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CHAPTER 46
DYNAMIC RESPONSE OF NON-LINEAR SYSTEMS TO POISSON-DISTRIBUTED PULSE TRAINS: MARKOV APPROACH 

R. Iwankiewics*, S.R.K. Nielsen** & P. Thoft-Christensen**

                *   Technical University of Wroclaw, Poland

                                         ** Aalborg University, Denmark

ABSTRACT 

Dynamic response of non-linear systems with algebraic non-linarities to Poisson-distributed trains of impulses end general pulses is considered. Displacement and velocity responses of the system form in that case a Poisson-driven Markov vector process. The differential equations governing the joint response moments are obtained by making use of a generalized Itô's differential role which is valid for this kind of problems. Two closure techniques are used to truncate the hierarchy of equations for moments: an ordinary end a modified cumulant-neglect closure technique. Transient response statistics such as: the mean value, the variance, and in some cases the skewness coefficient, are evaluated numerically. Verification of the obtained approximate analytical results against the Monte Carlo simulations shows that the ordinary cumulant - neglect closure technique is appropriate in the case of non-linear systems subject to Poisson--distributed impulses end general pulses if the mean arrival rate of impulses is not very low, i.e. if the departure of the excitation from the Gaussian process is not very large. Otherwise, i.e. in the case of a low mean arrival rate of impulses, the modified cumulant - neglect closure scheme provides the improvement of the results.

1. INTRODUCTION

In many problems of structural dynamics the random excitations to engineering structures are regarded as Gaussian processes. The justification for such an idealization lies in the fact that the random excitations, or dynamic loadings, are often approximately Gaussian distributed. The Gaussianity assumption very much simplifies the analysis; as a matter of fact this assumption is crucial in some analytical techniques, e.g. in the equivalent linearization technique. Moreover, if the response may be regarded as a Gaussian white-noise-driven process, the problem may be considered within the framework of the theory of diffusive Markov processes, which provides very effective tools of analysis, such as the Fokker-Planck-Kolmogorov equation, Itô's differential rule, etc.

There exists quite an extensive literature concerning the idealization of different loadings encountered in structural dynamics and pertinent methods of analytical treatment are given [1-4]. It is known that in some important engineering problems the Gaussianity assumption about the excitation is not valid, not even approximately.

A class of non-Gaussian random excitations which deserves special attention is the discontinuous, event-type excitations usually termed random pulse trains. Perhaps the most typical example of such an excitation is the vehicle traffic load on a highway bridge [5], but excitations of that kind are encountered in different problems of engineering, for example a non-stationary earthquake excitation regarded as a sequence of shocks which first build up and next die out with time [6,7], randomly arriving wind gusts associated with eddies [7,8], intermittent excitation of an airplane tail [9], or the behaviour of a vehicle traveling over rough ground, where the vehicle structure is subjected to shocks produced by sudden bumps in the ground surface [10]. Also the dynamic loading due to wave slamming which acts on a ship hull structure or on some members of an off-shore structure may be modelled as a train of randomly arriving loading pulses [11].

While the literature on linear dynamical systems under random trains of impulses is quite extensive, the response of non-linear systems to random impulses has received much less attention. The dynamic response of a non-linear oscillator to Poisson-distributed impulses was treated by Roberts [12], who gave a generalization of the Fokker-Planck-Kolmogorov equation governing the joint probability density of the non-diffusive Markov vector process representing the response to random impulses. It was next used to deal with the case of impulses with high mean arrival rate. In the paper by Tylikowski and Marowski [13] the dynamic response of a Duffing oscillator to Poissonian impulses is analysed via equivalent linearization, which in the case of algebraic non-linearities only requires the knowledge of the linearized system response moments. Since the linearization is only effectuated in the stationary state, all the response moments and hence the equivalent coefficients are constant, consequently the equivalent linear system is time-invariant. It allows using the known expressions for the linearized system response moments. Another approach to the problem of a non-linear system to Poisson-distributed random impulses is used in Ref. [14]. Based on the fact that the displacement and velocity response in such a case form a Poisson-driven Markov vector process, the moment equations are derived with the help of a generalized Itô's differential rule. Next the cumulant-neglect closure technique is used to truncate the hierarchy of moment equations. Verification of the analytical results against the Monte Carlo simulations performed for the substantially non-linear Duffing

systems shows that the cumulant-neglect closure technique is effective if the mean arrival rate of impulses is not very low, i.e. if the departure of the excitation process from Gaussian behaviour ranges from small to moderate.

In the present paper the dynamic response of non-linear systems with algebraic non-linearities, in particular of a Duffing oscillator, to Poisson-driven excitations is further investigated. Two types of excitation processes are considered: a random train of impulses and a random train of general pulses obtained by filtering the impulses through a linear system. Special attention is given to the case of a highly non-Gaussian excitation, i.e. when the mean arrival rate of impulses is very low. A modified cumulant-neglect closure scheme, suitable in this case, is developed.

The main objectives of the present study are to develop and investigate the analytical techniques appropriate in the case of non-linear systems subjected to Poisson-distributed pulse trains and also to gain insight into the dynamic behaviour of these systems.

2. FORMULATION OF THE PROBLEM: STOCHASTIC EQUATIONS GOVERNING THE POISSON-DRIVEN MARKOV VECTOR RESPONSE PROCESS

A general multi-degree-of-freedom non-linear dynamical system under external excitation is considered, which is governed by the following set of equations
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where Y is a vector (column matrix) of generalized coordinates Yi(t) and
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 is a non-linear function of its arguments. In what follows the considerations are confined to the algebraic, or polynomial, form of this function.

The excitation is a train of Dirac delta impulses 
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 occurring at random times ti. It is assumed that the occurrences are Poisson-distributed, hence N(t) is a Poisson counting process giving the number of impulses in the time interval [0, t). The Poisson process is completely characterized by the average arrival rate 
[image: image4.wmf](

)

t

n

 of events, i.e. the expected number of events (impulses) per unit time, defined as
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where N(dt) denotes the number of impulses occurring in the infinitesimal time interval

[t, t + dt). The impulse magnitudes are assumed to be mutually independent and independent of the counting process N(t) random variables which are identically distributed as a random variable P.

The governing second-order equations (1) are converted into the set of first-order differential equations
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where
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On integrating eqn. (3) over time and making use of the following relationship for the compound Poisson process [15],
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where 
[image: image10.wmf]P

 denotes a sample space of a random variable P, one obtains the governing stochastic integro-differential equations


[image: image11.wmf](

)

(

)

ddd,d

tpMtp

=+

ò

XaXc

P

                                        (6)

where M(dt, dp) is a random Poisson measure [15,16] which specifies the number of impulses arrivals in [t, t + dt) with random magnitudes in (p, p + dp).

The vector process X(t) satisfying eqn. (6) is a Poisson-driven (non-diffusive) Markov vector process [15] whose transition probability density and also whose joint probability density is governed by an integro-differential partial equation ― a generalization of the Fokker-Planck-Kolmogorov equation (see e.g. [17]).

3. EQUATIONS GOVERNING THE RESPONSE MOMENTS

The following differential rule is valid for the Poisson-driven Markov vector process X [15,18]


[image: image12.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

dddd,d

t

i

i

i

tatpMtp

X

ff

fff

¶¶

=++-

éù

ëû

¶¶

å

ò

XX

XXX+cX

P

  (7)

where 
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 must be bounded for t and X finite, and must be once continuously differentiable with respect to all its arguments. This rule will be used to derive the equations governing the response moments.

It is a well known fact that the equations governing the response moments of a system with algebraic non-linearities form an infinite hierarchy, i.e. any set of equations for moments up to a given order involves higher-order moments which are not available from this set. For the solution to be feasible the hierarchy of equations has to be truncated by performing a suitable closure approximation, i.e. by expressing the unavailable higher-order moments in terms of lower-order ones. Here, a cumulant-neglect closure technique will be used to perform this truncation. Since the necessary relationships between the cumulants and the moments are much simpler in the case of central moments, it will be easier to deal with central moments. Therefore first the equations for mean responses
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are formulated and then the equations for zero-mean responses (centralized processes)
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are obtained.

The equations for the mean responses JL are obtained by taking the expectation of both sides of eqn. (6), which gives
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Next eqn. (10) is subtracted from eqn. (3) and the result is written in the form of stochastic equations as
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where
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For example, if the non-linear functions gk(X) which appear in a(X) are given by cubic forms, then
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where the summation convention over the repeated dummy indices is applied.

Equations for the moments of zero-mean responses, or the central moments
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are derived from eqn. (11) by making use of the differential rule (7). In the case of a system with cubic non-linearity the equations for second-, third-, fourth and fifth-order moments are given, respectively, by [19, 20]
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4. CLOSURE APPROXIMATIONS

4.1. Ordinary cumulant-neglect closure technique

It is seen (eqs. (15)) that in the case of cubic non-linearity the equations for the moments up to the nth order involve the unknown moments of order n + 1 and n + 2. In order to truncate the set of equations above the nth order moments these unknown moments have to be expressed in terms of lower-order moments. This may be done using a cumulant-neglect closure technique, i.e. by neglecting the cumulants of order n + 1 and n + 2 [21]. Here the following relationships between the cumulants and central moments will be helpful in performing the closure approximations at different levels [21, 22]
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where 
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denotes the symmetrizing operation.

4.2. Modified cumulant-neglect closure scheme for Poisson-driven pulse problems

Response at time t is due to all the impulses which occurred prior to that instant, i.e. in the time interval [0, t). As the number of impulses increases, e.g. as 
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, then by virtue of the central limit theorem, the response of a linear system, being the sum of responses to individual independent impulses, tends to a Gaussian process.

As a matter of fact, as the mean arrival rate 
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 is kept constant, the random train of impulses approaches a Gaussian white noise [23]. Hence as the mean arrival rate 
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 decreases, the departure of both the excitation and the linear system response processes from Gaussian behaviour increases.

Consider now the response at an early transient stage, in the case where the mean arrival rate v is small. Then the product 
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 is small and from the Poisson law
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it follows that the probability of occurrence of a large number of impulses is small, the probability of occurrence of a small number of impulses may be significant, and the probability of no occurrence
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is high, close to the unity. Hence the response, at least that of a linear system, at an early transient stage is predicted to be highly non-Gaussian, especially if the mean arrival rate v of impulses is small. The probability P0 of no impulse occurrence in the time interval [0, t) is just the probability of the system being at rest at time t. Consequently the response probability density should contain this finite probability of the rest state represented by the Dirac delta spike at zero. In other words it is assumed that only the probability density function conditional on occurrence of at least one impulse can be represented by a continuous probability density curve.

Let us introduce two mean values: the unconditional mean value 
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 and the conditional mean value 
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given that at least one impulse has occurred. They are related as follows  
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Let us also introduce the processes centralised with respect to both mean values
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 The joint probability density of the zero-mean (centralised) processes 
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 should be represented, by conditioning, in the following form
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where 
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is the conditional joint probability density, given that at least one impulse occurred.

From eqn. (24) it follows that the moments are given by


[image: image45.wmf](

)

(

)

1

000

11

1E

nqq

nn

c

iiii

qq

PPX

mm

==

éù

=-+-

êú

ëû

ÕÕ

L

                               (25)

where 
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 denotes the expectation with respect to the measure 
[image: image47.wmf](

)

0

0

c

c

f

X

x

. If in eqn. (25) the following substitution is made (cf. (23a) and (23b))
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then the conditional joint moments
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appear.

The present closure technique is based on the assumption that the ordinary, or usual, cumulant-neglect closure technique may be only applied to the conditional moments. Let us formulate the closure relationships in the case of fifth- and sixth-order joint central moments, expressed, respectively, as
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 The conditional fifth- and sixth-order moments 
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 are expressed with the help of the ordinary cumulant-neglect closure technique, as
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After expressing again the conditional second-, third- and fourth-order conditional moments in terms of unconditional moments and after rearranging, the following closure relationships for fifth- and sixth-order moments are obtained
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It is interesting to note that as 
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, i.e. as the system approaches a steady state, then 
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 and the modified closure scheme reduces to an ordinary cumulant-neglect closure technique.

5. NUMERICAL STUDIES

5.1. Example problems

As the first example consider a Duffing oscillator under a Poisson-distributed train of impulses, with the governing equation
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where 
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, 
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, and 
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 are the damping ratio, the natural frequency and the non-linearity parameter, respectively.

The stochastic equations for zero-mean response become
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 where
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 It is interesting to analyse the stationary mean response to zero-mean impulses. The equations for mean responses
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after setting the left-hand sides equal to zero and substituting E[P] = 0 reduce to
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If the response probability distribution is assumed to be asymmetric, which may be the case when the random magnitudes of the impulses are asymmetrically distributed, then 
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 and it follows that 
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 does not satisfy eqn. (37). Hence the solution is for some 
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, which means that the stationary mean response to zero-mean impulses is predicted to be non-zero mean if the response probability distribution is asymmetric. Moreover, rearranging eqn. (37) yields
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and it is seen that the non-zero mean value 
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 and the skewness (or the central moment 
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) have opposite signs.

As a second example a Duffing oscillator subjected to a Poisson-distributed train of general pulses is considered. The governing equation is
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The pulse shape function U(Pi, t - ti) is regarded as the response of an auxiliary linear filter to a  Dirac delta impulse 
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is represented as the response of the filter to a Poisson-distributed train of impulses, governed by the equation
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where 
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and 
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are the filter damping ratio and natural frequency, respectively. It may be shown that if the damping ratio is high enough, the impulse response function 
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 of the filter is practically unoscillatory, it becomes a single general pulse with duration 
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. Then the process u(t) may be regarded as a random train of general pulses.

The stochastic equations for zero-mean responses become
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 where
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5.2. Results and discussion

The non-linear differential equations for moments have been integrated numerically with the help of the fourth-order Runge-Kutta method assuming a time step length from T0/50 to T0/20, where 
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 is the natural period.

To verify the approximate analytical results the response moments have been obtained from Monte Carlo simulations based on averaging over 50000 independent response sample functions obtained by the numerical integration of eqn. (3).

Impulse magnitudes have been assumed to be Rayleigh-distributed random variables. The data are chosen in such a way as to obtain a unit variance of the stationary response of a corresponding linear system. A homogeneous Poisson process is assumed, i.e. 
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. The damping ratio of the system is assumed to be 
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 = 0.05.

Random trains of impulses and general pulses characterized by the following two mean arrival rates are considered: (1) 
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, and (2) p = 
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Departure of the excitation process from Gaussianity depends on the value of the mean arrival rate 
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, compared with the system natural frequency 
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 [24]. As this ratio decreases, the departure from Gaussianity increases. The case 
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 is, in some sense, limiting i.e. if the mean arrival rate 
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 is below this value, the excitation process is highly non-Gaussian [14,24]. Hence the value 
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 may be called moderately low, and the respective departure from Gaussianity as moderate. In case (2) the mean arrival rate is low and the departure from the Gaussian behaviour is expected to be large.

The non-linearity coefficient is assumed to be 
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 = 0.5, in which case the non-linearity is substantial, i.e. the non-linear effect is quite large [25].
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The computed and simulated transient response mean values and variances of a Duffing oscillator subjected to random impulses are shown in Figs. 1-3. All the computations are based on the ordinary cumulant-neglect closure technique (CNCT).

The mean value of the response to zero-mean impulses tends to a non-zero mean stationary level (Fig. 1) as has been predicted.
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To investigate the improvement attained by the application of higher-order cumulant-neglect closure schemes the further results are obtained from neglect-ting the cumulants above the third, fourth and fifth order, i.e. for 
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, respectively. The results obtained for a moderately low mean arrival rate, i.e. 
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 are shown in Figs. 2 and 3. 
As the closure level increases the accuracy of the analytical results gets improved, which is seen both for E[Y] and var(Y), though the variance shown in Fig. 3 is best evaluated when the closure above the fourth-order moments is applied, i.e. 
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Transient response statistics of a Duffing oscillator subjected to a random train of general pulses, modelled as a filtered train of impulses, are shown in Figs. 4-7. The filter damping ratio is assumed to be 
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 = 0.95, for which value the filter impulse response function U(Pi, t - ti) decays rapidly and may be regarded as a single pulse. The filter frequency 
[image: image101.wmf]0

W

 is assumed to be 
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 hence the pulse duration is 
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, which means that in this case the pulses are not very short, as compared with the system natural period T0.

The analytical results are obtained from the application of both the ordinary and modified cumulant-neglect closure techniques, neglecting in both schemes the cumulants above the fourth order, i.e. 
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. The non-linearity parameter is again assumed to be 
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= 0.5, 

In the case of the moderately low mean arrival rate, 
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, both ordinary and modified closure techniques give equally good predictions of the response mean value, shown in Fig, 4 and variance, Fig. 5. The curve representing the variance obtained from the modified cumulant-neglect closure technique is less oscillatory than that obtained from the ordinary cumulant-neglect closure technique and is closer to the simulated curve.

In the case of a low mean arrival rate, 
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, the ordinary closure scheme, applied above the fourth-order moments, fails to give any results, because it becomes numerically unstable. In that case the modified closure technique gives very good estimates of the response mean value and variance, as shown in Figs. 6 and 7, respectively.
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6. CONCLUSIONS

The cumulant-neglect closure technique is found to be effective as applied to non-linear, Duffing systems subject to Poisson-distributed trains of impulses or general pulses if the expected arrival rate of the Poisson process is not very low, i.e. if the departure of the excitation process from the Gaussian behaviour ranges from small to moderate. It means that under these circumstances the closure of the set of equations for moments above the fourth-order moments by neglecting the cumulants beyond the fourth order provides good estimates of the response mean value and variance.

The modified cumulant-neglect closure scheme, developed herein, proves suitable for highly non-Gaussian Poisson-distributed pulse trains, i.e. when the mean arrival rate of pulses is very low. This technique allows evaluating the reliable estimates of response mean values and variances in those cases where the ordinary cumulant-neglect closure technique fails to give any results due to the instability.
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Fig. 7. Variance of the response to general pulses with� EMBED Equation.DSMT4  ���: � EMBED Equation.DSMT4  ���� EMBED Equation.DSMT4  ��� computed from the ordinary CNCT, for � EMBED Equation.DSMT4  ���; � EMBED Equation.DSMT4  ���computed from the modified CNCT, for � EMBED Equation.DSMT4  ���; � EMBED Equation.DSMT4  ���simulated.








Fig. 6. Mean response to general pulses with� EMBED Equation.DSMT4  ���: � EMBED Equation.DSMT4  ���� EMBED Equation.DSMT4  ��� computed from the ordinary CNCT, for � EMBED Equation.DSMT4  ���; � EMBED Equation.DSMT4  ���computed from the modified CNCT, for � EMBED Equation.DSMT4  ���; � EMBED Equation.DSMT4  ���simulated.





Fig. 5. Variance of the response to general pulses with � EMBED Equation.DSMT4  ���: � EMBED Equation.DSMT4  ���� EMBED Equation.DSMT4  ��� computed from the ordinary CNCT, for � EMBED Equation.DSMT4  ���; � EMBED Equation.DSMT4  ��� computed from the modified CNCT, for � EMBED Equation.DSMT4  ���; � EMBED Equation.DSMT4  ���simulated.





Fig. 4. Mean response to general pulses with � EMBED Equation.DSMT4  ���:  � EMBED Equation.DSMT4  ���� EMBED Equation.DSMT4  ��� computed from the ordinary cumulant-neglect closure technique (CNCT), for � EMBED Equation.DSMT4  ���; � EMBED Equation.DSMT4  ��� computed from the modified CNCT, for� EMBED Equation.DSMT4  ���; � EMBED Equation.DSMT4  ���simulated.





Fig. 3. Variance of the response to impulses with� EMBED Equation.DSMT4  ���: ― computed for � EMBED Equation.DSMT4  ���;� EMBED Equation.DSMT4  ���computed for � EMBED Equation.DSMT4  ���;� EMBED Equation.DSMT4  ���� EMBED Equation.DSMT4  ���computed for � EMBED Equation.DSMT4  ���; � EMBED Equation.DSMT4  ���simulated.





Fig. 2. Mean response to impulses with� EMBED Equation.DSMT4  ���:  ― computed for � EMBED Equation.DSMT4  ���; � EMBED Equation.DSMT4  ��� computed for � EMBED Equation.DSMT4  ���; � EMBED Equation.DSMT4  ���� EMBED Equation.DSMT4  ��� computed for � EMBED Equation.DSMT4  ���; � EMBED Equation.DSMT4  ��� simulated.





Fig. 1. Mean response to zero-mean impulses with� EMBED Equation.DSMT4  ���: � EMBED Equation.DSMT4  ��� computed for � EMBED Equation.DSMT4  ���; � EMBED Equation.DSMT4  ���simulated.
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