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CHAPTER 47
RELIABILITY OF HYSTERETIC SYSTEMS SUBJECTED TO WHITE NOISE EXCITATION

S.R.K. Nielsen, K.J. Mørk & P. Thoft-Christensen, Aalborg University, Denmark

Abstract

A single-degree-of-freedom bilinear hysteretic system driven by filtered white noise is analysed by means of stochastic differential equations. Failure of the system takes place by first-passages at critical levels of so-called damage indicators, which are non- decreasing response quantities measuring at a macroscopic scale the strength and stiffness deterioration. For illustration the cumulative plastic deformation ratio has been used as damage indicator. The white noise excitation is filtered through a time-invariant rational second order filter. The analytical technique applied is based on a replacement of the original system with non-linear and non-analytical right hand sides for the constitutive equation and damage indicator differential equation by an equivalent system, where these equations are given by a cubic polynomial expansion. The expectations appearing in the equations for the coefficients of the equivalent polynomials are calculated by a multi-dimensional Gram-Charlier expansion. In order to close the infinite hierarchy of moment equations the conventional cumulant neglect closure scheme and a modification with due consideration to the finite probability of yielding are considered. The analytical results obtained are compared to those obtained by Monte-Carlo simulation from which it is concluded, that substantial improvements are obtained by applying the modified closure scheme.

1. Introduction

Hysteretic oscillators are mechanical systems in which the dynamic restoring forces are non-conservative with a complicated dependence on the deformation history. For this reason the constitutive equations for the restoring forces must be incrementally formulated. Due to the fact that the incremental stiffnesses are different for loading and unloading the right hand sides of the constitutive differential equations become non-analytical.

During hysteretic deformations the micro-structure of the material is partly damaged due to dislocation migration, development of micro-cracks, etc. In a structural model these damages must be related to the state variables of the system. Differential models for a number of such damage indicators have been formulated for SDOF-systems, [1, 2], as well as for MDOF-systems, [3]. From the physics of the problem it is clear that any damage indicator will be a non-decreasing function with time. As is the case for the constitutive equations the right hand sides of the differential equations specifying the development of the damage indicators may also be a non-linear and non-analytical function of the state variables.

Stochastic response of hysteretic structures can be studied based on stochastic differential equations, [2, 3, 4]. When the loading process is modelled as a white noise process, filtered through a time-invariant rational filter, the state vector made up of state variables of the structural system, the filter and damage indicators become a Markov diffusion vector process. The time development of the state vectors is specified by a system of Itô-differential equations. The associated Fokker-Planck-Kolmogorov equation can hardly be integrated, neither analytically or numerically, except in the simplest cases.

Because of these difficulties one has concentrated on obtaining the time-dependent zero time lag statistical moments of the joint probability density function. Differential equations for these quantities are easily derived, applying the Itô-formula to products of the state variables of ascending order, and performing the expectation of the result. The expectations on the right hand side of these differential equations can only be calculated by means of an approximate joint probability density function (pdf), specified with due consideration to the physics of the problem, and with a number of parameters calibrated to the statistical moments available. In cases of even a moderate number of state variables this may lead to serious numerical problems.

Equivalent linearization remains the most efficient method, at least for problems of high dimensionality. The idea of the method is to replace the drift vector of the original system by a sequentially updated linear drift vector. The first formulations of the method assumed zero-mean response. Later estimates to non-zero mean problems were due to Spanos [6] and Baber [7]. Equivalent linearization fails to provide reliable estimates of the variance response for highly non-linear problems. As an example the method predicts a limiting stationary state for an elasto-plastic structure subjected to stationary white noise excitation in contradiction to the non-stationary Brownian motion type of variance drift observed by numerical simulations, [3, 5].

Instead it can be attempted to replace the original system with non-linear and non-analytical drift vector by a sequentially updated equivalent system, in which the drift vector is given by an Mth order polynomial expansion of the state variables. If the coefficients of the equivalent polynomium are determined by a least mean square procedure it can be shown that the original and the equivalent systems determine identical mean values and joint moments up to and including order M+l provided the same approximate pdf is applied to both systems for the evaluation of expectations entering both systems, [3, 5].

The polynomial expansion technique was formulated by Nielsen et al. [5] for the zero mean problems, and by Mørk [3] for the non-zero mean problem. The infinite hierarchy of moment differential equations related to these methods was closed by a cumulant neglect closure scheme.

The objectives of the present study are to present some further developments of the analytical techniques developed by the authors. Especially a modification of the cumulant neglect closure scheme is suggested, which takes into consideration the finite probability of yielding, formally appearing as delta functions in the joint pdf of the state variables. The analytical results obtained are compared to those obtained by Monte-Carlo simulation, and it is concluded that a significant improvement is obtained compared to the conventional cumulant neglect closure scheme.

2. Stochastic Differential Equations for SDOF Hysteretic Oscillator under Filtered White Noise Excitation

The equation of motion of an SDOF hysteretic oscillator can be written
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 are the displacements and velocity of the system, respectively. z is the hysteretic component of the restoring force. x and z have been made non-dimensional with respect to the elastic limit displacement on the skeleton curve, e.g. x = 1 corresponds to yielding, cf. figure 1. 
[image: image3.wmf]w

 is the cyclic linear undamped eigenfrequency, 
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is the damping ratio and 
[image: image5.wmf]a

 is the post- to pre  yielding stiffness ratio.

The loading of the system is given by
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, where a1 and a2 are constants, and u is obtained as the response of a linear filter subjected to a Gaussian white noise excitation. The state vector made up of the state variables of the oscillator, filter and damage indicator are specified by the following system of first order Itô-differential equations
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 X0 is the initial conditions of the stochastic vector X at the time t = t0. Zero start will be assumed, i.e. X0 = 0.

The third equation in (2) represents the constitutive equation for the hysteretic component z on differential form. 
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 may be interpreted as a state dependent stiffness. In the present study a bilinear oscillator is considered in which case 
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is given by 
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where 
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is the Heaviside unit step function defined by
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The value of 
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 on various branches of the x - z curve has been marked in figure 1a.

xp is the non-dimensional accumulated numerical plastic deformation which makes up the damage indicator considered. The differential equation for xp, as specified by the 4th equation in (2), becomes, [1, 2]
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Equation (5) is easily derived from the sketch shown in Fig. 1(b).

It follows that the functions 
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fulfill the symmetry conditions
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Provided X0 = 0, the condition (6) implies 
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The fifth and sixth equation in (2) specifies the response of the filter. 
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 and 
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 are the cyclic eigenfrequency and damping ratio of the filter, respectively. The considered filter is time-invariant, linear and of second order. Time-varying, non-linear or higher-order filters may be implemented without any difficulties.
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T0 is the time of maximum intensity 
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, and b is a limiting decay rate of the excitation. 
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is specified so the stationary standard deviation of the response of the corresponding linear system under stationary excitation becomes equal to 
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 is then given by
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 Finally, {W(t), t 
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 E [t0, 
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]} signifies a unit Wiener process. This is a Gaussian process with the incremental properties
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3. Differential Equations for Joint Central Moments of Original and Equivalent Cubic Systems

Let g(X, t) be an arbitrary function with continuous partial derivations with respect to x and t. Making use of the Itô differential rule for Markov diffusion processes, and taking the expectation, the following differential equation for the expectation E[g(X, t)] can be derived, [9]
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di and ei signify components of the drift vector d and diffusion vector e in (2). In (11) and in the following the summation convention has been used over dummy indices. Let


[image: image37.wmf](

)

12

,1

,

,1

n

i

ccc

iii

Xn

gt

XXXn

=

ì

ï

=

í

>

ï

î

L

X

                                   (12)

Where 
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Then
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where
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Instead of the original system an equivalent non-linear system is considered for which the centralized drift vector is given in terms of a cubic expansion in the centralized state variables, [3]
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The idea is that the joint moments of the two systems are alike in case of a proper choice of the expansion coefficients. In this relation the following proposition can be proved: In case an equivalent polynomium of order M is applied, the propagation of the mean value and joint central moments up to and including order M + 1 will be identical for the original and the equivalent system, provided the same approximate pdf is applied to both systems for evaluation of the expectations, and provided the coefficients of the polynomial expansion of the equivalent system are determined from a least mean square criterion, [3,8]. Obviously this proposition stresses the importance of using the least mean square criterion for the determination of the equivalent polynomial expansion coefficients.

The differential equations for the joint central moments of the equivalent system are obtained by inserting (18) into (15b)-(15d)
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If the requirements of the proposition are fulfill, eqn. (19) results in the same joint central moments as in egn. (15). The main problem is, that the joint central moments 
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 of the 5th and 6th order are not provided by the system. Deviation at the solutions occurs if these unprovided moments are calculated by some approximate scheme. In this the error in these approximations is investigated.

4. Cubic Expansion Technique

In (2) the right hand sides of the third and fourth equations are the only non-linear and non-analytical drift vector components. Only for these an equivalent cubic polynomial expansion will be specified.

For the constitutive equation of the equivalent system the following cubic expansion is applied, fulfilling the same symmetry conditions as the original system
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Nte that due to symmetry condition (6) the constant term and the quadratic terms in (18) are identical zero.

The expansion coefficients in (20) form the tensor components B32, B33, D3222, D3223, D3233, D3333. Forming the error 
[image: image54.wmf]33,

cc

eq

dd

e

=-

 the least mean square conditions 
[image: image55.wmf](

)

2

1

/E0

b

e

éù

¶¶=

ëû

 , etc. result in the following system of linear equations for the determination of the expansion coefficients
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where 
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For the fourth equation the following expansion is used
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From the asymmetry condition (7) it follows that b1 = b2 = d1 = d2 = d3 = d4 = 0. The remaining 4 coefficients, forming the tensor components A4, C422, C423, C433 are then determined from the following system of linear equations
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The remaining tensor components of Bim are equal to the linear components of the matrix A as given by (2b). The remaining components of Ai, Gimn and Dimnp in (19) are all equal to zero.
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 in (21) and (23) are obtained from the differential equations (19). The  expectations on the right hand sides, as well as 
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. This is assumed in the form of a 2-dimensional Gram- Charlier series with a Minai-Suzuki modification, [1, 2]
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 where
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As a consequence of (6) the joint pdf 
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Analytical results for 
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 can be derived whereas the expectations on the right hand sides of (21) and (23) can be reduced to one-dimensional quadratures, [3].

Equivalent linearization corresponds to Cimn = Dimnp = 0 in (19). This means that b1 and b2 are the only non-zero coefficients in (20), and all the coefficients in (22) are zero. Consequently, damage indicators for which the symmetry condition (7) is fulfilled cannot be analysed by equivalent linearization techniques.

5. Curnulant Neglect Closure Techniques

The system of moment equations (19) is not closed because joint central moments 
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 of the 5th and 6th order, which enter the right hand sides of (19b) and (19c), are not provided by the system. Consequently, 
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One approach is to assume that joint cumulants above the 4th order are negligible. This results in the following relationships for the joint central moments of the 5th and 6th order, [10]
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The symbol 
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 indicates a symmetry operation producing the arithmetic mean of all terms similar to those indicated, obtained by permuting all free indices.

In the following, (28) and (29) will be referred to as the conventional cumulant neglect closure scheme. This approach is appropriate for joint probability densities which do not deviate too much from normality, or at least are of the continuous type. However, under heavy yielding the finite probability of yielding, formally appearing as delta functions in the pdf of the z-component, implies that significant joint cumulants of arbitrary order must be present. A modification of the cumulant neglect closure scheme considering this problem is suggested.

Introduce the state vector X0 = (x, xp, u, 
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&

). The following joint pdf is considered
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is a continuous auxiliary pdf and 
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is the corresponding marginal joint pdf of X0.

From (30) the following expression can be derived for the joint central moments of the order L = i + j + k + 1 + m + n
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 where
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and 
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. The joint central moments 
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are, with respect to the pdf, 
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. Since this pdf is of a continuous type these expectations for L = 5, 6 can all be expressed by joint central moments with respect to 
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of the 2nd, 3rd and 4th order by the conventional cumulant neglect closure scheme (28), (29). Finally, joint central moments of the 2nd, 3rd and 4th order with respect to 
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can be related to corresponding joint central moments as calculated by (19) by means of (31) for L = 2, 3, 4. This approach will be referred to as the modified cumulant neglect closure scheme in the following.

6. Numerical Example

The following data are assumed
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 Notice that 
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 specifies the standard deviation of the displacement of the corresponding linear oscillator in proportion to the elastic limit displacement. Consequently 
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 = 2 indicates a strong excitation. 
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 = 0 represents the special case of an ideal elasto-plastic oscillator.
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To check the validity of the approximations response moments have been obtained from Monte-Carlo simulation based on averaging over 5000 independent sample curves, each obtained by numerical integration of (2). The step length of the time integration has been selected as T/50, where 
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 is the linear undamped eigen vibration period of the oscillator.

In figures 2 - 6 the time-dependent variation of the mean of xp and the standard deviations of x, 
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&

, z, xp have been shown. Curve a corresponds to simulation, curve b to conventional cumulant neglect closure, and curve c corresponds to the modified cumulant neglect closure scheme. Time has been normalized with respect to T.

 The general conclusion that can be drawn from these results is that the modified cumulant neglect closure scheme provides more accurate predictions than the conventional cumulant neglect closure scheme, assuming the simulation results to be sufficiently accurate. From the physics of the problem and the inherent properties of the modification (30) this is believed to be the case for any system undergoing heavy yielding.

7. Conclusions

An analytical method for hysteretic structures based on an equivalent cubic expansion of the constitutive equation and of the damage indicator equation has been formulated. The system of joint moment equations is closed by a conventional cumulant neglect closure scheme and by a modified version, taking into consideration the finite probability of yielding states. Based on an analysis of a single-degree-of-freedom bilinear oscillator subjected to filtered white noise, and applying the non-dimensional accumulated numerical plastic deformation as damage indicator, it is concluded that both closure schemes provide acceptable results for the time dependent lower order moments of the damage indicator. However, the modified cumulant neglect closure scheme is superior to the conventional version, when heavy yielding takes place.
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Figure 1. Bilinear restoring force as a function of non-dimensional deflection x. a) Non-dimensional hysteretic component. b) Total restoring force � EMBED Equation.DSMT4  ���2(� EMBED Equation.DSMT4  ���x + (1 - � EMBED Equation.DSMT4  ���)z).
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