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Abstract

For an offshore structure in the North Sea it is assumed that information from measurements and inspections is available. As illustrations measurements of the significant wave height and the marine growth and different inspection and repair results are considered. It is shown how the reliability estimates of the structure can be updated using Bayesian techniques. By minimizing the total expected costs including inspection, repair and failure costs during the lifetime an optimal inspection and repair strategy can be determined. The decision variables are the number of inspections, the time intervals between inspections and the inspection qualities. A parameter study is performed and an updated inspection plan is determined after the first inspection has taken place.

1. Introduction

An offshore structure in the North Sea is considered. In Faber et al. [1] the stochastic modelling and a reliability analysis with respect to fatigue failure are performed. These analyses are based on information which is assumed to be available at the design stage. In this paper it is assumed that new information from measurements and inspections is available and it is shown how the reliability estimates of the structure can be updated using Bayesian techniques, see e.g. Lindley et al. [2] and Madsen [3].

In the paper the reliability is updated based on measurements of the significant wave height and the marine growth and on different inspection and repair results. The data used in the paper is not real data but is chosen as realistic as possible.

Optimal inspection and repair strategies can be determined by minimizing the total expected costs including inspection, repair and failure costs during the lifetime; see Sørensen et al. [4] and Madsen & Sørensen [5]. The decision variables are the number of inspections, the time intervals between inspections and the inspection qualities. Cost models are described and an inspection and repair strategy is determined using the computer program INSPOP [6]. A parameter study is performed and an updated inspection plan is determined after the first inspection has taken place.

2. Bayes Updating

During the lifetime of the structure two types of information are likely to be collected. The first type is information about the uncertain loading environment, namely the significant wave height, the wave period, the thickness of marine growth etc., which are assumed to be modelled by stochastic variables. This type of information is actual samples of the uncertain basic variables.

The second type of information which can be collected is information about the functional relationship between uncertain variables which cannot be observed directly but are related to some variable describing the state of the structure. Such a functional relationship can e.g. be the crack length.

Both types of information are taken into account by the use of Bayes' theorem; see e.g. Lindley et al. [2]. For example, the failure probabilities are estimated conditioned on the observed crack lengths. To this end the asymptotic results of the integration of probabilities over surfaces from Schall & Rackwitz [10] are used, facilitating the first-order representation of the limit state functions described above.

Basic Variable Updating

An uncertain quantity modelled by a stochastic variable X is considered. A density function 
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 for X is established based on prior information where 
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 is a vector of parameters defining the distribution for X.

If one (or more) of the parameters 
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 is treated as an uncertain parameter (stochastic variable) then 
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 is actually a conditional density function: 
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. In the following 
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 is assumed to consist of only one parameter
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. The prior density function of 
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Assume that an experiment or inspection is performed. n realisations of the stochastic variable X is obtained and is denoted x = (x1, x2,..., xn). The measurements are assumed to be independent. The posterior density function 
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 of the uncertain parameter e taking into account the realizations is defined by
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The updated density function of the stochastic variable X taking into account the realisation x is denoted the predictive density function and is obtained by
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If the prior distributions are chosen such that both the prior and the posterior distribution belong to the same family of distributions then they are called conjugated. In e.g. Raiffa & Schlaiffer [7] and Schrupp [8] conjugated prior, posterior and predictive distribution functions for a number of distributions are derived.

General Event Updating

The general information is assumed to be modelled by inequality and equality events. Updating of the probability of failure can be performed using Bayesian methods, see Madsen [3] and Rackwitz & Schrupp [9].

The safety margin modelling failure of a single component is denoted by M. Let a single inequality event I be modelled by the event margin H, i.e. 
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If more than one inequality event are available the updating can be performed in a similar way. Let 
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 model N inequality events. The updated probability of failure is
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An equality event E is modelled by the event (safety) margin H, i.e. 
[image: image17.wmf]{

}

0

EH

=£

. The probability of failure of a single element can then be updated by
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In Schall & Rackwitz [10] it is shown how (5) can be evaluated. If more than one equality event is available the updating can be performed in a similar way.

3. Parametric Studies I

The same critical component and the same stochastic models as described in Faber et al. [1] are used in the following. The Bayes updating scheme is used to update the stochastic models for two uncertain variables, namely

· the significant wave height HS.

· the marine growth.

Updating of Basic Random Variables

The significant wave height HS (measured in m) is assumed to have the Weibull distribution shown in fig. 1 with the parameters u = 3.1, k = 1.63 and 
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 = 0.53 corresponding to a mean = 3.305 and a standard deviation = 1.75,
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Now consider the parameter u as uncertain. A conjugated prior density function for u is defined in [8]
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The expected value of u is chosen to 3.1. The density functions for u for different values of n' and t' are shown in fig. 2. The following prior distribution is chosen (has the smallest standard deviation): n' = 9, t'=47.95 and k=1.63 for further investigation.
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It is assumed that observations have been performed during the last 2 years. This corresponds to 635 sea states from the direction SE each of 3 hours duration (the probability of having waves with direction SE is 0.1088, see [1]). Using the initial distribution of HS, see fig. 1 three different samples of observations are considered:

Sample 1: the observations have the same distribution as HS. The grouping of the measurements is shown in table 1.
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Sample 2: the observations are all 1 m smaller than those of the original distribution of HS. The grouping of the measurements is shown in table 1.
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Sample 3: the observations are all 2 m smaller than those of the original distribution of HS. The grouping of the measurements is shown in table 1.

In table 1 is also shown the posterior parameters n" and t". The predictive (updated) distribution is
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The reliability index as a function of time is calculated using the predictive distribution for HS and using the 3 sets of observations. The result is shown in fig. 3. The predictive distributions corresponding to the three samples and the original distribution for Hs are shown in figure 4.
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It is seen that introducing u as an uncertain variable (but assuming observed data to have the original distribution of Hs) results, as expected, in lower reliability indices. If the measurements are smaller than those corresponding to the original distribution of HS (sample 2 and 3) then the reliability index is increased.

The marine growth MG is assumed to have a normal distribution with expected value 
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 = 0.l m and standard deviation
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 = 0.02 m. The parameter 
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 is treated as uncertain. The prior distribution function for 
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 is chosen as a normal distribution with expected value 
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 and standard deviation 
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= 0.1 m   and 
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2: 
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= 0.07 m and 
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3: 
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= 0.13 m and 
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Also 3 different sets of observations of MG are used

1: n = 5 and with mean value of observations  = 0.1 m

2: n = 5 and with mean value of observations  = 0.07 m

3: n = 5 and with mean value of observations  = 0.13 m

where n is the number of observations. The observations are assumed to correspond to observations at different points on the structure.

The reliability indices are calculated using SORMTN [11], see also Faber et al. [1]. The results are shown in fig. 5 for the 9 combinations of prior parameters and sets of observations.

MG11  prior 1 and observation set 1. Almost identical to the reliability index  

            without updating.

MG12  prior 1 and observation set 2

MG13  prior 1 and observation set 3

MG21  prior 2 and observation set 1

MG22  prior 2 and observation set 2

MG23  prior 2 and observation set 3

MG31  prior 3 and observation set 1

MG32  prior 3 and observation set 2
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MG33  prior 3 and observation set 3

Updating Based on Observed Events

The following events are considered:

Event 1:  an inspection is performed with the result that no repair is made and no  cracks larger than aM are measured. Further the considered hot-spot is in a safe state at the time of inspection.

Event 2:  an inspection is performed with the result that no repair is made and a crack equal to aM is measured. Further, the considered hot-spot is in a safe state at the time of inspection.

The following 4 cases are considered

Case a:     event 1 with aM = 1 mm.

Case b:     event 1 with aM = 5 mm.

Case c:     event 2 with aM = 5 mm.

Case SE:  no updating.

The following parameters are used in this study:

· inspection pod curve: p(a) = 1 - exp( -0.5a)

· repair limit: aR = 15 mm

· critical crack length: ac = 20 mm

· measurement uncertainty: am = a + 
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 where 
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 is Gaussian distributed: N(0, 0.l mm).
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The results using INSPOP [6] and inspection after 1 year are shown in fig. 6. The influence of updating the reliability index based on observed crack lengths is seen to be small.

4. Maintenance Planning

In the optimal inspection strategy module the total expected cost in the lifetime is minimized. The total expected cost is written
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where n is the number of inspections, ti = Ti - Ti-l, i =1,2,...,n are the time intervals between inspections, Ti , i =1,2,...,n are the inspection times, ei ,i = 1,2,...,n are the inspection efforts and aR is the repair limit.

The cost functions are modelled as follows with the actual numbers approximating the costs of inspection, repair and failure of a secondary member of the structure. The total expected inspection costs are written
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where PF(Ti) is the probability of failure at the time Ti and r is the real rate of interest (without inflation).

The total expected repair costs are written
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where 
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 is the probability of repair at the time Ti.

The total expected costs due to failure are written
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The ith term represents the capitalized costs due to failure in the time interval between inspection no. i-1 and inspection no. i.

The 
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The 
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The 
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 factor in the failure costs is modelled by


[image: image48.wmf](

)

0

25

i

FF

CeC

==

                                                     (15)

The numbers are in 106 DEM. Note, that the results presented below only depend on the relative costs.

The optimization scheme which is used is described in Sørensen [4]. The total cost in the lifetime is minimized using the NLPQL optimization algorithm, Schittkowski [12]. The input to the optimization module is the number of inspections, the expected lifetime, the costs of inspection, repair, failure, etc. The output is the optimal number of inspections, the time (s) of inspection (and possible repair), the inspection efforts (qualities) and the optimal repair actions.

5. Parametric Studies II

Based on the above results an optimal inspection strategy for joint M45J37 (see [1]) has been determined using INSPOP [6]. The cost modelling in chapter 4 is used. Further, the following values are used:
· expected lifetime T = 5 years

· real rate of interest r = 0.02

· lower and upper bounds of inspection time intervals: 1 and 4 years

· lower and upper bounds of inspection efforts: 0.2 and 1.0

· lower and upper bounds of repair limit: 10 and 20 mm

· upper bound of failure probability: 0.1056 (
[image: image49.wmf]b

 = 1.25)

· critical crack length: ac = 20 mm

· measured crack length: am = a + 
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 where 
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 is Gaussian distributed N(0,0.l) mm)

· [image: image60.png]The results for n = 1 and 2 inspections are shown in table 2.
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probability of detection curve: p(a) = 1 - exp( -ea) where e is the inspection effort and a is the crack length in mm.

Preliminary runs with the above input data show that the probability of repair is negligible. Therefore only the branches in the decision tree corresponding to no detection of cracks and detection of cracks, but measured to be smaller than the repair limit, are used.

The results for n = 1 and 2 inspections are shown in table 2.

The results show that one inspection is optimal and the first inspection should be performed after 1.66 year with inspection effort = 0.32 (corresponding to a low inspection effort). The reliability index at time t = 1.66 year is 3.16. When comparing the results for n = 1 and n = 2 it should be noted that an inspection at a later time has a larger influence on the reliability at time T than an earlier inspection.

Next a sensitivity analysis of the inspection strategy (n=l inspection) is performed with respect to the cost modelling. The following three cases are considered:

Case 1:  Failure cost factor GF0 is increased by 10 %

Case 2:  Repair cost factor GREPA is increased by 10 %

Case 3:  Inspection cost factors GIN0 and GIN2 are increased by 10 %.

The results are shown in table 3; it is seen that the importance of the repair cost is much smaller than the effect of the two other cost terms. It is seen that with respect to the total expected cost the failure cost factor is the most important, whereas the inspection cost factors are the most important for the inspection plan (time and effort of the next inspection).
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Finally updating of the inspection strategy is considered. At the first inspection (after 1 year) it is assumed that a crack with length = 5 mm is detected. The following two cases are then considered:
Case 1: Updating assuming no  

             repair.

Case 2: Updating assuming repair.

The results are shown in table 4. It is seen that it is optimal to repair after the first inspection because the cost of one repair (1.25) is smaller than the difference between the costs of case 1 and 2.

6. Conclusions

Updating of the reliability for a real offshore steel structure is considered. Basic variable updating and general event updating are performed. Considering the distribution parameters of the distribution function (in the framework of Bayesian analysis) for the significant wave height to be uncertain reduces the reliability significantly. Moreover it has been shown that updating of the uncertainty of these parameters with the aid of new observations of significant wave heights is a very valuable tool which may reduce or increase reliability significantly.

By conditioning the reliability estimates on observed events such as survival and specific damage measures another type of reliability updating (general updating) can be performed which may (depending on the observations) have significant influence on the reliability. However, for the cases considered it has turned out that when one updates the reliability with the observation that the structure has survived and that the damage measure has a certain (or maximum) value the reliability decreases only slowly

with the decrease in the observed damage. This effect may be due to the fact that the events of survival and non-existence of larger damages are to some degree mutually inclusive and suggest that .this type of updating is only performed when really small damages are observed. Also the fact that the initial crack length is of minor importance for the reliability index, see Faber et al. [1] can explain that updating with respect to measured crack lengths has only little influence on the reliability index
[image: image52.wmf]b

.

The optimization of the inspection strategy shows that it is optimal only to inspect the considered joint once in the considered time interval with a relatively small inspection effort.
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Table 2. Optimal inspection results for n = l and 2. The costs shown are capitalized costs.








Table 3. Sensitivity analysis of inspection planning.








Table 4. Updating of inspection plan.








Figure 6. Reliability index updated based on inspection results


and observed cracks.





Figure 5. Reliability index updated based on marine growth observations.





 Table 1. Observations of HS. For each sample the number of sea states for each HS is given.








Figure 1. Distribution function of HS.








Figure 2. Prior distribution functions of u.








Figure 3. Reliability index updated on the basis of HS observations. The solid line is the reliability index without updating. The dashed lines 1 to 3 are the reliability indices corresponding to the 3 sets of observations shown in table 1.








Figure 4. Predictive distributions for HS.
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