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CHAPTER 43
RELIABILITY OF STRUCTURAL SYSTEMS WITH REGARD TO PERMANENT DISPLACEMENTS

J.D. Sørensen & Thoft-Christensen, Aalborg University, Denmark

1. INTRODUCTION 

In this paper the problem of estimating the accumulated permanent displacements of an offshore platform during one storm is considered. For dynamically sensitive structural systems subjected to wave loads this problem is generally very difficult. However, for dynamic insensitive systems some methods/experience related to permanent deformations are described in Grinda et al. [1] and Papadrakakis & Loukakis [2]. For general dynamic systems modelled by one-degree-of-freedom (and two-degrees-of freedom) systems a number of methods exist, see e.g. Nielsen et al. [3] and Toro & Cornell [4]. However, for multi-degrees-of-freedom systems very little work (with practical relevance) has been done. 

For steel jacket platforms subjected to wave, wind and current loads with specified main directions three methods to estimate the permanent displacements during a single storm are proposed, namely 

· a simulation approach

· a differential equation approach 

· superposition approach - the simple method 

These three approaches are described in Sørensen & Thoft-Christensen [5], Sørensen et al. [6] and Sørensen & Thoft-Christensen [7]. It is assumed that the structural system can be modelled by a multi-linear elastic-plastic system and that the loading can be modelled by a stationary Gaussian Markov process. 

In the simulation approach realisations of the load are generated and the permanent displacements are determined by elastic-plastic analysis of the structural system, see section 2. In the differential equation approach a system of differential equations is formulated from which the expected value and the standard deviation of the response (e.g. permanent displacements) can be determined as a function of the time. Numerical techniques and approximations to solve the system of equations are discussed in section 3. 

These two approaches require a very large number of computer calculations. Therefore a rather simple method is proposed. The basic idea in the superposition approach is to estimate the accumulated permanent displacements as sums of permanent displacements from single waves (this assumption is equivalent to that used in Miner's rule for fatigue analysis). It is described how a single storm can be broken down into a number of single waves and how the permanent displacements for each single wave can be determined. Further it is described how the reliability of the structural system can be estimated. 

The three approaches are compared on a qualitative level. Numerical tests are currently being performed using simple models of offshore platforms. The results of this testing of the simple method will be published later.

2. SIMULATION APPROACH

First the basic structural model is presented and next the modelling of the stochastic external loading (wind, wave and current) is discussed.

The following basic assumptions are made:

· the structural system is modelled with straight two or three dimensional truss or beam elements each with two nodes i and j
· the material is linear elastic - perfectly plastic

· the external loads are applied to the nodes

· second-order effects are neglected.

For a single element the stiffness equation on incremental form in local coordinates are
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where
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 is the increment in the element nodal forces Re (axial force, moments, etc.)
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 is the elastic stiffness matrix of the element
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 is the increment of the elastic nodal displacements 
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The plasticity condition is defined at each node of the element. For node no. i the plasticity condition (yield surface) is written
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Fi < 1 indicates elastic state, Fi = 1 indicates plastic state and Fi > 1 is not possible. If the flow rule (normality principle) is accepted then increments in the plastic displacements 
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can be determined, see Bathe [8].

The time-dependent load on the jacket structure consists of wind, wave and current loading and is modelled by a stochastic vector process 
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 where T is the duration of a storm and Pi(t), i = 1,..., N models the load in the ith degree of freedom. N is the total number of global degrees of freedom in the finite element modelling of the structural system. The stochastic processes {Pi(t)}, i = 1,..., N are assumed to be filtered Gaussian processes and are written
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where
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where 
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is a deterministic time-dependent vector modelling the mean value of the load process (e.g. a current load)
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 is an auxiliary stochastic vector of dimension M
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{Bi(t)}, i =1,.., M are independent unit intensity Wiener processes with the incremental properties.

The elements in the 
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 and 
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 matrices are determined so that the actual cross-spectral densities of the load process are adapted as closely as possible to those of the Gaussian process { 
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} defined by (3) - (4). If the load process mainly models wave forces determined by Morison's equation then m = 1 can be expected to give reasonable results.

The permanent deformations during a single storm can be simulated by generating realisations of {
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} and using a non-linear finite element program.

3. STOCHASTIC DIFFERENTIAL EQUATIONS

In this section it is described how the response of the elastic-plastic system with the load models described in section 2 can be determined by using a differential equation approach. The following system of equations is formulated
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where 
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 is the state vector of dimension Nx. 
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Based on the modelling in section 2 the state vector is
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where 
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 is the global generalized displacement degrees of freedom (dimension N), 
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 is the global generalized velocities (dimension N), 
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is the permanent deformations of all element d.o.f. assembled in one vector (dimension (
[image: image32.wmf]NENDOF

´

) where 
[image: image33.wmf]NE

is the number of elements and 
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is the number of degrees of freedom in each element), 
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 is the element nodal forces (in the local element coordinate system) assembled in one vector (dimension (
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)) and 
[image: image37.wmf]Q

 is an auxiliary vector (dimension M).

The dynamic behaviour of the structural system is assumed to be described by
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where 
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 is the mass matrix (lumped or consistent) (dimension (
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 is the damping matrix (dimension (
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)) and 
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 is the non-linear restoring force vector (dimension N). If the structural system is dynamically insensitive then the system is reduced by deleting the inertia and damping terms.

The drift vector 
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where
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is the local restoring force vector in element i.
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 is the transformation matrix for element i from local to global coordinate    system.
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 is a matrix obtained by assembling the element 
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 Since 
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 the drift vector is non-linear. The time-independent diffusion matrix 
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Thus the dimension of the state vector 
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Even for small structural systems the number of equations can be very large, typically larger than 2000.

The unknown joint density function 
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 of the state vector can in principle be determined by solving the associated Fokker-Planck-Kolmogorov equation. However, due to the non-linear drift vector and the large number of equations this is impossible in practice, at least with the present computer resources.

Instead, one can try to estimate the statistical joint moments of the state variables based on a closed set of differential equations (see Nielsen et al. [3]). It follows from [3] that the expected value and the covariances can be determined from
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where
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 is the i,jth element in the covariance matrix 
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The initial values of 
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 are assumed to be given
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If the joint density function of 
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 is described completely by the second moment characteristics then the system of equations (14) - (15) is closed and can be solved numerically.

As described above the structural elements are assumed to be elastic-plastic. This implies that the nodal forces 
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 will be bounded. Therefore, they will not be Gaussian distributed and the Gaussian closure method can thus only be expected to give approximate results. The estimates of the statistical joint moments can be improved by using other distribution functions. If these are completely described by the second moment characteristics it is necessary to enlarge the system of moment differential equations (14) - (15). This possibility is discussed in [3], but for practical applications to large systems it is not possible to use that approach.

The total number of differential equations corresponding to (14) - (15) will generally be very large but can be significantly reduced if some of the elements in the state vector are assumed to be uncorrelated. Other simplifications can also be discussed. The main output from the solution of (14) - (15) is the time-dependent expected values and covariances (variances) of the permanent deformations of some critical points.

One solution possibility is to approximate the behaviour of the dynamic system using only a few eigenmodes. Approximation of the response by the eigenmodes is well known in linear elastic dynamic analysis. For elastic plastic structures this approach has only been investigated in a few papers. In Baber [9] modal analysis is used to analyse the response of hysteretic frames. It is concluded in [9] that the computational effort has decreased significantly, but that it is necessary to include several modes in addition to the dominant modes corresponding to a linear analysis. The main reason for this is that the system non-linearities cause interaction between the modal responses. Further, Baber [9] concludes that elimination of too many modes may have the effect that the iterations at each time step diverge.

Another possibility to reduce the number of equations in (14) - (15) is to identify the structural elements which can be expected to remain elastic (or which can be approximated by elastic elements). The elements in 
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 (and in
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) corresponding to the elastic elements can then be deleted. Also the corresponding elements in Re can be deleted because the restoring forces in the elastic elements can be determined directly from the nodal displacements. These approximations are generally non-conservative because the permanent deformations in the elements are underestimated.

A third possibility to reduce the number of unknowns in (14) - (15) is to neglect the time variability of some of the expectations or covariances, e.g. by assuming some of the variables fully correlated or independent. The expectations and covariances (variances) of some of the permanent displacements are the most interesting quantities. Therefore, it should be possible to neglect the time-dependence of some of the other quantities.

4. THE SIMPLE METHOD

In this section the so-called simple method is described. The main approximations in the simple method are

·  the sequence effects are neglected

· the order in which the waves arrive is not taken into account (for example the importance of wave groups)

        -    the influence from accumulated damage is neglected, i.e. a wave arriving when the structural system is already severely damaged is assumed to have the same importance as one arriving at the start of the storm

· dynamic effects are neglected

· the influence from current is not taken into account.

Failure is defined as the event that the permanent displacement of a given point of the structure exceeds some critical value. Such a failure mode is called a failure element, and the structure will in general have several failure elements of this kind.

The main idea of this method is to estimate the accumulated permanent deformations as sums of permanent deformations from single waves. This assumption is equivalent to that used in Miner's rule (stochastic fatigue analysis). Dynamic effects cannot be included in this method because time effects are not dealt with directly.

The first step is to break a single storm down into a number of single waves. The waves are divided into NH groups where each group is characterized by 

[Hi-1, Hi[  the interval containing the wave heights in this group (H0 = 0), i = 1,...,  

                NH
Ni                   expected number of waves with wave heights in the interval [Hi-1, Hi[
Di            the accumulated permanent deformation from one wave with the height 

                (Hi-1,+Hi)/2 at some critical position (e.g. the top of the platform).

A safety margin corresponding to the critical permanent displacement at the critical position can then be formulated as
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where

Dc is the critical value of the accumulated permanent deformations,

ZD is a model uncertainty (stochastic) variable.

During one storm the sea surface elevation is assumed to be modelled by a stationary Gaussian stochastic process 
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 is assumed to be defined by the significant wave height HS and the zero crossing period Tz.
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If T is the length of the storm then the expected total number of waves is T/Tz. To determine Ni, i = 1,..., NH (the number of waves with wave heights in the interval [Hi-1, Hi[ ) the density function fH(h) of wave heights H is necessary, see figure 1.

The joint distribution function of a peak of the value P at the time tl and a valley of the value V (not necessarily the succeeding one) at the time t2 = t1 + 
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is given by, see Madsen et al. [10]
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where 
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In order to estimate the density function of the range between two successive extremes it is also necessary to estimate the density function of the times Tl between successive extremes,
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This first-passage problem cannot in general be solved analytically. A simple estimate of 
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  can be obtained by using the upper bound (the crossing rate)
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 The approximation (20), which can be calculated numerically, is used in the interval 
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Using (19) and (20) the density function of wave heights can now be determined
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and it then follows that
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Consider the case where all quantities except the sea surface and the model uncertainty variables Dz are deterministic. The permanent displacements from a single wave (at the start of the storm) with wave height (Hi-l + Hi)/2 can be determined using a non-linear finite element program and a wave loading program, e.g. the RASOS program developed during the BRITE P1270 project, see Gierlinski [11]. The probability of failure can then be estimated.

Let the stochastic variables (for example yield stresses, model uncertainties, load parameters in Morison's equation and quantities in the member model) be denoted
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 also include quantities defining the sea surface process (for example the significant wave height) then Ni will also be dependent on 
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With only one failure element in the structural system the probability of failure can be determined from
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 The conditional probability of failure 
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in (23) can be determined as described above. Numerical determination of the multi-dimensional integral in (23) is generally very computer time consuming, but the computational efforts can be reduced significantly by using the fast probability integration technique based on FORM/SORM, see Wen & Chen [12]. A systems reliability index can be determined if the failure modes are modelled as elements in a series system.

In the above model no influence of the sequence effects is taken into account. In the following some simple methods to take these effects into account are discussed. In figure 2 two possible groupings of the waves are shown. The idea is to group all waves with wave height in one interval, e.g. [Hi-l, Hi[ into one group of waves containing Ni waves. One "extreme" situation is first to consider the smallest waves and next the increasing wave heights. Another" extreme" is first to consider the largest waves and next the decreasing wave heights. For each of the two extreme situations the permanent displacements are still estimated on the basis of single waves, but the accumulated displacements at the end of one group of waves are used as input to the structural analysis of the characteristic wave of the next block. These models will not increase the computational work significantly.

When the largest waves are considered first an extension of the above method is to perform a complete structural analysis corresponding to the whole group of the largest waves. The second largest waves may also be analysed in the same way. The remaining waves are treated as above. This method will increase the computational work significantly. However, it can be expected to give a much better estimate of the accumulated permanent deformations.

The simple method is at present being tested at the University of Aalborg.

5. ACKNOWLEDGEMENTS

This paper represents part of the results of BRITE Project P1270, "Reliability Methods for Design and Operation of Offshore Structures". This project is funded though a 50% contribution from the Directorate General for Science, Research and Development of the Commission of the European Communities and another 50% contribution from the partners and industrial partners. The partners in the project are: TNO (NL), d'Appolonia (I), RINA (I), Snamprogetti (I), The University of Aalborg (DK), Imperial College (UK), Atkins ES (UK), Elf (F), Bureau Veritas (F), CTICM (F) and IFREMER (F). The industrial sponsors in the project are: SHELL Research (NL), SHELL UK (UK), Maersk Oil and Gas (DK), NUC (DK) and Rambøll & Hannemann (DK).

6. CONCLUSION

Methods to estimate the permanent deformations during one storm are described, namely simulation, a differential equation approach and the so-called simple method. In the differential equation approach the second-order moments of the time-dependent behaviour of the permanent deformations are estimated. The basic idea in the simple method is to consider single waves and to accumulate linearly the permanent displacements from these. It is described how the magnitude and number of single waves in one storm can be determined. The permanent displacements from one single wave are assumed to be determined using a general non-linear finite element program.

Some extensions/improvements of the simple method taking into account the sequence effects are discussed. One idea is to consider the groups of basic waves sequentially and to use the accumulated permanent displacements after one group as starting values for the analysis of the basic wave which represents the next group of waves.

The main drawbacks and advantages of the simulation approach are:

Drawbacks:  
very computer time consuming,

expensive to include other  stochastic variables than those modelling the load process.

Advantages:   load process can be modelled rather precisely,

elastic plastic structural systems can be modelled accurately.

The main drawbacks and advantages of the differential equations approach are :

Drawbacks:   
large number of differential equations,

  

very computer time consuming, 

expensive to include other stochastic variables than those modelling the load process,   

brittle structural elements cannot be modelled.

Advantages:
load process can be modelled rather precisely, 

elastic plastic structural systems can be modelled accurately, 

the differential equations which model the permanent deformations are exact (with respect to the assumptions) and describe the time-dependent behaviour exactly,

  

dynamic effects can be included.

The main drawbacks and advantages of the simple method are:

Drawbacks:   
the estimates of the permanent displacements are generally rather inexact.

Advantages: 
not very computer time consuming, 

it is possible to include other stochastic variables than those modelling the load process using a FORM/SORM approach, 

brittle structural elements can be modelled,   

elastic plastic structural systems can be modelled accurately.

Compared with the simple method to estimate the permanent displacements the differential equation approach has the advantage that sequence effects can be taken into account. Compared with simulation the differential equation approach has the advantage that it is possible to incorporate it in a FORM/SORM analysis. The main advantage of the simple method compared with the other methods is that it is not very computer time consuming, i.e. it is practically applicable. However, test of the accuracy of the simple method has not yet been finished.
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Figure 2. Two possible blockings of waves.








Figure 1. Definition of wave heigh.
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