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CHAPTER 65
MULTI BETA-POINTS

P. Thoft-Christensen, J.D. Sørensen & H.I. Hansen 
CSR, Aalborg, Denmark

ABSTRACT 

A number of methods which can be used to identify multi 
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Table 8. Number of identified local minima ng, number of times ep the B - algorithm has been
« executed, and execution time t as function of y. P, =0.05. g =4.



-points for non-linear failure functions are described. These methods are evaluated on basis of two examples.

Introduction

In this paper is presented some results on identification of multi 
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-points obtained in the CEC supported research project BRITE/EURAM P4194 entitled “Reliability Based Design Methodology with Applications to Advanced Aerospace Structures”. The paper is based on the reports Sørensen, Hansen & Thoft-Christensen [1] and Hansen & Sørensen [2]. In the first report three main methods for identification of multi
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-points are described namely:

· the multi start method

· the single linkage clustering method

· the optimal experiment planning method.

All tree methods are implemented in the CSR software module MULBET described in the second report.

In the paper all the above mentioned methods to identify multi 
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-points are described but with special emphasis on the single linkage clustering method.

The Multi 
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-point Problem

The reliability index 
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is in First Order Reliability Methods defined as the shortest distance from the origin to the failure surface in the standardized normal space with coordinates  
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; see  Thoft-Christensen & Baker [3]. It is well-known that if the failure surface in the u-space is not too non-linear, then a good approximation to the probability of failure can be obtained from


[image: image8.wmf](

)

f

P

b

=F-

                                                              (1)

[image: image1.wmf]b

where 
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 is the standardized normal distribution function. However, if the failure function is non-linear then more than one 
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-point may exist, see figure 1. The function which models the distance from the origin to the failure surface has in such cases more than one local minimum.

The multi 
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-point problem is identification (enumeration) of local 
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-points for non-linear failure functions. It can be formulated by the optimization problem
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where; is a realisation of the standardized normal variables 
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is the failure function. Equation (2) is a non-linear optimization problem with a single non-linear constraint. A number of methods to enumerate the local minima are described in the literature. In this paper three methods are considered, namely 

· the multistart method; see  Rubinstein [4] and Rinnooy Kan & Timmer [5]

· the single linkage clustering method; see Rinnooy Kan & Timmer [6]

· a method based on optimal experiment planning based on  Box & Draper [7] 

The Multistart Method

The multistart method is a simple method based on a number of simulated points in the u-space. These points are starting points for searches for local minima, i.e. 
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-points using a 
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-algorithm like RELIAB (CSR software). More specific the random starting points are assumed to be uniformly distributed in a hyper sphere with radius 
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 in the n-dimensional u-space. The search is terminated when the probability that not all local 
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-points are found is small. If K is the real (but unknown) number of 
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-points then the probability P[K=w] that all 
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-points have been found can be estimated by
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where w local 
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-points have been found as the result of N executions of the 
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-algorithm, see Boender & Rinnooy Kan [8] .

The Linkage Clustering Methods

To solve the constrained global optimization problem (2) the Lagrangian function is formulated
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where 
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 is an unknown multiplier. If a reasonable estimate for 
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 is used then L can be considered an approximation to an unconstrained optimization problem corresponding to (2).

The basic idea in clustering techniques is to generate a number of clusters. In the single linkage clustering method a number of start points are generated from an uniform distribution in the n-dimensional hyper sphere with radius
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. An approximate value of L is evaluated for each starting point. The start point with the lowest Lagrangian function value is used as start point in the 
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-algorithm. The corresponding 
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-point is selected as seed point for the cluster. Unclustered start points are assigned to the cluster if they are within a small distance of a point already in the cluster. A new seed point is selected and the clusters are updated. When all points in the reduced sample (defined by the fraction of generated points used, see later) are clustered then all points are deleted from the clusters except for the 
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-points and the points that have been used as start points in the 
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-algorithm. New start points are generated and the clusters are formed/updated in a similar way until convergence is reached.

In the modified single linkage clustering method unclustered start points from the reduced sample are assigned to the cluster if they are within a small distance of the 
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-point in the cluster or a point in the cluster that has been used as start point in the 
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-algorithm ( and resulted in the 
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-point). Otherwise the procedure is unchanged.

The Experiment Planning Methods

Basic principles in experiment planning are used to generate start points for 
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-searches. Experiment planning is described in detail in Box & Drape [7]. In experiment planning the objective is usually to fit a surface (e.g. linear or quadratic) to function values calculated in certain points. In this paper three different experiment plans are used to generate starting points for the 
[image: image37.wmf]b

-algorithm.In the first experiment planning technique with factorial design N =2n start points are generated. n is the number of stochastic variables. The start points are generated as vectors containing all combinations of -1 and 1 multiplied by 0.5
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. The starting points correspond to the corners in a n dimensional cube with the side length 
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, where 
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 is a measure of the maximum 
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-values of interest. The 
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-algorithm is executed for starting points with the lowest approximate Lagrange function values.

In the experiment planning techniques with central composite design the first 2n start points are generated as described above. To these start points is added the origo and the 2n combinations where one co-ordinate of the start point is 
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or -
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 and all other co-ordinates are zero. 
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is dependent on the number of stochastic variables. In this way the total number of start points is N =1+2n+2n . The 
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-algorithm is executed for the starting points with the lowest approximate Lagrangian function values.

In the last experiment planning technique with factorial design N = 3n start points are generated. The start points are generated as vectors containing all  combinations  of -1, 0, 1 multiplied by 0.5
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. The 
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-algorithm is executed for each start point or the start points with the lowest Lagrange function values.
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Example 1

The first example is taken from  Madsen, Krenk & Lind [9]. The failure function in the u-space is shown in figure 2. The reliability index function has two local minima at the points 
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u

= (2.782, 0.100) and 
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u

 =( -1.296, 3.253).

The number of identified local minima 
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, the execution time t ( in seconds on a 486 PC). and the number of times 
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 the 
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-algorithm has been executed as function of the radius 
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 of the sample space is shown in table 1 for all six methods:
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Table 1. Number of identified local minima n B number of times eg the (3 - algorithm has been
executed, and execution time t as function of g_. . P . =0.05.





1. MM Multistart Method

2. SLCM Single Linkage Clustering Method

3. MSLCM Modified Single Linkage Clustering method

4. EPT2 Experiment Planning Technique 2

5. EPTC Experiment Planning Technique Central Composite

6. EPT3 Experiment Planning Technique 3

It is seen from table 1 that for values of the radius of sample space 
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 >2 both local 
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-points are identified. It is also seen that, as expected, MM is the most time consuming method. The fastest method is EPT2. The number of 
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 calls is much higher for MM than for the other methods.
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Table 2. Number of identified local minima ng, number of times egthe B - algorithm has been
executed, and execution time t as function of P, . g =3.




In table 2 the number of identified local minima, the execution time, and the  number of 
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 calls are shown as function of the probability Pmin that not all local points are found. For 
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=3 both local points are identified for the three methods used. However the computer time is much higher for MM than for SLCM and MSLCM. Again the number of P calls is very high for MM.
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In table 3 
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, 
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, and t are shown as function of the number of start points N generated in a main iteration of the single linkage clustering method SLCM. There seems to be no significant difference in using SLCM or MSLCM.

Finally, in table 4 the number of local points 
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, 
[image: image65.wmf]b

 calls, and the execution time t is shown as function of the fraction 
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 of generated points used in the single SLCM and the experiment methods. For 
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 > 0.50 both points are identified for all three experiment methods with relatively low execution times.
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Example 2

The second example is also from  Madsen, Krenk & Lind [9]. The failure function models a series system with three components. There are seven stochastic variables and the reliability index function has three minima:
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 = 2.71
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Table 3. Number of identified local minima ng, number of times eg the B - algorithm has been
executed, and execution time t as function of N. Prmax =3. Pmin =0.05.



All three local 
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-points are identified with MM, SLCM, and MSLCM for the radius of sample space 
[image: image75.wmf]max

b

 = 4 and 5, and for EPT2, EPTC and EPT3 when 
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 >2. Observe, that the execution time is relatively high for EPT3. The number 
[image: image77.wmf]b

calls is very high for MM and EPT2 and lowest for SLCM.
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Table 4. Number of identified local minima ng, number of times eg the B - algorithm has been
executed, and execution time t as function of y. P . =0.05.




From table 6 is seen that the computer time is decreased significantly when the probability Pmin that not all local points are found is increased. As before, the number of 
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 calls is high for MM.
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Table 5. Number of identified local minima ng, number of times eg the [ - algorithm has been

executed, and execution time t as function of g_,. . P =0.05.





In table 7 
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 and t are shown as function of the number of start points N generated in a main iteration of the single linkage clustering method SLCM. The most significant difference in using SLCM or MSLCM is that the number 
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 calls is smallest for SLCM.
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Table 7. Number of identified local minima ng, number of times eg the {3 - algorithm has been
executed, and execution time t as function of N. g_. =4. P =0.05.




Finally, in table 8 the number of local points 
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b

 and the execution time t is shown as function of the fraction 
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 of generated points used in the single SLCM and the experiment planning methods. For 
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 > 0.50 both points are identified for all three experiment planning methods with relatively low execution times for EPT2 and EPTC. The lowest number of 
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 calls is for SLCM.

Conclusions

Three methods for identification of multi 
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-points are presented in this paper. On basis of two examples it is concluded that:

· all three methods can identify all significant local 
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-points.

· the original single linkage clustering method extended to optimization problems with one constraint is generally the most efficient method when compared with the other methods and if the number of 
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 searches is used as reference.

· in the linkage clustering method the number of 
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 searches needed is generally 1.5 - 2 times the number of local 
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-points but a large number of Junction evaluations are needed.

However, the effectiveness of the clustering methods should also be evaluated taking into account the relative costs of calculating values of failure functions and calculating gradients of failure functions. This is especially important when finite element models are used and efficient tools are available for calculating sensitivities.

Therefore, when comparing the methods it should be taken into account that the clustering methods require a relatively small number of 
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 calls but a large number of function evaluations, whereas the multistart method requires a number of 
[image: image91.wmf]b

 calls with both function and gradient evaluations but no extra function calculations to sort the starting points.
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Appendix A: MULBET

The CSR software module MULBET can identify multi 
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-points for a failure function. Six methods can be used:

· The multistart method.

· The original single linkage clustering method.

· A modified single linkage clustering method.

· A method based on a 2n factorial design from experiment planning.

· A method based on the central composite design from experimental planning technique.

· A method based on a 3"factorial design from experiment planningtechnique.





























































Figure 2. Failure function in standardized normal space.








Figure 1. Illustration of the multi � EMBED Equation.DSMT4  ���-point problem.  
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