
Aalborg Universitet

Spacecraft Attitude Control in Hamiltonian Framework

Wisniewski, Rafal

Publication date:
2000

Document Version
Også kaldet Forlagets PDF

Link to publication from Aalborg University

Citation for published version (APA):
Wisniewski, R. (2000). Spacecraft Attitude Control in Hamiltonian Framework.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025

https://vbn.aau.dk/da/publications/2c565b80-9c2d-11db-8ed6-000ea68e967b


Spacecraft Attitude Control in Hamiltonian Framework

Rafa l Wi�sniewski
Aalborg University, Department of Control Engineering,
Frederik Bajers Vej 7, DK-9220 Aalborg �, Denmark.

raf@control.auc.dk

Abstract

The objective of this paper is to give a design scheme
for attitude control algorithms of a generic spacecraft.
Along with the system model formulated in the Hamil-
ton's canonical form the algorithm uses information
about a required potential energy and a dissipative
term. The control action is the sum of the gradient
of the potential energy and the dissipative force. It
is shown that this control law makes the system uni-
formly asymptotically stable to the desired reference
point. Three problems were addressed in the paper:
spacecraft stabilization in the inertial frame, libration
damping with the use of electromagnetic coils and a
slew maneuver with an additional objective of avoiding
undesirable regions e.g. causing blindness of optical
sensors.

1 INTRODUCTION

The subject of control of mechanical systems here also
spacecraft has always been in very focus of control engi-
neering. The recent advances of computer technology,
vastly increasing computational power, availability of
symbolic software tool-boxes have initiated a tremen-
dous research e�ort within nonlinear control methods.
Probably the most in
uential has been the geometric
control methods as presented in [1], [2], [3]; passivity
based control in [4],[5], [6]; nonlinear H1 in [7], [8].

The paper comprises a further development of the work
reported in [9] and [2], ch. 12, dealing with stabiliza-
tion of hamiltonian systems. The great impact on this
paper had the geometrical description of the physical
mechanics in [10]. A further in
uence on this work had
the articles [11] and [12] studying canonical transfor-
mation from the ordinary three-dimensional physical
space of Euler angles to the four dimensional space of
the unit quaternion. This approach is used in this pa-
per to model the rotational motion of a rigid body in
the Hamilton's canonical equations.

The idea of this paper is very intuitive and consist
of the following steps. A dynamical system is mod-
eled and its desired performance is speci�ed using two

hamiltonians: one of the original system and the sec-
ond of the desired one. The desired system inherits the
kinetic energy of the original one, but the potential en-
ergy has to comply with the requirements on the feed-
back system, e.g. the minimum of the potential energy
shall be reached at the reference point. Additionally a
dissipation term is incorporated which de�nes the time
response of the closed loop system. A control action is
designed such that the feedback system coincides with
the desired one. Three problems are addressed here:
spacecraft stabilization in the inertial frame, libration
damping with the use of electromagnetic coils and a
slew maneuver with an additional objective of avoid-
ing some regions e.g. de�ned by certain bright objects
causing blindness of optical sensors.

2 CONTROL OF HAMILTONIAN SYSTEMS

A problem of stabilization to a reference, a certain
point in the phase plane, is the topic of this section.
Two systems will be considered: one corresponding to
the actual plant and a system which is counterpart to
the control objectives. The latter will be called the
system of objectives. The motion of the plant and
the system of objectives are described using Hamilton's
canonical form. The formulation of kinetic energy for
both systems is the same, however the potential energy
of the system of objectives is expressed such that the
reference is stable. If in addition dissipation is added
the reference becomes asymptotically stable. The con-
trol action is now chosen such that the 
ow of the plant
coincides with the 
ow of the system of objectives.

2.1 System Canonical Form

It is assumed in this work that the system is conserva-
tive, hence the equations of motion can be formulated
in Hamilton's canonical form. Having the Lagrange
function L

L(q; _q) = T (q; _q)� U(q); (1)

the hamiltonian is given by

H(q;p) = hp; _qi � L(q; _q); (2)

where hp; _qi = pT _q denotes a scalar product in the
Euclidean space, the generalized momentum p is cal-



culated using the equality p = @L=@ _q. The control
action is regarded as the generalized external forceMp

acting upon the system. Following the lines of [13] pp.
316 the Hamilton's canonical equations are

_p = �
@H

@q
+Mp (3)

_q =
@H

@p
:

2.2 System of Objectives

The equation of motions for the system of objectives
will be expressed in the Hamilton's canonical form as
well. It is assumed that the system of objectives in-
herits the kinetic energy T , whereas an extra energy
contribution V is added to the original potential en-
ergy U

Ud(q) = U(q) + V (q): (4)

The function V (q) is designed such that the reference
q0 becomes stable, i.e. the minimum of the potential
energy Ud is reached at q0.

The equations of motion for the system of objectives
are formulated using the lagrangian Lo

Lo(q; _q) = T (q; _q)� Ud(q); (5)

The system of objectives is not asymptotically stable
yet, but it is stable in Lyapunov sense, which can be
shown applying a Lyapunov function

v(t) = Ho(t)� Ud(q0); (6)

where

Ho(q(t);p(t)) = hp; _qi � Lo(q; _q): (7)

The function v(t) is constant and positive de�nite
around q0. In order to get asymptotic stability a dissi-
pation term is added in the system of objectives. The
work of the dissipation force has to be negative semidef-
inite. In general the work of the �eld Md on the path
l is de�ned as follows

W =

Z
l

hMd;dqi; (8)

and the time derivative of the work is now

_W = hMd; _qi: (9)

Proposition 1 Consider a system given by the Hamil-
ton's canonical equations

_p = �
@Ho

@q
+Md (10)

_q =
@Ho

@p
;

where Ho(q;p) = hp; _qi�T (q; _q)+Ud(q) is the hamil-
tonian, T is the kinetic energy of the plant, Ud is lpdf
(locally positive de�nite function) around q0 given by
Eq. (4), and the work W done by the vector �eld Md

is given by

W =

Z
l

hMd;dqi (11)

If the time derivative dW=dt is lndf (locally negative
de�nite function) then the system (10) is locally uni-
formly asymptotically stable. If Ud is radially un-
bounded pdf (positive de�nite function) and W is ndf
(negative de�nite function) then the asymptotic stabil-
ity is global.

Proof of Proposition 1 Consider a Lyapunov can-
didate function v(t) = Ho(t). The time derivative of
Ho is

_Ho =

�
@Ho

@p

�T

_p+

�
@Ho

@q

�T

_q: (12)

Using the Hamilton's canonical equations

_Ho = �

�
@Ho

@p

�T
@Ho

@q
+

�
@Ho

@p

�T

Mp (13)

+

�
@Ho

@q

�T
@Ho

@p
= _qTMd = _W (14)

which is lndf (ndf), thus the equilibrium (q;p) =
(q0;0) is locally (globally) uniformly asymptotically
stable. �

2.3 Control Synthesis

The objective of the control design in the framework
of the Hamilton's formalism is to generate Mp such
that the equations of motion for the plant and the sys-
tem of objectives are equivalent. In other words, the
control action has to compensate for two terms: one
originating from the function V in Eq. (4) and the sec-
ond contributing from the work W in Eq. (11). This is
summarized in the following theorem:

Theorem 1 Consider a plant given in Hamilton's
canonical form (3). The control action

Mp = �
@V (q)

@q
+Md; (15)

where V is given by Eq. (4), Ud is lpdf around q0 and
the time derivative of the work dW=dt = hMd; _qi is lndf
around q0 then the feedback system is locally uniformly
asymptotically stable to the reference q0. If Ud is radi-
ally unbounded pdf and dW=dt = hMd; _qi is ndf around
q0 then the uniform asymptotic stability is global.



Proof of Theorem 1 If the control action (15) is
substituted in Eq. (3) for Mp the equations of mo-
tion for the plant are identical to the system given by
Eq. (10). The hypothesis of Proposition 1 are satis�ed
and hence the feedback system governed by Eq. (15) is
uniformly asymptotically stable. �

The control action in Eq. (15) consists of two terms.
The �rst one determines sensitivity of the closed loop
system towards disturbances, whereas the second de-
cides the length of the settling time. For a conserva-
tive system the disturbance force has to perform a work
W = U(q1) � U(q0) to change the potential energy
from the level U(q0) to U(q1). Thereby, the larger the
gradient @V (q)=@q the larger work necessary to move
the plant from the point q0 to q1. The dissipation
dW (t)=dt is related to the amount of energy dissipated
by the controller in a certain �xed time T , thus it cor-
responds to the response time. This control structure
can be compared with a standard PD controller used
for linear systems.

3 MOTION CONTROL OF A RIGID BODY

A method for the control synthesis presented in the
last section is readily applicable in the systems where
the dynamics and kinematics are represented in E2n,
however e.g. motion involving the rotation is typically
not expressed in the canonical form. The dynamics
are given by the Euler equation in E3, whereas the
most natural description of the kinematics is given by
the elements of SO3(R) or by the unit quaternion, an
element of S3.

3.1 Rigid Body Canonical Form

The subject of �nding a transformation to Hamilton's
canonical form is often addressed in the literature of
modern celestial mechanics. [11] studied the canonical
transformation y = f(x) of the state space y 2 R

2n

to x 2 R
2m with m > n. In the current paper

only a special case m = n + 1 is investigated, since
the results can be applied to the rotational motion
of a rigid body in function of the unit quaternion

q :=
�
q0 q1 q2 q3

�T
2 S3 and the conjugate mo-

menta p :=
�
p0 p1 p2 p3

�T
. Interested reader is

refered to [12] for more detailed study on this topic.

The kinetic energy of a rigid body rotation is a function
of the instantaneous angular velocity !

T =
1

2
!
TJ!; (16)

where J is the inertia tensor. The angular velocity vec-
tor may be regarded as an element of the quaternion

vector space 
 :=
�
0 !

T
�T

2 E �E3, and the Equa-

tion (16) takes the form

T =
1

2

TJ�
; (17)

where J� is a block diagonal matrix

J� =

�
J0 0

0 J

�
: (18)

The element J0 takes in general an arbitrary nonsingu-
lar value. Using the standard quaternion parameteri-
zations of kinematics

_q =
1

2
Q(q)
; where Q(q) =

2
664
q0 �q1 �q2 �q3
q1 q0 �q3 q2
q2 q3 q0 �q1
q3 �q2 q1 q0

3
775

(19)

the kinetic energy is

T = 2qTQ( _q)J�QT ( _q)q: (20)

The lagrangian for the rigid body motion is now
L(q; _q) = T (q; _q)�U(q), where T is given by Eq. (20).
Applying the hamiltonian H(q;p) = hp; _qi � L(q; _q)
and Eq. (3) the canonical equations are formulated

_q =
1

4
Q(q)J��1QT (q)p (21)

_p = �
1

4
Q(p)J��1QT (p)q�

@U(q)

@q
+Mp:

For the rotational motion the control action is a torque
denoted here byMc. On a spacecraft the control torque
is generated by a set of actuators such as gas jets, mo-
mentum/reaction wheels, electromagnetic coils. The
work is invariant of a canonical transformation. To
calculateMp for a given torqueMc the time derivative
of the work of Mp as in Eq. (9) and the work of the
�eld Mc are used:

_qT (t)Mp(t) = _W (t) = !
T (t)Mc(t): (22)

Applying Eqs. (22) and (19) the time derivative of the
work is

_W (t) = 2 _qT (t)Q (q(t))M(t); where M =
�
0 MT

c

�T
(23)

hence

Mp(t) = 2Q(q(t))M(t) (24)

or equivalently

Mp(t) = 2R(Mc(t))q(t); (25)

where

R(Mc) =

2
664

0 �M1 �M2 �M3

M1 0 M3 �M2

M2 �M3 0 M1

M3 M2 �M1 0

3
775 (26)



Comparing Eq. (24) and the kinematics (19) a very
important observation is made that Mp lies on the
tangent space TS3q . Thereby, Mp computed from
Eq. (15) is not necessarily producible by a physical ac-
tuator. It will be illustrated in Section 4 that a damp-
ing term belonging to TS3q is reasonably easy to design
as a linear combination of the vector �elds of TS3q.
The task becomes more involved if we wish to satisfy
@V (q)=@q 2 TS3q. It will be shown in the theorem be-
low that to generate a stable control action it is enough
to use the orthogonal projection PT of @V (q)=@q on
the tangent space, TS3q .

Theorem 2 Consider a plant given in Hamilton's
canonical form (3). The control action

Mp = �PT
@V (q)

@q
+Md; (27)

where PT is the orthogonal projection on the tangent
space TMq, V is given by Eq. (4), Ud is lpdf around

q0 and the time derivative of the work _W = hMd; _qi
is lndf around q0. Then the feedback system is lo-
cally uniformly asymptotically stable to the reference
q0. If Ud is radially unbounded pdf and _W = hMd; _qi
is ndf around q0 then the uniform asymptotic stability
is global.

Proof of Theorem 2 Take as the Lyapunov candi-
date function v(t) = H(t) + V (t), where H is given
by Eqs. (1) and (2). The time derivative of v(t) is

_v = �

�
@H

@p

�T
@H

@q
+

�
@H

@p

�T

Mp

�
@H

@q

�T
@H

@p

+

�
PT

@H

@q

�T

_q+

�
(id� PT)

@H

@q

�T

_q; (28)

but _q 2 TMq and PT is the orthogonal projection on
TMq thus the last term in Eq (28) is zero and

_v = _qTMd = _W: (29)

which is lndf thus the equilibrium q0;0 is uniformly
asymptotically stable. �

4 Spacecraft Attitude Control

The theoretical �ndings developed in the preceding
chapters will be implemented for the spacecraft atti-
tude control. Three topics are addressed: spacecraft
stabilization in the inertial frame, libration damping
with the use of electromagnetic coils and a slew ma-
neuver with an objective imposed of avoiding certain
undesirable orientations.

4.1 Stabilization in Inertial Frame

A spacecraft motion in the inertial coordinate system
was provided in Eq. (21) with the potential energy U =
0 . The control objective is to correct the attitude to
the reference qref .

The proposed system of objectives is

Hd(q;p;Md) = H(q;p) + V (q) + hMd;qi; (30)

where H corresponds to the hamiltonian of the rigid
body motion with U = 0. The potential energy V (q) =
2k1(1 � q0), where k1 is a positive constant and q0 is
the scalar part of the quaternion

�
q0 ~qT

�T
:=

�
q0 q1 q2 q3

�T
= QT (qref )q: (31)

The dissipation force Md = K2 _q is chosen, where the
matrix K2 is negative de�nite. Now, the work W dis-
sipates the energy, since _W = hK2 _q; _qi is ndf. Accord-
ing to Theorem 2 the control (27) is uniformly asymp-
toticly stable. The closed form of the control law is
derived using the following equality

Mv � �PT
@V (q)

@q
= �

@V (q)

@q
+ (id� PT)

@V(q)

@q
;

(32)

thus

Mv = 2k1

��
1 0 0 0

�T
� q0

�
q0 q1 q2 q3

�T�

= 2k1
�
q21 + q22 + q23 �q0q1 �q0q2 �q0q3

�T
(33)

but

Mc(t) = 1=2QT (q(t)) (Mv(t) +Md(t)) (34)

therefore

Mc = �k1~q+
1

2
QT (q)K2 _q: (35)

If the matrix K2 is substituted by a negative scalar
4k2 a more compact form of Eq. (35) can be calculated
applying the relation in the kinematics (19)

Mc = �k1~q+ k2!; (36)

where ! is the angular velocity of the spacecraft.

Remark 1 If the potential energy V (q) = 2k1(1� q0)
is replace by V (q) = 2k1(1 + q0) with the minimum at
q0 = �1 then the control law

Mc = k1~q+ k2! (37)

assures that the equilibrium q = �qref is asymptoti-
cally stable. At this point it is important to notice that
both qref and �qref de�ne the same physical orienta-
tion.



4.2 Slew Maneuver with Region Avoidance

The control objective of the three-axis attitude con-
trol addressed in the preceding subsection is extended
here to an additional design objective: During the slew
maneuver a certain orientation is prohibited. This sce-
nario is encountered when the attitude is acquired from
the star camera; looking towards the sun causes blind-
ness of the CCD chip.

A spacecraft motion is once more given by Eq. (21)
with the potential energy U = 0. The orientation of the
obstacle in the inertial frame is given by the quaternion
o
iq, whereas the reference in the inertial frame is speci-
�ed by r

iq. The spacecraft's attitude in the inertial co-
ordinate system is provided by the star camera, q � s

iq.

The potential function in this case study is shaped such
that its minimum is at the reference and the maximum
at the obstacle attitude. The potential energy proposed
is

V (t) = 2� s
rq0 �

s
oq

2

0; (38)

where s
rq0 is the scalar part of the quaternion s

rq =
r
iq
�q 1, and s

rq0 is the scalar part of
s
oq = o

iq
�q, hence

s
rq0 = nTr q
s
oq0 = nTo q; (39)

where

nr =
�
s
rq0

s
rq1

s
rq2

s
rq3

�T
no =

�
s
oq0

s
oq1

s
oq2

s
oq3

�T
: (40)

Applying the potential energy in Eq. (38) and the dis-
sipation forceMd =K _q to the generic control law (15)
gives

Mp = nr + 2nTo q nr � nTr q q� 2
�
nTo q

�2
q

+ 1=2KQ(q)
; (41)

and the control torque isMc(t) = 1=2QT (q(t))Mp(t).

4.3 Libration Damping

A very cost and energy e�ective control principle for a
gravity gradient stabilized satellite is to use the electro-
magnetic coils for spacecraft actuation. The concept is
that the interaction between the Earth's magnetic �eld
and a magnetic �eld generated by the coil results in a
mechanical torque. This is expressed by the formula

Mc(t) =m(t)�B(t); (42)

i.e. the control torque Mc is the vector product of
the magnetic momentm generated in the coils and the
geomagnetic �eld vector B. The motion of a spacecraft

1
q
� denotes q conjugated

on a low Earth orbit can be very concisely described
by the following hamiltonian, for more details see [14]

H =
1

2
!
TJ! +

3

2
!2ok

TJk�
1

2
!2oj

TJj; (43)

where ! is the angular velocity of the spacecraft prin-
cipal frame relative to the LVLH coordinate system 2,
!o is the mean motion, j;k are the unit vectors along
the y and z axes of LVLH. It is assumed in Eq. (43)
that the principal axes of the spacecraft are such that
the maximum moment of inertia is about the y axis,
and the minimum about the z axis.

A closer look at the potential energy, the last two terms
in Eq. (43), reviles that the system has four stable equi-
libria

f!; j;kg = f0;�1j;�1kg; (44)

where 1j =
�
0 1 0

�T
and 1k =

�
0 0 1

�T
. In other

words the equilibria are such that the spacecraft princi-
pal and LVLH y axes coincide or point in the opposite
directions and the z axes of the spacecraft and LVLH
frames coincide or are opposite. If one of those equilib-
ria is the system's desired reference then it is suÆcient
to use a control providing pure damping.

In [15] the following control law was proposed

m(t) =H! �B; (45)

where H is a positive de�nite matrix. Magnetic
torquing following Eq. (45) obviously introduces time
dependency in the equations of satellite motion. This
time variation is periodic by nature, which arises from
two superimposed periodic 
uctuations of the geomag-
netic �eld. One is due to revolution of the satellite
around the Earth and the second due to rotation of
the Earth.

To show asymptotic stability of the suggested control
law it is enough to calculate the time derivative of the
work done by the �eld Mc(t) =m(t)�B(t)

_W (t) = !
T (t)Mc(t) = �!TST (B(t))S(B(t))H!;

(46)

where S(B) is a 3 by 3 skew symmetric matrix rep-
resenting the vector product operator: B�. From
Eq. (46) it is seen that _W (t) is only negative semide�-
nite. However, two observations can be here employed.
The �rst is that the Earth's magnetic �eld is periodic,

2Local-Vertical-Local-Horizontal Coordinate System (LVLH)
is a right orthogonal coordinate system with the origin at the
spacecraft's center of mass. The z axis (local vertical) is parallel
to the radius vector and points from the spacecraft center of
mass to the center of the Earth. The positive y axis is pointed in
the direction of the negative angular momentum vector. The x
axis (local horizontal) completes the right orthogonal coordinate
system.



and the second that the largest invariant set contained
in the set f! : _W = 0g is ! � 0. Thus applying
Krasovskii-LaSalle theorem [5] pp.178 and Theorem 1
the system is proved to be asymptotically stable to one
of the attractors f!; j;kg = f0;�1j;�1kg.

5 CONCLUSION

An elegant scheme for control design of mechanical sys-
tems was proposed in this work. The desired feedback
dynamics was speci�ed in a Hamilton's canonical form.
The designer has to de�ne a desired potential energy
with minimum at the reference point and a dissipative
term. The resultant controller is uniformly asymp-
toticly stable. The results were applied to the rota-
tional motion of a rigid body in function of the unit
quaternion and its conjugate momenta. Three prob-
lems were successfully tackled in the paper: spacecraft
stabilization in the inertial frame, libration damping
with the use of electromagnetic coils and a slew maneu-
ver with an additional objective of avoiding undesirable
regions.
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