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CHAPTER 42
RELIABILITY-BASED OPTIMIZATION OF PARALLEL SYSTEMS

J.D. Sørensen & P. Thoft-Christensen, Aalborg University, Denmark

1. INTRODUCTION

Application of optimization methods and algorithms in reliability-based design of engineering or economic systems has mainly concentrated on models where the potential failure modes (failure elements) are modelled as elements in a series system. For e.g. structural systems, see Murotsu et a1. [1], Frangopol [2], Sørensen [3] and Thoft-Christensen & Sørensen [4]. In reliability-based optimization some of the quantities defining the model used are modelled as stochastic variables. The reliability can generally effectively be measured using first order reliability methods (FORM), see e.g. Thoft-Christensen & Baker [5] and Madsen et al. [6].

In this paper systems are considered where the reliability model consists of a series system of parallel systems. Such a model is used for example when failure of a system is defined by the event that more than one failure element have to fail simultaneously. In section 2 the reliability-based optimization problem is formulated. The objective function can for example model the total expected cost of an engineering system, and the constraints signify that the reliability of the system is adequate during the expected lifetime of the system. Further, in section 2 an algorithm to evaluate the reliability of parallel systems is presented.

In section 3 a sensitivity analysis of the optimization problems considered is presented, and in section 4 an optimization procedure is described.

2. RELIABILITY-BASED OPTIMIZATION

The optimization problem considered is written
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where 
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 are the optimization variables which are assumed to be real-valued. N is the number of optimization variables. As a measure of the reliability of the system the so-called systems reliability index
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, see below, is used. 
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 is the objective function. 
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 can for example model the total costs of the system (for structural systems the structural weight is often used as an objective function). The optimization problem (1) - (3) is generally non-linear and non-convex, see Sørensen & Thoft-Christensen [7].

In system modelling some of the uncertain quantities are modelled by stochastic variables
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, i.e. the number of stochastic variables is n.

The potential local failure modes (failure elements) are described by the failure functions
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Realizations 
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 correspond to failure states, and realizations where 
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 correspond to safe states. The failure elements can e.g. in structural systems model such failure modes as yielding of cross-sections, stability failure, fatigue failure, etc.

In first order reliability methods a transformation 
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 of the correlated and non-normally distributed stochastic variables 
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 into standardized and normally distributed variables 
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 is defined. Let
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. An element reliability index 
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corresponding to failure element i is then determined from the following optimization problem
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In some applications a system is not considered to be in a state of failure if only one local failure mode fails. If failure is defined by the event that M failure elements have to be in a state of failure then the whole system can be modelled by a series system of parallel systems. A rough estimate of the reliability index 
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 of one parallel system can be determined by linearizing the safety margins 
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 of the failure elements in the parallel system, see figure 1,
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where
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and using
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where 
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 is the M -dimensional normal distribution function, 
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, and the elements in the correlation coefficient matrix 
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 are determined by
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This approximation is illustrated in figure 1 for the case where M = n = 2. The failure region is approximated by the region defined by
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Usually a much better approximation of the reliability of a parallel system is obtained by using the so-called joint design point E (see figure 1) as linearization point. The joint design point is determined from the following optimization problem
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Generally this optimization problem (10) can be solved using standard mathematical programming algorithms, see e.g. Vanderplaats [8] and Gill et al. [9]. For example the following methods can be used

a) Penalty function methods

b) Augmented Lagrangian multiplier methods

c) Feasible direction method

d) Generalized reduced gradient (G RG)

e) Sequential quadratic problems (SQP)

f) Sequential linear problems (SLP)

Also combinations of these methods can be powerful, e.g. the NLPQL algorithm by Schittkowski [10] and the VMCWD algorithm by Powell [11] which use elements from Augmented Lagrangian multiplier methods and from SQP methods.

In the following an optimality criteria method to solve the optimization problem is presented. The Lagrangian function corresponding to (10) is
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where 
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 is the Lagrangian multipliers. If 
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 is the joint design point and 
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 the corresponding Lagrange multipliers then the Kuhn-Tucker conditions must be satisfied at this point:
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In order to estimate 
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 given a point 
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 and given an estimate of the set I of active constraints (failure elements), consider the following approximation of (12) - (14)
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or if only active constraints are considered
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is now assumed to contain the multipliers of the active constraints numbered

1 to MA and
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(18) and (19) can then be written
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with the solution
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Based on these equations the following algorithm can be formulated (k is the iteration number)

step 0: initialize: k=0, 
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input the positive convergence parameters 
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step 1: calculate 
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step 2: calculate 
[image: image60.wmf]0

and

GG

Ñ

 

step 3: convergence check (if  k > 0)

If  
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,  i = 1,…, M
Then stop

Else k=k+1

step 4: calculate 
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Go to step 1

The identification of the active set can be improved if second order estimates of the Lagrangian multipliers are used, see Gill et al. [9].

When the joint design point E is determined, see figure 1, the MA active failure elements are linearized and written 
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of the parallel system can be determined using (8). The failure region is now approximated by the region defined by 
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, see figure 1.

For the parallel system an equivalent linear failure element with a linear safety margin
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can be determined, see Sørensen & Enevoldsen [12] and Thoft-Christensen & Murotsu [13].

When the significant parallel systems (sequences of failure elements) have been identified then these are modelled as elements in a series system, see figure 2, and the system reliability index is determined from
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where Mp is the number of significant parallel systems and 
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and 
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 are the reliability index vector and correlation matrix corresponding to the equivalent linear failure elements for the parallel system.

3. SENSITIVITY ANALYSIS

If optimization algorithms such as NLPQL [10] or VMCWD [11] are used then first order derivatives of the objective function and the constraints with respect to the optimization variables are required. If no probability estimates are used in the objective function W then 
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 can usually be determined without significant computer time consumptions (when compared with the time used for estimating 
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Estimation of the derivatives of the system reliability index 
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with respect to the optimization variables using finite differences will generally be too expensive with respect to computer time. Also derivatives estimated using analytical expressions can give problems. One of the reasons is that for M > 2 the M–dimensional normal distribution function 
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can only be evaluated approximately (except in some special cases). Another reason is that the analytical expressions become very complicated because reliability indices and correlation coefficients in both the parallel systems and the series system are dependent on the optimization variables
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In the following a quasi-analytical method to estimate 
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failure functions are written
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When the joint design point or the individual reliability indices of the failure elements have been determined for each parallel system then only the linearized failure functions are used to evaluate the probability of failure of the parallel systems and the series systems reliability index. The linearized failure functions are written, see (6)
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where 
[image: image80.wmf](

)

ij

z

b

 and 
[image: image81.wmf](

)

ij

z

a

 are the reliability index and the 
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-vector, respectively, for the ith failure element in the jth parallel system.

The system reliability index 
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where 
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. The derivative of 
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If the reliability indices of the elements in the parallel systems are determined without determining the joint design point, i.e. (5) - (7) are used, then 
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 for a typical element with failure function 
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can be estimated from (using a sensitivity analysis of the Kuhn-Tucker conditions corresponding to the optimization problem (5))
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where
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Using a sensitivity analysis of the Kuhn-Tucker conditions corresponding to (19) then 
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can also be determined if the joint design point are used as linearization point, see Bjerager & Krenk [14]. The sensitivity coefficients for each parallel system are determined simultaneously.
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can be determined using finite differences. If the failure functions are continuously differentiable (with respect to z) and the approximation used for 
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 (for example the Hohenbichler approximation, see Thoft-Christensen & Murotsu [13]) is continuously differentiable (with respect to 
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) then application of (28) gives continuous derivatives of 
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with respect to 
[image: image108.wmf]z

. First order optimization methods can then be applied.

When structural systems are considered then from a numerical point of view, estimation of all the derivatives using (28) and the above method will generally not be significantly more expensive than to estimate the systems reliability index. The reason is that the determination of single reliability indices or joint design points is generally very computer time consuming because in many practical cases evaluation of the failure functions requires a complete structural analysis.

4. OPTIMIZATION PROCEDURE

Several procedures to solve series system reliability constrained optimization problems have been suggested. Murotsu et al. [1] use sequential linear programming. In Sørensen [3] a sequential procedure is suggested. At each step in this procedure an element reliability index based optimization problem is solved and the lower bounds of the element reliability indices are adjusted such that the system reliability index constraint is satisfied. The advantage of this procedure is that element reliability index based optimization problems are generally much easier to solve than the system reliability index based optimization problem.

The following optimization procedure is developed to solve problems where a very large number of parallel systems is possible. Only the most significant parallel systems are assumed to be identified and modelled as elements in a series system.

A general first order optimization method is assumed to be used, e.g. the NLPQL algorithm [10]. Initially Mo significant parallel systems are identified corresponding to the initial value of 
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. During the first I1 iterations the set of significant parallel systems is fixed, see figure 3. Then the set is updated using the current value of 
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. New significant parallel systems are added to the set of significant parallel systems. Next the optimization is continued until iteration I2 where a new updating is performed. This procedure is continued until some convergence criteria are satisfied. These criteria will be related to the change in the set of significant parallel systems and to the Kuhn-[image: image112.wmf]GEF
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Tucker conditions corresponding to (1) - (3).

If in some applications convergence problems occur then move limits on the optimization variables can be used until the set of significant parallel systems does not change considerably.

5. CONCLUSION

Systems modelled as a series system of parallel systems are considered and it is shown how the reliability of such systems can be estimated using first order reliability methods (FORM). This type of systems can be used to estimate the reliability of systems in a large number of disciplines, for example structural, economic and electrical systems. In order to estimate the reliability of a parallel system using FORM an optimization problem with quadratic objective function and non-linear constraints has to be solved. An algorithm to solve this optimization problem is presented.

A reliability-based optimization problem is formulated where the expected costs of the system is used as objective function and the reliability (estimated by FORM) of the series system of parallel systems is used as constraints. The optimization variables are quantities defining the model. A sensitivity analysis of this problem (especially the reliability constraint) is performed and a general procedure to solve the optimization problem is presented.

6. REFERENCES

[1] Murotsu, Y., M. Kishi, H. Okada, M. Yonezawa & K. Taguchi: Probabilistically Optimum Design of Frame Structure. 11th IFIP Conf. on System Modelling and Optimization. Springer-Verlag, pp. 545-554, 1984.

[2] Frangopol, D.M.: Sensitivity of Reliability-Based Optimum Design. ASCE, Journal of Structural Engineering, Vol. 111, No.8, 1985.

[3] Sørensen, J.D.: Probabilistic Design of Offshore Structural Systems. Proc. 5th ASCE Spec. Conf. pp. 189-193, Virginia, 1988.

[4] Thoft-Christensen, P. & J.D. Sørensen: Recent Advances in Optimal Design of Structures from a Reliability Point of View. Quality & Reliability Management, Vol. 4, No.1, pp. 19-31, 1987.

[5] Thoft-Christensen, P. & M.J. Baker: Structural Reliability Theory and Its Application. Springer-Verlag, 1982.

[6] Madsen, H.O., S. Krenk & N.C. Lind: Methods of Structural Safety. Prentice Hall, 1986.

[7] Sørensen, J.D. & P. Thoft-Christensen: Structural Optimization with Reliability Constraints. Proc. 12th IFIP Conf. on System Modelling and Optimization (ed. P. Thoft-Christensen), Springer-Verlag, 1986, pp. 876-885.

[8] Vanderplaats, G.N.: Optimization Techniques for Engineering Design. McGraw-Hill, New York, 1984.

[9] Gill, P.E., W. Murray & M. H. Wright: Practical Optimization. Academic Press, 1981.

[9] Schittkowski, K.: NLPQL: A FORTRAN Subroutine Solving Constrained Non-Linear Programming Problems. Annals of Operations Research, 1986.

[11] Powell, M.J. D.: VMCWD: A FORTRAN Subroutine for Constrained Optimization. Report DAMTP 1982/NA4, Cambridge University, United Kingdom, 1982.

[12] Sørensen, J. D. & I. Enevoldsen: Sensitivity Analysis in Reliability-Based Shape Optimization. Presented at NATO ASI, Edinburgh, 1989. Structural Reliability Theory, University of Aalborg, 1989.

[13] Thoft-Christensen, P. & Y. Murotsu: Application of Structural Systems Reliability Theory. Springer-Verlag, 1986.

[14] Bjerager, P. & S. Krenk : Parametric Sensitivity in First Order Reliability Analysis. ASCE, Journal of Engineering Mechanics, 1989.


























































Figure 3. Number of parallel systems in series system as a function of number of iterations.








Figure 2. Series system of parallel systems.








Figure 1. Illustration of parallel system (n = 2 and M = 2) and approximations of failure regions (� EMBED Equation.DSMT4  ��� and � EMBED Equation.DSMT4  ���).
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