 20Kf (Kf ≈ 2 GPa for water). However, for rock-like materialsn may be close to
zero, and in this case the contributions to the total dilatation from the solid phase and the
fluid phase may be of the same order of magnitude.

3. ALTERNATIVE DEFINITION OF EFFECTIVE STRESSES—BIOT THEORY

The total stresses,σij , may be divided into the pore pressure,p and the so-called effec-
tive stresses,σ′

ij . According to Eq. (4)

σ′

ij = σij + pδij . (18)

This definition of effective stresses was proposed by K. Terzaghi, and the componentsσ′

ij

are occasionally referred to as theTerzaghi effective stresses. It is noted thatp is positive
in compression, whereas the stresses are defined as positivein tension.

With the definition given by Eq. (18), the constitutive law for the effective stresses is
given in terms of “effective strains” according to Eq. (13).This implies that the volumetric
strain of the solid skeleton due to a change in the pore pressure will not provide any change
in the effective stresses. Alternatively, for an isotropiclinear elastic material one may
define the rate of change in the effective stresses as

σ̇′′

ij = λǫ̇kkδij + 2µǫ̇ij , (19)
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i.e. in terms of thetotal strain rate. A comparison of Eqs. (13) and (19) implies that in the
general casėσ′′

ij 6= σ̇′

ij , and thereforeσ′′

ij 6= σij + pδij . Hence, Terzaghi’s definition of
effective stresses is invalid when the constitutive equation is defined in terms of effective
stresses and total strains. In order to prove this, the mean effective stress ratėσ′ is computed
from Eq. (13). Making use of the fact thatδkk = 3, the following result is obtained:

σ̇′ =
1

3
σ̇′

kk =
1

3
λǫ̇′iiδkk +

2

3
µǫ̇′kk = Kǫ̇′kk = K

(

ǫ̇kk +
ṗ

Ks

)

. (20)

HereK andKs are the bulk moduli of the matrix material and the solid constituent, re-
spectively,

K = λ +
2

3
µ, Ks = λs +

2

3
µs. (21)

Next, similarly to Eq. (20), the mean effective stress rateσ̇′′ is found as

σ̇′′ =
1

3
σ̇′′

kk =
1

3
λǫ̇iiδkk +

2

3
µǫ̇kk = Kǫ̇kk. (22)

Comparison of Eqs. (20) and (23) provides the result thatσ̇′′ = σ̇′ − (K/Ks)ṗ. Since a
change inp provides the same change in all normal stress components andno change in
the shear stress components,

σ̇′′

ij = σ̇′

ij − δij

K

Ks

ṗ. (23)

Next, Eq. (23) is integrated over time in the intervalτ ∈ [t0, t], whereτ is the integration
variable. This leads to the equation

σ′′

ij(x, t) − σ′′

ij(x, t0) = σ′

ij(x, t) − σ′

ij(x, t0) + δij

K

Ks

(p(x, t) − p(x, t0)) . (24)

Sincet0 may be chosen arbitrarily, the stresses at timet must fulfill the equation

σ′′

ij = σ′

ij − δij

K

Ks

p. (25)

Thus, as an alternative to the Terzaghi effective stresses given by Eq. (23), one may
apply the definition

σ′′

ij = σij + βpδij , β = 1 −
K

Ks

. (26)

This formulation was originally proposed by Biot. A comparison of Eqs. (13) and (19)
suggests that theBiot effective stresseslead to much simpler constitutive models than the
Terzaghi effective stresses which must be defined in terms of“effective” strains.

It is worthwhile to note that for both granular soil and clay saturated with water, the
bulk modulus of the minerals constituting the solid part of the material is much greater
than the bulk modulus of the matrix,i.e. Ks ≫ K. In particular, for normally or under
consolidated clayey soil with large water contentsβ ≈ 1, see Table 1. Hence, the Biot and
the Terzaghi effective stresses are equivalent.

Finally, in saturated porous rock and concrete,K andKs are of the same order of
magnitude, and values ofβ as low as 0.5 may be expected. This fact is often neglected
in geotechnical engineering practice. Here Eqs. (18) and (19) are usually applied with the
erroneous assumption thatσ′′

ij = σ′

ij . Unfortunately, the Terzaghi effective normal stresses
provided by Eq. (18) are smaller than, or equal to, the Biot effective normal stresses given
by Eq. (26). Therefore, elastoplastic constitutive laws based on Terzaghi effective stresses
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TABLE 1. Compressibility of soil, rock and concrete [1].

Vermont Marble

52,00013,000 0.75Quincy Granite (30 m deep)

37,00017,000 0.54

Dense Sand

40,0005,000 0.88Concrete (approximately)

71,0005,600 0.92

London Clay (over consolidated)

36,00011 0.9997Loose Sand

36,00056 0.9985

Gosport Clay (normally consolidated)

Quartzitic Sandstone

K KsMaterial

Bulk Modulus (MPa)a

50,00013 0.99975

50,0001.7 0.99997

K/K= -(1 s)β

a Bulk moduli atp = 98 kPa (atmospheric pressure); water:Kf = 2040 MPa.

and total strains will generally provide an overestimationof the shear strength of saturated
granular materials such as soil, and in particular rock, below the phreatic surface.

4. THREE-DIMENSIONAL CONSOLIDATION IN SOIL AND ROCK

A poroelastic continuum is considered. Disregarding any inertia forces, the incremental
form of the equilibrium equation for the matrix material maybe put as

∂σ̇ij

∂xj

+ ρġi = 0, ġi =
∂gi

∂t
, (27)

wheregi = gi(x, t) are the specific body forces. In soil mechanicsgi is usually the gravity
field. Further,ρ = ρ(x) is the mass density of the matrix material, cf. Eq. (3).

In a similar manner, the equilibrium for the fluid phase is provided by the equation

−ẇi = kij

(

∂p

∂xj

+ ρfgj

)

, (28)

whereẇi is the seepage velocity, cf. Eq. (5), andkij = kij(x) is a second order tensor
with the SI units (m3·s·kg−1) representing the permeability of the material. In the general
casekij is fully populated and asymmetric. However, in orthotropicmaterials only the
diagonal terms have none-zero values. Typically, in stratified soilk11 = k22 6= k33, that
is the vertical permeability is different from the horizontal permeability. In the particular
simple case of isotropic porous materialskij = δijk. Thus, the permeability is defined by
a single parameter,k.

Equation (28) is identified as the generalized Darcy’s law for fluid flow in a porous
medium. It is observed that a gradient in the pore pressure,p, which is not counterbalanced
by gravitation forces, will lead to seepage with the velocity ẇi. The speed of the fluid flow
increases with the permeability of the matrix. Further, in anisotropic materials the flow
may not necessarily be in the opposite direction of the gradient. This is evidently the case
for isotropic and orthotropic materials, sincekij only contains diagonal terms.

In contrast to thehydraulic conductivity, χ = gρfk, with SI units (m·s−1), the parame-
terk is independent of the fluid density and the gravitational acceleration,g. However, the
components ofkij still depend on the dynamic viscosity of the pore fluid,µf , with the SI
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TABLE 2. Permeability of various soil and rock materials [2].

Relative
Permeability

Unconsolidated
Sand & Gravel

Unconsolidated
Clay & Organic

Consolidated
Rocks

ê k (cm )2

ê k (milli-darcies)

Well Sorted
Gravel

Highly Fractured Rock Oil Reservoir
Rocks

Fresh
Sandstone

Fresh
Granite

Fat / Unweathered Clay

Fresh
Limestone,
Dolomite

10-3 10-510-4 10-6 10-7 10-910-8 10-10 10-11 10-12 10-13 10-14 10-15

108 106107 105 104 100103 10 1 0.1 0.01 10-3 10-4

Pervious ImperviousSemi-Pervious

Well Sorted Sand
or Sand & Gravel

Layered Clay

Very Fine Sand, Silt
Loess, Loam

Peat

units (kg·m−1·s−1). An alternative measure of the permeability that only depends on the
geometry of the soil skeleton may be defined as

κ = µfk. (29)

This parameter is coined thepermeability coefficientand has the SI units (m2), but it is
usually measured indarcy(d), or more commonlymilli-darcy (md) (1 darcy∼ 10−12 m2).
Typical values for soil and rock are listed in Table 2.

Finally, mass balance of the flow is ensured by Eq. (17). Making use of Eqs. (7) and
(28), the balance equation (17) may in turn be written

∂

∂xi

{

kij

(

∂p

∂xj

+ ρfgj

)}

+
σ̇′

Ks

− (1 − n)
ṗ

Ks

− n
ṗ

Kf

− ∆̇s = 0, (30)

whereσ̇′ is the effective mean stress rate, cf. Eq. (20), and∆̇s is the dilation rate in the
solid phase, cf. (15).

Next, for the purpose of analysing consolidation in a fully saturated porous elastic ma-
terial it is useful to divide the total pore pressurep(x, t) into the steady state pore pressure
ps = ps(x) and the excess pore pressurepe = pe(x, t), that is

p = ps + pe. (31)

In the steady state, the volume of pore fluid inside a give control volume will be constant,
i.e. independent of time. Therefore, according to Eq. (28),

−
∂ẇi

∂xi

∣

∣

∣

∣

steady state

=
∂

∂xi

{

kij

(

∂ps

∂xj

+ ρfgj

)}

= 0. (32)

Inserting this result into Eq. (30), the governing equationfor the development of the excess
pore pressure,pe, over time is achieved in the form

∂

∂xi

{

kij

∂pe

∂xj

}

+
σ̇′

Ks

− (1 − n)
ṗe

Ks

− n
ṗe

Kf

− ∆̇s = 0, (33)

where use has been made of the fact thatṗs = 0, i.e. ṗ = ṗe.
Equation (33) may be solved simultaneously with the equation of equilibrium (27). For

complicated geometries, the coupled equations (27) and (33) may be discretized over the
volume and solved by means of, for example, the finite difference or the finite element
method. Initial values must be provided for the displacement field and the seepage over
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W W

(a) (b)

Γu

Γτ Γq

Γp

nn

FIGURE 4. Poroelastic domain,Ω, with division of the boundary,Γ, for
the definition of boundary conditions concerning (a) force equilibrium,
and (b) seepage.

the entire volume. Further, Dirichlet or Neumann conditions must be supplied for both
the displacement and the seepage velocity along the boundary Γ, cf. Fig. 4. Thus, for the
equilibrium equation (27) the boundary conditions must be given in the form:

ui = ūi for x ∈ Γu

τi = τ̄i for x ∈ Γτ

}

where Γu ∪ Γτ = Γ ∧ Γu ∩ Γτ = ∅, (34)

whereτi = σ′

ijnj defines the surface traction and(ūi, τ̄i) denote the prescribed values.
Here nj = nj(x) are the components of the unit outward normal to the boundaryΓ.
Similarly, for the seepage velocity

pi = p̄i for x ∈ Γp

qi = q̄i for x ∈ Γq

}

where Γp ∪ Γq = Γ ∧ Γp ∩ Γq = ∅, (35)

Hereqi = ∂ẇi/∂xj nj is the flux of pore water through the boundary. Along impermeable
surfaces, the flux iṡqi = 0, i.e. there is no flow of pore fluid through the boundary. On the
other hand the pore pressure will be known along free surfaces. Finally it is noted that in
general there is no relation between the boundary subsets(Γu, Γτ ) and(Γp, Γq). However,
since the traction and the pore pressure are likely to be described along the same part of
the boundary,e.g.at a free surface, most oftenΓτ = Γp andΓu = Γq.

5. DRAINED AND UNDRAINED CONDITIONS

As indicated in Table 2, the permeability of highly fractured rock and well sorted sand
and gravel is very high. Therefore, the pore water drains away almost immediately when
the matrix material is subjected to stress. In other words, there is no excess pore pressure,
i.e.pe = ṗe = 0, and the pore pressurep = ps is governed by Eq. (32). Clearly, the steady
state pore pressure is decoupled from the displacements of the skeleton. Thus,p may be
calculated first, and subsequently the displacement fieldu is computed by solution of the
equation

∂σ′

ij

∂xj

−
∂p

∂xi

+ ρgi = 0, σ′

ij = λǫkkδij + 2µǫij +
K

Ks

pδij (36)



14 LARS ANDERSEN

with knownp. For the analysis of nonlinear behaviour of the soil skeleton, Eq. (36) may
instead be solved in incremental form. Here it may be utilized thatṗ = 0, that is the entire
stress increment is carried by the soil skeleton as effective stresses.

Finally, clay subject to rapid loading is almost fully undrained. Thus,kij ≈ 0 (see
Table 2) and according to Eq. (28) the seepage velocity isẇi = 0. Hence, by Eqs. (7) and
(17) it follows that

σ̇′

Ks

− ǫ̇kk = (1 − n)
ṗ

Ks

+ n
ṗ

Kf

⇒ ṗ ≈ −
Kf

n
ǫ̇kk (37)

In the approximation it has been assumed that the bulk modulus of the solid phase is very
high compared with the other quantities. This is realistic for clay minerals.

Now, by Eqs. (4) and (13) the total stress in the matrix material may be written as

σ̇ij = λǫ̇kkδij + 2µǫ̇ij +

(

K

Ks

− 1

)

ṗδij . (38)

Inserting the pore pressure defined by Eq. (38), the governing equation for the undrained
poroelastic material is expressed in terms of total stresses and strains:

∂σ̇ij

∂xj

+ ρġi = 0, σ̇ij ≈ λǫ̇kkδij + 2µǫ̇ij +
Kf

n
ǫ̇kkδij . (39)

Here, it has been assumed thatKs ≫ K. As discussed above, this is a fair approximation
for clay with a high porosity; but for intact rock the first term in the parenthesis in Eq. (38)
has to be included. However, the approximation in Eq. (37) may still be valid.

6. CONCLUSIONS

The theory for a saturated poroelastic material has been presented. Firstly, the defi-
nition of effective stresses has been discussed, and it has been shown that the stress ap-
proach originally proposed by K. Terzaghi is accurate for clay, sand and similar residual
soils. However, constitutive models for saturated rock andconcrete are better formulated
in terms of the effective stress measure proposed by M.A. Biot. Secondly, the theory for
the consolidation process in three dimensions has been explained. Based on Darcy’s law
for the quasi-static flow in a porous medium, the governing equations for the develop-
ment of excess pore pressure have been derived. Finally, theequilibrium equations for the
particular cases of perfectly drained and undrained behaviour have been presented.
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EXERCISE: THE L IGHTHOUSE ON THEROCK

An old lighthouse stands on a small granite rock in the Atlantic Sea near Stavanger,
Norway. The rock raises 25 metres above the seabed and as indicated on Fig. 5 it is per-
meable and fully saturated with seawater—also above the phreatic level. Four triaxial
compression tests have been carried out on a dry intact cylindrical specimen of the rock.
The chamber pressureσ3 in the four tests is equal to 100, 200, 300 and 400 kPa, respec-
tively. Note thatcompression is defined as positive. In each test, the chamber pressure is
kept constant while the piston pressure,σ1, is increased. This results in a stress deviation
q = σ1 − σ3 which will eventually lead to failure in the material. The stress–strain curves
obtained in the four compression tests are plotted in Fig. 6 along with the volumetric strain
history. Since the specimen is dry, all stresses in the triaxial test are effective,e.g.q = q′.

Question 1. Based on the triaxial compression tests, determineE andν for the matrix
material,i.e. the rock. Further, verify that the bulk modulusK ≈ 15 GPa. Do you get the
same result from the hydrostatic step and the triaxial compression step?

Question 2. Failure in the rock is assumed to be governed by the Mohr-Coulomb criterion.
In terms of the effective stress deviation,q′ = σ′

1
−σ′

3
, and the effective confining pressure,

σ′

3
, the failure criterion takes the form (compressive stresses are defined as positive):

q′ (1 − sin φ) − 2σ′

3
sin φ − 2c cosφ = 0.

Determine the value of the cohesion,c, and the angle of friction,φ, from Fig. 6.

FIGURE 5. A lighthouse on a nearly cylindrical rock.
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FIGURE 6. Stress–strain curves and volumetric strain recorded in triax-
ial compression tests for different values of the chamber pressureσ3.

The rock is simplified as a circular cylinder with the diameter 10 m. It is fully saturated
and extends 5 metres above the phreatic level and 20 metres below. It is assumed that the
vertical normal stresses are distributed uniformly over a horizontal cross section and that
no effective stresses are developed in the horizontal directions,i.e.σ′

2
= σ′

3
= 0. Further,

the lighthouse has the total weightG, and the solid granite has the bulk modulusKs = 50

GPa and the densityρs = 2700 kg/m3. Finally, the porosity isn = 0.05.

Question 3. Sketch the pore pressure and the total vertical normal stress in the rock as
functions of the depth below the sea level. The actual valuescannot be determined at this
stage, since the weight of the lighthouse,G, is yet unknown.

Question 4. Plot the verticalTerzaghieffective normal stress,σ′

1
, as function of the depth

beneath the sea level. What is the maximum possible weight ofthe lighthouse before the
rock collapses based onσ′

1
andσ′

3
?

Question 5. Plot the verticalBiot effective normal stress,σ′′

1
, as function of the depth

beneath the sea level. Determine the maximum possible weight of the lighthouseG on the
basis ofσ′′

1
andσ′′

3
. Compare and discuss the results of Questions 4 and 5.
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SOLUTION

Question 1. Young’s modulus,E, is determined as the ratio between the increment in axial
stresses and strains at constant chamber pressure,σ2 = σ3 = constant. The stress–strain
curves for the triaxial compression tests have almost identical slopes, independently of the
chamber pressure. From the(ǫ1, q

′)-curve forσ3 = 400 kPa (see Fig. 7) we get that

dq′ = Edǫ1 ⇒ E =
dq′

dǫ1
≈

0.84 · 106

0.037 · 10−3 − 0.008 · 10−3
≈ 29 GPa.

Secondly, an increment in the volume strain, i.e. the dilation, during the elastic part of
the triaxial compression test is given as

dǫ2 = dǫ3 = −νdǫ1 ⇒ dǫv = dǫ1 + dǫ2 + dǫ3 = (1 − 2ν) dǫ1.

Hence, Poisson’s ratio may be found from the slope of the volumetric strain curve,

ν =
1

2

(

1 −
dǫv

dǫ1

)

≈
1

2

(

1 −
0.045 · 10−3 − 0.026 · 10−3

0.037 · 10−3 − 0.008 · 10−3

)

≈ 0.17.

A Poisson ratio of about 0.15 to 0.2 is expected for cemented rock, i.e. the valueν = 0.17

appears to be realistic.
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FIGURE 7. Points on the stress–strain curve and the volumetric strain
curve utilised for the determination of Young’s modulus andPoisson’s
ratio, respectively.
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Finally, based on Young’s moduls and Poisson’s ratio, the bulk modulus of the matrix
material is determined as

K =
E

3 (1 − 2ν)
≈ 15 GPa

Alternatively, the bulk modulus is determined from the hydrostatic part of the triaxial test.
Again making use of the results forσ3 = 400 kPa, we get

dσ3 = dσ = Kdǫv ⇒ K =
dσ3

dǫv

≈
400 · 103

0.026 · 10−3
≈ 15 GPa,

whereσ is the mean stress. Clearly we obtain the same results in the hydrostatic step and
the triaxial compression step.

Question 2. By inspection of the results of the triaxial compression tests, we observe that
q′u(σ3 =100 kPa) ≈ 0.81 MPa= 810 kPa andq′u(σ3 =300 kPa) ≈ 1.02 MPa= 1020 kPa
(see Fig. 8). Then, we get the linear relationship

q′u(σ3) =
1020− 810

300 − 100
σ3 + 810 kPa−

1020− 810

300 − 100
· 100 kPa= 1.05σ3 + 705 kPa.

Next, the failure criterion may be written as

q′ (1 − sin φ) − 2σ′

3
sin φ − 2c cosφ = 0 ⇒ q′(σ3) =

2 sinφ

1 − sinφ
σ3 +

2 cosφ

1 − sin φ
c.
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FIGURE 8. Points on the stress–strain curve used for evaluation of the
friction angle and the cohesion of rock.
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Thus, comparing the coefficient in the linear term, the angleof friction is obtained as

2 sinφ

1 − sin φ
= 1.05 ⇒ sin φ =

1.05

2 + 1.05
⇒ φ ≈ 20◦,

and by comparison of the constant terms we get the cohesion,

2 cosφ

1 − sin φ
c = 705 kPa ⇒ c =

1 − sin φ

2 cosφ
· 705 kPa≈ 250 kPa.

Question 3. The mass density of the solid phase isρs = 2700 kg/m3 and the mass density
of the pore fluid (sea water) is estimated asρf = 1020 kg/m3. Hence, with the porosity
n = 0.05 and application of Eq. (3), the total density of the matrix material becomes

ρ = (1 − n)ρs + nρf = (1 − 0.05) · 2700 kg/m3 + 0.05 · 1020 kg/m3 = 2616 kg/m3.

The specific weight of rock and water is determined by multiplication with the gravitational
acceleration,i.e.

γf = ρfg = 1020 kg/m3 · 9.82 m/s2 = 10.02 kN/m3,

γ = ρg = 2616 kg/m3 · 9.82 m/s2 = 25.67 kN/m3.

The rock has the heighth1 = 5 m above the sea level andh2 = 20 m below the surface.
At the bottom of the cliff, the total vertical stress is computed as

σ1,bottom = (h1 + h2)γ + G/A = 642 kPa+ G/A, A = πr2,

wherer = 5 m is the radius of the cylindrical rock andG is the weight of the lighthouse.
Similarly, at the top of the rock, the total stress is equal toG/A.

The pore pressure is zero at the mean water table, which is theequivalent of the ground
water table. Above the mean water table, the pore pressure isnegative due to capillarity,
and below the mean water table, the pore pressure is assumed to be equal to the hydrostatic
pressure. Thus, any dynamic contributions from ocean wavesor current are disregarded,
and the pore pressure at the top and bottom of the cliff become

ptop = −h1γf = −50 kPa and pbottom = h2γf = 200 kPa,

respectively. These values are utilised to plot the variation of the pore pressure and total
vertical stresses with depth in Fig. 9.

Question 4. A visualisation of the Terzaghi effective stresses is provided in Fig. 9. Clearly,
the greatest value ofσ′

1
is expected at the bottom of the cliff. According to the derivations

in the answer to Question 2 and withσ′

3
= 0, the rock collapses if the vertical effective

stress reaches the valueσ′

1
= q′u = 705 kPa at the bottom of the sea. Then, with Terza-

ghi’s definition of effective stresses, the maximum weight of the lighthouse is found as the
solution to the equation

q′u = σ1,bottom − pbottom = 642 kPa− 200 kPa+ G/A = 705 kPa.

We then get thatG = 20.7 MN. It has been assumed that no other forces than the self-
weight due to gravitation act on the lighthouse and the rock.This is obviously very unreal-
istic, and in reality a great contribution to the stresses will stem from wave and wind forces
on the structure and the cliff.
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p σ1 σ′

1 σ′′

1

FIGURE 9. Vertical stresses and pore pressure as functions of the depth
below the top of the cliff. Note that the Terzaghi effective stressσ′

1
=

σ1 − p is greater than the Biot effective stressσ′′

1
= σ1 − βp at the top

of the cliff and smaller at the bottom of the cliff.

Question 5. Firstly, we calculateβ = 1 − K/Ks = 1 − 15/50 = 0.7. Next, with Biot’s
effective stresses are sketched in Fig. 9, and it is noted that increase ofσ′′

1
with depth is

slightly greater than that of Terzaghi’s effective stress,σ′

1
. Hence, at the bottom of the cliff

σ′′

1
> σ′

1
and the weight of the lighthouse is determined by

q′′u = σ1,bottom − βpbottom = 642 kPa− 0.7 · 200 kPa+ G/A = 705 kPa,

which providesG = 15.9 MN. Again it has been assumed that no other forces than gravity
act on the lighthouse and the rock.

Comparing the results of the computations with the two definitions of effective stresses,
it becomes clear that Terzaghi’s definition leads to a significantly higher load-carrying
capacity than Biot’s definition. Assuming that the lighthouse is made of concrete, the
construction material has a specific weight of approximately 25 kN/m3. Then, Terzaghi’s
theory provide the erroneous result that approximately 830m3 of concrete can be used,
whereas only about 640 m3 can be used according to the exact theory by Biot.
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