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Abstract

The power tessellation (or power diagram or Laguerre
diagram) turns out to be particular useful in connection to a
certain class of stochastic models for a disc process used for
generating a random set model. We discuss how to simulate
these models and calculate various characteristics of power
tessellations, where some new relations are established. The
proposed model is fitted to a heather dataset.

1. Introduction

This paper concerns the simulation of a random set
given by a finite union of discs generated by a certain
class of stochastic models. In this connection the power
tessellation (or power diagram or Laguerre diagram)
turns out to be particular useful. As a running example
for this paper, Fig. 1 shows a finite configuration of
discs, and Fig. 2 shows the power tessellation of the
union of these discs. The present paper is based on our
previous work [11, 12] but now with a focus on the
aspects related to power tessellations. A substantial part
of this work has been the developments of codes in C
and R for constructing power tessellations and making
simulations of our models. The codes are available at
www.math.aau.dk/˜jm/Codes.union.of.discs
and at www.math.aau.dk/˜jm/Codes.likelihood.
union.of.discs.

The paper is organized as follows. Section 2 considers our
stochastic models which extend the Boolean model based on
a Poisson disc process (the commonly used disc process
model) to a more flexible model class with interaction
by specifying a probability distribution which depends on
certain characteristics of the union of discs such as area,
perimeter, and other geometric properties to be specified
later. Section 3 provides the details on the power tessellation
for a union of discs as needed for subsequent sections. Sec-
tion 4 considers a birth-death type algorithm for simulation
of the disc processes, and Section 5 discusses in detail how
successive power tessellations can be constructed when a

Figure 1. A configuration of discs in general position.

new disc is added or an existing disc is removed. Section 6
deals with geometric characteristics and inclusion-exclusion
formulae for a union of discs and how to make local
computations when considering a successive construction
of power tessellations as in Sections 4 and 5. The section
contains some new results which might be of general interest
for readers interested in power diagrams. Section 7 discusses
the statistical aspects by considering a particular dataset and
a fitted disc process based on our models. Section 8 contains
concluding remarks.

2. Stochastic models

We use the following notation. The d-dimensional Eu-
clidean space is denoted Rd. Let S ⊂ R2 be a bounded set
defining the region of centres of discs to be considered in
the sequel. Identify a two-dimensional closed disc b(z, r)
with centre z ∈ S and radius r > 0 by the point x =
(z, r) ∈ S×(0,∞). Then, denoting the disc process by X, a



Figure 2. The power tessellation of the union of discs in
Fig. 1.

realization of X can be identified as a finite configuration of
such points, i.e. X = {(z1, r1), . . . , (zn, rn)} ⊂ S × (0,∞)
(0 ≤ n < ∞). Moreover, the corresponding realization of
the random set, denoted UX, is UX = ∪ni=1b(zi, ri). In the
special case n = 0, we consider X = ∅ as the empty
configuration and UX = ∅ as the empty subset of R2.

The commonly used model for the random set is a
Boolean model [9]. Then the distribution of X is specified
by an intensity function ρ : S → [0,∞) for the centres,
where µ =

∫
S
ρ(z) dz is assumed to be strictly positive

and finite, together with a distribution Q on (0,∞) for the
radii. Specifically, the number N of discs specified by X
is then Poisson distributed with mean µ, and conditional
on N , the 2N random variables given by the centres and
radii of the discs are mutually independent, each centre has
density ρ(z)/µ on S, and each radius follows the distribution
Q. In other words, X is a Poisson process on S × (0,∞)
with intensity measure dz Q(dr), see [9]. Fig. 8 shows
a simulation of the Boolean model within a rectangular
window W = [0, 20] × [0, 10], where ρ is equal to the
constant 2.45 and Q is the uniform distribution on [0, 2.45].

Since the independence properties of the Poisson process
imply a lack of interaction, more interesting models have
been introduced in [7] and further generalized in [11] to a
class of models called T -interaction disc processes. Here T
is the six-dimensional statistic

T (x) = (A(Ux), L(Ux), χ(Ux), Nh(Ux), Nic(Ux), Nbv(Ux)),
(1)

where A means area, L perimeter, χ Euler-Poincaré char-
acteristic (i.e. the number of connected components minus
the number of holes), Nh number of holes, Nic number

of isolated cells, and Nbv number of boundary vertices.
Section 6 relates these characteristics to the cells of the
power tessellation of Ux. By an isolated cell we mean a
disc which is not intersected by another disc in x, and
a boundary vertex is the intersection point of two arcs of
the boundary of Ux. Moreover, let θ = (θ1, . . . , θ6) ∈ R6

denote a six-dimensional parameter vector, and for vectors
t = (t1, . . . , t6) ∈ R6, define the usual inner product
on R6 by θ · t =

∑6
i=1 θiti. Then the density fθ of the

T -interaction disc process X with respect to the Poisson
process on S × (0,∞) with intensity measure dz Q(dr) is
given by

fθ(x) =
1
cθ

exp (θ · T (x)) , (2)

where θ is chosen such that the density is well-defined, i.e.
such that

cθ = exp

(∫
S×(0,∞)

ρ(z) dzQ(dr

)
×

∞∑
n=0

∫
S×(0,∞)

· · ·
∫
S×(0,∞)

exp (θ · T ({(z1, r1), . . . , (zn, rn)}))

dz1Q(dr1) · · · dznQ(drn)

is finite (in the sum, if n = 0 then the integral is set to
one). For a general characterization of the parameter space
Θ = {θ ∈ R6 : cθ < ∞} and a discussion on how to
handle the intractable normalizing constant cθ when making
simulation-based statistical inference based on Markov chain
Monte Carlo methods, see [12, 13]. For instance, if Q
has bounded support, then Θ = R6 is the entire space.
Fig. 9 shows a simulation of the T -interaction process within
the region W = [0, 20] × [0, 10] and with a density with
respect to the Poisson process used in Fig. 8 and where
θ = (−4.91, 1.18,−1.75,−1.75, 0, 0) (in this case Θ = R6

and further simulations can be found in [12].
The reference Poisson process agrees with the T -

interaction disc process if θ = 0. When θ 6= 0, the density
fθ(x) depends only on x through Ux, or more precisely
only on the geometric characteristics A(Ux), . . . , Nbv(Ux).
This is advantageous, since in applications often only Ux
may be observable (and possibly only within some window
as discussed in Section 7) while x may be incompletely
observed.

3. Power tessellation of a union of discs

This section defines and studies the power tessellation of
a union of discs U = ∪i∈Ibi. For specificity we assume that
the index set I = {1, . . . , n} is finite, though everything
in this section immediately extends to the case where I is
countable.

We assume that the discs bi, i ∈ I satisfy the general
position assumption (henceforth GPA). This means the fol-
lowing. Identify R2 with the hyperplane of R3 spanned by



the first two coordinate axes. For each disc b(z, r), define
the ghost sphere s(z, r) = {y ∈ R3 : ‖y − z‖ = r},
i.e. the hypersphere in R3 with centre z and radius r. A
configuration of discs is said to be in general position if
the intersection of any k + 1 corresponding ghost spheres
is either empty or a sphere of dimension 2 − k, where
k = 1, 2, . . .. Note that the intersection is assumed to be
empty if k > 2, and a sphere of dimension 0 is assumed to
consists of two points. Fig. 1 shows a finite configuration
of discs in general position. It can be verified that with
probability one a realization of any disc process model
considered in this paper satisfies the GPA, see [11].

For each disc bi (i ∈ I) with ghost sphere si, let s+i =
{(y1, y2, y3) ∈ si : y3 ≥ 0} denote the corresponding upper
hypersphere, and for u ∈ bi, let yi(u) denote the unique
point on s+i those orthogonal projection on R2 is u. The
subset of s+i consisting of those points “we can see from
above” is given by

Ci = {yi(u) : u ∈ bi, ‖u− yi(u)‖ ≥ ‖u− yj(u)‖
whenever u ∈ bj , j ∈ I},

and the GPA implies that the non-empty Ci have disjoint 2-
dimensional relative interiors. Thus, as illustrated in Fig. 3,
the non-empty Ci form a tessellation (i.e. subdivision) of
∪Is+i corresponding to the 2-dimensional pieces of upper
ghost spheres “as seen from above”. Projecting this tessel-
lation onto R2, we obtain a tessellation of U , see Fig. 2.
Below we study this tessellation in some detail.

Figure 3. The upper hemispheres as seen from above;
the underlying discs are shown in Fig. 1.

Let J = {i ∈ I : Ci 6= ∅}. For i ∈ I , define the power
distance of a point u ∈ R2 from bi = b(zi, ri) by πi(u) =
‖u− zi‖2− r2i , and define the power cell associated with bi

by

Vi = {u ∈ R2 : πi(u) ≤ πj(u) for all j ∈ I}.
For distinct i, j ∈ I , define the closed halfplane Hi,j = {u ∈
R2 : πi(u) ≤ πj(u)}. Each Vi is a convex polygon, since it
is a finite intersection of closed halfplanes Hi,j . The power
cells have disjoint interiors, and by GPA, each Vi is either
empty or of dimension two. Consequently, the non-empty
power cells Vi, i ∈ J constitute a tessellation of R2 called
the power diagram (or Laguerre diagram), see [1] and the
references therein. In the special case where all radii ri are
equal, we have I = J and the power diagram is a Voronoi
tessellation (e.g. [10, 14]) where each cell Vi contains zi in
its interior. If the radii are not equal, a power cell Vi may
not contain zi, since Hi,j may not contain zi.

Let Bi denote the orthogonal projection of Ci on R2.
By Pythagoras, for all u ∈ bi, πi(u) + ‖u − yi(u)‖2 = 0.
Consequently, for any i, j ∈ I and u ∈ bi ∩ bj ,
‖u−yi(u)‖ ≥ ‖u−yj(u)‖ if and only if πi(u) ≤ πj(u).

Thus Bi = Vi ∩ bi. By GPA and the one-to-one correspon-
dence between Bi and Ci, the collection of sets Bi, i ∈ J
constitutes a subdivision of U into 2-dimensional convex sets
with disjoint interiors. We call this the power tessellation of
the union of discs and denote it by B. Further, if i ∈ J ,
we call Bi the power cell restricted to its associated disc
bi (clearly, Bi = ∅ if i ∈ I \ J). Since Vi may not contain
zi, Bi may not contain zi; an example of this is shown in
Fig. 2. We say that a cell Bi is isolated if Bi = bi.

It is illuminating to consider Figure 2 when making the
following definitions. If the intersection ei,j = Bi ∩ Bj
between two cells of B is non-empty, then ei,j = [ui,j , vi,j ]
is a closed line segment, where ui,j and vi,j denote the
endpoints, and we call ei,j an interior edge of B. The
vertices of B are given by all endpoints of interior edges.
A vertex of B lying on the boundary ∂U is called a
boundary vertex, and it is called an interior vertex otherwise.
Each circular arc on B defined by two successive boundary
vertices is called a boundary edge of B. The circle given
by the boundary of an isolated cell of B is also called a
boundary edge or sometimes an isolated boundary edge. The
connected components of ∂U are closed curves, and each
such curve is a union of certain boundary edges which either
bound a hole, in which case the curve is called an inner
boundary curve, or bound a connected component of U , in
which case the curve is called an outer boundary curve. A
generic boundary edge of B is written as bui, vie if Bi 6= bi
(a non-isolated cell), where the index means that ui and vi
are boundary vertices of Bi, or as ∂bi if Bi = bi. We order
ui and vi such that bui, vie is the circular arc from ui to vi
when ∂bi is considered anti-clockwise.

By GPA, any intersection among four cells of B is empty,
each interior vertex corresponds to a non-empty intersection
among three cells of B, and exactly three edges emerge at



each vertex. Note that each isolated cell has no vertices
and one edge. Each interior edge ei,j is contained in the
bisector (or power line or radical axis) of bi and bj defined
by ∂Hi,j = {u ∈ Rd : πi(u) = πj(u)}. This is the line
perpendicular to the line joining the centres of the two discs,
and passing through the point

zi,j =
1
2

(
zi + zj +

r2j − r2i
‖zi − zj‖2 (zi − zj)

)
.

We call Ei,j ≡ ∂Hi,j ∩ bi = ∂Hi,j ∩ bj the chord of bi∩ bj .
Obviously, ei,j ⊆ Ei,j .

The dual graph D to B has nodes equal to the centres
zi, i ∈ J of discs generating non-empty cells, and each edge
of D is given by two vertices zi and zj such that ei,j 6= ∅.
See Fig. 4. Note that there is a one-to-one correspondence
between the edges of D and the interior edges of B.

Figure 4. The dual graph corresponding to the power
tessellation in Fig. 2.

4. Algorithms for simulation of the disc pro-
cesses

We can construct the power tessellation of a finite union
of discs by successively adding the discs one by one,
keeping track on old and new edges and whether each
disc generates a non-empty cell or not. This successive
construction is considered in Section 5 and is much in
line with a Metropolis-Hastings algorithm to be discussed
below for the simulation of the T -interaction disc process
introduced in Section 2.

4.1. The conditional intensity

The so-called Papangelou conditional intensity will
play a key role. For a finite configuration x =
{(z1, r1), . . . , (zn, rn)} specifying n ∈ {0, 1, . . .} discs with
centres in the bounded region S, and for v = (z, r) speci-
fying another disc b(z, r) with centre in S, the Papangelou
conditional intensity is defined by

λθ(x, v) = fθ(x ∪ {v})/fθ(x). (3)

. Combining (1)-(3), we obtain

λθ(x, v) = exp
(
θ1A(x, v) + θ2L(x, v) + θ3χ(x, v)+
θ4Nh(x, v) + θ5Nic(x, v) + θ6Nbv(x, v)

)
(4)

where for functionals W = A,L, . . ., we define
W (x, v) = W (Ux∪{v}) − W (Ux). We can interpret
λθ(x, v)ρ(z) dz Q(dr) as the conditional probability for
observing a disc with centre in an infinitesimally small
region around z of area dz and radius in an infinitesimally
small interval around r of length dr, given that the remaining
discs of the process are specified by x.

Note that the model is specified by λθ, since there is a
one-to-one correspondence between fθ and λθ. Moreover,
in contrast to fθ, λθ does not depend on the intractable
normalizing constant cθ in (2). Moreover, λθ(x, v) depends
only on local information in the sense that it only depends
on v and those connected components of Ux which are
intersected by b(v). This is utilized when making simulations
as discussed in Sections 4.2 and 6.2.

4.2. Birth-death Metropolis-Hastings algorithm

Simulation of the reference Poisson process with inten-
sity measure ρ(z) dz Q(dr) is straightforward using the
definition of this process, see Section 2 and [13]. It is
more complicated to simulate a T -interaction disc process
with Papangelou conditional intensity (4). In fact other
models with λθ(x, v) depending only on W (x, v) for W =
A,L, χ,Nh, Nic, Nbv or other characteristics of the power
tessellation may also be simulated by the following algo-
rithm.

We use a simple version of the birth-death type
Metropolis-Hastings algorithm studied in [5, 6, 13] to gen-
erate a Markov chain Xt, t = 0, 1, . . . which converges
towards the T -interaction disc process. The details are given
below, where a birth is an addition of a disc and a death is
a deletion of an existing disc.

Suppose Xt = x is the state at iteration t. Then we
generate a proposal which is either a ‘birth’ x∪{v} of a new
discs v = (z, r) or a ‘death’ x \ {xi} of an old disc xi ∈ x.
Each kind of proposal may happen with equal probability



1/2. Define

rθ(x, v) = λθ(x, v)

∫
S
ρ(s) ds

ρ(z)(n(x) + 1)
.

In case of a birth-proposal, z has a density on S proportional
to ρ, and r follows the distribution Q. This proposal is
accepted as the state at iteration t + 1 with probability
min{1, Hθ(x, v)}, where the Hastings ratio is given by
Hθ(x, v) = rθ(x, v). In case of a death-proposal, xi is a
uniformly selected point from x, and the Hastings ratio in
the acceptance probability of the proposal is now given by
Hθ(x, xi) = 1/rθ(x \ {xi}, xi) (in the special case where
x = ∅, we do nothing). Finally, if neither kind of proposal
is accepted, we retain x at iteration t+ 1.

As verified in [6], the generated Markov chain is aperiodic
and positive Harris recurrent, the chain converges towards
the distribution of X, and Birkhoff’s ergodic theorem estab-
lishes convergence of Monte Carlo estimates of mean values
with respect to T -interaction process (2). In some cases local
stability is satisfied, meaning that for some constant Kθ we
have

λθ(x, v) ≤ Kθ; (5)

see Proposition 7 in [11]. Then the chain is geometrical
ergodic, and hence a central limit theorem applies for
Monte Carlo estimates, see [2, 13, 15]. Moreover, from
a computational perspective, the important point of the
algorithm is that it only involves calculating the Papangelou
conditional intensity, so only local computations of the
statistics appearing in (4) are needed.

Denote the support of Q by supp(Q), and the support of
the intensity measure of the reference Poisson process by

Ω = {(z, r) ∈ S × (0,∞) : ρ(z) > 0, r ∈ supp(Q)}.

Let N be the set of all finite configurations x ∈ Ω so that
the discs given by x are in general position. In theory we
may use any state of N as the initial state of the algorithm,
but we have mainly used three kinds of initial states:

(a) the extreme case of the empty configuration ∅;
(b) if local stability is satisfied, the other extreme case is

given by a realization from a Poisson process D with
intensity measure Kθρ(z) dz Q(dr), where Kθ is the
upper bound in (5);

(c) a realization of the reference Poisson disc process Ψ
with intensity measure dz Q(dr) (an intermediate case
of (a)-(b) if Kθ > 1).

When local stability is satisfied, there exists a coupling be-
tween the T -interaction process X and the Poisson processes
D and Ψ in (b) and (c) such that D dominates both X and
Ψ, i.e. X ⊆ D and Ψ ⊆ D. See [8].

5. Successive construction of power tessella-
tions

This section explains how to construct a new power
tessellation of a union of discs by adding a new ball
(Section 5.1) or deleting an old ball (Section 5.2), assuming
that the old power tessellation is known. This is exactly what
is needed for the birth-death Metropolis-Hastings algorithm
in Section 4.2. The constructions can easily be extended to
keep track on the connected components of the union of
discs, but to save space we omit those details.

5.1. The case where a new disc is added

Suppose we want to construct a new power tessellation
Bnew of a union Unew = ∪n1 bi of n ≥ 1 discs in general po-
sition, where we are adding the disc bn and we have already
constructed the power tessellation Bold of Uold = ∪n−1

1 bi
based on the n − 1 other discs (if n = 1 then Bold and
Uold are empty). More precisely, with respect to Bold, we
assume to know all the old edges. We denote old interior
edges by [uold

i,j , v
old
i,j ] and old boundary edges by buold

i , vold
i e

or ∂boldi . We want to construct the new tessellation Bnew of
Unew = Uold ∪ bn by finding its interior edges [unew

i,n , v
new
i,n ]

and boundary edges bunew
n , vnew

n e associated to the new cell
Bnew
n . This is done in steps (ii) and (iv) below. Moreover,

to obtain the remaining new edges, we modify old interior
edges [uold

i,j , v
old
i,j ] and old boundary edges buold

i , vold
i e or

∂boldi , noticing that a “modified old edge” can be unchanged,
reduced or disappearing. This is done in steps (iii) and (v)
below. Notice that steps (i), (ii), and (iv) determine the new
cells, i.e. which of the sets Bnew

1 , . . . , Bnew
n are empty or

not.
(i) Considering old discs intersecting the new disc: If bn

is contained in some disc bj with j < n, then Bnew
n is

empty and so Bnew = Bold is unchanged. Assume that bn
is not contained in any disc bj with j < n, and without
loss of generality that bn intersects Bold

1 , . . . , Bold
i but not

Bold
i+1, . . . , B

old
n−1, where 0 ≤ i ≤ n − 1 (setting i = 0 if bn

has no intersection). Then Bnew
j = Bold

j is unchanged for
j = i + 1, . . . , n− 1, so it suffices below to find the edges
of Bnew

1 , . . . , Bnew
i and Bnew

n .
If i = 0 then Bnew

n = bn is an isolated cell with boundary
edge ∂bn. In (ii)-(v) we assume that i ≥ 1.

(ii) Finding the interior edges of Bnew
n : To obtain the

interior edges of Bnew
n , for j = 1, . . . , i, we start by

assigning enew
j,n ← [unew

j,n , v
new
j,n ], considering unew

j,n and vnew
j,n

as (potential) boundary vertices given by the endpoints of
the chord Ej,n. Further, for k = 1, . . . , i with k 6= j,
if enew

j,n ∩ Hn,k = ∅ (or equivalently unew
j,n 6∈ Hn,k and

vnew
j,n 6∈ Hn,k, since Hn,k is convex) we obtain that enew

j,n ← ∅
and we can stop the k-loop, else enew

j,n ← enew
j,n ∩ Hn,k. In

the latter case, either both vertices are contained in Hn,k

and so the edge remains unchanged, or exactly one vertex is



not contained in Hn,k, e.g. unew
j,n 6∈ Hn,k but vnew

j,n ∈ Hn,k,
in which case unew

j,n becomes an interior vertex given by the
point enew

j,n ∩∂Hn,k while vnew
j,n is unchanged. In this way we

find all interior edges of Bnew
n , and all interior and boundary

vertices of Bnew
n .

Since we have assumed that i > 0, Bnew
n is empty if and

only if it has no interior edges.
(iii) Modifying the old interior edges: At the same time as

we do step (ii) above, we also check whether each interior
edge eoldj,k = [uold

j,k , v
old
j,k ] of Bold with j < k ≤ i should be

kept, reduced or omitted when we consider Bnew (recalling
that enew

j,k = eoldj,k is unchanged if j > i or k > i). We have

enew
j,k = eoldj,k ∩Hj,n = eoldj,k ∩Hk,n.

Thus enew
j,k is empty if uold

j,k 6∈ Hk,n and vold
j,k 6∈ Hk,n, while

enew
j,k = eoldj,k if uold

j,k ∈ Hk,n and vold
j,k ∈ Hk,n. Further, if

uold
j,k ∈ Hk,n and vold

j,k 6∈ Hk,n, then enew
j,k = [uold

j,k , v
new
j,k ]

where vnew
j,k is the point given by eoldj,k ∩ ∂Hk,n. Similarly,

if uold
j,k 6∈ Hk,n and vold

j,k ∈ Hk,n, then enew
j,k = [unew

j,k , v
old
j,k ]

where unew
j,k is the point given by eoldj,k ∩ ∂Hk,n.

Note that for each j ≤ i, Bnew
j is empty if and only if it

has no interior edge.
(iv) Finding the boundary edges of Bnew

n : Suppose that
Bnew
n has m > 0 boundary vertices wnew

1 , . . . , wnew
m . Notice

that m is an even number, and we can organize the boundary
vertices such that wnew

1 = zn + rn(cosϕnew
1 , sinϕnew

1 ), . . .,
wnew
m = zn + rn(cosϕnew

m , sinϕnew
m ), where 0 ≤ ϕnew

1 <
· · · < ϕnew

m < 2π. Then Bnew
n has m/2 boundary edges,

namely

bwnew
2 , wnew

3 e, bwnew
4 , wnew

5 e, . . . , bwnew
m , wnew

1 e

if zn + (rn, 0) ∈ Hn,j for all j = 1, . . . , i, and

bwnew
1 , wnew

2 e, bwnew
3 , wnew

4 e, . . . , bwnew
m−1, w

new
m e

otherwise.
(v) Modifying the old boundary edges: Finally, we modify

the boundary edges buold
j , vold

j e of Bold considering Bnew

and j ≤ i (noticing that buold
j , vold

j e is a boundary edge of
Bnew too if j > i). This is done in a similar way as in
step (iv). Suppose that Bnew

j has mj > 0 boundary vertices
wnew

1 , . . . , wnew
mj

, which we organize as in (iv). Then Bnew
j

has boundary edges

bwnew
2 , wnew

3 e, bwnew
4 , wnew

5 e, . . . , bwnew
mj

, wnew
1 e

if zj+(rj , 0) ∈ Hj,k for all k ≤ n with k 6= j and bj∩bk 6=
∅, and

bwnew
1 , wnew

2 e, bwnew
3 , wnew

4 e, . . . , bwnew
mj−1

, wnew
mj
e

otherwise.

5.2. The case where a disc is deleted

Suppose we are deleting the disc bn from a configu-
ration {b1, . . . , bn} of n ≥ 1 discs, which are assumed
to be in general position. We also assume that we know
the power tessellation Bold of Uold = ∪n1 bi. Below we
explain how to construct the new power tessellation Bnew

of Unew = ∪n−1
1 bi. More precisely, with respect to Bold,

we assume to know all the interior edges [uold
i,j , v

old
i,j ] and all

the boundary edges buold
i , vold

i e. We want to construct the
tessellation Bnew of Unew = Uold\bn by finding the interior
edges [unew

i,j , v
new
i,j ] and the boundary edges bunew

i , vnew
i e

associated to each new cell Bnew
i , noticing that Bnew

i either
agrees with Bold

i or is an enlargement of Bold
i or is a

completely new cell. One possibility could be to ”reverse”
the construction in Section 5.1, where a new disc is added,
however, we realized that it is easier to create the new edges
without reversing the construction in Section 5.1 but using a
construction as described below. This is partly explained by
the fact that an old empty set Bold

i may possibly be replaced
by a non-empty set Bnew

i .
(i) Considering the discs intersecting the disc which is

deleted: Clearly, if Bold
n is empty, then Bnew = Bold is

unchanged. Assume that Bold
n is a non-empty cell, and

without loss of generality that bn intersects b1, . . . , bi but
not bi+1, . . . , bn−1, where 0 ≤ i ≤ n − 1 (setting i = 0 if
bn has no intersection). Then it suffices to find the edges
of Bnew

1 , . . . , Bnew
i , since Bnew

j = Bold
j is unchanged for

j = i + 1, . . . , n − 1. If i = 0 then Bold
n = bn is an

isolated cell, and so Bnew
1 = Bold

1 , . . . , Bnew
n−1 = Bold

n−1

are unchanged. In the following steps (ii)-(iv), suppose that
i > 0.

(ii) Finding the new interior edges: If i = 1, no new
interior edge appears. Suppose that i ≥ 2. We want to
determine each set enew

j,k with j < k ≤ i. We start by
assigning all cells Bnew

1 , . . . , Bnew
i to be non-empty, and

by assigning enew
j,k ← [unew

j,k , v
new
j,k ], considering unew

j,k and
vnew
j,k as (potential) boundary vertices given by the endpoints

of the chord Ej,k. Consider a loop with l = 1, . . . , i and
l 6= j, k. If enew

j,k ∩ Hk,l = ∅ (or equivalently unew
j,k 6∈ Hk,l

and vnew
j,k 6∈ Hk,l, since Hk,l is convex), we have that

enew
j,k is empty and we can stop the l-loop. Otherwise assign
enew
j,k ← enew

j,k ∩Hk,l, where we notice that only the following
two cases can occur. First, if both vertices of enew

j,k are
contained in Hk,l, the edge remains unchanged. Second, if
exactly one vertex is not contained in Hk,l, e.g. unew

j,k 6∈ Hk,l

but vnew
j,k ∈ Hk,l, then unew

j,k becomes an interior vertex given
by the point enew

j,k ∩ ∂Hk,l while vnew
j,k is unchanged. When

the loop is finished, we have determined all the new interior
edges, including the information whether their endpoints are
interior or boundary vertices.

(iii) Determining the new cells: For each j ≤ i, we
determine if Bnew

j is a new cell by checking if it has an edge.
Suppose that Bnew

j has no interior edge, i.e. it is either an



empty set or a new isolated cell. If an arbitrary fixed point of
bj is included in Hj,l for all l = 1, . . . , n−1 with l 6= j, then
Bj has exactly one boundary edge and it is an isolated cell.
Otherwise Bnew

j is empty. In this way we determine whether
each Bnew

j is empty or a new cell, including whether it is
an isolated cell.

(iv) Finding the new boundary edges: We have already
determined the new isolated boundary edges in step (iii).
Consider a non-isolated cell Bnew

j with j ≤ i with boundary
vertices wnew

k = zj+rj(cosϕnew
k , sinϕnew

k ), k = 1, . . . ,mj .
Recall that mj > 0 is an even number and we organize the
vertices so that 0 ≤ ϕnew

1 < · · · < ϕnew
mj

< 2π, cf. (iv) in
Section 5.1. Then Bnew

j has mj/2 boundary edges, namely

bwnew
2 , wnew

3 e, bwnew
4 , wnew

5 e, . . . , bwnew
mj

, wnew
1 e

if zj + (rj , 0) ∈ Hj,l for all l = 1, . . . , i, and

bwnew
1 , wnew

2 e, bwnew
3 , wnew

4 e, . . . , bwnew
mj−1, w

new
mj
e

otherwise.

6. Calculation of characteristics of power tes-
sellations and unions of discs

6.1. Geometric characteristics and inclusion-
exclusion formulae

Propositions 1-2 below concern various useful relations
between certain geometric characteristics of the union of
discs U = Ux and of its power tessellation B = Bx,
assuming x ∈ N . Among other things, the results become
useful in connection to verifying Ruelle stability (see [11]),
for computation of geometric characteristics in Section 6.2,
and for the sequential construction of power tessellations
considered in Section 4.2.

Define the number of connected components Ncc =
Ncc(U), and the following characteristics of B: the number
of non-empty cells Nc = Nc(B), the number of interior
edges Nie = Nie(B), the number of edges Ne = Nbe +Nie,
the number of interior vertices Niv = Niv(B), and the
number of vertices Nv = Nbv + Niv. These statistics
do not appear in the T -interaction process specified by
(1)-(2) since they cannot be determined from U but only
from B, which usually in practice only U is observable
(and possibly only within some window as discussed in
Section 7). Furthermore, let N = n(x) denote the number
of discs.

Proposition 1. We have

Nic ≤ Ncc ≤ Nc ≤ N, Nbv = 2Nie − 3Niv, (6)

and
χ = Ncc −Nh = Nc −Nie +Niv. (7)

If Nc ≥ 2 and Ncc = 1, then

Nbe = Nbv ≤ 2Nie, 3Nv = 2Ne. (8)

If Nc ≥ 3 and Ncc = 1, then

Nie ≤ 3Nc − 6. (9)

Moreover,
Nbv ≤ 6N (10)

and

Nh = 0 if Nc ≤ 2, Nh ≤ 2Nc−5 if Nc ≥ 3. (11)

Proof. The inequalities in (6) clearly hold, and the identity in
(6) follows from a simple counting argument, using that each
interior edge has two endpoints, and exactly three interior
edges emerge at each interior vertex.

The first identity in (7) is just the definition of χ (see
Section 2) and the second identity follows from Euler’s
formula.

Assuming Nc ≥ 2 and Ncc = 1, (8) follows from simple
counting arguments, using first that exactly two boundary
edges emerge at each boundary vertex, second the simple
fact that Nbv ≤ Nv, and third that exactly three edges
emerge at each vertex.

To verify (9), consider the dual graph D. Since we assume
that Nc ≥ 3 and Ncc = 1, D has Nie edges and Nc vertices,
and so by planar graph theory [16], since D is a connected
graph without multiple edges, the number of dual edges is
bounded by 3Nc − 6.

To verify (10), note that Nbv ≤ 2Nie, cf. (6). Using (9)
and considering a sum over all components, we obtain that
Nie is bounded above by the number of components with
two cells plus three times the number of components with
three or more cells. Consequently, Nbv ≤ 6N .

Finally, to verify (11), note that Nh is given by the sum
of number of holes of all connected components of U , and a
connected component consisting of one or two power cells
has no holes, so it suffices to consider the case where Ncc =
1 and Nc ≥ 3. Then by (7), Nh is bounded above by 1 −
(Nc−Nie), which in turn by (9) is bounded above by 2Nc−
5.

Equation (11) is a main result in [7]. Our proof of (11) is
much simpler and shorter, demonstrating the usefulness of
the power tessellation and its dual graph. The upper bound
in (11) can be obtained for any three or more discs: If x
consists of three discs b1, b2, b3 such that bi ∩ bj 6= ∅ for
1 ≤ i < j ≤ 3 and b1 ∩ b2 ∩ b3 = ∅, then Nh = 1 and
Nc = 3, so Nh = 2Nc − 5. Furthermore, we may add a
fourth, fifth, . . . disc, where each added disc generates two
new holes—as illustrated in Figure 5 in the case of five
discs—whereby Nc = 3, 4, . . . and Nh = 2Nc − 5 in each
case.



Figure 5. A configurations of five discs with exactly
2Nc − 5 holes.

Kendall et al. [7] noticed the inclusion-exclusion formula
for the functionals W = A,L, χ:

W (Ux) =
n∑
1

W (bi)−
∑

1≤i<j≤n
W (bi ∩ bj) + · · ·

+ (−1)n−1W (b1 ∩ · · · ∩ bn)

where the sums involve 2n−1 terms. Using the power tessel-
lation, inclusion-exclusion formulae with much fewer terms
are given by (6)-(7) for χ and Nbv, and by Proposition 2
below for A and L. In Proposition 2, I1(x), I2(x), and I3(x)
denote index sets corresponding to non-empty cells, interior
edges, and interior vertices of Bx, respectively. Note that
I1(x) and I2(x) correspond to the cliques in the dual graph
Dx consisting of 1 and 2 nodes, respectively, while I3(x)
corresponds to the subset of 3-cliques {i, j, k} ∈ Dx with
bi ∩ bj ∩ bk 6= ∅ (i.e. bi ∪ bj ∪ bk has no hole). Moreover,
if {i, j, k} ∈ Dx, then bi ∩ bj ∩ bk 6= ∅ if and only if
Ei,j ∩Ei,k 6= ∅, where the latter property is easily checked.

Proposition 2. The following inclusion-exclusion formulae
hold for the area and perimeter of the union of discs:

A(Ux) =
∑

i∈I1(x)

A(bi)−
∑

{i,j}∈I2(x)

A(bi ∩ bj)

+
∑

{i,j,k}∈I3(x)

A(bi ∩ bj ∩ bk) (12)

=
∑

i∈I1(x)

A(Bi) (13)

and

L(Ux) =
∑

i∈I1(x)

L(bi)−
∑

{i,j}∈I2(x)

L(bi ∩ bj)

+
∑

{i,j,k}∈I3(x)

L(bi ∩ bj ∩ bk) (14)

=
∑

e boundary edge of Bx

L(e). (15)

Proof. Equations (12) and (14) are due to Theorem 6.2 in
[4], while (13) and (15) follow immediately.

Edelsbrunner [4] establishes extensions to Rd of the
inclusion-exclusion formulae given by the second identities

in (6), (12), and (14). Note that we cannot replace the sums
in (12) by sums over all discs, pairs of discs, and triplets of
discs from x.

6.2. Local calculations

For calculating the area and perimeter, the inclusion-
exclusion formulae (13) and (15) appear to be more suited
than (12) and (14) when the computations are done in
combination with the sequential constructions of power
tessellations considered in Section 4.2 and Section 5. Note
that we need only to do “local computations”.

For example, suppose we are given the power tessellation
Bold of Uold = ∪n−1

1 bi and add a new disc bn. When con-
structing the new power tessellation Bnew of Unew = ∪n1 bi,
we need only to consider the new set Bn and the old cells
in Bold which are neighbours to Bn with respect to the dual
graph of Bnew, cf. Section 5.1. Similarly, when a disc is
deleted and the new tessellation is constructed, we need
only local computations with respect to the discs intersecting
the disc which is deleted, cf. Section 5.2. Moreover, local
computations are only needed when calculating Nic and
Nbv.

In order to calculate (χ,Nh) or equivalently (Ncc, Nh),
we could keep track on the inner and outer boundary curves
in our sequential constructions, using a clockwise and anti-
clockwise orientation for the two different types of boundary
curves. However, in our MCMC simulation codes, we found
it easier to keep track on Nc, Nie, Niv, and Ncc, and thereby
obtain χ by the second equality in (7), and hence Nh by the
first inequality in (7). In either case, this is another kind of
local computation.

Finally, let us explain in more detail how we can find
the area A. We can easily determine the total area of all
isolated cells of B. Suppose that Bi is a non-empty, non-
isolated cell of B. Let ci denote the arithmetic average of the
vertices of Bi. Then ci ∈ Bi, since Bi is convex. For any
three points c, u, v ∈ R2, let ∆(c, u, v) denote the triangle
with vertices c, u, v. If bu, ve is a boundary edge of Bi, let
Γ(u, v) denote the cap of bi bounded by the arc bu, ve and
the line segment [u, v]. Then the area of Bi is the sum of
areas of all triangles ∆(ci, u, v), where u and v are defining
an (interior or boundary) edge of Bi, plus the sum of areas
of all caps Γ(u, v), where u and v are defining a boundary
edge of Bi.

7. Statistical aspects

As an illustrative application example, we consider the
well known heather dataset first presented in Diggle [3].
Fig. 6 shows a binary image of the presence of heather
(Calluna vulgaris, indicated by black) in a 10× 20 m rect-
angular region W at Jädraås, Sweeden (henceforth units are
meters). Assuming the heather plants grow from seedlings



Figure 6. The heather dataset.

into roughly hemispherical bushes, a disc process model
has a straightforward biological interpretation by identifying
heather bushes and discs.

Edge effects occur, since the heather plants expand outside
the observation window W , where W is a subset of S, the
bounded region of plants centres. In fact S is unknown to
us, but this problem and the problem of edge effects can be
solved as discussed in detail in [12]; for the present paper
it suffices to think of S as a much larger region than W .

Diggle [3] and many other publications modelled the
presence of heather by a stationary random-disc Boolean
model, see the review in [12]. For the reference Poisson
process, let ρ = 2.45 be constant on S and Q be the uniform
distribution on [0, 0.53] (independent biological evidence
suggests that the radii of heather plants should be less than
0.5 m, cf. [3]; (3); see also the discussion in [12]).

For the T -interaction process, let θ5 = θ6 = 0. This
is mainly for convenience, since the number of isolated
cells and the number of boundary vertices will be hard
to determine from Fig. 6, the heather plants may only
approximately be discs, and only a digital image is observed
where the resolution makes it difficult to identify circular
structures. As discussed in [12], the model can be reduced
to the case where θ3 = θ4 so that θ = (θ1, θ2, θ3, θ3, 0, 0)
and hence

fθ(x) =
1
cθ

exp (θ1A(Ux) + θ2L(Ux) + θ3Ncc(Ux)) ,
(16)

i.e. the important characteristics are the area A, the perimeter
L, and number of connected components Ncc. Approximate
maximum likelihood estimates of the parameters are then
given by θ̂1 = −4.91, θ̂2 = 1.18, and θ̂3 = 2.25, and
approximate 95% confidence intervals are given by −6.48 ≤
θ1 ≤ −3.35, 0.77 ≤ θ2 ≤ 1.59, and −2.75 ≤ θ3 ≤ −1.75.
For further details, including a discussion of other fitted
models and model controls, see again [12].

Using simulations under the fitted model (16), we obtain
an estimated intensity of plants given by 2.36 plants per unit
area, and an estimated mean plant radius of 0.25 with an
estimated standard deviation of 0.25. Further, Fig. 7 shows
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Figure 7. Estimated distribution of the plant radius un-
der the fitted (A,L,Ncc)-interaction process. The solid
line show the uniform density of the typical radius under
the corresponding reference Poisson process.

Figure 8. Simulation of the Boolean model correspond-
ing to the reference Poisson process

the estimated distribution of the plant radius, which is ob-
viously different from a uniform distribution. Furthermore,
Fig. 8 shows a simulation under the the reference Poisson
process, and Fig. 9 a simulation under the fitted (A,L,Ncc)-
interaction process. These figures together with other plots
in [12] indicate that the T -interaction process provides a
much better fit than the traditional Boolean model.

8. Concluding remarks

We have demonstrated the usefulness of the power tes-
sellation of a union of discs and related results for geo-
metric characteristics of this tessellation when simulating a
disc process with a density which only depends on such
characteristics. In this connection a successive construction
of power tessellations when adding or removing a single
disc has been developed, new interesting relations between
the geometric characteristics have been established, and
software have been developed and made public available.



Figure 9. Simulation of the fitted (A,L,Ncc)-interaction
process.

As an application example, we have fitted our model to a
heather dataset. Since the heather dataset are rather smooth
while a disc process is naturally more rugged, possibly an
even better fit may be obtained by replacing the disc process
with a process of objects with a less restrictive form, e.g.
obtained by considering random deformations of discs. To
which extent the useful results discussed in this paper extend
to the case of a process of objects with non-circular shapes
is an open problem.
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