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Abstract: Aiming at design of algorithms for fault diagnosis, structural analysis of
systems offers concise yet easy overall analysis. Graph-based matching, which is the
essential technique to obtain redundant information for diagnosis, is re-considered in
this paper. Matching is re-formulated as a problem of relating faults to known param-
eters and measurements of a system. Using explicit fault modelling, minimal over-
determined subsystems are shown to provide necessary redundancy relations from the
matching. Details of the method are presented and a realistic example used to clearly
describe individual steps.
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1 INTRODUCTION

Timely diagnosis of faults are instrumental to en-
hance safety and reliability of technical systems.
If traditional mathematical models are taken as
the basis for diagnostic algorithms, analysis will
require a major effort when the the object to diag-
nose have the complexity of a common industrial
plant. There is a recognized need for simple but ef-
ficient methods for overall analysis before going to
a detailed diagnostic algorithm design. Attributes
of such methods should include that parameters
and other exact information is sparse in industrial
systems.

The structural analysis framework [5], [4], [11]
[10] offers graph-based tools to make rapid overall
analysis and design. The salient feature is that
detailed design can be spared to a few diagnos-
tic algorithms that are guaranteed to have desired
overall properties.

Despite its virtues, the structural analysis method

has not yet become widely used. Presumably, the
reason is lack of easily understood methods to
conduct matching, which is the essential graph-
technique to obtain analytic redundancy relations
for diagnosis. Another obstacle could be lack of
explicit inclusion of the faults we wish to diagnose
into the structural analysis method.

This paper contributes by formulating the match-
ing problem explicitly as a matching from known
variables, by clarifying the individual steps of the
matching and by formulating a straightforward
but concise representation of the faults to be con-
sidered. The methodology is illustrated on a ship
propulsion benchmark [9].

The paper concerns a structural model for the ob-
ject to diagnose, matching to disclose inherent re-
dundant information which can be used for diag-
nosis, representation of faults and techniques to
examine the isolation of faults. Application to a
propulsion system benchmark illustrates the tech-
niques.



2 STRUCTURAL MODEL

Consider the system S as a set of components⋃m
i=1 Ci, each imposing a relation fi between a

set of variables and parameters zj , j = 1, .., n i.e.

fi(z1, .., zp) = 0, 1 < p ≤ n (1)

where fi can represent a dynamic, static, linear, or
non-linear relation. These relations are also called
constraints as the value of an involved variable
can not change independent of the other involved
variables [4] (see also [5] and [3]). The system’s
structural model is represented by the set of con-
straints F = {f1, f2, · · · , fm} and the set of vari-
ables Z = K∪X = {z1, z2, · · · , zn}. X is the set of
unknown variables and K = U ∪P ∪Y is the set of
known variables/parameters i.e. input/reference
signals (U), known constant/parameters (P), and
measured signals (Y).

The system’s structural model can now be repre-
sented by a bipartite directed graph. This is a
graph whose vertices (nodes) can be divided into
two classes ’R’ and ’Y’ such that no edge (arc)
of the graph runs between two ’R’ vertices or be-
tween two ’Y’ vertices.

Definition 1 The structure graph of the system
is a bipartite directed graph G(F ,Z,A) where the
elements in the set of arcs A ⊂ (F×Z) are defined
by the following mappings:


A : F × X −→ {0, 1} ,
A∗ : X × F −→ {0, 1} ,
KF : F ×K −→ {0, 1} .

The elements (fi, xj) = aij ∈ A, (xi, fj) = a∗ij ∈
A∗, and (fi, kj) = kfi ∈ KF are defined as:

aij =

{
1 iff fi applies to xj ,

0 Otherwise

a∗ij =

{
1 iff xi is calculable through fj

0 Otherwise

kfi =

{
1 iff fi applies to a known var. kj

0 Otherwise

An element aij = 1 means that there is a directed
arc that connects the jth relation with the ith un-
known variable; aij = 0 means there is no arc.

An incidence matrix Imd can be used as a repre-
sentation of the structure graph, in compact form:

K
F
X

K F X
 0 KF 0
KFT 0 A
0 A∗ 0


 = Imd (2)

Notice that A∗ is not necessarily the same as AT .
A∗ is defined to address a property called calcu-
lability :

Definition 2 Calculability: Let zj , j = 1, · · · ,
p, · · · , n be variables that are related through a re-
lation fi, e.g. fi(z1, · · · , zp, · · · , zn) = 0. The
variable zp is calculable if its value can be deter-
mined through the constraint fi under the condi-
tion that the values of the other variables zj , j =
1, · · · , n, j �= p are known.

Remark 1 By definition, calculability, def. 2,
solves the problem: When f(x1, · · · , xn) = 0 be
solved explicitly for xi in terms of xj , j =
1, · · · , n, j �= i? Conditions for the local solution
is provided by the implicit function theorem ([1]):
for a given function f : R

n → R and a local point
x0 (a possible operating point), where f(x0) = 0
and for which (∂f/∂xi|x0) �= 0, 1 ≤ i ≤ n, then
there exists a function g, defined on R, such that
xi = g(x1, x2, · · · , xi−1, xi+1, · · · , xn).

Remark 2 A state may be observable despite its
is not calculable.

Calculability versus observability is illustrated by
following example:

Example 1 Consider the relation f(ẋ, u) == ẋ−
u = 0. Which of the variables, x and u, can be ex-
plicitly calculated. The implicit function theorem
we get:

∂f

∂x
=

∂(ẋ− u)
∂x

=
∂ ∂x

∂t

∂x
=

∂ ∂x
∂x

∂t
= 0

and
∂f

∂u
=

∂(ẋ− u)
∂u

= −1 �= 0

Obviously, u can be explicitly computed knowing
the instantaneous value of x through the relation
f . The opposite is not true: x can not be re-
constructed explicitly using u since x is given by
x =

∫
udt + x0 when the initial value x0 is not

known (since x ∈ X which is the set of unknown
variables).

However, the variable x may anyway be observable
since observability implies the ability to asymptot-
ically reconstruct the initial state. If state obser-
vation is available, x0 could be considered a known
variable implying less restrictions on in the match-
ing process.

Let E denote a set (such as FX or Z) and P(E)
denote the power set of E . Then a subsystem
(F,Q(F )), F ∈ P(FX ) will be defined as



Q : P(FX ) −→ P(Z) (3)

Q(F ) = {zj | ∃fi ∈ F such that (fi, zj) ∈ A}.

3 MATCHING

Consider a graph G(FX ,X,AX) representing a se-
lected part of the system’s structured graph. Let
a = (FX(a),X(a)) be the arc that connects a con-
straint FX(a) with an unknown variable X(a).

Definition 3 The (sub)graph G(FXM
,XM ,

AXM
) is a matching on G(FX ,X,AX),

FXM
⊆ FX and XM ⊆ X, iff:

1) AXM
⊆ AX ,

2) ∀ a1, a2 ∈ AXM
| a1 �= a2 �

FXM
(a1) �= FXM

(a2) ∧ XM (a1) �= XM (a2).

A complete matching w.r.t. FX is obtained when
FXM

= FX

A complete matching w.r.t. X is obtained when
XM = X.

By applying matching one can decompose the sys-
tem into three parts according to the following
theorem:

Theorem 1 [6] Any bipartite graph of finite ex-
ternal dimension can be uniquely decomposed:

• G+ = (F+,X+, A+) such that Q(F+) =
X+and a complete matching exists on X+ but
not on F+.

• G= = (F=,X=, A=) such that Q(F=) =
X= ∪X+ and a complete matching exists on
X= as well as on F=.

• G− = (F−,X−, A−) such that Q(F−) =
X− ∪X= ∪X+ and a complete matching ex-
ists on F− but not on X−.

G+ represents the part of the system with possi-
ble redundant information as |F+| > |X+|, where
|F | denotes the cardinality of F . The unknown
variables in X+ can be calculated in several ways
by using the known variables. The subsystem(s)
represented by G+ is said to be over-determined,
as the number of relations exceeds the number of
unknown variables. That means a variable x in
X+ can be computed/calculated through different
sets of relations (equations) in F+, or seen from
a graph-theoretical point of view, there are differ-
ent paths from x to the known variables (see next

Kf1

f2

f3

f4

f5

x1

x2

x3x4

Fig. 1. The process of matching.

section). This property can be used for FDI pur-
poses: if a component, such as a sensor, fails the
related variable can be computed/estimated via
other sets of relations and be used in the control
loop. G= and G− represent the parts with no re-
dundant information. Related issues are discussed
in [5] and [3].

3.1 Matching procedure

The main purpose of developing a matching algo-
rithm is to identify the sub-graph G+ that repre-
sents the subsystem(s) which contain redundant
information. The idea is depicted in figure 1. The
algorithm initiates the matching from the known
variables. The figure illustrates the idea of mak-
ing the unknown variable ”known” by successively
matching them to previously known variables.
First, variables x1 and x2 are matched to con-
straints f1 and f2 (full line). These variables be-
come “known” as all the other variables that enter
f1 and f2 are known. Hence, the new set of known
variables can be considered as Knew = K∪x1∪x2.
Next, x3 and x4 are matched to f3 and f4 corre-
spondingly (dotted line) etc. The matching pro-
cedure makes extensive use of the incidence ma-
trix, Imd, of the system’s bipartite directed graph
model. The algorithm is repeated until a stop cri-
teria is met. Since several matchings may exist,
different over-determined subsystems can be ob-
tained.

4 MODELLING OF FAULTS

A system fault occurs when one or more compo-
nents Ci ∈ S fail to operate properly. Correct op-
eration is represented by fi(z1, .., zp) = 0, 1 <
p ≤ n. A failure implies in loose language that
this constraint does not hold anymore. A concise
analysis requires explicit ways to represent faults.

4.1 Sensor fault

A sensor measures a system variable, hence it can
be represented by a relation of this form:

f(xs, y) = 0,



where xs is the unknown variable and y is the
measured one. A sensor fault can be structurally
represented in either of two ways:

1. As the faulty sensor is not functioning prop-
erly, i.e.

f(xs, y) �= 0, (4)

then this relation can simply be removed from
FX .

2. Another way of considering the faulty compo-
nent is to say that the output of the sensor y
is a function of xs and an additional variable
∆xs which has its own dynamics. Hence the
original relation is replaced by

f∆(xs,∆xs, y) = 0, (5)

f
′∆(∆xs) = 0. (6)

4.2 Actuator fault

Similar to the sensor case, the actuator failure can
be represented in following two manners.

1. The actuator can fail abruptly and loose com-
pletely the actuation possibility. Thus the
non-functionality of actuator is represented
by

f(uc, ua) �= 0. (7)

2. In the faulty situation,

f∆(uc, ua,∆ua) = 0, (8)

f
′∆(∆ua) = 0. (9)

The additional variable ∆u denotes the actuator
fault and has its own dynamics.

4.3 Parameter fault

Parameter changes in the system’s dynamic equa-
tions [7] can be represented in following two (com-
putationally) identical forms

1. Introducing a parameter as an unknown vari-
able, denoted p. So the affected relation will
be changed from

f(zi, · · · , zj) = 0 i, j ∈ {1, · · · , n} (10)

to

f(zi, · · · , zj , p) = 0 i, j ∈ {1, · · · , n},
(11)

where Xnew = X∪p and hence |Znew| = n+1.

2. Denoting the (known) parameter, p0, the pa-
rameter change will be represented as

p = p0(1 + ∆p), (12)

where ∆p has its own dynamics. The involved
relation is represented by

f(zi, · · · , zj , p0) = 0 i, j ∈ {1, · · · , n− 1}
(13)

where Knew = K ∪ p0. In faulty conditions
this is replaced by the ensuing relations

f∆(zi, · · · , zj , p0,∆p) = 0 (14)

f
′∆(∆p) = 0 (15)

where i, j ∈ {1, · · · , n − 1}, Xnew = X ∪ ∆p,
Znew = Z ∪ p0 ∪∆p, and Fnew = F ∪ f ′.

5 FAULT DETECTION AND ISOLATION

FDI possibility can be examined by considering
the obtainable minimal over-determined subsys-
tems in an over-determined subsystem. They are
defined as

Definition 4 A minimal over-determined subsys-
tem, G+

min−f = (F+
min−f , X

+
min−f , A

+
min−f ) is the

smallest over-determined (hence observable) sub-
system which is obtained by back-tracking the un-
known variables in an unmatched relation f in
F+. For a minimal over-determined subsystem,
the following statement is valid:

|F+
min−f | = |X+

min−f |+ 1.

In [10], it was shown that any involved unknown
variable in a over-determined subsystem is (struc-
turally) observable. Any minimal over-determined
subsystem yield an expression of the following
form

f(zi, · · · , zj) = 0 zi, · · · , zj ∈ K (16)

where all involved variables are known. The ex-
pression can be directly used as an expression for
a residual

r = f(zi, · · · , zj) zi, · · · , zj ∈ K. (17)

This residual can be directly used for fault detec-
tion.

6 SHIP BENCHMARK

A ship propulsion system benchmark [9] provides
a fairly realistic scenario. The main elements of a
propulsion system are modelled in the benchmark
and a command level gives set-points for shaft
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Fig. 2. Ship propulsion system with diesel, shaft
dynamics with nonlinear trust and torque
functions, and ship’s hull resistance.

speed and propeller pitch. The structural analy-
sis method is applied to the torque-thrust related
part of the benchmark (See also [8]). The out-
line of this part of the system is shown in Fig. 2.
The components are: diesel engine dynamics C4,
shaft speed dynamics C5, propeller’s torque and
thrust characteristics C6 and C7, ship speed dy-
namics C8, hull characteristics C9, and related sen-
sors C1,C2,C3, and C10. The related constraints
are listed below:

C1 : f1(ν, νm) = 0 : ν = νm

C2 : f2(ω, ωm) = 0 : ω = ωm

C3 : f3(Y, Ym) = 0 : Y = Ym

C4 : f4(Ky, Y,Qeng) = 0 : Qeng + τcQ̇eng = KyY
C5 : f5(Qeng, Qprop, ω) = 0 : Imω̇ = Qeng −Qprop

C6 : f6(ω, ν, U,Qprop) = 0 : EQQ

C7 : f7(ω, ν, U, Tprop) = 0 : EQT

C8 : f8(U,Ru, Tprop) = 0 : U̇ = 1
ms

(Tp −Ru)
C9 : f9(Ru, U) = 0 : Table∗

C10 : f10(U,Um) = 0 : U = Um

(18)

where ν is propeller pitch, ω and U denote shaft
revolution and ship speed, Y is the fuel index, Ky

is the engine gain, and Qeng and Qprop are engine
and propeller torque, respectively. Tprop is the
propeller thrust and Tp = (1− tT )Tprop were tT is
a constant term. The developed propeller thrust
and torque are determined by [2]

EQT : Tprop = Tωωνω
2 + TωUωU (19)

EQQ : Qprop = Qωωνω
2 +QωννωU,

in the relevant region of operation 0 ≤ ν < 1,
ω > 0, and U ≥ 0. The nonlinear hull resistance
is obtained by data interpolation in Table∗.

6.1 Fault scenario

Two faults are: fault in the shaft speed (∆ω)
measurement and engine gain fault (∆Ky). Shaft
speed is measured by a dual pulse pick-up. EMI
disturbances on one pick-up can generate a too
high signal ∆ωhigh, while a minimum signal ∆ωlow

is produced due to loss of both pick-up signals.
A drop in generated shaft torque, manifested by
∆Ky, is due to following causes: less (or hot) air

inlet, less fuel oil inlet, or drop-out on one or more
cylinders.

6.2 System’s structural model

F

X

f1 f2 f3 f4 f5 f6 f7 f8

Y�� U

Ym
� m� m Ky Um K

propTpropQengQ RU

f9 f10

Fig. 3. Matching for the considered part of the
propulsion system. Thick arcs illustrate
the matched pairs (x, f), where x ∈ X and
f ∈ F .

The system structure is S =
⋃10

i=1 Ci, F = FX =
{f1, f2, · · · , f10}, K = {νm, ωm, Ym, Um,Ky},
X = {U, ν, ω, Y,Qprop, Tprop, Qeng, RU}, and Z =
K⋃X . The measurement noise is disregarded
here, hence νm = ν and ω = ωm and · · · . A bi-
partite digraph representation is depicted in Fig.
3. Thick arcs on the figure show the matching.

6.3 Fault detection

The basic idea for the matching is as follows: the
value of ν, which is matched to f1, can be com-
puted when we know the value of all other vari-
ables related to f1, in this case νm. The same pro-
cedure is used to match the other variables. In the
performed matching, two relations f4 and f7 are
not matched. By backtracking the involved vari-
ables in each relation one can construct the related
minimal over-determined subsystem: G+

min−f7
is

determined by F+
min−f7

= {f1, f2, f10, f9, f7} and

X+
min−f7

= {U,RU , Tprop, ν, ω}. The two mini-
mal over-determined subsystems give the follow-
ing residual expressions:

rQ = fQ(νm, ωm, Ym,Ky, Um) (20)

rT = fT (νm, ωm, Um). (21)

It is obvious that fault detection is possible since
rQ will be affected by both measurement and gain
faults, while rT will only be affected by the mea-
surement fault.

6.4 Gain fault isolation

An essential problem in diagnosis is whether faults
can be isolated. In this example, isolation of a gain
fault from a shaft speed measurement fault. The
first step to take is to represent this situation in



the structural model. According to Eq. 12

ky = Ky(1 + ∆Ky)

In faulty condition, the diesel engine dynamics are
given by Eqs. 14 and 15,

f4(∆Ky,Ky, Y,Qeng) = 0

f ′
4(∆Ky) = 0

The new set of unknowns is X =
{∆Ky, U, ν, ω, Y,Qprop, Tprop, Qeng, RU}. The
relation representing shaft revolution measure-
ment, f2, is considered to be non-valid acc. to
Eq. 4, as the sensor is not functioning properly.
This relation is thus removed from FX .

The performed matching on the new structural
model is shown in table 1. Since f ′4(∆Ky) is the

f1 ←→ ν f3 ←→ Y f10 ←→ U
f9 ←→ RU f8 ←→ Tprop f7 ←→ ω
f6 ←→ Qprop f5 ←→ Qeng f4 ←→ ∆Ky

Table 1 Matching for the nonlinear system

only unmatched relation and |FX | − |X | = 1, the
result is minimal. A residual expression will in-
volve all relations except f2. The resulting equa-
tions are suitable for use in a diagnostic observer,

Q̇eng =
1
τc

( −Qeng +Ky∆KyYm +KyYm

)
ω̇ =

1
Im

(
Qeng −Qωωνmω2 −QωννmωU

)
U̇ =

1− tT
ms

(
Tωωνmω2 + TωUωU − RU

1− tT

)
˙∆Ky = 0

System causality shows that input is Ym, νm and
output is Um. Obviously, the dynamics of this
subsystem is not affected by the measurement ωm

and isolation can be achieved.

7 CONCLUSIONS

The graph based structural analysis approach was
employed to examine the fault diagnosis possibil-
ities in a dynamic system. The representation of
the system was described and the matching con-
cept used to identify the (sub)systems that contain
redundant information. The original method of [4]
and [11] was extended by a unified fault model rep-
resentation and minimal over-determined subsys-
tems were defined and used to obtain residual ex-
pressions for fault diagnosis. Fault isolability was
shown to be accessible by inspection. The tech-
niques of the matching process were made clear
by re-defining the matching problem as relation of
faults to known parameters and measurements.

Salient features of the method were illustrated by
application to a ship propulsion benchmark, em-
phasizing how residual generators are obtained to
help detect and isolate particular faults.
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pour des procédé industriels complexes. Re-
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fonctionnement, 1994. Vol.4, no. 2, pp. 179-
202.

[5] P. Declerck and M. Staroswiecki. Characteri-
zation of the canonical components of a struc-
tural graph for fault detection in large scale
industrial plants. In Proceedings of ECC’91,
pages 298–303, Grenoble, France, July 1991.

[6] A. L. Dulmage and N. S. Mendelsohn. Cov-
erings of bipartite graphs. Canadian Journal
of Mathematics, (10):517–534, 1958.

[7] R. Isermann. Supervision, fault-detection
and fault-diagnosis methods - an introduc-
tion. Control Engineering Practice, 5(5):639–
652, May. 1997.

[8] R. Izadi-Zamanabadi. Fault-tolerant Supervi-
sory Control - System Analysis and Logic De-
sign. PhD thesis, Dept. of Control Eng., Aal-
borg University, Denmark, September 1999.

[9] R. Izadi-Zamanabadi and M. Blanke. A ship
propulsion system as a benchmark for fault-
tolerant control. Control Engineering Prac-
tice, 7(2):227–239, March 1999.

[10] R. Izadi-Zamanabadi and M. Staroswiecki.
A structural analysis method formulation for
fault-tolerant control system designntr. In
39th IEEE Conference on Decision and Con-
trol, pages 4901–4902, 2000.

[11] M. Staroswiecki, S. Attouche, and M. L. As-
sas. A graphic approach for reconfigurability
analysis. In Proc. DX’99, June 1999.


