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CHAPTER 58
INTERACTIVE STRUCTURAL OPTIMIZATION WITH 

QUASI-NEWTON ALGORITHMS

C. Pedersen & P. Thoft-Christensen 

 University of Aalborg, Denmark.

1 INTRODUCTION

During the last decades, one of the most important renewals in the fields of structural and especially mechanical design has been the innovation of fully automatic systems and computer based analysis tools. However, fully automated systems are generally not considered feasible or preferable within the field of structural optimization. Therefore, interactive systems and environments are assumed to be used within several engineering fields in the future.

Considering structural constrained optimization problems only, the class of algorithm based on quasi-Newton schemes and algorithms using Lagrange multipliers have proven to be most efficient due to their relatively low number of function and gradient evaluations.

This paper presents a prototype of an interactive optimization system based on a quasi- Newton algorithm, where the designer during the optimization process is able to adjust simple bounds, fix or relax design variables and include/exclude constraints. The optimization is based on a modified quasi-Newton algorithm, which includes a subproblem that minimizes the condition number of the approximate Hessian matrix in each iteration. The purpose is to minimize the condition number of the approximate Hessian matrix and thereby stabilize the determination of the search direction in each iteration after major interactions.

The interactive optimization is carried out through a shell called IROS (Interactive Reliability-Based Optimization System). IROS is mainly intended to constitute a platform for testing of various algorithms and interactive capabilities rather than being a commercial programme. In order to demonstrate some of the facilities of an interactive optimization system, a simple example of a reliability- based optimization of a plane portal frame of steel with I-shaped cross-sections is shown.

[image: image9.png]where only a subset of all m; inequality constraints in (3) is included in the linearized
constraints (11). B®*) denotes a positive definite matrix which gradually is updated by
use of a quasi-Newton scheme (refer to section 4) to approach the Hessian matrix of the
Lagrange function L(-).

Introducing the column vector h(z) in which all equality and active inequality con-
straints are assembled, the solution of (9)-(12) is obtained from the following linear system
- see e.g. Ringertz (1993) or Golub & Van Loan (1989) where standard solution techniques
are outlined

B L[]

Furthermore, a modification ensuring that the linearized constraints (10)-(11) on d are
consistent can be found in Powell (1977).

3 INTERACTIVE PROCEDURES

In order to provide the interactive facilities of include/exclude constraints, change simple
bounds and the change current value and fix/relax design variables, modifications of stan-
dard quasi-Newton algorithms are necessary. A qualitative discussion of various possibili-
ties can be found in Pedersen & Thoft-Christensen (1993).

Considering active set changes with respect to the design variables (i.e. only a subset
of all n design variables z is allowed to vary), a straightforward strategy is to adjust the
dimension of the subproblem (9)-(12). Unfortunately, a frequent change of the dimension
of the Hessian matrix B*) results in loss of already obtained information in cases where
temporarily fixed design variables are re-included in the optimization problem. Further-
more, the choice of the additional rows and columns must fulfil certain requirements in
order to preserve positive definiteness of B(¥),

An alternative approach is to include an additional equality constraint per fixed design
variable in (9)-(12) whereby the full dimension of B®) and positive definiteness is preserved.
Thus, from the modified solution scheme written below for the search direction subproblem
in the case where design variables z; is fixed, it is easily seen that d; is equal to zero.

B®) —V,h(z®) e; d ~V, f(z")
— V. h(z)7T 0 0 [ A1) ] = h(z®) (14)
eiT 0 0 0

where the column vector e; = {0,...0,1,0,...0}T contains zeroes except at the ith position.
Due to the presence of the additional constraint, the corresponding active constraint set
h(z¥)) is different from the active set that corresponds to the standard problem where all

k+1) is seen

design variables are allowed to vary. Finally, the last element in the vector Al
to correspond to the artificial constraint d; = 0.

With respect to the interactive inclusion/exclusion of constraints, change of current
design point and simple bounds, the major difficulties are originated by the fact that the
Hessian matrix B*) and the gradients may be inconsistent. Since the search direction d ob-

tained from the subproblem (9)-(12) with an ill-conditioned Hessian matrix (ill-conditioned
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In order to introduce the terminology used, the general formulation of a non-linear con-
strained optimization problem is stated as

min  C(z) (1)
z
s.t. ¢i(z)=0 J=1..,m (2)
¢i(z) >0 j=1,..,m; (3)
2N L gy < pmex 1=1,...,n (4)

where z© = (21, 23, ..., z,) denote the design variables. Introducing the Lagrange multipliers
A, the Lagrange function L(-) is defined as

LX) = Ol =Y hies(#) = D nssis(o) )

n n
- Z /\me+m¢+i(zi - er'nin) - Z )‘me+mi+n+i(zzr'nax - ZZ)
=1 =1

The reliability-based optimization problem on element level is obtained when a subset
of the constraints (3) is of the form

¢i(z) = Bi(z) — B (6)

Introducing the vector of stochastic variables X, the corresponding standardized inde-
pendent and normally distributed U-space obtained by the Rosenblatt transformation
X = T(U) and the failure function g;(x,z), the probability of failure Py = ®~1(5;) can be
approximated by the FORM solution, where the reliability index 3;(-) in (6) is obtained
from

B, = m&n u’u (7)
s.t. gj(T(u),z) =0 (8)

A closer description can be found in Madsen et al. (1986) and others.

Using a quasi-Newton algorithm, optimum z* is found iteratively as the limit of the
sequence {z*) k = 1,2,..}. The iterate z*¥*1) is obtained as z**1) 4 z(*) 4 ad, where
d denotes the search direction while the step length « is obtained from a one-dimensional
line search in the direction d in a merit function ¢(-).

The search direction d in each iteration is determined as the solution to a sequential
quadratic programming (SQP) subproblem of the form

1
min v,0(zFY d + 5d"BMd (9)
st ¢;(z) + VZCj(Z(k))Td =0 J=1,...,me (10)
&i(z ")) + V,,(z0)"d > 0 =1, ma (11)
sz) — PR Ly < e zi(k) 1=1,..,n (12)




[image: image2.png]in terms of a large condition number - i.e. the ratio between the largest and smallest ei-
genvalue) is strongly dependent upon the actual values of the gradients, a minimization of
cond(B*+1)) is considered in the next section.

4 REVISION OF THE APPROXIMATE HESSIAN MATRIX

The revision of the approximate Hessian matrix B(*) is required to satisfy the quasi-Newton
condition - see e.g. Gill et al. (1981)

B — g (15)

where p(*) is the difference between the current and previous design point

while q*) is dependent upon the difference between the current and previous derivatives
of the Lagrangian L(z, ). Among the most frequently used definitions of q(*) is

Q) = 0(V.L(#", A1) = V.L(z), A¥) + (1 = 0,)Bp!¥ (1)

proposed by Powell (1977) where only the latest set of Lagrange multipliers is used and the
additional parameter 6}, is introduced in order to preserve positive definiteness. In Powell
(1977), 6 € [0,1] is chosen in such manner that q(k)Tp(k) > O.2p(k)TB(k)p(k) which ever
since has been widely used in numerous algorithms - e.g. NLPQL by Schittkowski.

With the above definition of p¥) and q*), B®*) is usually revised using a symmetric
rank-two update formula. In accordance with Gill et al. (1981) and Luenberger (1984) the
one-parameter Broyden family update formula may be written as

k) (B) 1y (K) TR (k k) (k)T
P BRp® | g Ipk)

where w 1s defined as

q® B®p*)
g p®  p®TBHEpK)
Choosing ¢; = 1 the formula (18) is termed the DFP update while ¢, = 0 is resultin
g
in the efficient and even more commonly used BFGS update formula. Furthermore, since

both the DFP and BFGS updates satisfy (15), it is easily seen by premultiplying (19) by
p*) that any choice of ¢ also satisfies (15).

(19)

In an interactive environment constraints are included/excluded, the current design point
changed manually, etc. Therefore, a well-conditioned Hessian matrix is desirable in order to
obtain a stable solution in terms of a feasible descent direction d even though the gradients
in (9)-(11) change rapidly due to the above-mentioned interactions.

In some sense, the purpose of the schemes proposed below can therefore be compared

with the Self-Scaling-Variable-Metric (SSVM) methods - see e.g. Shanno & Phua (1978)




[image: image3.png]and others - where the condition number is minimized based on theoretical results for
unconstrained problems.

k+1)

Since any choice of ¢; will satisfy (15), a straightforward choice of B( can be obtained

from the following additional subproblem which must be solved in each iteration

ngin cond(B(kH)) = f(B(k),P(k)aq(k)a k) (20)
k
st M(BEY = A >0 (21)

Another update scheme can be obtained if the parameter ¢, in the Broyden formula is kept
fixed, while the scalar 05 in (17) is variable. In the limit 6, = 0, it is seen from (17)-(18)
that the BFGS formula results in the trivial result B¥+1) = B*) Thus, the purpose of the
following additional subproblem is to reduce the influence of the relaxation term B*)p®*)
in (17) subject to the constraints that B*+1) is positive definite and the increase in the
condition number is less than a specified factor, i.e.
min (1 —6k)
Ok
s.t. /\1(B(k+1)) = Apin > 0
const — cond(B¥)/cond(B®)) > 0
0>60,>1

where const is chosen arbitrarily, say const = max(n, 10).

Considering highly non-linear problems, information from the very first iterations may
differ significantly from the last iterations - especially after major interactions. Pursuing the
idea of discarding obsolete information, the new Hessian matrix B*+1) can be constructed
from information from the last K iterations only. Utilizing this approach, the approximate
Hessian matrix is first initialized to I after which the quasi-Newton update formula is
applied successively K times - see also Pedersen & Thoft-Christensen (1993). Finally,
initialization of B¥+1) = T is recommended when cond(B*+1)) exceeds a specified value,
say cond(B*+1)) > min(107,107).

At the present stage, the above-mentioned updating schemes have been tested in various
combinations on a few examples only. Compared with the effective algorithm NLPQL by
Schittkowski, 2-5 extra iterations are generally required in non-interactive tests although
quicker convergence has been obtained for some types of problems. Based on these preli-
minary results, the Hessian matrix update of the form (22)-(25) is chosen for the example
in section 6.

5 IROS - INTERACTIVE RELIABILITY-BASED OPTIMIZATION SYSTEM

The interactive optimization is carried out through the a shell called IROS - Interactive
Reliability-Based Optimization System. Based on the desirable capabilities of an interac-
tive optimization system outlined in Arora & Tseng (1988), Arora (1989) and others, IROS
is being developed for the purpose of testing various interactive facilities and algorithms.
IROS is developed for PC/DOS and implemented in the programming language C/C++.

In brief, the core constituents in IROS can be listed as follows:




[image: image4.png]e Graphics module, i.e. a superior controlling module in which the user is given the op-
portunity to define various graphical displays, e.g. the iteration history of the object
function, selected constraints or gradients (sensitivities), design variables, Lagrange
multipliers, convergence parameters, stochastic variables, etc. Additionally, access to
files containing e.g. iteration histories of various parameters may be provided.

o Modification module in which the current value of design variables can be changed,
design variables be fixed to given values, simple bounds altered, constraints inclu-
ded/excluded from the active set, convergence parameters or even the optimization
algorithm itself can be refined or modified.

o Communication or control module in which the information to and from the exterior
optimization module is controlled. After a full iteration graphical displays are upda-
ted and, in the case where no interaction is detected or no convergence achieved, the
iterative process is continued automatically.

o FEzterior optimization module in which the optimization algorithm is implemented,
i.e. any suitable optimization algorithm can be used if a proper interface is provided.

At the present stage, not all the graphical displays listed under the graphics module and
the option that allows the designer to change optimization algorithm are implemented.
However, although the present version is not fully tested, it is capable of solving reliability-
based optimization problems interactively as shown in the following section.

6 EXAMPLE - PLANE PORTAL FRAME

In order to illustrate some of the interactive capabilities described in section 5, this section
shows a simple reliability-based optimization of a simple plane frame with I-shaped cross-
sections. The overall geometry, applied load and cross-section are shown below in figure 1.
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Figure 1: Geometry of frame, applied load and cross-section.

In the optimization problem of the standardized form (1)-(4), the volume of the frame
is used as the object function W(z) while the reliability-based constraints are related to
the bending capacity at 3 critical points, i.e.

&(z) = pi(z) =B >0, j=1,3 (26)




[image: image5.png]The corresponding failure functions can be written as
g9i(%) = MP(x) = M;(x) , Jj=1.3 (27)

where M*(x) and M;(x) denote the bending capacity and the moment due to the total
applied load, respectively. Due to the fixed direction of the wind load p,,, the absolute
value of the moment Mg at point B is known to be greater than the absolute value of the
moment Mp at point D. Therefore, the 3 failure functions consist of 2 failure functions at
point B (column and girder, respectively) and 1 failure function at point C at the centre
of the girder. In the evaluation of M}(x) only normal stresses calculated from linear
beam theory are considered while the applied moment M;(x) is found directly from linear
elasticity theory.

In addition, 4 simple deterministic, geometric constraints with respect to local insta-
bility are included, namely 2 constraints requiring that the ratio between the height of
the cross-section h; and body thickness ¢, does not exceed 50 (see equation (28)) and 2
constraints requiring that the ratio between the width w and the flange thickness ¢;; does
not exceed 20 (29), i.e.

é3+j(Z) = 50tb - hj > 0 5 ] = 1,2 (28)
é5+j(Z) = QOtfj — w Z 0 ; ] = 1,2 (29)

Based on the above defined parameters and failure functions, the following design variables
z and stochastic variables x are included in the optimization.

Design Variables

Variable | Designation Lower Initial value Upper
z1 = hy | Height of cross-section 1 200.0 250.0  [mm] 400.0
29 = hy | Height of cross-section 2 200.0 300.0 [mm] 400.0
zz =w | Width of flange 75.0 100.0  [mm] 150.0
zg = ts1 | Thickness of flange 1 4.0 8.0  [mm] 20.0
z5 = tgg | Thickness of flange 2 4.0 8.0  [mm] 20.0
z6 = t, | Thickness of body 4.0 6.0  [mm] 15.0
Stochastic Variables

Variable | Designation Distrib. Exp. value Var. coeff.
z1 = f, | Yielding strength LN 450.0  [N/mm?] 0.08
zo = E | Modulus of elasticity LN 206 - 10 [N/mm?| 0.04
z3 = pg | Dead load N 3.0  [kN/m] 0.05
z4 = ps | Applied load, snow N 4.8  [kN/m] 0.20
s = p, | Applied load, wind N 3.0  [kN/m] 0.40

Table 1: Design variables z and stochastic variables x.
In order to demonstrate some of the interactive capabilities of IROS, the above defined
optimization problem is solved according to the following scheme:

1. Optimization where all 6 design variables are allowed to vary and all 7 constraints
(3 reliability-based and 4 geometric constraints) are included.




[image: image6.png]2. Based on the above continuous solution, the 3 design variables that describe thick-
nesses (tf1, ts2 and ;) are fixed to adjacent discrete values. From this point the
optimization is continued with the remaining 3 free design variables.

3. Finally, the 4 geometric constraints é4(z) - ¢7(z) are excluded and all 6 design variables
allowed to vary. A continuous solution prone to local instability is hereby obtained.

The iteration history of design variables, object function and reliability-based con-
straints are shown at the screen-dump from IROS in figure 2. In addition, the values of
the design variables and object function at the start and the end for the 3 optimizations
are listed in table 2.

104 0Object @ Beta-Con @
9,60 1 1.00 1
9.00 A
. 0,50
8.50 v
2.00 4 0.00 3
R S ,
COUEO e
FuOQ e e
itNo i
6,50 T T T T T -1.00
0 & 8 10 12 14 1s
102
480 1 8.00
+.00 -
8.00 %
2.50
3,00 700 4
/
2,80
8.00 i
2.00 A
1.50 5.00
1.00 7
0.50 A
itho
0,00 T T T T T T T T T d 3.00 T T T T T T T T T 1
o0 2 4 & 8 10 12 14 1& 13 20 0 2 4 ¢ 8 10 12 14 1§ 18 20
Interant ive Iteration no. = A% No. of obiect func. calc. = A¥
ok drizst Lot Line search no. = Total no. of con.func. calc. =

Prass ’ i’ or meuse button to continue interaction after this iteration

Figure 2: Iteration history of design variables, object function and rel.-based constraints.

Optimization number Ist run 2nd run 3rd run
Iteration number 1 6 7 10 11 17
Variable | Designation Start | End | Start | End | Start | End

z1 = h1 | Height of cross-section 1 | 250.0 | 291.8 | 291.8 | 300.0 | 300.0 | 400.0
zo = by | Height of cross-section 2 | 300.0 | 291.8 | 291.8 | 300.0 | 300.0 | 400.0

zg =w | Width of flange 100.0 | 112.6 | 112.6 | 104.6 | 104.6 | 96.7
24 = ty1 | Thickness of flange 1 8.00 | 5.63 | 6.00 | 6.00 | 6.00 | 4.00
z5 = 152 | Thickness of flange 2 8.00 | 7.97 | 800 | 8.00 | 800 | 5.91
zg = 1p Thickness of body 6.00 | 5.84 | 6.00 | 6.00 | 6.00 | 4.00
Object function - 85.9 - 86.5 - 68.5

Table 2: Design variables z during the 3 stages og the optimization.




[image: image7.png]From figure 2 and table 2 it is seen, that the continuous solution from the 1st run is
obtained after 6 iterations. At this point, the 3 design variables describing thicknesses {1,
tse, ty} = {5.63,7.97,5.84} are changed and fixed interactively to the adjacent standard
dimensions {6.00,8.00,6.00} as shown at the screen-dump from IROS in figure 3.
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Figure 3: Interactive change of design variables after iteration no. 6.

After this interactive change the optimization (2nd run) is continued to iteration 10 as
shown in figure 2. At this point, a new ”discrete” optimum is achieved. A feasible solution
with standard dimensions suitable for practical used is hereby obtained with an increase
in the object function by less than 1%.

Finally, all design variables are relaxed and allowed to vary in the 3rd optimization,
where only the 3 reliability-based constraints are included. Thus, based on the information
obtained in the first 10 iterations, the optimization is now continued another 7 iterations as
shown in figure 2. A dramatically change in the design and decrease of the object function
by approximately 20% is hereby obtained even though 4 of the 6 design variables have
reached the simple bounds.

7 CONCLUDING REMARKS

A prototype for an interactive reliability-based optimization system and desirable interac-
tive capabilities are described.

In order to allow for these interactions when using quasi-Newton algorithms, modifi-
cations of standard solution techniques are proposed. A technique that preserves the full
dimension of the Hessian matrix when some design variables are fixed and utilizes old in-
formation when design variables are re-included is presented. Secondly, modified update
schemes for the approximate Hessian matrix in which the condition number of the Hessian
matrix is minimized are considered and implemented.




[image: image8.png]A simple reliability-based structural optimization problem is solved interactively using
the prototype IROS (Interactive Reliability-Based Optimization System) in which the pro-
posed modifications are applied.
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