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ABSTRACT ment. We will conclude our work showing and discussing the

. . . .. performances of the algorithm.
In this paper we present a new algorithm for Voice Activity

Detection that operates on the Adaptive Multi-Rate codec pa

rameters. Traditionally, discriminating between speecti a

noise is done using time or frequency domain techniques. 2. OVERVIEW OF THE ADAPTIVE MULTI-RATE
In speech communication systems that operate with coded CODEC

speech, the discrimination cannot be done using traditiona
techniques unless the signal is decoded and processed, usi .
an obviously inherently suboptimal scheme. The proposed allﬂ1e AMR [1] was chosen by the 3GI.DP consortium as-the
gorithm performs the discrimination exploiting the sttdtial mandatory codec for the UMTS mobile networks working

behavior of the set of parameters that characterize a segmevl\"th speech sampled at 8 kHz. Its main advantage is to be a

of coded signal in case of presence or absence of voice. Ttﬁgﬂtgofba.‘tl/wd?trr’] \;\t/]orklng (.)Q.I(.jlﬁe;e?: ra‘?s frot[n 222 koit
algorithm presented provides significantly low misclasaHi 2. IUS, Wi e possibility of changing rate durihg

tion probabilities making it competitive in speech communi voice transmission by interacting with the channel coder. |

: . ; ur studies, mainly centered on the analysis of parameters
cation systems that require low computational costs, sach Y ' . SR
mobile terminals and networks. we worked on the 12.2 kbit/s mode (AMR 122) considering

straightforward the extension to lower bit rates. Below, we
Index Terms— Voice Activity Detection, Adaptive Multi-  will give a brief overview on the main aspects of the encoder.

Rate Codec The AMR codec is based on the Algebraic Code Excited
Linear Prediction (ACELP) paradigm that refers to a partic-

1. INTRODUCTION ular approach for finding the most appropriate residual-exci

tation after the linear prediction (LP) analysis. The sieec

Voice Activity Detection (VAD) is an integral part of all med Waveform, after being sampled at 8 kHz and quantize with
ern speech communication devices. In the context of mobild6 Pits, is divided into frames of 20 ms (160 samples) where
communication, the accurate functioning of the discrimina 8ach frame contains 4 subframes of equal length. The codec
tion between voice and noise can improve the total efficienci"er_‘ uses a0"" order linear predictive analysis on a subframe
of the system, allowing to send only the packets correspond2@Sis and then tra_nsform the coefficients obtained into !_lne
ing to speech signal and few bits of information about theSPectral Frequencies (LSF) [2] for more robust quantiratio
background noise if the speech signal is not present. A ro- After passing the signal through the LP filters, a residual
bust VAD can also be used in the Voice Quality Enhancemendignal is obtained. The codec then looks for a codeword that
(VQE) techniques such as Noise Reduction (NR) allowing thévest fits the residual. There are two codebooks in the ACELP
algorithm to use the noise information to improve the speecparadigm: an adaptive codebook and an algebraic codebook
signal quality, for example with spectral subtraction. ist (also called fixed codebook). The parameters of the adaptive
paper we will present a VAD that works directly on the AMR codebook are the pitch gain and pitch period; these are found
domain, being this the standard speech codec adopted in GSkrough a closed-loop long-term analysis. The paramefers o
and UMTS networks. After giving a brief overview on the the fixed codebook are found analyzing the residual signal
AMR codec we will present how each parameter is used fosubtracted of its pitch excitation. The calculations matie-p

the discrimination and how to combine the information in or-sible to find a codeword with only 10 non-zero coefficients. It
der to have a final binary decision for each coded speech seljas been shown [3] that a good approximation for the transfer



function of then” subframe is given by: 3.2. Pitch Period

Hy () = gre(n) (1) The pit.ch period can be pa.rticularly usgful to perform VAD

n (1 B gp(n)pr(n)) (1 B Z;El ai(n)z—i) ’ due_ to |ts_ properties. I_n pgru_cular, for voiced spe_ech itehp

= period will tend to maintain itself around a certain valuatth

whereg;.(n) is the fixed codebook gaimy,(n) andT),(n)  €&n differ depending on the speaker, usually between 18 and
are the parameters of the pitch excitation 4ng(n)} are the 143 samples at 8 kHz (56 Hz and 450 Hz in the frequency
linear prediction coefficients or equivalently the linespal ~ domain). In particular, we will analyze its variance in a AMR
frequencieg L;(n)}. frame making it also speaker-independent (by removing its

The decoder performs the synthesis of the speech using theean value):
transmitted parameters. The excitation that is passedghro

. . . . 4 4
the LP filter is created by combining the fixed codeword, mul- _ 1
tiplied by its gain, and the adaptive codeword. v = Z:l Tp(n) = 4 Z:l Tp(n) ®)
3. DISCRIMINATIVE MEASURES PERFORMED ON The statistical behavior of the pitch period during unvdice
THE AMR PARAMETERS speech and voiced speech does not show any difference: in
both cases it will have a quasi-uniform density probability
3.1. Line Spectral Frequencies over the possible values. Nevertheless, its variance rieatu

. TV has shown to be very robust in detecting voiced speech:
The LSF from the way they are constructed, are directly rehigh during unvoiced speech and noise, low during voiced
lated to the frequency response of the LPC filter [2]. For thiss%eech

reasons they have been studied also regarding their speec
recognition performances [4]. It is then clear that they can ) i
also be used for VAD purposes. In particular, it is easy>-3: Fixed Codebook Gain

to notice that for highly organized spectra (voiced speechthe Fixed Codebook Gaigy.(n), as can be seen from (1), is
the LSF tend to position themselves close to where the fofne parameter that is most directly related to the energyof a
mants are located; as opposed to the case of white noisgr AMR subframe; it is therefore used as an indicator of the

equally along the unit circle. In order to exploit this behav yithout any processing:

ior, a measure similar to the spectral entropy has been cho-
sen by calculating the entropy of the LSF differential vecto GFC = gs.. (6)
L'=(y—1l,....,L0 —ly):

The featuregz F'C' is not very robust in terms & NV R, nev-

ENT — 29: L'(n) | L'(n) ertheless using adaptive thresholds we will see that can gua
= - v - 0% | =——— | |- L -
— |y L'(n) S L'(n) antee a good discriminative behavior.

The calculation of (2) is similar to the spectral entropyhe t 4. STRUCTURE OF THE VOICE ACTIVITY

sense that, given the LSF vectbr= (l1,...,l1p), the fre- DETECTOR

guency response of the LPC filtB(w) can be approximated

with rectangular impulses [5]: In this section we show how the features have been combined
X A and how the voice activity detection takes place and briags t

H;(w) I <w<li_q, (3) the final decision.

T Li—lig

whereA is a scaling factor and the domainwfis the one of 4 1 \ap Hangover
the normalized frequencié8, r|. Summing all the rectangu-
lar impulses we obtain an approximation of the spectrum: One of the main problems in the creation of any voice activity
o detector is ';he similarity of the ste:ctistical be(l;avior cﬂ;ﬂ;s;
- 5 criminative features in presence of noise and unvoice ee
H(w) = Z Hi(w), () In order to mitigate this effect, we use a recursive filter o t
=2 values with the purpose to conserve the effect of the voiced
The entropy of the LSF differential vector (2) is then an ap-speech for the duration of the unvoiced speech. Considering
proximation of the spectral entropy &f(w). z(n) the feature value for the*" subframe, the outpu(n)
This highly reliable feature will be used as a main discrimi-will be, if y(n — 1) > x(n):
native factor in our algorithm, being weakly influenced bg th
SN R and the energy level in a conversation. y(n) = arz(n)+ (1 —ar)y(n — 1), 7)



wherear = 1 — e %/Nr and Ny is the length of the step VADgrc(n) andV AD7y (n) are then combined into one
response of the filter, in our experimental analysis we usedalue using a different weighisfor each feature, determined
Ng = 100, equivalent ta0.5s. The choice of this value is empirically by analyzing their discriminative performasc

related to the characteristics of the speech signal aneftrer

is the same for each feature. In the caée — 1) < x(n) the

In particular each VAD has been tested alone under differ-
ent conditions of noise (car, wgn, babble, rain, street) and

filtering will not take place. Thus, if the value is decreasin SNR (-15dB + 25dB). The results where following the ini-

after being high, most likely due to the presence of voicedial statistical analysisppnT =

0.41, parc = 0.33 and

speech, the signal(n) will decrease less rapidly preventing pry = 0.26.

the signal to go below the voice-noise threshold in presence

of unvoiced speech. It should be noted that operating thig 3. Smoothing Rule

filtering, we highly reduce the temporal clipping that can be ) o
introduced in the middle and at the end of the speech sign&lnce we have found a fuzzy VAD as a linear combination of
that can highly lower the quality of the signal [7]. On the the three values used in the discriminative process, we have
other hand, the probability of false alarm (misdetectingao 0 make afinal binary decision. To strengthen the effort made

for speech) will necessarily be higher; nevertheless,dlsar
that perceptually speaking, it is preferable to misdetedan
for speech than the other way around.

4.2. Initial Training

by the filter in (7) to prevent the algorithm from clipping un-

voiced sound, we introduce a smoothing rule based on the
principle that an unvoiced sound is never an isolated phe-
nomenon but comes always before of after a voiced sound
that is much easier to detect. In order to do so, the algorithm
makes a decision based not only on the current subframe but

Our algorithm supposes an initial period of 100 ms for train-uses also the fuzzy values from the previous 15 subframe. In
ing (20 subframes). In this period of time, supposedly ofonl other word:

background noise, the featureSN'T', TV, GFC) are cal-

culated and processed to determine the initial discrirvieat
thresholds. Under the hypothesis of gaussianity that holds

well in this case, we first find the mean valpé and the

Doy {1 T Tin 5 VAD ey (0= ) > .
P T 0 otherwise

®)

standard deviatioal{n for each parametef and these values where H = 0.55 is a constant value found empirically that

will characterize the probability density function of faets
during noise conditions.

gave us the best performances in the trade-off between keep-
ing the rate of correct classification of speech high and the

In our algorithm we will use five thresholds; This is donefalse alarm rate low. An example of the functioning of the
to create a fuzzy VAD and postpone the final binary decisioralgorithm is shown in figure 1.
to a latter stage in order to take into account other factors.

The determination of the thresholds is done dividing thea
probability density functions obtained in confidence zo1
for ENT andGFC the thresholds arfg H, =y, , THy =
/J‘l):n + Ul{n’ TH3 = lu’l]:n + 20—571’ TH4 = ulfn + 30{71’ TH5 =
ul + 50/ and forTV the thresholds are (considering !
plV = 0)TH, = 1/720}Y, THy = 1/360}Y, TH; =
12708V, THy = 1/1801V, THs = 1/901V. After this
initial stage, each feature value, after being filtered DynH
be compared to its respective thresholds in order to def
likelihood value; for example for the entropy featuteV T
the cycle at the' subframe will be:
if ENT(n) < TH; then
VADENT(R) =0
elseifENT(n) > THy, and ENT(n) < THs then
VADENT(TL) =0.2

elseifENT(n) > TH, and ENT(n) < TH; then

VADgnT(n) = 0.8
else

VADENT(TL) =1
end if

The fuzzy VAD values for each featuré ADgnr(n),

Fig. 1. Example of the VAD functioning (SNR = 12dB,
street noise). From below we have VADgrc, VADpy,
VADgnT, VAD{yssy, VADy;, and the ideal reference
VAD.

4.4, Thresholds Updating

The background noise in mobile networks, other than being
highly non-stationary, can also change drastically dutirey
course of a normal conversation. In order to compensate



VAD Performances probability to detect speech when presétt over the false-
SNR | NOISE Pp% Pra% alarm probabilityPr 4. In this way, it smoothens the rapid
COD | LIN | COD | LIN decay of perceived quality when clipping of speech is presen
WGN 88.8 [ 91.7]| 105 | 7.2 [7]. In fact, the mid-speech and end-speech clipping are al-
5dB | BABBLE 79.1 | 825 29.2 | 25.3 most not present thanks to the solutions implemented in the
AVERAGE | 80.7 | 81.7| 26.2 | 23.1 VAD. On the other hand, the front-end clipping is still pnase
WGN 94.1 | 96.2| 9.3 5.4 because, in order to keep the delay (one of the major con-
12dB | BABBLE 914 | 93.2| 26.1 | 18.3 straints in mobile networks) as low as possible, no lookadhe
AVERAGE | 915 | 929 21.1 | 171 has been being used.
WGN 96.2 | 98.6| 6.2 3.4
20dB | BABBLE 956 | 97.5| 175 | 11.3 6. CONCLUSIONS
AVERAGE | 96.0 | 97.1| 15.8 | 10.7

In this paper we have presented an innovative VAD structure
hat operates directly on the AMR compressed domain. In
articular, we have shown that reducing the complexity of
the VAD process by transposing the operations on the AMR
codec parameters is not only possible but preferable as the
this phenomenon, an update of the thresholds found in thexperimental results have shown to be comparable with the

initial training stage is necessary. In order to do so, wherYADs commercially available. These techniques are sietabl
V ADy;, = 0, the algorithm will update the thresholds by for implementation in mobile networks and other kind of net-

updating the mean value,f and the standard deviaticarf works working with AMR-coded speech. Given the interest-
of the background noise for each featyfe In order to do ing results of all the algorithms tested on the UMTS network,

s0, we used a linear estimation of the first and second ord¥¥€ can see these as a good alternative to the existing VAD
moments: procedures.

Table 1. Performances comparison between the proposed
gorithm (COD) and the ETSI AMR-2 (LIN)
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