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Speech Intelligibility Prediction Based
on Mutual Information

Jesper Jensen and Cees H. Taal

Abstract—This paper deals with the problem of predicting the
average intelligibility of noisy and potentially processed speech sig-
nals, as observed by a group of normal hearing listeners. We pro-
pose a model which performs this prediction based on the hypoth-
esis that intelligibility is monotonically related to the mutual in-
formation between critical-band amplitude envelopes of the clean
signal and the corresponding noisy/processed signal. The resulting
intelligibility predictor turns out to be a simple function of the
mean-square error (mse) that arises when estimating a clean crit-
ical-band amplitude using a minimum mean-square error (mmse)
estimator based on the noisy/processed amplitude. The proposed
model predicts that speech intelligibility cannot be improved by
any processing of noisy critical-band amplitudes. Furthermore, the
proposed intelligibility predictor performs well (p > 0.95) in pre-
dicting the intelligibility of speech signals contaminated by additive
noise and potentially non-linearly processed using time-frequency
weighting.

Index Terms—Instrumental measures, noise reduction, objective
distortion measures, speech enhancement, speech intelligibility
prediction.

I. INTRODUCTION

ONAURAL speech intelligibility prediction methods

aim at predicting the average intelligibility of noisy
and/processed speech signals, as judged by a group of listeners.
Our motivation for studying speech intelligibility predictors is
twofold. Firstly, reliable intelligibility predictors are of great
practical importance, e.g., in guiding the development process
of speech processing algorithms, and replacing costly listening
tests in early stages of the development phase. Secondly, the
development and study of intelligibility predictors may lead
to a better understanding of the mechanism behind human
intelligibility capabilities.

Historically, two main branches of intelligibility predictors
may be identified: methods based on the Articulation Index (Al)
[1], proposed first by French and Steinberg [2] and later refined
by Kryter [3], and the Speech Transmission Index (STI) [4] pro-
posed by Steeneken and Houtgast [5].

The basic Al approach assumes that intelligibility is a func-
tion of the speech information available to the listener across
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several frequency bands, each of which carries an indepen-
dent contribution to the total intelligibility. Assuming that
speech and masker signals are available in isolation, effective
signal-to-noise ratios (SNRs) are computed for each frequency
band; the SNRs are then limited to a certain pre-specified SNR
range, normalized to a value between 0 and 1, and combined
as a perceptually weighted average. The Al approach has later
been refined further and standardized as the Speech Intelli-
gibility Index (SII) [6]. Al and SII are based on long-term
spectra of speech and masker and therefore may be inaccurate
for fluctuating maskers. To reduce this problem, Rhebergen
proposed the Extended SII [7], which divides the speech and
masker signal into short-time frames (9-20 ms), computes the
instantaneous SII value for each frame, and then averages the
per-frame SII values to find a final intelligibility prediction.
Another extension of the SII is the Coherence SII (CSII) which
was proposed to better take into account non-linear distortions
such as peak- and center-clipping [8].

The Al based methods described above were originally
formulated with the focus on simple linear degradations, e.g.,
linear filtering and additive, uncorrelated noise. The Speech
Transmission Index (STI) [5], [9] extends the type of degrada-
tions to convolutive noise sources, such as reverberance and
the effects of room acoustics. The STI is based on changes in
the modulation transfer function. Specifically, STI relies on
the observation that reverberation and additive noise tends to
reduce the depth of the temporal amplitude/intensity modula-
tions compared to the clean reference signal. Originally, STI
used synthetic bandpass filtered probe signals with various
acoustic center frequencies, intensity-modulated with a range
of low-frequency sinusoidal modulators, whose frequencies
were chosen in the range f = 0.63 Hz to f = 12.7 Hz to
emulate the dominating modulation frequencies present in
human speech. Later, in an attempt to better take into account
the effects of various non-linear processing operations, such as
dynamic amplitude compression [10], and envelope clipping
[11], the class of speech STI (sSTI) methods were introduced
[12] which replaced the artificial probe signals by actual speech
signals. More recently, Jorgensen and Dau presented a speech
intelligibility prediction model based on the envelope power
signal-to-noise ratio SNR.,, at the output of a modulation
filter bank [13]. This model showed promising results for noisy
speech subjected to reverberation and spectral subtraction, but
has only been evaluated for stationary speech-shaped noise.

The Al and STI based intelligibility predictors considered as
a whole are suitable for a range of distortion types including ad-
ditive noise, convolutive noise, filtering, and clipping, but they
are less suited for speech signals distorted by non-stationary
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noise sources and processed by time-varying and non-linear fil-
tering systems such as those typically used in single-channel
speech enhancement systems [14], [15]. To better take this type
of distortions into account, new intelligibility predictors were
proposed such as the method of Christiansen and Dau [16], and
the Short-Time Objective Intelligibility (STOI) measure [17] by
Taal et al. STOI shows similarities to the speech-based STI
methods [12] in that speech envelopes extracted with band-
pass filters are compared; however, unlike most variants of the
speech-based STI methods which are based on long-term statis-
tics, STOI compares the envelopes via short-term measures.

In this study we constrain ourselves to monaural intelligibility
prediction, that is, only one realization of the noisy/processed
signal and the clean reference is available. We further assume
that the noise is additive but not necessarily stationary, and
we consider processing methods, which can be described in
a time-frequency analysis-modification-synthesis framework,
e.g. [18]: in the analysis stage the signal is decomposed into
time-frequency units, typically using a short-time band-pass
filter bank, in the modification stage gain factors are multiplied
onto the time-frequency units, and in the synthesis stage the
modified time-frequency units are used to reconstruct processed
time-domain signals. Since the gain factors are not necessarily
constant across time and generally depend on short-term signal
characteristics, the resulting processing may be time-varying
and non-linear.

The proposed intelligibility prediction model makes use of
basic information theoretic tools such as entropy and mutual
information [19]. It appears natural to use tools developed to
characterize information transmission. After all, the speech
communication process can be viewed as the process of
transmitting a speech signal across a time-varying, non-linear
channel (the acoustic channel, the auditory periphery, and the
higher stages of the auditory pathway) to reach the brain of the
receiver; see also the work of Allen [20] who observed that the
expression for the Al shows strong similarities to the expres-
sion for the capacity of a memoryless Gaussian channel, and
the work of Leijon [21] who studied the potential relationship
between Al (and SIT) and the acoustic-to-auditory information
rate. More specifically, the basic idea of the proposed method
is to compare the critical-band amplitude envelopes of the
clean and noisy/processed signal and estimate the intelligibility
of the noisy/processed signal based on this comparison. In
particular, we assume that the clean critical-band envelopes
contain all information relevant for speech intelligibility, and
consider the question: how much information (measured in
bits) about the clean envelopes can be extracted, on average, by
observing the envelopes of the noisy/processed signal? If the
noisy/processed envelopes provide no information whatsoever,
i.e., the mutual information between clean and noisy/processed
envelopes is zero bits, then we expect the intelligibility of the
noisy/processed signal to be zero. If, on the other hand, the
noisy/processed envelopes provide much information about the
clean envelopes, we expect the intelligibility of the noisy/pro-
cessed input signal to be high.

The proposed intelligibility prediction model shares charac-
teristics with the method proposed in [22], although the motiva-
tion for the proposed model is quite different. Specifically, the

proposed model arises as a consequence of describing speech
information transmission in a simple model of the auditory pe-
riphery, whereas the method in [22] has a more heuristic foun-
dation in that it replaces the linear correlation operation used
in the STOI model with a generalization, namely mutual infor-
mation. Furthermore, the proposed model employs a short-term
stationary signal model, whereas the method in [22] assumes
the clean and noisy/processed speech signals to be realizations
of strictly (long-term) stationary stochastic processes. Finally,
the proposed model relies on lower bounds of mutual informa-
tion, leading to simple equations in terms of second-order statis-
tics, whereas the method in [22] estimates mutual information,
which generally involves higher-order statistics.

The proposed intelligibility prediction model also bears some
similarities to the STOI model [17], as it compares critical-band
amplitude envelopes in terms of the linear correlation coeffi-
cient. However, whereas the use of linear correlation in STOI
has a heuristic foundation, it follows in the proposed model as a
consequence of the assumed signal model and a crude model of
the auditory periphery; in this sense, the proposed model might
be seen as a better motivated model.

With the proposed model, we have aimed at simplicity. For
example, the proposed model does not make use of band impor-
tance functions to emphasize certain critical bands over others.
Instead, each critical band contributes equally to intelligibility.
In fact, from the information theoretical path followed in this
paper, band importance functions are hard to justify. Further-
more, the proposed model appears to work well without (see
Section V). If one would introduce band-importance functions
or other additional free parameters, which model aspects not
taken into account by the model, we expect performance to
increase.

The article is organized as follows. In the following section
we introduce the basic auditory model used in the proposed
method. Section III derives the proposed mutual information
lower bound. Section IV presents implementational details and
discusses the numerical values of the few free parameters of
the proposed method. In Section V the proposed intelligibility
predictor is compared to intelligibility predictors from the lit-
erature for several noise sources and processing conditions. Fi-
nally, Section VI concludes the work.

II. AUDITORY FRONT-END AND NOTATION

We consider a crude signal processing model of the auditory
periphery, which is similar in structure to front-ends used in
speech enhancement [23], automatic speech recognition [24],
and intelligibility predictors [17]. The model consists of a band-
pass filter bank simulating the bandpass filtering characteristics
of the cochlea, and a full-wave rectification, which simulates
coarsely the mechanism of the hair cell transduction in the inner
ear. The resulting “inner representations” are rough abstractions
of the signal transmitted via the auditory nerve to the higher
stages of the auditory system.

The model is shown in more detail in Fig. 1. We use capital
letters to denote random processes and variables and lower-case
letters to denote the corresponding realizations. Let S(n) and
X (n) denote random processes modeling a clean speech input
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Zs
VAD
Cochlear Filters S; (m)
and
S(n) Hair Cell Transduction
Mutual I
Information
X(n) Cochlear Filters X;(m) ﬁ
and
Hair Cell Transduction
Zy
VAD
Fig. 1. Proposed intelligibility prediction scheme. It is assumed that the crit-

ical-band amplitude envelopes S;(m) of the clean speech signal contain all in-
formation relevant for speech intelligibility. The intelligibility of the noisy/pro-
cessed signal X (n) is estimated as the average information in its critical-band
envelopes X;(m) about the clean amplitude envelopes S;(m).

signal, and the corresponding noisy/processed signal, respec-
tively. Band pass filtered signals are obtained by dividing the
time-domain input signals into successive, overlapping analysis
frames, applying an analysis window, and transforming these
time-domain frames to the frequency domain using a Discrete
Fourier Transform. The resulting DFT coefficients are given by

N-1
Z S(mD + n)w(n)e IZkn/N
n=>0

S(k,m) =

and
N-1
X(k,m) = Z X (mD + n)w(n)e 32 kn/N
n=0

respectively, where k& and 7 denote the frequency bin index and
the frame index, respectively, D is the frame shift in samples, N
is the frame length in samples, and w(n) is the analysis window.
Then, a one-third octave band analysis is performed by grouping
DFT bins, resulting in critical-band amplitudes

Z |S(k,m)|?,

kcCB;

Si{m) =

(1)

and

X(k,m)|

> IX

kcCB;

respectively, where C B; is the frequency index set representing
the zth one-third octave band, : = 1, ..., L. The amplitude en-
velope signals S; (1) and X;(m) are also random processes.
The Voice Activity Detection (VAD) blocks are used to
identify and exclude low-energy frames from the computa-
tion. Signal S(n) typically contains low-energy frames, e.g.

silence regions, which certainly do not contribute to speech
intelligibility and therefore can be excluded from the mutual
information computation. For this reason a simple energy-based
per-frame VAD (details are given in Section IV) is applied
to S(n) resulting in the frame index set 75 of speech active
frames. In an identical manner, the VAD in the lower branch
identifies low- and high-energy frames in X (7). The low-en-
ergy frames are typically i) noise-only (i.e., silence) frames,
or ii) they occur due to certain types of aggressive processing
which essentially suppress entire signal frames, which do carry
speech information. The high-energy frames are represented by
the frame index set 2.
Let M denote the number of frames in a given speech sen-
tence, and let
X = [X1(1)X2(1) -

Xp(D)X1(2)--- Xp(M)T

and

S = [$1(1)85(1) -+ SL(1)81(2) -+ S (M)

denote random super vectors, formed by stacking critical-band
amplitude spectra for successive frames. We are interested in the
average mutual information (to be defined exactly below) be-
tween clean and noisy/processed critical-band amplitudes, i.e.,
L‘Z II(S AX'), where | - | denotes set cardinality, and L|Z,]| es-
timates the number of speech-active critical-band amplitudes in
the clean signal. Assuming that the entries in each super vector
are statistically independent, an assumption which is routinely
made in the area of speech enhancement!, it is easy to verify that
the mutual information 7{S; X') decomposes into a summation
of mutual information 7(S;(m); X;(m)) terms,

1 1
Al I(8;X) = MZ;I(&(m);X{(m))

1
:m Z ZI (m); X;(m)).

¢ meZ NZ, 1=1

The second equation follows because summation over the frame
index set m € Z, N Z,, where both signals S(n) and X (n)
are speech active, excludes 7{S;(m); X;(m)) terms which are
all zero. Specifically, silence frames in S(n) are excluded, and
speech information loss due to over-suppressed frames in X (1)
is taken into account (that is, all 7(S;(m); X;(m)) terms in such
frames are set to zero). An alternative, and perhaps physiolog-
ically more plausible, implementation of the described VAD
function is to replace the VAD blocks by additive, uncorrelated
internal noise sources, see e.g. [27].

For notational convenience, we skip in the following the sub-
band and frame index where possible, and simply replace S; ()
and X;(m) by S and X, respectively. The mutual information
I(S; X) between clean and noisy/processed critical-band am-
plitudes is given by [19]

1(S; X) = h(S) — h(S|X),

IThis assumption is approximately valid if the frame size N is large compared
to the correlation time of the signals in question [25], [26].
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where the differential entropy? of S is
M) = [ It n fs(o)ds,
and the conditional differential entropy A(S|X) is
B3I = [ [ fsxtei)nfs, Gla)dsds. @)

For certain simple situations, the joint probability density func-
tion (pdf) fs x (s, ) may be given and the conditional differen-
tial entropy A(.S]X) might be derived analytically. However, in
general, since the exact processing leading to X may be compli-
cated or even unknown, deriving or estimating from limited data
the joint pdf fs x (s, #) needed to compute (S| X ) is difficult at
best. Instead, to circumvent this difficulty, we propose to lower
bound the mutual information 7(S; X); as we show in the fol-
lowing, this requires only second-order statistics of fs x (s, ).

I1I. LOWER BOUNDS ON I(S; X)

We derive lower bounds on the mutual information I{S; X)
by upper bounding the conditional entropy ~{S|X), see e.g.
the work of Bialek et al. [28] for another application of this
procedure.

A. Upper Bounds on h(S|X)

From the expression in Eq. (2) for the conditional entropy
h(S]X), it follows that

r(S|X)=— /;0 Ix(z) />0 Isiz(slz) In fg)(s|w)dsdz

1
[x(x) 5 In 2weag‘rdw
Jx>0

1
Fx (E In 2weogl>

%m 2meFx (agw) . 3)

INA

|I>

IA

The first inequality holds because the maximum entropy pdf for
anon-negative random variable Y with a given variance o2 ap-
proaches a Gaussian pdf for large means, which has differential
entropy (YY) = 3In2res? 3 The second inequality follows
from Jensen’s inequality [19, Thm. 2.6.2] and the fact that In(-)
is concave.

The quantity 0’:%'% is the variance of a non-negative random
variable distributed according to the pdf fg,(s|z). Let pg), =

/y yfs12(y|z)dy denote the mean of this variable. Then,

T =/ (y — ts1)” fs1e(yl7)dy
y>0

Y

= / (,7] - *é'rrmtse(m))2fs|m(?/|'7:)dy
y=>0

£ Dimse(T)- “4)

2For notational convenience, we use the natural logarithm and express all en-
tropies in the units of nats, throughout. One nat corresponds to 1/ In 2 =1.44 bits
[19].

3This inequality is often used for random variables with double-infinite sup-
port (c0;00) [19]. However, it also holds for non-negative random variables ¥~ €
[0; o¢); in this case the maximum entropy pdf is a truncated Gaussian whose
entropy approaches from below that of a Gaussian for large means [29].

The second equation follows by recalling that the conditional
mean (15|, is identical to the minimum mean-square error
(mmse) estimator $p,ms.(2) of the clean random variable S
upon observing the noisy and/or processed realization z. So,
it is clear that ag‘m e D pmse(2) is nothing more than the
mean-square error (mse) resulting from estimating S upon
observing x, using an mmse estimator.

Let Dyymse denote Dy,mse(x) averaged across all realiza-
tions of the noisy/processed critical-band amplitude x, that is

DT’L'I’VLS@ = / ,.fX ("I")DTTLTTLSG(',I:)d"I;' (5)
Jx>0

Inserting Eq. (4) in Eq. (3) and using Eq. (5), we arrive at

hmmse, (S|X)

1
3 In27meD,mse

h(S|X).

IV

To find D, /5. We must form the mmse estimator g, and
average the resulting mse across realizations x of the noisy
and/or processed critical-band amplitudes. Finding closed-form
expressions for F(S|z) generally requires knowledge (or as-
sumption) of the joint pdf fs x(s,«). This has been a central
topic in the area of single-channel speech enhancement over the
last decades, for the case where a clean speech signal is con-
taminated by additive and independent noise; so, in this special
case, it might be possible to derive closed-form expressions for
Dimse, and Ry pmse (S]X) could be evaluated. However, for the
more general situation considered in this paper, the observations
2 may be a result of some, potentially unknown, processing ap-
plied to the noisy observations, so that the joint pdf fs x (s, )
would certainly be unknown, and estimating D, 5. reliably
from limited observations would be difficult.

To circumvent this practical difficulty, observe that replacing
the conditional mean estimator $,,ms.(2) = F(S|z) with the
linear mmse estimator $y,,,ms. (), leads to an mse of

Dlmmse (T) = /

Jy>0
Z Dm,m,se (:L)

(y - '§l’77L7ILS€(m))2fS|m(y|‘/l:)(]’y

with equality for jointly Gaussian (S, X'), and
Dl'm'm.se é / f}( (ﬂj)Dl'rrunse (Z’)d’l}
x>0
= -Dm,mse- (6)

It therefore follows that a looser upper bound on the conditional
differential entropy /(S| X ) based on linear mmse estimators is
given by

hlm'mse (S|X)

1
—1In 27”3Dl'mmse
2

hmmse(S|X)- (7)

IV

The quantity Dj,,mse is a function of second-order statistics,
rather than the joint pdf fs x (s, ).

To derive an expression for Dyymse, let ps = Eg(S) and
ix = Ex(X) denote expected values of S and X, respectively,
and let rsxy = Eij(SXv), O'gw = Es(SQ) — ,U% and U?Y =
Ex(X?) — 1% denote the cross-correlation between S and X,



434 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 2, FEBRUARY 2014

the variance of S, and the variance of X, respectively. The linear
mmse (Immse) estimator is then given by (e.g., [30]),

Stmmse(z) =gr +b, g,b€R, ®)
with
_ rsx (SX) — pspx
o3 '
b=ps — gpx.

Inserting Eq. (8) in Eq. (6) we get

2
Dimmse = 0% (1 - W) . ©)

050X

With the derived upper bounds on A{.S|X) we have the fol-
lowing lower bounds on the mutual information £(5; X),

ILB,m,'m,se (57 X)
ILB,l'm,vnse (Sw X)

IHaX{h(S) - hm,m,se(S|X)a 0}
HlaX{h(S) - hlmmse(S|X)7 0}7 (10)

> 1>

and

ILB,lm,'m,se(S;X) S ILB,m,m,SE(S;X) S I(S7X)

B. Differential Entropy h(S)

The bounds discussed in this paper are functions of the en-
tropy h(S) of the clean speech critical-band amplitudes. To de-
rive an expression for this quantity, we note that when the frame
size N is large compared to the correlation time of the clean
signals s(n), then the real and imaginary parts of the DFT co-
efficients 5'(/47, m) can be considered independent and can be
modeled as zero-mean Gaussian variables [25], and e.g. [26].
Assuming further that the DFT coefficients within the same crit-
ical band S(k,m), k € CB; are identically distributed (that
is, the speech power spectral density is constant), then S;(m)
given in Eq. (1) is a (scaled) chi-distributed random variable
with &/ = 2|C'B;| degrees of freedom.

To derive an expression for /(.5), note first that in the special
case when the real and imaginary parts of S(k,m), k € CB;
are zero-mean, unit-variance Gaussians, then the corresponding
critical-band amplitude, Z, has an expected value of

Jol 0+ 1/2)

B&) =2 )

a variance of
0% =k — E(Z)?,
and a differential entropy given by [19, Table 16.1]
h(Z)=InT(k'/2) + %(k’ —In2— (K — DTk /2)),

where I'(-) and ¥(+) denote the Gamma and the digamma func-
tion, respectively.

Differential entropy h(S) for chi—distributed unit-variance random variable
1.43

1.42

1 [nats]

1.39 +

h(S)Gz

1.38 -

1.37 +

unit-variance chi variable
— — — unit-variance normal variable
T T T T

0 5 10 15 20 25 30 35 40 45 50
Degrees of freedom

Fig. 2. Differential entropy of unit-variance chi-distributed variable as a func-
tion of degrees of freedom. The degrees of freedom corresponding to k&' =
2|CB;| are marked with . The dashed line indicates differential entropy of a
unit-variance Gaussian.

_In the general case, where the real and imaginary parts of
S(k,m), k € CB, are not unit-variance, the differential entropy
of the corresponding critical-band amplitude is

1 1
h(S)=n(Z) - 51110% + iln(r%, (11)

where we used the fact that [19]

rcY)=h(Y)+1In|c

’

for any random variable Y and constant c. Thus, the differential
entropy 2(S) is a simple function of the variance 0% of the crit-
ical-band amplitudes, because the two first terms in Eq. (11) are
functions only of the number of degrees of freedom &’ and can
therefore be computed offline. Fig. 2 plots 4(S) as a function of
the number of degrees of freedom for the case where the crit-
ical-band amplitude variance is unity, ¢% = 1. For comparison,
the differential entropy of a unit-variance Gaussian, % In27e =~
1.4189, is included. Clearly, ~(.S) is close to the upper bound
except for the lowest frequency critical bands where &' = 2.

It can be argued that estimation of A(.S) in the present con-
text is not crucial. Specifically, if the main interest is to deter-
mine how a given type of processing leading to the processed
signal x1 compares to another type of processing leading to a
processed signal x5 in terms of intelligibility, then we are inter-
ested in determining whether 7(S; X1) < I(S; X5). As h(S5)
appears on both sides of this inequality sign, the exact value of
h{S) becomes irrelevant.

Inserting Eqgs. (11) and (7) in the middle line of Eq. (10), we
find the following lower bound on mutual information

1 . 1
I8 tmmse (S; X)) = max {h(Z) ~ 5 Ino? — 3 In27e

1 o2
-1 s
+2 n

,0} [nats]. (12)

Immse
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C. Observations

Remark 1: In the special case when X and S are statistically
independent, then 8mse(2) = Es(S), Dimmse = 0%, and
the last term in Eq. (12) is zero. In this case, the sum of the
first three terms is negative (the difference between the solid
and the dashed curve in Fig. 2), but the max-operator ensures
115 tmmse (S X) = 0 as expected.

Remark 2: The expression is scaling-invariant, that is,

ILB.lmmse(S§ X) = [LB,lﬂwnse(CS3, X)
= ILB,l'm'm,se(S; CX), Ve > 0.

This is typically a desirable property, e.g. when the processing
leading to X (n) (which may be unknown) reduces the general
signal level significantly. However, the proposed model does
not take masking effects into account: if a given spectral com-
ponent is suppressed below the masking threshold, either due
to spread of masking or the threshold in quiet, it would still
(erroneously) contribute positively to speech intelligibility ac-
cording to the proposed model. For the processing types consid-
ered in the simulation experiment, however, this potential weak-
ness does not appear to play a big role.
Remark 3: From Eq. (12) it follows that

1 o’
ILB,l'mmse(SEX) ~ 5 In D S
1. Eg(S?)— 2
= 5111 S( A) 'LLS 5 2 ()
ES,)((S - Slm,m,se(X))
(13)

because the sum of the first three terms is close to 0. Since the
denominator is a mse arising from estimating a clean quantity
S based on a noisy/processed observation X, /1, immse Mmay
be recognized as an “SNR-type” of measure [18]. In fact, it re-
sembles closely the frequency-based segmental SNR fwSNRseg
with constant band-importance functions (B; = 1/K)4,see[18,
p- 504] [31]. However, whereas fwSNRseg in this case would be
interpreted as a predictor of the quality of a noisy signal en-
hanced by an Immse-estimator sy,,mse(2) [31], the developed
theory suggests that it can be interpreted differently: it charac-
terizes the intelligibility of the noisy/processed signal x, not the
quality of the signal 87,mse ().

Remark 4: As a consequence of Remark 2, linear processing
of noisy critical-band amplitudes cannot improve intelligibility
beyond that of the underlying noisy signal. To extend the range
of this statement further, recall that we introduced the linear es-
timator §j,,mse(2) in Eq. (8) only for ease of estimation. The
argument can be repeated with the generally non-linear esti-
mator 8,,mse(x) from Eq. (4), and the conclusion is that no
processing of noisy critical-bands, linear or otherwise, allows
intelligibility improvements. This prediction is in line with the
results by Loizou [32] and Taal ef al. [15], who showed that
single-channel noise reduction systems in general provide no or
very modest intelligibility improvements.

4We note that in the original proposal [31], band-importance functions were
used, which were equal to the short-term magnitude spectrum of the clean signal,
raised to a power.

Remark 5: The proposed intelligibility predictor shows sim-
ilarities to the STOI measure [17]. Let
_ TSX — HSHX

- 2 2
759x

denote the linear correlation coefficient. Inserting Eq. (9) in Eq.
(13) and using this expression for p, we find

1
ILB,lmm,se(S;X) ~ 5 hl (1 - p2)71' (14)

The proposed intelligibility predictor averages these values of
I8 mmse(S; X) across speech-active time-frequency units
(see Eq. (15) in the next Section) and uses this average as a
predictor of intelligibility.

STOI, on the other hand, computes the average of p across
speech-active frequency units®. In this way, the proposed
intelligibility predictor and STOI show strong similarities;
the main difference to STOI appears to be the non-linearity
In (1 — p?)~! applied to p before averaging.

STOI is mainly heuristically motivated (for example, com-
puting the linear correlation coefficient for speech-active time-
frequency units with a subsequent averaging operation is not
linked to any underlying theoretical reasoning). However, Eq.
(14) is a consequence of the assumed signal model and auditory
model and can in this sense be seen to offer some theoretical
justification of the less well-motivated choices made in STOI.

Remark 6: The proposed intelligibility predictor does not
make use of band-importance functions. As above, this is not a
choice, but rather a consequence of the model. Although many
existing predictors do make use of band-importance functions,
e.g. [6], [33], both the proposed predictor and STOI appear to
work quite well without.

IV. IMPLEMENTATION

Our implementation shows similarities to the STOI model de-
scribed in [17]. Signals are resampled to a sampling frequency of
10 kHz, to ensure that the frequency region relevant for speech
intelligibility is covered [2]. Signals are divided into frames of
length N = 256 samples, and a Hann analysis window w(n) is
applied; we use a frame shift of D = N/2 = 128 samples. A
DFT order of N = 256 is used. DFT coefficients are grouped
into a total of L = 15 third-order octave bands, with a center
frequency of the lowest band set to 150 Hz, and the center fre-
quency of the highest band set to approximately 4.3 kHz.

The VAD blocks in Fig. 1 are implemented by identifying
signal frames with energy no less than Ag dB of the signal
frame with maximum energy. The indices of these signal frames
are collected in the index sets Z, and Z,, for the clean and noisy/
processed signals, respectively.

Let S;(m) and X;(m) denote the critical-band amplitudes
with frame indices m € Z,N Z,,. The first and second moments
needed to evaluate 1(S;(m), X;(m)) via Egs. (12) and (9) are
estimated using first-order recursive smoothing, i.e.,

fe.x,(m+1) = afs,x,(m) + (1 — a)S;i(m + ) X;(m + 1),

and similarly for the other moments.

SNote, though, that STOI applies a clipping procedure to the noisy/processed
time-frequency units before computing p.
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TABLE I
PARAMETER VALUES IN PROPOSED MODEL.

Parameter o Ag [dB] | Imaz [nats]
Value 0.95 30 0.2
Let I(Si(m); Xi(m)) denote the estimate of

I8 tmmse(Si(m); Xi(m)) obtained by replacing ex-
pected values by recursively estimated moments. The average
per sentence mutual information is finally computed as

(15)

We have introduced here an upper limit /¢ on the informa-
tion content per critical-band amplitude to avoid that the final
information score is dominated by a single high-information
time-frequency unit. The idea of upper limiting the impact of a
single time-frequency unit is not new, but has e.g. been used in
the SII intelligibility measure, where the estimated critical-band
SNR is upper limited to 15 dB [6]. It can be motivated by the
observation that at a sufficiently high SNR, a signal is perfectly
intelligible, and increasing the SNR beyond this point cannot
increase intelligibility further.

The values of the three parameters, v, A g, and 1, are sum-
marized in Table I. The value of &« = 0.95 corresponds to a time
constant of 250 ms. The idea of averaging signal statistics over
longer time spans such as 250 ms rather than 20-40 ms which
are often used in speech processing applications, e.g. [18], but
much shorter than the typical long-term statistics, e.g. as used
in SII [6], is not new. For example, in the STOI model [17], sta-
tistics were computed across time spans of roughly 400 ms, and
it was suggested that this time span could be linked to temporal
integration processes taking place in the auditory system. Per-
formance with the proposed model is not sensitive to the exact
value of «v. The choice of A = 30 dB is not controversial. For
clean speech, most speech frames have an energy content larger
than this threshold. The value of 1, = 0.2 nats was deter-
mined heuristically, but prediction performance does not seem
to be very sensitive with respect to the exact value of this pa-
rameter either.

V. SIMULATION RESULTS

In the following we evaluate the proposed intelligibility pre-
dictor using noisy speech signals processed with different time-
frequency weighting strategies. We compare the performance of
the proposed method with that of algorithms proposed in the lit-
erature. The sample rates mentioned below are used in the lis-
tening experiments. When applying the proposed method, the
signals are down- or upsampled to 10 kHz.

A. Signals and Processing Conditions

1) Additive Noise: The first set of signals is from the study
described by Kjems in [34]. In this study, speech signals from
the Dantale II sentence test [35] are contaminated by four dif-
ferent additive noise sources. The speech sentences consists of

150 5-word sentences spoken by a female Danish speaker. The
noise sources are i) stationary speech shaped noise created by
filtering white noise through a shaping filter with a frequency re-
sponse corresponding to the long-term spectrum of the speech
sentences, ii) car cabin noise recorded in a car driving on the
highway, iii) bottle hall noise, and iv) cafeteria noise, which is a
recording of a conversation in Danish between a male and a fe-
male speaker, i.e. two-talker babble, equalized to have the same
long-term spectrum as the test sentences [34]. The sample rate
is 20 kHz.

Kjems conducted a listening test to establish the 20% and
80% speech reception threshold (SRT)¢ for each noise source,
and a logistic function was fitted to the SRTs to estimate the un-
derlying psychometric function. Finally, we generated noisy test
signals with SNRs from —20 dB to 5 dB in steps of 2.5 dB, and
the corresponding intelligibility scores were established by sam-
pling the psychometric functions at these input SNR values. The
total number of conditions therefore amounts to 4 noise types x
11 SNRs = 44 conditions. A number of 15 normal-hearing sub-
jects in the age range 25-52 years participated in the test.

2) Ideal Binary Mask Signals: In a second experiment, Kjems
[34] processed the noisy signals, using the technique of ideal
time-frequency segregation (ITFS) [36], and measured the in-
telligibility of the resulting signals for different processing con-
ditions. More specifically, the IFTS processing decomposes the
clean signal s(n), the noise signal w(n), and the noisy signal
z(n) = s(n) + w(n) in time-frequency tiles. In the imple-
mentation of Kjems, the time domain signals were analyzed
in the short-term spectral domain using a gamma-tone filter
bank with 64 channels, each with a bandwidth of 1 ERB, and
channel center frequencies linearly spaced on the ERB scale
with center frequencies between 55 and 7500 Hz. The filterbank
signals were segmented into 20-ms windowed frames with an
overlap of 50%, and the energy ¢, ;(m), €, i(m), and €, ;(m)
of the ¢th subband and mth frame was computed for the clean,
noise and noisy signal, respectively. Then, a binary-mask value
gi(m) € {0,1} was computed for each time-frequency unit.
Finally, the resulting binary mask signal g;(m) was upsam-
pled to the signal sample rate of 20 kHz, and point-wise multi-
plied with the noisy filterbank output, and the result was passed
through a gamma-tone synthesis filter bank to synthesize the
corresponding processed time domain signal.

Two methods for deriving the binary mask signal g;(m) were
compared. In the ideal binary mask (IBM) method the binary
mask signal g;(m) was found by comparing the local target-to-
noise ratio 10log g (es.i(m)/ew i(m)) to a threshold LC ac-
cording to

_ 1 10logiy(esi(m)/ew. i(m)) > LC
gi(m) = { 0 otherwise. (16)
In the target binary mask (TBM) method, the binary mask signal
was found by replacing the local time-frequency noise energy
€w,:(m) with the value of the long-term speech spectrum, eval-
uated in the 7 ‘th gammatone filter. For both the IBM and TBM
methods, the sparsity of the binary mask g;(m) is a function of
the threshold LC: the higher the value of LC, the fewer 1’s in the

6The % SRT is defined as the SNR at which the average listener correctly
identifies = percent of the test words.
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Fig.3. Per-sentence mutual information versus measured intelligibility for var-
ious processing conditions. (3(a)): additive noise,(3(b)), and (3(c)) noisy signals
processed by single-channel noise reduction algorithms. See text for further de-
tails on test signals and conditions.

mask. Eight different values of the threshold LC were used, one
of which was LC = —oc¢ dB, leading to g;(m) = 1 and there-
fore noisy, unprocessed test signals. For each of the four noise
types, noisy signals were generated at three different SNRs: two

SNRs were selected corresponding to the 20% and 50% SRT.
The third SNR was fixed at —60 dB. The total number of test
conditions was (4 noise types (IBM) + 3 noise types (TBM)7) x
8 LCs x 3 SNRs = 168. As above, 15 normal hearing listeners
participated in the intelligibility test, and the sampling rate was
20 kHz.

3) Single-Channel Enhancement Signals: The last set of sig-
nals consists of noisy signals processed by three single-channel
noise reduction algorithms [37]. In contrast to the ITFS pro-
cessing, which cannot be realized in practice because it requires
knowledge of the clean speech signal and the noise signal real-
izations separately, the study in [37] considered single-channel
noise reduction methods which can be realized in practice. We
included this data set, because it is important to understand if
a given intelligibility predictor is limited to synthetic signals,
or if it can actually be applied to signals generated by practical
applications.

Noisy signals were processed using a DFT-based analysis-
modification-synthesis framework. Three processing methods
were considered: two methods for finding a binary mask as in
Eq. (16) but using only the noisy speech signal, and, in addition,
a state-of-the-art single-channel noise reduction method, where
the gain values applied to time-frequency units are not con-
strained to be binary (but are non-negative). Finally, the noisy
unprocessed signals were included in the test as well, leading to
four processing conditions in total.

The listening test was a closed Dutch speech-in-noise intelli-
gibility test proposed in [38]. As in the previous section, the test
sentences consisted of 5 words, spoken by a female speaker. The
signals were sampled at a sampling-rate of 8 kHz, and degraded
by speech-shaped noise at five different SNRs, namely —8, —6,
—4, —2 and 0 dB. Thirteen native Dutch speaking subjects par-
ticipated in the test. Each processing condition was presented
five times, and each sentence was used only once. The order
of presenting the different algorithms and SNRs was random-
ized. The signals were presented diotically through head-phones
(Sennheiser HD 600). For each processing method and SNR
pair, the intelligibility scores were averaged across the 13 lis-
teners and the 5 repetitions, leading to 4 conditions x 5 SNRs =
20 processing conditions for which average intelligibility scores
are computed.

B. Per Sentence Mutual Information vs Intelligibility

Fig. 3 plots the per-sentence mutual information lower bound
as calculated by Eq. (15) versus the intelligibility measured in
listening tests, and averaged across test subjects. The free pa-
rameters, «, Ag, and I,,x were chosen according to Table 1
for all subfigures.

For any good intelligibility predictor, the intelligibility-vs-
prediction curve is monotonically increasing. Clearly, Fig. 3
shows a strong monotonic relation between speech intelligi-
bility and mutual information, for all three test conditions. With
the proposed intelligibility predictor, one is able to predict rel-
ative intelligibility: if Iis larger for one noisy/processed signal
than for another (where the underlying clean speech signal is

TFor speech shaped noise, IBM and TBM are identical.
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the same), we would expect the intelligibility of the first to be
larger than the latter.

However, in order to estimate absolute intelligibility, a map-
ping is needed between the outcome of the intelligibility pre-
dictor, and the true underlying intelligibility. This mapping is a
function of many factors, including the noise type, the test type,
the processing applied to the noisy signal, the redundancy of the
speech material, and, obviously, the intelligibility predictor.

For additive noise experiments, the psychometric curve is
often modeled as a logistic function of the input SNR. In [17],
[39] it was proposed to extend the use of this function to model
the relationship between the outcome of the intelligibility pre-
diction I(S; X) and the true underlying intelligibility 7, i.e.,

e 1
J = 1+ exp(a]~ + b)./

where a, b € R are test specific model parameters, which are es-
timated to fit the intelligibility data. In Fig. 3, the parameters a, b
were estimated to fit the data in each subfigure in a least-square
sense; the resulting logistic function is overlaid each subfigure.

To evaluate numerically the performance of intelligibility
predictors, we use two figures of merit, namely the normalized
linear correlation coefficient p between average intelligibility
scores obtained through listening tests, and the outcomes of the
intelligibility predictors, and the root mean-square prediction
error . Let I;, denote the intelligibility prediction for the kth
processing condition, and let SI; denote the average across
listeners in the corresponding intelligibility test. Furthermore,
let 1147y, and jusr denote the averages of f(Ix) and STy, re-
spectively, across listening test conditions %, and let K denote
the number of test conditions. The normalized linear correlation
coefficient is then defined as

p= Zk (f(jl.) _,Uf(j))(SIk —MSI) .
VI (P = ) T (ST — usa)

and the root mean-square prediction error o is defined as

1 .- 2
o= \/E;(f(Ik)_SIk) -

(17

(18)

C. Comparison to Other Intelligibility Predictors

In this section we compare the performance of the proposed
intelligibility predictor, which will be abbreviated as SIMI
(Speech Intelligibility prediction based on Mutual Information)
to several methods from the literature, see Table II. Specifically,
we consider STOI [17], CSII-MID (the Mid-level coherence SII
as proposed in [8]), CSII-BIF (the coherence SII with signal-de-
pendent band importance functions, referred to as CSllyq,

‘1, p = 1 in [33]), STI-NCM (the normalized covariance
speech transmission index as proposed in [12]), STI-NCM-BIF
(the normalized covariance speech transmission index with
signal-dependent band-importance functions, referred to as
NeM, W, p = 1.5 in [33]), and NSEC (the Normalized
Subband Envelope Correlation method as proposed in [40]).

TABLE 11
INTELLIGIBILITY PREDICTORS FOR COMPARISON.

Method Name
STOI [17]

CSII-MID [8]
CSII-BIF [33]

Remarks

The short-time objective intelligibility measure.
The mid-level coherence SII.

The coherence SII with signal-dependent band
importance functions (referred to as CSIlpig,
Wy, p =1 in [33]).

The normalized covariance speech transmission
index.

The normalized covariance speech transmission
index with signal-dependent band-importance
functions (referred to as NCM, Wi(l),p =1.5
in [33]).

The normalized subband envelope correlation
method.

STI-NCM [12]

STI-NCM-BIF [33]

NSEC [40]

We evaluate the performance of these intelligibility predictors
in terms of p and ¢ computed from an n-fold cross-validation
procedure. Specifically, for each data set, the set is randomly
divided into n» = 4 equal size subsets, the free parameters a, b in
the logistic function are fitted to the » — 1 subsets, after which p
and o are computed based on prediction of the remaining subset.
This procedure is repeated for each subset, and the averages of
the resulting p and o values are computed. Tables III and IV
summarize these results. The values in brackets are found from
estimating a, b using the entire data set, and estimating p and o
from the same set; these are included here for comparison with
values reported in literature, which are often computed in this
way, e.g. [17].

From Tables III and IV most intelligibility predictors work
well in the case of additive noise, leading to correlation
coefficients of p > 0.93; STI-NCM-BIF is an exception, but
it should be noted that this method was proposed in [33] for
single-channel noise reduced speech. For the ITFS processed
signals, only SIMI and STOI work well, resulting in linear
correlation coefficients of p > 0.95 and o < 9.0. Most other
methods essentially fail in this situation. Similar results were
reported in [41]. For the single-channel enhanced speech sig-
nals, most intelligibility predictors perform well. It is worth
noting that ST/-NCM-BIF works particularly well in this situ-
ation; this result is in quantitative agreement with the results
reported in [33]. The results of Tables III and IV are also in
general agreement with the results reported in [17], [41]. Note
finally that SIMI and STOI are the only methods which work
well for all conditions.

VI. CONCLUSION

Algorithms for estimating the outcome of intelligibility lis-
tening tests are of interest both for reducing the number of costly
listening tests during algorithm development, but also have the
potential to lead to new insights into the auditory system.

Historically, a wide range of intelligibility predictors have
been proposed with varying validity domains including additive
(stationary or non-stationary) or convolutive noise types, and
several types of signal processing, including filtering, clipping,
etc. In this work we consider the situation of additive, but not
necessarily stationary, noise sources, and non-linear processing
which can generally be referred to as time-frequency weighting.
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TABLE III
PERFORMANCE OF INTELLIGIBILITY PREDICTORS IN TERMS OF LINEAR CORRELATION COEFFICIENT g, EQ. (17), FOR DIFFERENT NOISE/PROCESSING CONDITIONS.
THE PERFORMANCE SCORES ARE ESTIMATED USING 7-FOLD CROSS-VALIDATION (7 = 4). PERFORMANCE SCORES IN BRACKETS ARE COMPUTED BY FITTING
THE LOGISTIC FUNCTION TO THE ENTIRE DATA SET, AND COMPUTING THE RESULTING p» ACROSS THE SAME DATA SET.

| [ _sSmmi___ | STol | CSI-MID

[ CSHBIF | SII-NCM__| STENCM-BIF | NSEC ]

Additive Noise 0.975 (0.975) | 0.969 (0.967) | 0.943 (0.949)

0.978 (0.978) | 0.934 (0.935) 0.808 (0.813) 0.951 (0.953)

ITFS-Processing 0.957 (0.958) | 0.966 (0.961) | 0.352 (0.455)

0.517 (0.539) | 0.613 (0.727) 0.481 (0.586) 0.834 (0.868)

SC-Enhancement 0.976 (0.970) | 0.985 (0.987) | 0.776 (0.625)

0.918 (0.850) | 0.910 (0.844) 0.971 (0.976) 0.896 (0.799)

TABLE IV
PERFORMANCE OF INTELLIGIBILITY PREDICTORS IN TERMS OF ROOT MEAN-SQUARE PREDICTION ERROR &, EQ. (18), FOR DIFFERENT NOISE/PROCESSING
CONDITIONS. THE PERFORMANCE SCORES ARE ESTIMATED USING 1-FOLD CROSS-VALIDATION (1 = 4). PERFORMANCE SCORES IN BRACKETS ARE
COMPUTED BY FITTING THE LOGISTIC FUNCTION TO THE ENTIRE DATA SET, AND COMPUTING THE RESULTING & ACROSS THE SAME DATA SET.

| [ SiMi | STol | CSH-MID | CSH-BIF | STI-NCM | STENCM-BIF | NSEC |
Additive Noise 8.95 (8.13) | 9.45 (9.24) | 12.72 (11.47) | 7.95 (7.59) | 13.41 (12.74) | 21.11 (21.08) | 11.48 (10.89)
TTFS-Processing || 8.49 (8.92) | 8.20 (8.61) | 27.45 (27.72) | 25.73 (26.23) | 20.56 (21.38) | 24.43 (25.23) | 14.59 (15.51)
SC-Enhancement || 5.34 (4.72) | 3.41 (3.09) | 16.00 (15.12) | 11.45 (10.20) | 11.69 (10.38) | 4.53 (4.22) 13.05 (11.65)

This class of processing method is quite broad and is for ex-
ample used in single-channel noise reduction algorithms.

In this context, we pursue the hypothesis that intelligibility
could be monotonically related to the Shannon information
about the (unknown) clean critical-band envelopes, which can
be learned by observing their noisy and potentially processed
counterparts. We derive lower bounds for this mutual informa-
tion, which turn out to be analytically tractable. Specifically, the
information lower bound can be computed as a function of the
minimum mean-square error (mmse) arising from estimating
the clean critical-band amplitude from its noisy/processed
counterpart.

The proposed model has a number of surprising conse-
quences. Traditionally, in speech signal processing the mse
between a clean time-frequency unit and an estimate thereof
has been linked to the speech quality resulting from the esti-
mator in question. According to this paradigm, using an mmse
estimator would lead to highest speech quality. However, the
proposed model suggests that it could be interpreted differently:
the mmse could be viewed as an indicator of the intelligibility
of the underlying noisy (and potentially processed) signal.
Furthermore, it is interesting to note that whereas several
of the intelligibility predictors proposed in the literature are
heuristically motivated, the proposed mmse based predictor is
a consequence of a simple auditory model and signal model,
and the assumption that mutual information can be used as
a principle for comparing inner representations. Finally, the
proposed model predicts that processing of noisy critical-band
amplitudes (based on the noisy critical-band amplitudes only)
cannot lead to intelligibility improvements, a prediction which
is in line with several existing intelligibility test results, e.g.,
[15], [32].

Simulation experiments with the proposed method shows
that it is able to reliably estimate the average intelligibility of
speech signals contaminated by stationary and non-stationary
noise sources as well time-frequency processed noisy speech.
In a comparison with other intelligibility predictors from
literature, this performance was only equalled by the STOI
intelligibility predictor [17].

It is of interest to study in the future if the proposed prin-
ciple is valid in a more general context than covered in this
article. For example, the auditory model presented in this ar-
ticle is very simple; it would be of interest to study prediction
performance if the proposed mutual information principle were
combined with a more physiologically plausible model, e.g. the
modulation filter based model of Dau et al. [42] and the intelli-
gibility prediction model by Jergensen et al. [13].

Another topic for future research includes the extension of
the proposed principle to situations which are more natural to
human listeners, e.g. a binaural listening setup. It appears pos-
sible that phenomena such as the spatial unmasking effect, e.g.
[43] may be predicted well by such extended model.
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