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Abstract- In order to minimize the effect of the grid harmonic 
voltages, harmonic compensation is usually adopted for a grid-
tied inverter. However, a large variation of the grid inductance 
challenges the system stability in case a high-order passive filter 
is used to connect an inverter to the grid. Although in theory, an 
adaptive controller can solve this problem, but in such case the 
grid inductance may need to be detected on-line, which will 
complicate the control system.  This paper investigates the 
relationship between the maximum gain of the controller that still 
keeps the system stable and the Q-factor for a grid-tied inverter 
with an RL series or an RC parallel damped high-order power 
filter. Then, a robust passive damping method for LLCL-filter 
based grid-tied inverters is proposed, which effectively can 
suppress the possible resonances even if the grid inductance varies 
in a wide range. Simulation and experimental results are in good 
agreement with the theoretical analysis. 
Keywords:  LLCL-filter; Passive damping; Grid-tied inverter; Q-
factor; RC parallel damper; RL series damper; Robust.  

 

I. INTRODUCTION 

Driven by the shortage of fossil fuels, the renewable 
power generation technology receives an increased attention. 
The grid-tied Pulse Width Modulation (PWM) inverter has 
been widely used to connect the renewable energy with the 
utility grid [1]-[11]. The use of PWM scheme requires an 
output filter to limit the harmonic content of the grid-injected 
current, fulfilling the standards of IEEE 1547.2-2008 and IEEE 
519-1992 [16], [17]. An LCL-filter is gaining more acceptances 
over an L-filter for the grid-tied Voltage Source Inverters (VSI) 
due to its smaller size, lower cost and better dynamics [18]. 
Recently, to further reduce the inductor size, a novel high-order 
power filter (LLCL-filter) has been proposed in [19].  

In order to minimize the effect of the grid background 
harmonic voltages (e.g. 3th-9th), the Proportional Resonant plus 
Harmonic Compensation (PR+HC) controller has become a 
popular approach for the grid-tied inverters. However, a large 
variation of the grid inductance challenges the stability of the 
high-order power filter based system [20]. Although an 
adaptive controller can solve this problem in theory [21], the 
grid inductance may vary in a wide range, for example in a 
weak grid or a micro-grid. Thus, the performance of the 
adaptive controller is heavily dependent on the on-line 
information of the grid inductance, which complicates the 
controller design and operation. 

It is well known that the passive damping method can 
improve the stability of system. An RC parallel damper is often 
adopted to reduce the power losses [22]. Nevertheless, this 
damping method can only take effect for the grid with a narrow 
variation of inductance [23]. For the grid inductance varying in 
a wide range, the design of a robust passive damper for a high 

order power filter based grid-tied inverter still needs further 
research.  

In this paper, both the upper and the lower limits of the 
PR+HC controller gain are first analyzed. Then, an equivalent 
Q-factor (E-Q-factor) calculation method is introduced to 
select the optimal passive damping parameters. On the basis of 
this, a robust passive damping scheme for the LLCL-filter 
based grid-tied inverters is proposed in order to overcome the 
adverse effect of the large grid inductance variation and to 
suppress the possible resonance. Finally, simulations and 
experimental results on a 2 kW single-phase grid-tied inverter 
prototype are presented to confirm the correctness of 
theoretical analysis.  

II. UPPER AND LOWER LIMITS OF PR+HC CONTROLLER GAIN 

When a PR+HC controller is adopted, the system open-
loop gain, the control bandwidth and the system stability 
margin are determined by the proportional gain, kp, of the 
controller [24]. In this section, the upper and the lower limits of 
kp will be analyzed. 

A. Configuration of the LLCL-Filter Based Grid-tied 
Inverter 

Fig. 1 shows a typical grid-tied inverter with an LLCL-filter.  
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Fig.1. Voltage Source Inverter connected to the grid through an LLCL-

filter [19]. 

The transfer function of the grid-injected current versus 
the output voltage of the inverter can be derived as 
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     If Lf is set to zero, then the transfer functions ig(s)/ui(s) of the 
classical LCL-filter can also be derived. 
     Fig. 2 shows the diagram of the system using the grid-side 
current feedback control, where Gc(s) denotes the PR+HC 
controller, H(s) is the sensor gain of the grid-injected current 
and Ginv(s) is the gain of the PWM inverter. 
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Fig. 2. Control block of system using the grid-side current as feedback. 

The open-loop transfer function of the system and the 
magnitude of the open-loop gain can be derived as follows, 

( ) ( ) ( ) ( ) ( )
i gopen loop c u i invG s G s G s G s H s 

                        (2) 
| ( ) | 20log | ( ) ( ) ( ) ( ) |

i gopen loop c u i invG j G j G j G j H j     
 (3) 

B. Lower Limit of PR+HC Controller Gain 

In order to plug in the PR+HC controller, the crossover 
frequency should be larger or equal to a set value of f_min_cross 
under the weakest grid condition. In this paper, f_min_cross is 
designed as 500 Hz to suppress up to 9th harmonic currents. 
Since in the low frequency range, the LCL- or the LLCL-filter 
has approximately the same frequency characteristic as the L-
filter and the loop gain has unity value at the cross-over 
frequency, the lower limit of the PR+HC controller gain can be 
derived as  
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               (4) 

C. Upper Limit of PR+HC Controller Gain             

The derivation of the upper limit for the controller gain is 
organized into two steps. First, a conservative upper limit, 
kp_max_1 can be derived based on the gain margin of the system 
open-loop transfer function. Then, considering the acceptable 
phase margin, the second upper limit kp_max_2 can be obtained. 
As a consequence, the designed controller gain can be chosen 
as 

 _ min _ max_1 _ max_ 2min ,p p p pk k k k 
               (5)                                                                             

Step 1:  Controller gain based on the gain margin 
For a conservative controller design under the different 

grid conditions, the open-loop gain |Gopen-loop(jω)| should be less 
than 0 dB whenever ω is larger than cross-over frequency in 
rad/s. Assuming that the transfer function of the grid-side 
current versus the output voltage of the inverter with a passive 
damped high-order filter is Gui-ig

′(s,Lg), and thus the gain of the 
controlled plant | Gplant

′
 (jω) | can be given by 

    | ( ) | 20log | ( ) ( ) ( ) |
i gplant u i invG j G j G j H j

          (6) 

      
Once the parameters of a passive damped high-order filter are 

chosen, | ( ) |plantG j  is a function of ω and Lg. Its first-order 

partial derivative and Hessian matrix can be derived in equation 
(7) and (8) respectively, 
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     From (7) and (8), the frequency ωmax_1 and grid inductance 
Lg_max_1 corresponding to the local maximum gain of the plant 
can be calculated. And since the PR+HC controller is chosen, 
the conserved maximum gain of the controller can be derived 
as 

_ max_1
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                                         (9) 
Step 2:  Controller gain based on the phase margin 

In the digital control system, the delay (Td) that includes 
the control delay, sampling delay and PWM delay is inevitable, 
which compresses the phase margin of the open-loop transfer 
function. Thus, to preserve the system stability, the derived 
upper limit of the controller gain needs to keep the phase 
margin larger than a set value, PM_min, which can be given by 
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                                                              (10) 
where, ωcross is the cross-over frequency in Hz, and 

'( , )
i gu i gG j L is the phase delay caused by 

'( , )
i gu i gG j L . Hence, from (10), the maximum loop gain 

of kp_max_2 can be determined based on the expected phase 
margin. 

III. E-Q-FACTOR BASED PASSIVE DAMPING DESIGN 

A. Priciple of  Equivalent Q-factor Method 
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Fig.3. Bode plots of the filter with different Q-factor values. 

Fig. 3 shows the frequency responses of a high-order filter 
system without and with the passive damper. It is known that 
the passive damper aims to reduce the Q-factor at the dominant 
resonant frequency fres in Hz. For a high-order filter based 
system, the optimized Q-factor is difficult to obtain by directly 
analyzing the complex conjugate solutions of the transfer 
function Gui-ig

′(s,Lg), since the dominant resonance frequency 
varies with the different parameters [23]. However, in [23], it 
has also been pointed out that the LLCL-filter has almost the 
same frequency response as the LCL-filter within half of the 
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switching frequency range.   
Hence, similar to the LCL-filter, the LLCL-filter circuit 

can be simplified as a simple equivalent LCR series resonant 
circuit to calculate the equivalent Q-factor at the dominant 
resonance frequency. This method is named as E-Q-factor 
analysis and represented as 

1 E
E

E E

L
Q

R C


                                     (11)                                                                                                   
where QE is the equivalent Q-factor, RE, LE and CE are the 
equivalent resistor, inductance and capacitance of an equivalent 
series LCR circuit, respectively.    

Three passive damped LCL- filter and LLCL-filter based 
systems and Bode diagrams of the grid-injected current versa 
the output voltage of the inverter are shown in Fig. 4, Fig. 5 
and Fig. 6 respectively, where all the parameters are listed in 
Table I and the grid inductance is assumed to be zero. It can be 
further seen that the stability of LCL- filter or LLCL-filter based 
system is dependent on the dominant poles if the PR+HC 
controller is adopted. Compared with the LCL-filter, the LLCL-
filter does not make extra troubles on the control of the whole 
inverter system. 
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 (b)          

Fig. 4.  Simply damped LCL- or LLCL-filter with Rd based inverter system: (a) 
topology, (b) Bode plots of transfer functions ig (s) / ui (s). 
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 (b)          

Fig. 5.  RC parallel damped LCL- or LLCL-filter based inverter system: (a) 
topology, (b) Bode plots of transfer functions ig (s) / ui (s). 
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Fig. 6.  RL series damped LCL- or LLCL-filter based inverter system: (a) 
topology, (b) Bode plots of transfer functions ig (s) / ui (s). 

 
TABLE I PARAMETERS OF THREE PASSIVE DAMPED FILTERS 

 
Parameters of two filters Parameters of dampers 

 LCL-filter LLCL-filter 
Parasitic resistance 

of the inductors 
 Rd damper RC parallel damper RL series damper Composite damper 

L1 1.2 mH 1.2 mH R1 0.1 ohm Rd 3 ohm 35 ohm ─ 35 ohm 
L2 0.22 mH 0.22 mH R2 0.01 ohm Cd ─ 2 μF ─ 2 μF 
Cf 2 μF 2 μF ─ ─ Ld ─ ─ 0.22 mH 0.22 mH 
Lf ─ 32 μH Rf 0.2 ohm Rds ─ ─ 7 ohm 7 ohm 
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where the resistors R1, R2 and Rf are the respective parasitic 
resistance of the inductors L1, L2 and Lf.  

Based on (11), the calculated Q-factor of three passive 
damping methods are listed in table II if Lg=0. 

TABLE II Q-factor of LCL-filter and LLCL-filter with three 
dampers 

Q-factor of LCL-filter and LLCL-filter with three dampers 
 Rd damper RC parallel damper RL series damper 

LCL-filter 3.214 3.978 3.603 
LLCL-filter 3.479 3.742 4.102 

 

B. E-Q-factor based RC parallel  damping design  

As shown in Fig. 5 (a), if the Lf is shortened, the diagram of the 

RC parallel damped LCL-filter can be obtained. The equivalent 
resistor RE and capacitance CE of the bypass capacitor Cf and 
the RC parallel damper can be calculated as, 

2
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 (12).                                           
  Then, at the dominant resonance frequency, the equivalent 

resistor RE, inductance LE and capacitance CE of the equivalent 
LCR circuit can be calculated   as 
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        (13)                                                                      

       Substituting (13) into (11), the Q-factor at the dominant 
resonance frequency can be calculated. In order to analyze the 
relationship between the Q-factor, the damping resistor, and the 
grid inductance, the normalization method is adopted. The base 
values of the impedance, the inductance, the capacitance and 
the resistor can be defined as  

 2

0 0

1
= , = , = , =

g
b b

b b b b b
o b b

U L Z
Z R R C L

P C Z 
       (14)                                                                   

where Ug is the RMS value of the grid voltage, ωo is the grid 
frequency in rad/s and Po is the active power generated by the 
inverter under rated conditions.  
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Fig. 7. Q-factor as a function of ε and λ for the RC parallel damped LCL-

filter. 

 
 Since the Rd-Cd is paralleled with Cf, to balance the damping 
effect achieved and the damping losses, an equal value of Cf 

and Cd may be a proper selection [22]. If the discontinuous 
unipolar modulation mode is adopted and the current ripple 
ratio of L1 is 30%, it can be derived that the converter-side 
inductor L1=0.0156Lb. Assuming L2 = L1, Lg = λL1, Cf = Cd = 
0.015Cb and the damping resistor Rd = εRb, Q-factor as a 
function of ε and λ can be plotted as shown in Fig.7. 

From Fig. 7 it can be seen that when the damping resistor 
is designed with the optimal Q-factor for a stiff grid 
application, the Q-factor will become large while the grid 
inductance increases; when the damping resistor is designed  
with the optimal Q-factor for a weak grid application, the Q-
factor will also turn to large while the grid turns to stiffness. If 
the grid inductance varies in a wide range, this damping 
method cannot always achieve the optimal Q-factor.  

 From Fig.5, it can also be seen that within half of the 
switching frequency range, the RC parallel damped LCL-filter 
and LLCL-filter have almost the same frequency-response 
characteristic, if the parameters are the same except for Lf. So 
for an LLCL-filter based inverter system, E-Q-factor analysis 
method can also be achieved to select a reasonable damping 
resistor. It should be pointed that the RC parallel damped 
LLCL-filter cannot also fit for a large variation of the grid 
inductance [23]. 

C. E-Q-factor based RL series damping design  

In [25], another passive damping method named as the RL 
series damping method for the LC-filter was introduced. In 
theory, this damping method is also effective for the LCL-filter 
as shown in Fig. 6 (a) where Lf  is shortened. In this part, the 
design method of the exact damping parameters and the proper 
application of this damping method will be discussed using the 
E-Q-factor analysis method. 

By simplifying the complex high-order circuit topologies 
to an equivalent series LCR circuit, the equivalent RE and LE of 
L1, L2, Lg and the RL series damper, can be calculated as 

'd ds
1 2
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E E
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   (15)  

where L2´=L2+Lg. Then the equivalent resistor RE, inductance 
LE and capacitance CE at the dominant resonant frequency in 

the series LCR circuit can be written as 
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(16) 
Assuming δ= Ld /L2´, the relationship between the Q-factor, δ 
and η (η =Rds/Rb) is plotted in Fig. 8 under the conditions that 
L1 = L2 = 0.0156 Lb, Cf = 0.015 Cb and Lg = 0, which shows 
that the larger δ, the better Q-factor. However, a large 
damping inductor will increase the damping loss as well as the 
system cost. Since Lg is in series with L2, an increased Lg will 
also result in a worsened Q-factor.  
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For the LLCL-filter, the RL series damping method is also 

effective in theory .  Compared with the LCL-filter, the 
difference is that the equivalent inductor of the LLCL-filter 
needs to be turned to (LE+Lf). Due to the smaller grid-side 
inductor, both the damping inductance and the damping losses 
can be smaller than those of the RL series damped LCL-filter.  

It should be pointed out that the RL series damping 
method is only effective in the stiff grid condition whether for 
an LCL-filter or an LLCL-filter. 

IV. A NEW COMPOSITE PASSIVE DAMPING 

SCHEME FOR THE  LLCL-FILTER 

A. COMPOSITE PASSIVE DAMPING SCHEME 
        As analyzed above, for an LLCL-filter based system, the 
RC parallel damping method is suitable for the grid with a 
relatively narrow range of inductance values, while the RL 
series damping fits only for the stiff grid condition. To ensure 
the grid-tied inverter system stable for the grid with a wide 
variation range of inductance, a composite damping method for 
the LLCL-filter as shown in Fig.9 is proposed, at the expense of 
a little more power loss and also total inductance.  
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Fig. 9. Schematic diagram of the composite damping method. 

The design requirements of the damping parameters can 
be summarized as follows, 

(1) The damping resistor of Rd needs to be designed for 
the optimal Q-factor under the weakest grid condition, while Cd 
is equal to Cf. 

(2) The damping resistor of Rds is selected aiming for the 
optimal Q-factor under the stiffest grid condition, while Ld is 
equal to L2.    
B.  DESIGN EXAMPLE 

When fs = 20 kHz, Udc = 350 V, Ug = 220 V/50 Hz, Prated = 
2 kW, and using the discontinuous unipolar modulation mode, 
the main parameters of an LLCL-filter are designed based on 
the design criteria in [19], which also were listed in Table I 

1) Only with RC-parallel damper 

The Q-factor factor of the RC parallel damped LLCL-filter 
as a function of the damping resistor and the grid inductance is 
plotted in Fig.10when Cd = Cf. 
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Fig. 10. Q-factor of the RC parallel damped LLCL-filter(a) Relationship 
between the Q-factor, the damping resistor and the grid inductance (b) Q-

factor versus grid inductance, when Rd=16.5 Ω and 35 Ω. 

From Fig.10 (a), it can be seen that a relatively increasing 
damping resistor is needed to achieve the optimal Q-factor with 
the increasing grid inductance. In order to show how the 
inductance variation exactly influences the Q-factor, Fig.10 (b) 
describes that the damping resistor of 16.5 Ω, which is 
designed for the optimal Q-factor under the stiff grid condition, 
has less damping effect with the increased inductance of the 
grid. On the contrary, when the damping resistor is selected to 
35 Ω, which is suitable for the situation of Lg = 5 mH, the Q-
factor becomes larger than 4 if Lg is close to 0 mH. It is 
difficult to select the damping resistor of the RC parallel 
damper with the optimal Q-factor, if the grid inductance 
changes in a wide range.  
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Fig.11. Relationship between the Q-factor, the damping resistor and the 

grid inductance for the RL- series damped LLCL-filter. 
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2)  Only with RL- series damper 

If Ld = L2, the Q-factor as a function of the damping 
resistor and the grid inductance is plotted in Fig.11. It can be 
seen that the larger grid inductance, the larger Q-factor and the 
worse damping effect achieved. So this damping method is 
only effective in the stiff grid. The damping resistor can be 
calculated by analyzing the first-order derivative of the 
equivalent Q-factor. And a damping resistor of 7 Ω seems to 
achieve a good damping effect for the designed LLCL-filter 
case under the stiffest grid condition (Lg = 0.15 mH).  

3
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                                                         0 1 2 3 4
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Fig.12. Q-factor of the composite damped LLCL-filter.   

3)  Composite passive damping scheme 
For the composite damped LLCL-filter, when the damping 

parameters are selected according to the design method 
introduced above, it can be seen in Fig.12 that a Q-factor of 
less than 3 can be achieved in a wide variation range of grid 
inductance. Certainly, it should be pointed out that the stability 
does not just rely on the Q-factor, especially when the loop 
delay is considered. However, a small Q-factor does always 
help for the stability of the whole system. 

V. ANALYSIS ON ACHIEVED DAMPING 

The damping parameters of three passive-damped LLCL-
filters can be derived and were listed in TABLE I, where the 
current sensor gain and the gain of PWM inverter are 0.0182 
and 1400 respectively (the same as those of the experimental 
prototype). In order to insert the 9th harmonic compensator in 
the weakest grid condition (Lg = 5 mH), the minimum 
controller gain should be larger than 0.73, according to (4). 
With (7) and (8), kpmax_1 can be calculated to about 0.76 and the 
corresponding grid inductance is about 0.65 mH.  In the real 
system with the digital controller, the control delay is inevitable. 
However, with the proper DSP control, the total delay of the 
system can be reduced to 0.75Ts [26], or less [27] (Ts is the 
switch period, 50μs). In this paper, the control delay is selected 
as 0.75Ts. Using (10), when the phase margin is set to 45o, 
kpmax_2 can be calculated as 0.81 under the stiffest grid condition 
(Lg = 0.15 mH). Then, according to (5), the final proportional 
gain Kp of PR+HC controller is selected as 0.76, and the 
control bandwidth of 2.5 kHz under the stiffest grid condition 
and 520 Hz under the weakest grid condition can be achieved 
in theory. 
     The PR+HC controller is expressed as equation (17), where 
Kp is the proportional gain and Kih represents the individual 
resonant integral gain. 

 22
1,3,5,7,9 0

( ) ih
PR p

h

K s
G s K

s h

 


 .           (17)                                                             

In this paper, Kih is selected as 100 for each harmonic 
compensated.  

The Bode plots of the three passive-damped filters with 
the parameters given in Table II and the designed controller is 
plotted in Fig. 13. It can be seen that the system only with RC 
parallel damper (shown in Fig.13 (a)) is unstable when the grid 
inductance is 0.65 mH, the system with the RL series damper 
(as shown in Fig.13 (b)) is stable only under the stiff grid 
condition, and the system with the composite damper (shown in 
Fig.13 (c)) can be kept stable in a wide variation range of the 
grid inductance. So in terms of the acceptable system stability, 
the composite damping method may be the best of the three 
damping methods.  
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Fig. 13.  Bode plots of Gopen-loop(jω) with the delay of 0.75 Ts for (a) Case 1: 

only with the RC parallel damper  (b) Case 2: only with the RL series 
damper (c) Case 3: with the composite damper. 
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VI. SIMULATIONS  

     In order to confirm the effectiveness of the proposed 
damping method, simulations are carried out using the PSIM 
software. The parameters are the same as the designed in Table 
I. Referring to the design procedure developed in § III and §V, 
the simulations on the three cases are carried out under the 
given conditions that fs = 20 kHz, Udc = 350 V, Ug = 220 V/50 
Hz, Po = 2 kW, and Td = 0.75 Ts.  The current sensor gain and 
the gain of PWM inverter are 0.0182 and 1400 respectively for 
all the cases; a PR+HC (from 3rd to 9th) controller is selected 
for grid-current feedback controller. The parameters of the 
PR+HC controller are the same as these for analysis.  

dcU 


 
Fig. 14.  System diagram for the simulations and also the experiments. 

Fig. 14 shows the system diagram of for the simulations and 
the experiments, where the PCC is representative for the 
common connection point. The circuit in the dash line is used 
to emulate the grid with a variation of the inductance. At the 
time of t0, S1 switches on, and the inverter works in the off-line 
state. At time of t1, S2 is on, and the inverter system changes 
from the off-line state to the on-line state. For the simulation, it 
is assumed that the system begins from the off-line state 
directly. 

When the system is stable, the simulated waveforms of the 
grid-injected current and the PCC voltage are similar, which 
are shown in Fig. 15. 

1t

[100 ]P V / divV

[10 ]g A / divi

off-line on-line

 
Fig. 15.  Simulated grid injected currents and PCC voltages in the stable 

state. 

[20 ]g A / divi

[200 ]p V / divV

5 mH,only with the  series dampergL RL

off-line on-line

1t0t  

Fig. 16.  Simulated grid injected currents and PCC voltages under the 
condition that the delay of 0.75 Ts Lg= 5 mH, and only using the RL series 

damper. 
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(a)  

1t

0.65 mH,only with the  series dampergL RL

[20 ]g A / divi

off-line on-line

[200 ]p V / divV

 
(b) 

Fig. 17.  Simulated grid injected currents and PCC voltages under the 
condition that the delay of 0.75 Ts, Lg=0.65 mH, and (a) only with the RC 

parallel damper (b) only with the RL series damper. 
 

Fig. 16 shows that when Lg =5 mH, an LLCL-filter based 
system only with the RL series damper cannot keep stable 
whether it is in the off-line state or in the on-line state.  Fig. 17 
shows that when Lg = 0.65 mH, an LLCL-filter based system 
whether only with the RC parallel damper or with the RL series 
damper cannot keep stable in the on-line state. The simulations 
match the theoretical analysis well. 

VII. EXPERIMENTAL RESULTS 

       In order to further verify the theoretical analysis, a 2 kW 
prototype based on a DSP (TMS320LF2812) controller is 
constructed and the system diagram is also shown in Fig.14, 
where a programmable AC source (Chroma 6530) is used to 
emulate the ideal grid voltage. The parameters of the filters are 
listed in Table I and Table II, and the three different damping 
methods are evaluated and investigated under the given 
conditions that fs = 20 kHz, Udc = 350 V, Ug = 220 V/50 Hz, 
Prated = 2 kW, the dead-time is 2 μs, and the delay is 0.75Ts. 
      The measured PCC voltage waveform and the grid-injected 
current are all similar in the stable state, which are shown in 
Fig. 18. 
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Fig. 18. Measured grid-injected currents and PCC voltages in the stable 

state. 
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Fig. 19. Measured grid-injected currents and PCC voltages under the 
condition that the delay of 0.75 Ts Lg= 5 mH, only with the RL series 

damper, and (a) in the off-line state (b) in the on-line state. 
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(b) 

Fig. 20.  Measured grid-injected currents and PCC voltages under the 
condition that the delay of 0.75 Ts, Lg= 0.65 mH, and (a) Only with the RC 

parallel damper (b) Only with the RL series damper. 
Fig. 19 shows the experimental results under the weak 

grid conditions of Lg= 5 mH and the delay of 0.75 Ts, showing 
that the RL series damped system cannot keep stable whether in 
the off-line state or in the on-line state. It can also be seen that 
due to the resonance, the over currents trigger the hardware 
protections at the time of t2. Note that due to hardware 
protection, the state transition (from the off-line to the on-line 
at the time of t1) of the RL series damped system cannot be 
observed directly. As shown in Fig. 19(a) and Fig. 19 (b), the 
resonances in the on-line and off-line states are observed with 
the help of the switch S1 which is switching on at the time of t0 
. 

Fig. 20 shows that when Lg =0.65 mH, an LLCL-filter 
based system whether only with the RC parallel or with the RL 
series damper cannot keep stable in the on-line state. 
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(b) 
Fig. 21. Measured grid injected current and grid voltage under the 

condition that the delay of 0.75 Ts, Lg= 5 mH, and the composite damper is 
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adopted (a) Grid-injected current and the distorted grid voltage (b) 
Spectra of the grid-injected current and the grid voltage. 

 

     Fig. 21 (a) shows the measured grid-injected current and the 
grid voltage of the composite damping LLCL-filter based grid 
tied inverter under the condition that Lg= 5 mH and the 
magnitudes of the injected 3th, 5th, 7th , 9th and 11th harmonics 
with respect to the fundamental component of Ug are 1.2%, 
2.8%, 1.3%, 2.4%, and 1.5%, respectively.  Fig. 21 (b) shows 
the spectra of the grid-injected current and the grid voltage. 
Since the harmonics compensation of 3th, 5th, 7th and 9th are 
adopted, the related harmonic currents are well suppressed, 
while the 11th harmonic current cannot be alleviated.  
    The experimental results shows that under the same 
condition of the grid with the large variation of inductance, the 
control robust of the system with the composite damper is 
improved a lot, compared with the system only with the RC 
parallel damper or with the RL series damper. The experiment 
matches the theoretical analysis and the simulations quite well. 

VIII. CONCLUSION 

This paper has discussed the passive damping design for a 
high order power filter based grid-tied inverter. The following 
can be concluded. 

1. The RC parallel damping method can be adopted for 
the system under the condition of the weak grid or the 
stiff grid, but is only suitable for the grid with a 
narrow variation of inductance. 

2. The RL series passive damping method is only useful 
for the system under the stiff grid condition.  

3. A robust passive damping method for the LLCL-filter 
based inverter connected to a grid with a large 
variation of inductance can be achieved with a 
composite passive damper, where its RC parallel part 
is designed under the weakest grid condition while its 
RL series part is designed under the stiffest grid 
condition, certainly at little more cost of materials and 
power losses. 

4. The proposed damping method may only be suitable 
for the LLCL-filter based system, due to the additional 
power losses and inductance. 

     The effectiveness of the proposed damping method is fully 
verified through the simulations and experiments on a 2 kW 
LLCL-filter based single–phase grid-tied inverter prototype 
with the fixed controller gain, while the grid inductance varies 
from 0.15 mH to 5 mH.  
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