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CHAPTER 60
INTERACTIVE QUASI-NEWTON OPTIMIZATION ALGORITHMS

C. Pedersen & P. Thoft-Christensen 

 University of Aalborg, Denmark.
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where x is the n-dimensional vector of design variables, F' is the object function, g; and g;
are the equality and inequality constraints, respectively, separating the design space into a
feasible and non-feasible domain. Finally, /" and z** are lower and upper bounds (also
frequently termed simple bounds) on the design varlables.

Considering direct optimization methods in the context of constrained non-linear pro-
blems, a merit function is introduced, i.e. a combined function used to compare mutual
gains in the objective function value and violation of the constraints with the property of
having minimum at the optimum of the original problem. Thus, introducing the Lagrange
multipliers A = (A1, ..o, Aoy Amad 1y ooy Aoty Mmodmitls s Ametmitan ). corresponding to
the m, + m; equality and inequality constraints and the 2n simple bounds, the Lagrange
function L(-) (or simply the Lagrangian) can be written as

LWM==N@—2WM@—ZMmM@) )

n
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For brevity, all terms that correspond to the 2n simple bounds will be omitted in the
remainder unless otherwise stated. In general, these constraints can be included as ordinary
inequalities, but due to their simple nature they are typically treated seperately.

Having introduced the Lagrangian according to (6), the Kuhn-Tucker (KT) optimality
conditions (only necessary conditions) require L(x*,A) to be stationary at optimum and
the design point x* to be feasible, i.e.

2 < a7 < 2 | i=1yem (7)
g]‘(X*) =0 , )\ij(X*) =0 j = 1,...,me (8)
gme+j( *) >0 /\me+j§me+j( *) =0 )‘ma-}—j >0 ] = 17 ey T (9)

Z A Vig;(x Z Ame+i Vegi(x7) =0 (10)

A detailed description of the above KT conditions can be found in [Vanderplaats, 1984],
[Luenberger, 1984] or in any optimization book. '



 1 INTRODUCTION

[image: image5.png]In this paper the selection of optimization algorithms suitable for structural optimiza-
tion problems in an interactive environment are treated. The main purpose of the paper
is to provide some qualitative reflections and assessments of the problems involved with
interactive structural optimization rather than present a specific solution scheme.

Due to the fact that only structural problems are considered, the class of optimization
algorithms considered in this paper is reduced to quasi-Newton methods (primarily the
commonly used BFGS updating scheme) and algorithms utilizing Lagrange multipliers.
In general, these approximate 2nd order methods have proved to be the most efficient in
solving structural optimization problems since only a relatively low number of function and
gradient evaluations is required. However, schemes like the Method of Moving Asymptotes
(MMA) and others which do not depend upon information obtained in previous iterations
are considered as an alternative.



 2 QUASI-NEWTON ALGORITHMS

  2.1 General Formulation
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 2.2 Optimization Algorithms

[image: image2.png]In most optimization algorithms suitable for non-linear optimization problems, the new

iterate x*+1) is found as
x(F) = x® 1 od (11)




[image: image6.png]In order to introduce the basic elements in quasi-Newton algorithms, a brief outline of the
general formulation of the optimization problem, quadratic programming (QP) subpro-
blems and matching solution techniques is given in section 2.1-2.4. Finally, a more com-
prehensive treatment of various quasi-Newton updating schemes and their characteristic
properties is presented in section 2.5.



[image: image7.png]Considering large-scale optimization, a reduced space method may affect the overall time
consumption significantly due to the reduced dimension of the QP subproblem (13)-(18).
In addition, the reduced dimension will typically improve the stability with respect to the
solution of the subproblem in cases where the approximate Hessian B is relatively close to
being singular.

However, although this method typically not improves the convergence rate in the
context of structural nroblems. this section presents some feasible solution schemes.




2.3 Quadratic Programming Subproblem

[image: image8.png]Suppose that an n-dimensional optimization problem originally consisting of the design
variables xT = {z,%y,...,2,} is reduced from dimension n’ to n” due to an interactive
decision - for example n’ — n'” desien variables mav be kept fixed at their current values.




[image: image9.png]in which d denotes the search direction while the step length « is obtained from a one-
dimensional line search in the direction d in a merit function ¢(x).

Typically, the merit function ¢(x) is based on the Lagrangian in (6). However, in direct
optimization methods the Lagrange function L(x,A) has shown to be inappropriate as a
merit function. Thus, in order to obtain a more stable and quick convergent solution, an
augmented Lagrangian A(-) is introduced, e.g. with a quadratic penalty term like

me
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[image: image10.png]In the most effective optimization algorithms the search direction d is determined as the
solution of a sequential quadratic programming subproblem - refer e.g. to [Arora, 1989] in
which a general QP problem is stated. However, in order to ensure that a feasible search di-
rection d exists, several modifications have been proposed in different specific applications.
Utilizing the modification suggested by [Powell,1977], an additional relaxation parameter
p is introduced in the quadratic problem to ensure feasibility. Secondly, recalculation of in-
active constraint gradients is omitted through the approximation V,g;(x¥)) ~ V,.4;(x (%))
- refer e.g. to [Schittkowski, 1984}, where the index (k;) denotes gradients which have been
calculated in a previous iteration, i.e. typically the last iteration in which the constraint
g; was active.

Thus, the modified quadratic subproblem, from which the search direction d in the kth
iteration can be determined, is given as

min V/(x)'d+ JATBOd ¢ %’"Uﬂ)ﬁ (13)
st. (1= p)gi(x?) + Vog;(x®) d =0 je M, (14)
(1 p)g;(x®) + Vog;(xM)'d >0 j e MY UM(k) (15)
3 (x®) + V,g;(x*) " d > 0 | ]GM\( OO My (16
xz(k)_@"?mnﬁdi Sw?ax——x,(-k) i=1,..,n (17)
0sp=l (18)

In (13)-(18) the matrix B denotes a positive definite matrix which initially is the identity
matrix I and subsequently will be updated gradually to approach the Hessian matrix of
the Lagrangian by use of the quasi-Newton updating schemes such as the BFGS formula,
while 7(%) is a scaling parameter to avoid ill-conditioning between the primary optimization
variables d and the additional relaxation parameter p.




 2.4 QP Solution Techniques
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where the parameter ¢ > 0 is a user specified tolerance which determines the e-active

constraint set.




 2.5 Quasi-Newton Updating Schemes

[image: image12.png]However, even though the above subproblem mainly is identical to the sequential
subproblem stated in the powerful optimization algorithm NLPQL by [Schittkowski, 1984]
and [Schittkowski, 1986], it should be emphasized that several other definitions of the
quadratic subproblem are possible. For example, in some applications the inactive con-
straints in (16) may be omitted in the subproblem while other applications include all
constraints in the original problem (1)-(5) in (15), i.e. all gradients are calculated in every
iteration. Alternatively, the additional relaxation parameter p may be omitted in some
applications while others may reduce the n-dimensional space in which d is sought if one
or more of the design variables are kept fixed.




[image: image13.png]Considering solution techniques for the quadratic programming subproblem (13)-(18),
Newton’s method or recursive quadratic programming (RQP) is often applied - refer e.g.
to [Luenberger, 1984] or [Ringertz, 1993]. Introducing the column vector h(x), in which all
equality and active inequality constraints are assembled, the search direction d and the
new estimate of the Lagrange multipliers A+ can be obtained as the solution of a linear
system - see e.g. [Luenberger, 1984] where standard QP problems are considered. Utilizing

the previously introduced KT-conditions, d and A+ are obtained from
B —V,h(x*)) d [ =V fx®) 9
—Vzh(x(k))T 0 A(k-}-l) - h(X(k)) ( 3)

where the signs in (23) are caused by the definition §;(x) > 0 of the inequality constraints
in (4) and the negative signs in the Lagrange function (6).

Due to the presence of inequalities an active set strategy must be applied, where inequa-
lity constraints are added or dropped until the correct active set is found. Having assumed
an active set, a search direction d is found in accordance with (23). In cases where x®) +d
is located outside the feasible region, the violated constraints are included in the active
set h(x(*)) whereupon an extended QP is resolved in accordance with (23). Otherwise,
if x(*) 4+ d is located in the feasible region, the sign of all Lagrange multipliers from (23)
that corresponds to inequality constraints is checked. If a negative value is detected the
corresponding constraint is dropped from the active set whereupon the QP is resolved with
a smaller active set. A closer description can be found in [Ringertz, 1993].



[image: image14.png]As already mentioned, approximate 2nd order methods or quasi-Newton methods using
only 1st order information have been considered to be the most efficient in solving structural
optimization problems due to their relatively small total number of constraint evaluations
and the general use of recursive updating formulas for the approximate Hessian matrix of
the Lagrangian.

In full Newton methods, the change p(* between two successive iterates is determined
by the actual Hessian matrix L(X(k),)\(k)) of the Lagrangian. In constrained problems,
B®) in the QP subproblem is replaced by L(X(k),/\(k)), while p® in unconstrained cases

is found in accordance with
L(X(k), )‘(k))p(k) = q® (24)

where L(X(k),A(k)) simply contains the 2nd derivative of the object function F'(x) while
p® and q® denote the change in the design variables and the change in the gradient
vector of the Lagrangian L(x(*), /\(k)), respectively.

In quasi-Newton methods, however, the change p® is controlled by the approximate
Hessian B® as shown in the OP subbproblem (13)-(18). while the undated Hessian ap-



 2.5.1 Rank-One Update Formulas

[image: image15.png]proximation B(¥+1) is desired to approximate the curvature of the Lagrangian along the
direction p(®). Thus, in accordance with [Gill et al.,1981], B*+1) is required to satisfy the
quasi- Newton condltlon

B+ H®) — o(#) (25)

which is seen to be similar to (24).
In (25) the vector p* is given as the difference between the current and previous design
point - see also equation (11)

p®) = x(B) — x(:=1) — 4, ) (26)

while q® is dependent upon the difference between the current and previous derivatives
of the Lagrangian L(x,A). The most straightforward choice for g*) is

q® = V,L(x® AB) — v, 1(x*D A1) (27)

but several other suggestions have been given. The main reason to choose another definition
of g™* is originated by the desire to preserve positive definiteness for B and due to problems
originated by the change in the active constraint set - refer also to section 4 where this
problem is addressed. Among the most commenly used alternatives to (27) is q(¥) =
VwL(X(k),A(k)) — VxL(x(k_l),)\(k)), where only the lastest Lagrange multipliers A® are
used, and Powells modification, [Powell, 1977], where q(*) is given as

q® = 0,(V,L(x®, A% — v, L(x*D A®)) 4 (1 — 6,)BEp®) (28)

The scalar 65, can be found in [Powell, 1977].



 2.5.2 Rank-Two Update Formulas

[image: image3.png]p®. Consequently, any multiple of the matrix ww?, i.e. the last term in (33), may be

added to the new approximate Hessian B*+1) without affecting the quasi-Newton condition
(25) or the property of hereditary symmetry. Thus, in conjunction with [Gill et al., 1981],
[Luenberger, 1984] and others the one-parameters Broyden family updates may be written
as a slightly modified version of (33), i.e

BHpHp®TBE  ghg®T T
B =B - p®TBEp®) * q ¥ p*) o (p(k) B(k)p(k)) ww'  (35)

The "optimal” choice of the parameter ¢ is closely related with the selection of similar
parameters in SSVM (Self-Scaling-Variable-Metric) algorithms. In these methods the para-
meter(s) are selected automatically in order to create certain prescribed desirable properties
(e.g. minimize the condition number) on the basis of theoretical considerations. SSVM
methods can be reviewed in detail in [Shanno & Phua, 1978], [Oren & Spedicato, 1976] and
others.

At the present stage the considerations with respect to the selection of ¢x in (35) is
restricted to encounter two commonly used values: ¢x = 1 whereby (35) is reduced to the
DFP formula (33) stated previously, and ¢, = 0 resulting in the efficient and even more
commonly used BFGS (Broyden-Fletcher-Goldfarb-Shanno) update formula, in which (35)

is reduced to T . .
B+ _ g BE) p*p*k ) . q®gq®
p®&TBHEp*) p®7T k)

In brief, it is worth noting that the BFGS update formula is a symmetric rank-two cor-
rection constructed from the vectors g and B®p#)  respectively. Furthermore, the

(36)

BFGS update formula has the property of hereditary positive definiteness if q(k)Tp(k) >0




[image: image16.png]Since the only new second order information obtained between two successive iterations is
directed along the search direction d = p¥)/«, the difference between B*+1) and B(*




[image: image17.png]expected to be satisfactorily represented by a matrix of low rank. Thus, given that BK+1)
is constructed by adding a rank-one matrix uv” to the original matrix B(*)

B = B® 4 uv” (29)

it is seen from (30) that the vector u must be parallel to the direction q® —B®p® if the
quasi-Newton condition (25) is to be satisfied

(k) _ Bk)p(k)

BHIp® = (B® 4 wyT)p® =q® = u= %‘ (30)
Thus, inserting u given by (30) into (29) determines a feasible rank-one update for any
choice of v satisfying the condition vTp(*) 2 0.

However, since the actual Hessian matrix is known to be symmetric it seems reasonable
to require B**Y) to be symmetric. Assuming that B®) is symmetric, the property of
hereditary symmetry implies that u and v must be parallel, i.e. the unique symmetric
rank-one update is given as

(a® — B®p®) (¢ — BOp®)”

BG+) — B
(q® — B®p®) p®T

(31)




3 INDICATORS

[image: image18.png]If additional properties as hereditary positive definiteness must be included in the update,
at least rank-two update matrices - also frequently termed variable metric methods - must
be applied.

A general rank-two updating matrix is presented in [Gill et al.,1981], where the resul-
ting formula is found as the limit of a sequence of symmetric matrices

(q® — BOp®) vT 4 v(q® — BBp®)!
vTp®

B(k+1) — B(k)+

T
_(a® = B®p®) T pt
(vTp®)’

(32)

T

Depending on the choice of v, different rank-two corrections can be established. When v
is chosen as p(¥), (32) equals the commonly used DFP (Davidon-Fletcher-Powell) update
formula. Rearranging the terms in (32), the DFP update is conveniently written as

T T
B®p®Hp®T BH  gkg®

B+ — B _
p®TBEp®) q®) pk)

n (p(k>TB<k)p<k)> ww? (33)

where w 1s defined as . ok
w q® B B¢ )p( ) (34)
q®Tp®  pBTBHpK)

The equality between (32) and (33)-(34) is easily shown by evaluation of both right-hand
sides. Premultiplying (34) with p{®) immediately proves the orthogonality between w and




3.1 Condition Number of a Matrix

[image: image19.png]£+ - -

which can be satisfied with a ”proper choice” of ) and ”sufficiently accurate” line search
at each iteration, see e.g. [Luenberger, 1984] or [Gill et al., 1981].

Thus, as it is seen from the above update formulas, an interactive change of a design
variable, active set, etc., affects the approximate Hessian B which, unfortunately, may
result in decreasing convergence rate or no convergence at all. In order to avoid this lack
in convergence, some precautions or alternative updating techniques may be necessary
when using the generally effective methods based on an approximate Hessian in interactive
environments.



[image: image20.png]In this section various problem or status indicators, i.e. quantities carrying information of
the behaviour of the optimization problem, are considered.

Although all available information concerning the optimization problem in question
should be exploited in the choice of optimization method, algorithm, etc., the indicators
considered in this section are restricted to quantities which can be evaluated through the
iterative process. Thus, focusing on structural problems only, the computational effort used
to evaluate these indicators is allowed to be relatively high without affecting the overall
time consumption substantially.



 3.2 Evaluation of Condition Number

[image: image21.png]Consider the linear system

Ax=b (37)

a unique solution x = A~'b can be found when A is a non-singular square matrix. Suppose
now that b is perturbed to b 4+ éb, the perturbed solution is given as

(x+6x) = A (b+éb) = éx=A""éb (38)

Utilizing the inequalities || b ||<|] A |||| x ||, refer e.g. to [Gill et al., 1981], the relative
effect on x from the perturbation of b can be written as

|| 6x || A-ry Lokl
<Il A [|[ A= ] (39)
x| bl
Similarly, a perturbation § A of the matrix A results in the relative change
[ ox i 1y [L0A ]
—— <|[ A ||| A7 || 40
Tt 6x | A TAjl (40)
Introducing the condition number of a matrix A defined as
w(A) = cond(A) =|| A ||| A7 (41)

this number is seen to determine the effect of a perturbation in b or A on the solution
x. In other words, a matrix A is said to be well-conditioned if k(A) is ”small”, and
ill-conditioned if its condition number is "large”.

Focusing on the quadratic subproblem (13)-(18), the approximate Hessian B®) plays
a dominant role in the determination of the search direction d. Consequently, a well-
conditioned approximate Hessian entails a stable solution of (13)-(18) in terms of a feasible
descent direction d even though the gradient V,f(x*)) or the approximate Hessian B(*)
is slightly inaccurate.



4. ACTIVE SET CHANGES 
[image: image22.png]Considering the evaluation of the condition number &(-) as defined in (41), calculations of
matrix norms are necessary. An easily calculated matrix norm is the Frobenius norm

m n 1/2
||AHF=(ZZ<%>2> = (tr(ATA)) (42)

i=1 j=1

where A € R™*" i.e. the Frobenius norm of a matrix corresponds to the Euclidian norm

of an nm-dimensional vector.
According to [Golub & Van Loan, 1989], the p-norm of a matrix A is defined as

| Ax |,
= max (43)

Al = Ixdi#o || x ||,



[image: image23.png]where the p-norm of the n-dimensional vector x is evaluated from the expression

n 1/p
<1, = (D l”) (1)

The most frequently used matrix norm is the 2-norm, which can be evaluated explicitly as
the square root of the largest eigenvalue of the symmetric matrix ATA, i.e.

1/2

T
1Al = (Amax[ATA]) (45)
Utilizing equation (45) and the property that the eigenvalues of a matrix equal the inverse
eigenvalues of the inverse matrix, the condition number of an n-dimensional symmetric,
non-singular matrix A can be evaluated as the ratio between the largest and smallest
eigenvalue of the matrix, i.e.

An
Y

where the eigenvalues are arranged in increasing order Ay < Ay < ... < A,. Hence, due
to the symmetric rank-two updating schemes for the approximate Hessian, its condition
number can be evaluated exactly from (46). Applying forward and inverse vector iteration,
respectively, A, and ); in (46) can be obtained efficiently - refer e.g. to [Bathe, 1982].
Alternatively, various techniques to estimate the condition number of a matrix are outlined

in [Golub & Van Loan, 1989].

k(A) (46)

In brief, the most important indicator on the behaviour of the optimization problem is
considered to be the condition number x(B) of the Hessian B. Still, the change in the
corresponding eigenvalues and various matrix norms from one iteration to the next iteration
mav provide useful information.



 4.1 Active Set Changes with Respect to Constraints

[image: image24.png]One of the main features in interactive optimization systems is the possibility to alter the
active set with respect to design variables and constraints during the iterative process. For
example, when the design point is more or less stabilized, one or more design variables may
be kept fixed at adjacent values corresponding to standard thicknesses, widths, etc., while
the optimization is continued with the remaining design variables.

In order to provide these features utilizing a quasi-Newton algorithm of the type stated
in section 2, certain modifications have to be included. In section 4.1 active set changes
with respect to constraints are treated while two different solution schemes to handle active
set changes with respect to design variables are presented in section 4.2.



 4.1.1 Minimization of Condition Number

[image: image25.png]If the inactive inequality constraints (16) in the set M; \ (M, U M(k)) in the sub-
problem (13)-(18) are removed totally (this is actually the case in several applications),
most traditional non-interactive algorithms would interchange the remaining active or e-
active constraints automatically during the iterative process. Hence, the type of compli-
cations caused by the interactive omission/addition of one or more constraints is already
treated in existing standard algorithms.

However, using quasi-Newton algorithms based upon an approximate Hessian matrix
B such as the update formulas considered in section 2.5, difficulties arise when constraints
are added to or dropped from the current active set. In brief, a rapidly changing active set
will cause large variations in the sequence of vectors {q} which, consequently, may cause
oscillating search directions. Thus, a conservative approach is supposed to stabilize the
active set where, to the largest extent possible, the same constraints from two successive
iterations are included in the evaluation of q(*) as proposed in the modified definition (28)
of q®). The problem has also been addressed in [Lim & Arora,1986], where tests have
shown superior performance when previously active constraints with non-zero Lagrange
multipliers are included in the active set and thereby also in the evaluation of (¥, although
these constraints are currently inactive. In fact, as an alternative, no Hessian updating is
suggested in the initial phase of the optimization process where the active set is changing
rapidly.

Thus, regardless of the choice of q(¥) in the update formulas in section 2.5, no unique
definition can be given for evaluation of q*) in cases where the active set in two successive
iterations is changed.




[image: image26.png]Focusing on interactive changes in the active set with respect to the constraints - e.g. an
interactive exclusion of one or more constraints, a straightforward solution is to remove
the constraint(s) concerned from the search direction finding subproblem (13)-(18).



 4.2 Active Set Changes with Respect to Design Variables

[image: image27.png]In order to minimize the sensitivity of the search direction finding subproblem (13)-(18), the
condition number of the approximate Hessian matrix must be minimized as pointed out in
section 3. Therefore, a feasible approach is to select the parameter(s) in the quasi-Newton
update formulas in such a manner that the condition number of the next approximate
Hessian cond(B**1)) is minimized. Still, the desired properties such as hereditary positive
definiteness, etc. must be preserved. Thus, using the two parameters 6 and ¢, introduced
in equation (28) and (35), respectively, in section 2.5, a typical subproblem can be stated
as

min  cond(B**Y) = f(BY, p®, 4, 01, 6) (47)
k'Pr
st A(BE) = A >0 | (48)

where the hereditary symmetry is included through the formulation (35) while positive
definiteness is preserved by the constraint (48).

Due to the typically limited dimension of structural optimization problems, the extra
computational time used for each iteration to obtain the solution of the proposed subpro-
blem (47)-(48) is supposed to be small. However, considering large-scale problems, the
repeated matrix multiplications and solution of eigenvalueproblems (inverse vector itera-
tion in order to obtain A{), is substantial.



 4.2.1 Method of Fixed Design Variables

[image: image28.png]Comparing the proposed scaling subproblem (47)-(48) with the previously mentioned
SSVM-algorithm, (47)-(48) can be interpreted as a more applicable version of an auto-
matic scaling scheme. Thus, where strictly theoretical and more idealized unconstrained
problems are considered in SSVM papers as [Oren,1974], [Oren & Spedicato,1976] and
others, schemes similar to (47)-(48) can be used within a broader class of optimization
problems.

Since a low condition number of the matrix B is preferable, this scaling scheme may
be applied with advantage in other connections than active set changes with respect to
constraints - for example in cases where the active set with respect to design variables is
changed. In general, the use of (47)-(48) is supposed to be preferable in cases where the
relative change between two successive iterations is substantial.

Finally, although a QP subproblem similar to the one stated in (13)-(18) is supposed to be
the most efficient in structural problems, a less modified subproblem without an active set
strategy will be advantageous with respect to the Hessian updating. If the approximation
in (16) is omitted and all inequality constraints §;(x*®)), j € M;, are included in (15),
all gradients V,g;(x®) corresponding to inequality constraints with non-zero Lagrange
multipliers will be known. Still, in order to be able to evaluate the vector g*) in accordance
with (27)-(28), all gradients V,g;(x*~1) from the previous iteration corresponding to
inequality constraints with non-negative Lagrange mulitpliers in the current iteration, i.e.
)\;k) > 0 where j € M;, must be available. Thus, in order to obtain an improved Hessian
approximation, additional calculation of constraint gradients must be carried out in cases
where the current active set contains constraints that were not present in the previous
active set.



[image: image29.png]Considering active set changes in the design variables only, where the design space is
reduced from n' to n” dimensions (n > n’ > n”), two solution schemes seem immediately

reasonable.

e Introduction of additional constraints in the search direction subproblem (13)-(18)
enforcing the change in the fixed ith variable to equal zero, i.e. d; = 0, where the
index ¢ runs through the set of all fixed design variables.

e Reduce the space in which the search direction is sought, i.e. reduce the dimension of
the subproblem (13)-(18) from n’ to n” by deleting the fixed elements in d, the corre-
sponding elements in the gradients V, f(x(¥)), V,g(x*)) and V,§(x®), respectively,
and finally the corresponding rows and columns in the approximate Hessian matrix
Bk,

In the context of small-scale problems with a relatively low number of design variables
and typical structural optimization problems, the first solution scheme seems preferable
while the reduced space method may be advantageous considering large-scale problems.
A major drawback of the reduced space method is that the approximate Hessian cannot
always be ensured to be positive definite, i.e. difficulties in solving the subproblem (13)-(18)
satisfactorilyv mayv arise.




 4.2.2 Reduced Space Method

[image: image30.png]In the context of typical structural optimization problems with costly constraint evaluations
and a relatively small number of optimization variables, say n & 10 — 20, the time used to
solve the QP subproblem (13)-(18) is almost negligible. The additional constraints d; = 0,
where the index 7 runs throush the set of fixed design variables. in the search direction
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finding subproblem (13)-(18) may therefore be considered insignificant, especially since the
additional constraints are equalities and thereby automatically included in the active set of
the QP. Consequently, the computational effort necessary in the estimation of the correct
active set as described in section 2.4 remains unchanged.

Since the Lagrange multipliers corresponding to the additional constraints d; = 0 or
x; = const. are non-zero when these constraints are active, their contributions to the gra-
dient of the Lagrangian V,L(x®*), A(k)) will not vanish. Furthermore, since the dimension
of the solution scheme of the QP subproblem (23) and thereby also the dimension of the
vector containing the Lagrange multipliers A) s increased by the number of additio-
nal constraints, the actual value of the Lagrange multipliers corresponding to the original
constraints (3)-(4) will be affected by the presence of the additional constraints. As a
consequence, the vector q(®) containing the difference between two gradients of the Lag-
rangian used in the quasi-Newton update formulas in section 2.5 may contain contributions
from two iterations with different active sets if q*) is defined in accordance with (27). In
order to avoid this inconsistency in the definition of q(¥), the modification proposed in
[Powell, 1977] may be utilized as shown in equation (28).

Another feasible approach is to calculate the set of Lagrange multipliers that cor-
responds to active constraints from the original problem (3)-(4), i.e. (M. U M,;). In
[Gill & Murray, 1979] and [Gill et al., 1981] a first-order multiplier estimate is found as the
solution of an optimization problem based on the KT-condition (10). However, due to the
fact that (10) cannot be completely satisfied when x(*) #£ x* (i.e. when optimum is not
found), an estimate of A may be obtained from the least-square minimization problem
(49). Since Lagrange multipliers corresponding to active inequality constraints are known
to be positive, (49)-(50) are stated as a constrained least-square problem

ONSYC NG
mip | (V.h®) AB) —h®) | (49)
st. AP >0  ieM, (50)

where A(®) denotes the active Lagrange multipliers and h®) = h(x)® and V,h*), respecti-
vely, denote a column vector containing the active constraints and a matrix in which the
gradients of the constraints are assembled.

Thus, unless a further reduction of the QP subproblem is related with an improved overall
convergence rate (in terms of reduced iterations required and reduced number of function
evaluations), the proposed method of fixed design variables is preferred in ordinary struc-
tural optimization problems.
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In addition, let M, and M " denote the sets of active design Varlables before and after the
reductlon 1n iteration K. Thus, a straightforward solution is to delete the fixed element(s)
in V,f(x5)), V,g(x%)) and V Lg(xU)), respectively, corresponding to the set M, \ M.
Furthermore, the corresponding rows and columns of the approximate Hessian B®) is
removed after which the search direction vector d of dimension n” can be found from a
reduced subproblem similar to (13)-(18).

Example 4.1: Direct reduction. For this and the next examples in this section,
the following setup for the dimensions n > n’ > n” and the sets M, and M, is used

T __
n=~6 x' = {21, %2, T3, T4, T5, T6 }
A
n =4 Mn’ = {$1,$3,IL‘4,$5}
n'’ =3 My = {z1, 24,25}

from which is it seen that x3 is the alternating variable which is included or excluded
from the current active set. Furthermore, B and B denote the Hessian matrices
before and after the change, respectively, while the indices on the elements B;; of the
Hessian matrices and the indices to the right of the brackets refer to the full n x n
Hessian matrix.

Thus, with the setup defined above, a direct reduction from Bff,fln,, Bg;n, can be
visualized as

By Bis By Bys |1
B(K) _ Bs1 Bss B3y Bss |3
n!xn/ By Bss By Bss |4
Bsy Bss Bsy Bss |5

_ ok Bii Bis Bis |1
~ Bi;lnu = | By Biy Bags |4
Bsy Bss Bss |5

Since only the elements in the K'th iteration are considered, the superscript indices
i @ R 1Y 1Y

(K) have been abbreviated. In full, Bi(jx) = B;; = Bj; = Bi(j‘) for the values of ¢,

that correspond to the set M.

Due to the direct reduction, the new approximate Hessian matrix B ln,, will not be

positive definite in general.

Cons1der1ng cases where the active set is enlarged from dimension n” to n' e where n” <
n’ < n, a positive definite matrix Bfwzmn can be ensured provided that B

v, 1s positive




[image: image33.png]definite. Where the extra elements in the gradients are calculated directly, the additional
rows and columns in the approximate Hessian are unknown and considered too costly to
evaluate numerically. However, simply inserting elements from the identity matrix I - i.e.
unity in the additional diagonal elements and zeroes off the diagonal - will preserve positive
definiteness.

Example 4.2: Direct extension. With the setup from example 4.1, this example
illustrates a direct extension where the extra diagonal element is chosen to unity and
all off-diagonal elements in the extra row and column are selected as zero.

By, 0 By B
Bll B14 B15 1 1 14 15

BY) = | Bn Bu Bs |4 ~ ]_327;”,2 B? (1) BO BO
Bsi Bss Buss |5 a1 44 Dus

B51 0 B54 B55

(<4 SV

ie. BZ-(JK) = B;; = B;; = BZ.(J-K) for the values of ¢, j that correspond to M,». Alterna-
tively, the diagonal element Bsz = 1 can be replaced by any positive number b, e.g.

b= 02L(x"), XE)) /542
Since det(B%) ) = det(BY)

Ix t nllx,nll

from the characteristic equation

), the eigenvalues of B( iwm 1N example 4.2 can be found
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n! xn!!

Thus, ]_B(K)n, is hereby preserved as a positive definite matrix since all n” original eigenva-

lues of Bi,,ln,, remain unchanged and the extra eigenvalue is equal to 1. Similar properties
can be shown for any arbitrary choice of b > 0 in the diagonal and the increase in dimension

n' —n" > 1.

Indirect Reduction and Extension

In order to obtain an improved approximate Hessian matrix B() and still preserve positive
definiteness for the reduced space method in cases where the active set is enlarged from
dimension n” to n’ in iteration K, another approach can be utilized.

Let M) = M, U Méf) denote the set of active design variables in iteration k£ and
K~ = K — AK < K indicate a previous iteration number with the property that

Vke [K™,K] | M® C M, (52)

i.e. all elements in M*) must be present in the extended set M,,. If not, positive definite-
ness cannot be ensured automatically as shown later in example 4.3.
The idea in the indirect extension method is now to reestablish a new approximate

(K)

n!xn'

from section 2.5 AK times. In order to do this, the dimension of the original vectors pt®
and q®) must be adjusted to dimension n’. A feasible updating scheme for the elements
in the new n’-dimensional vectors p* and §(*) is shown in (53)-(54), where the subscripts
¢ refer to the elements in the full n-dimensional vectors

(k) - 3
—(k) — P; 1€ Mn” k=K~ -
pz { O 'L E Mn/ \ Mn// g anny ]‘ (53)

Hessian matrix B\, , based on the previous B by applying the update formulas

,nll X 7L”
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where the derivatives L(x*), X(%))/dz; from the k;th iteration, i.e. the last iteration in
which the gradient has been calculated, are used as an approximation to the derivatives in

the kth iteration.
The indirect extension method is most easily illustrated throu éh the following example
4.3, where the procedure from the original Bq(,b,,in,, to the final B,,, , matrix is shown.

Example 4.3: Indirect extension. Suppose that the setup is similar to that
described in example 4.1. The approximate Hessian matrix ngln" before the exten-
sion with the design variable z3 in iteration K is then given as

(K) plK) pK)
B0 | o i gl
G N
51 54 55
Assume now that K~ = K — AK is selected in accordance with (52). For simplicity,
the active set of design variables in the intervening A K iterations are assumed equal
to M, = {z1, 24,25} in this example. Thus, since n = n’ and MED) =M, = M,

the elements in' the former matrix B « 7)1,, are given as

K~ K- K~

o | P Bl B
B‘nxn = Bi}’_) Bi}:’_) Bi?ﬁ_) 4
B Bl o s



[image: image36.png]At this point the method of direct extension from example 4.2 is applied. Bfﬁ;) is
(K7)

hereby enlarged to an;(n, in accordance with

(K~ (K~ (K~ (K~ (— (~ -
By By By ) B By 0 By B |
aec) _ | Ba ) BG ) B By 0 1 0 0 |s
Brw = HKT) pE™) pE™T) pE- = K~ K~ K-
= | g B B Bl [ 7| s 0 s s |
B0 s s o | B 0 B B0 )

Having established the positive definite matrix ]_355,2_73, of the correct dimension, the
quasi-Newton update formulas from section 2.5 are applied successively AK times.
In order to do this, the vectors p® and §*¥), k = K~, ..., K are constructed as stated
in (53)-(54), i.e. p¥) and the n-dimensional p{¥) are given as

P1 D1

(k) pgk) 1 ? ?

w_ )l _ (k) 0 {s . *) ! _ () 0
P = \Ps 4 ~ P = (k) . since p,’ = (k) >~ P, = (k)
p?) s 0 i "

5 ¥4 5 Ps Ps

? ?
V. V.
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Thus, utilizing the vectors p*) and §*), the final matrix B
basis of B ) through AK applications of the quasi-Newton updates from section

nfxn’

2.5 resulting in

(K (K (K 5 (K

g
B~ | T B o o |.
n'xn’ (K (K > (K

By B43) By, B45_) 4

Ao sk
Applying the update scheme (53)-(54) for p(¥) and §*) entails the identity g® pk =
q(k)Tp( ) when condition (52) is fulfilled. Otherwise, if (52) is violated, some terms
qf ) (k) in q(k)Tp(k) will not be present in g® " p*). Consequently, the condition

q(k) p(k) > 0 that preserves positive definiteness when the BFGS formula (36) is

applied, may not necessarily be fulfilled.
With respect to enlargement from B( ) to BiAXn),, any method that preserves a positive
definite matrix can be utilized. For example the inserted diagonal element 1 may be
replaced by the corresponding curvature 92L(xE7) AE /94,2,
As an extra feature of the method of indirect extension, only certain selected points
from the last AK iterations can be used in the update from B( X ) to the final matrix Bfl ><)n’

without losing the positive definiteness. For example, only the updates that correspond to

iterates x(®) k € [K~, ..., K] fulfilling the condition || x() — x(¥) ||2 < € may be included.
Finally, the order in Wthh the quasi-Newton updates from B(, ><n)' to B( )n, are performed

can be chosen arbitrarily. )
Comparing the methods of direct and indirect extension, the (n”)? elements Bg‘) that
correspond to the original design variables in M,» before the enlargement are identical
provided that the vectors p®) and q'¥),k = K, ..., K are identical and the quasi-Newton
update scheme used remains unchanged. The advantage gained from the additional com-
putational effort used in the indirect extens1on method is therefore restricted to an im-
proved approximation of the elements in BY) | that correspond to the variable(s) in the

set M, \ M, i.e. {z3} in example 4.3.

n!xn'!



[image: image38.png]With respect to indirect reduction, a similar technique can be applied although a posmve
definite final Hessian matrix B(,,l » cannot be ensured even though the initial B SIS
positive definite. The possible loss of positive definiteness is caused by the fact that some
terms qz(k')pz(-k) in the original scalar product q(k)Tp(k) will not be present in the reduced
product q(k)Tf)(k) - refer also to the discussion in the latter part of example 4.3. Further-
more, the direct reduction in iteration K~ from Bgi;) to Bgf;i,, cannot be guaranteed to
preserve a positive definite matrix as mentioned previously.

Due to the lacking positive definite Hessian matrix, equation (13) in the QP subproblem
(13)-(18) will not be convex. As a consequence, the obtained search direction d may
be unbounded whereby additional simple bounds may be imposed in order to obtain an
improved iterate. In addition, the loss of convexity will cause more oscillating search
directions and thereby a slower overall convergence rate.



[image: image39.png]In order to preserve a positive definite reduced Hessian matrix Bff,\,’ln,,,
]_355;3“, can be chosen to the identity matrix I. Furthermore, only the iterates where the
discarded terms qfk)pgk) are non-positive must be applied in order to preserve the inequality

the matrix

q(k)Tp(’“) > q(k)Tp(k) > 0. However, although this approach is feasible, the initialization
and the somewhat arbitrary omission of certain iterates in the update from B% ), to

nllxn//
0 (K) . . . . .
B, i, seems inappropriate. A more appealing approach may therefore include all iterates
(or at least a user specified subset of all iterates) in the updating from iteration K~ to
K, where a subproblem that maximizes the smallest eigenvalue A; = Ay, is solved in the
quasi-Newton update in each iteration. Alternatively, a subproblem similar to (47)-(48)

where the constraint (48) is relaxed may be imposed.

Finally, whether the reduced space methods ought to be applied to structural problems is
questionable. In particular, application of the method of indirect reduction/extension is
relatively costly and requires more memory. The computational effort used to construct
the various reduced Hessian matrices must therefore be compared with the gain in solving
(13)-(18). For example, since the method of indirect extension is relatively costly, the use of
this method is primarily justified when several variables are included at a time and in cases
were the change in the active set is more or less permanent. On the other hand, the most
straightforward alternative is to initialize the approximate Hessian to the identity matrix
I, but in order to determine whether an initialization or one of the modifications mentioned
above should be applied, heuristic rules/criteria based on the indicators mentioned in the
previous section in terms of condition number and eigenvalues should be established. Due
to lack of test results at the present stage, no guidelines can be given here.




[image: image40.png]An interactive change of the current design point often occurs in combination with an
active set change in the design variables where some design variables are fixed to a value
that equals a standard dimension. However, interactive changes, in which a change of
the current design point constitutes the only interactive change, typically occur if the
optimization is to be restarted from a different starting point, e.g. to verify that the
solution is a global optimum.




[image: image41.png]If the approximate Hessian B(®) calculated in the kth iteration is supposed to be used
unchanged after an interactive change of the current design point, the condition number
#(B®) or another of the indicators/quantities considered previously should be evaluated.
(Furthermore. evaluatine <(B®)) bv use of the ratio between the largest and smallest



 5. CHANGE OF CURRENT DESIGN POINT

[image: image42.png]eigenvalues in accordance with (46), the positive definiteness of B and hence the accuracy
of the previously performed line searches is checked automatically.) An estimate of the error
in the search direction d can then be assessed for these quantities.

If the original optimization problem is purely quadratic, the exact Hessian H is a
constant matrix. Furthermore, using the BFGS update formula and exact line searches,




5.1 Assessment of Stability in Optimization Problems

[image: image43.png]the approximate Hessian matrix equals the exact Hessian of the quadratic n-dimensional
problem within n-steps. Therefore, the relative change in the Hessian between the iterations
can be interpreted as an expression of the degree of non-linearity in the original problem.
The higher non-linearity, the poorer search direction d must be expected if the approximate
Hessian from the previous iteration is reused.

Another measure of the non-linearity in the problem can be found by comparision of
different approximate Hessians all belonging to the same iteration. Having completed the
K'th iteration, a set consisting of K vectors of p® and q®) (k = 1, ..., K') has been establis-
hed - refer e.g. to the equations (36)-(28). Thus, depending upon the succession/order in
which the vectors pt¥) and q®), k =1, ..., K are used in the BFGS update formula (36), a
total number of K (K —1)/2 approximate Hessians B¥) corresponding to the Kth iteration
can be established.

Besides the various check of the degree of non-linearity mentioned above, the abso-
lute interactive change in each design variable Az; and the corresponding relative change
Az; /(2™ — zmn) must be evaluated. Furthermore, the elements dL(x*), A\®)/dz; in the
gradient of the Lagrange function, which can be interpreted as the sensitivity with respect
to a change in the given design variable, should be assessed. The influence of the interactive
change in the design variable x; can therefore be assessed by comparison of the estimated
change in Lagrangian, i.e.

OL(x®, XK



[image: image44.png]Considering non-interactive quasi-Newton algorithms, several authors have suggested to
initialize the approximate Hessian B by the identity matrix I every nth iteration if no
convergence has been achieved. Hereby old information obtained in the preceding iterations
is discarded which, especially for highly non-linear problems, is an advantage. For such
problems, information from the very first iterations may be in conflict with the latter
information obtained.

Pursuing the idea of discarding obsolete information, the approximate Hessian B
the Kth iteration can be constructed from information obtained in the last AK iterations
only, where AK < max(n, K). Utilizing this approach, the approximate Hessian B is first
initialized to I after which the quasi-Newton update formulas from section 2.5 is applied
successively AK times. With respect to the choice of the AK vectors p® and q®, the
vectors from the last AK iterations (k = K — AK, ..., K) or, alternatively, the AK vectors

where the corresponding design point x(¥) is closest to the new interactively chosen design
(K)

(K) in

point x5 i.e. where || xE) —x®) ||” is minimum, seem most reasonable.

As a final alternative, response surfaces may be used to construct the approximate Hessian
and the various gradients in the subproblem (13)-(18) at the new design point. However,
this possibility is only available if the change of the current design point is imposed after
some iterations, i.e. in order to be able to construct reasonable response surface utilizing
standard techniques, a set of points and corresponding function values distributed in an
appropriate mesh must be known. Lately, refer e.g. to Murutso et al. (1993), neural net-
works have been used to aproximate various functions instead of more traditional response



[image: image45.png]surfaces (based on polvnomials. cubic splines. etc.) in structural problems.



 5.2 Redefinition of Approximate Hessian Matrix

[image: image46.png]An interactive change of the simple bounds on the optimization variables often occurs if
the optimal solution is developing towards an inappropriate or undesirable design - e.g.
for constructive or aesthetic reasons. Furthermore, narrowing the simple bounds may
dramatically speed up the convergence of oscillating problems.

Considering interactive changes in which the current design point remains between
the upper and lower bounds, i.e. z?™® < z; < M2 a feasible search direction d can be
obtained directly by solving the subproblem (13)-(18) without any changes in the quadratic
object function (13) and the corresponding constraints (14)-(16). Hence, the only change
is located to the move limits (17) concerning the elements of the search direction d.

In cases where the interactive change of the simple bounds leaves the current design
point beyond the new feasible design space, i.e. z; < z™® or z; > 2™ for one or more
i € {1,...,n}, the changes suggested in the previous section concerning changes of the
current design point must be included. Hereby a new feasible design point with respect to
the simple bounds is obtained while the feasibility with respect to the constraints (3)-(4)

cannot be ensured.




[image: image47.png]Based on results obtained for non-interactive structural optimization problems, only ap-
proximate 2nd order quasi-Newton methods such as the BFGS update formula and algo-
rithms utilizing Lagrange multipliers have been considered. In an interactive environment,
special modifications must be incorporated into the optimization algorithms in order to
handle various difficulties. Several solution schemes have been proposed to adjust the al-
gorithms to be able to deal with changes in the active set, changes of current design point
and simple bounds, etc. However, no implementation of the different solution schemes has
been carried out. Therefore, no actual test results and assessment of the applicability of
the proposed modifications is available.

As a consequence, considering structural optimization problems in an interactive en-
vironment, no indications on whether quasi-Newton algorithms are superior to algorithms
which do not depend upon information obtained in previous iterations can be given at this
stage.




  6. CHANGE OF SIMPLE BOUNDS
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