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LUMPED-PARAMETER MODEL OF A BUCKET FOUNDATION

L. Andersen & L.B. Ibsen
Department of Civil Engineering, Aalborg University, Denmark

M.A. Liingaard
DONG Energy A/S, Fredericia, Denmark

ABSTRACT: As an alternative to gravity footings or pile foundations, offshore wind turbines
at shallow water can be placed on a bucket foundation. The present analysis concerns the de-
velopment of consistent lumped-parameter models for this type of foundation. The aim is to
formulate a computationally efficient model that can be applied in aero-elastic codes for fast
evaluation of the dynamic structural response of wind turbines. The target solutions, utilised for
calibration of the lumped-parameter models, are obtained by a coupled finite-element/boundary-
element scheme in the frequency domain, and the quality of the models are tested in the time and
frequency domains. It is found that precise results are achieved by lumped-parameter models
with two to four internal degrees of freedom per displacement or rotation of the foundation.
Further, coupling between the horizontal sliding and rocking cannot be disregarded without sig-
nificant loss of accuracy. Finally, special attention is drawn to the influence of the skirt stiffness,
i.e. whether the embedded part of the caisson is rigid or flexible.

1 INTRODUCTION

The design of modern wind turbines is to a great extent based on numerical simulation by means
of aero-elastic codes, e.g. FAST (Jonkman & Buhl 2005). An accurate prediction of the struc-
tural response requires a model that accounts for the dynamic soil-structure interaction. Since
computational speed is of paramount importance, e.g. for the evaluation of the fatigue life, only
few degrees of freedom should be associated with the model of the foundation and the subsoil.
For this purpose, a lumped-parameter model fitted to the results of a rigorous model is useful
(Wolf & Paronesso 1992; Andersen & Liingaard 2007; Andersen 2008).

LPM

Half-space

Fig. 1. Bucket foundation in homogeneous soil (left); finite-element/boundary-element model of the foundation and the subsoil
(centre); lumped-parameter model of the foundation coupled with a finite-element model of the structure (right).
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This paper focuses on the development of consistent lumped-parameter models (LPMs) for
steel suction caissons that may be applied as foundations for offshore wind turbines on shallow
water. Presently, a single offshore wind turbine has been installed on a bucket foundation in
Frederikshavn, Denmark (Ibsen 2008). The turbine has been in operation since 2002. Since the
suction bucket is applied as a monopod, it carries loads and moments in all directions. Further,
due to the embedment of the skirted foundation, a significant coupling exists between these
degrees of freedom. Such coupling has been analysed by, for example, Veletsos & Wei (1971)
or Bu & Lin (1999). Hence, a lumped-parameter model of a bucket foundation must account for
the sliding–rocking coupling in contrast to the case of a surface footing on a homogeneous or
layered ground, where the coupling is often negligible (Andersen 2008).

In Section 2 the theory is shortly outlined, following the overall concept illustrated in Fig. 1.
Firstly, the dynamic flexibility of a bucket foundation embedded in homogeneous soil is com-
puted, employing a three-dimensional coupled finite-element/boundary-element scheme in the
frequency domain (Andersen & Jones 2001). The number of discrete frequencies is sufficiently
high to capture the local variations in the stiffness due to constructive and destructive interference
of waves inside the bucket. Secondly, a consistent LPM is fitted for each degree of freedom of
the foundation, i.e. heave, torsion, horizontal sliding and rocking. In addition to this, an LPM is
established for the sliding–rocking coupling terms. Thirdly, in Section 3 the quality of the LPMs
is tested in the frequency and time domains. It is shown that accurate results are achieved when
LPMs with approximately three internal degrees of freedom are applied for each component of
the dynamic stiffness. Finally, the main conclusions are summarised in Section 4.

2 COMPUTATIONAL MODEL OF THE BUCKET FOUNDATION

A rigid footing has three translational and three rotational degrees of freedom, see Fig. 2. In the
frequency domain, these are related to the complex amplitudes of the forces and moments as
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. (1)

HereZ = Z(ω) stores the amplitudes of the displacements and rotations, whereasF = F(ω) is the
vector of forces and moments acting on the rigid footing withω denoting the circular frequency
of excitation. In the general case, the impedance matrixC = C(ω) is fully populated, i.e. all the
rigid-body motions of the footing are interrelated. However, due to the axial symmetry in the
present case,C11 = C22, C44 = C55 andC15 = −C24.
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Fig.2. Degrees of freedom for a rigid footing: (a) displacements and rotations; (b) forces and moments.
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Furthermore, torsion and heave are completely decoupled from sliding and rocking, and the
sliding in thex1-direction is only coupled with the rocking about thex2-axis (and vice versa).

2.1 Coupled boundary-element/finite-element model in the frequency domain

In the present analysis, a bucket foundation with the radiusr0 = 8 m, the skirt lengthh0 = 8 m
and the skirt thicknesst0 = 50 mm is considered (see Fig. 3). The impedance matrixC(ω)
is evaluated at a number of discrete frequencies, based on the computations carried out by a
coupled finite-element/boundary-element (FE/BE) model. The materials are assumed to be linear
viscoelastic, employing a hysteretic damping model, i.e. the material dissipation is independent
of the frequency. Hence, each material is defined by the Young’s modulusE, the Poisson’s ratio
ν, the mass densityρ, and the loss factorη.

r0

h0

r1

O

Fig. 3. Coupled finite-element/boundary-element model of skirted foundation: Geometry (left) and discretization (right). Only
half of the foundation is discretized, utilising the symmetry of the problem.

Isoparametric shell finite elements with quadratic Lagrangian interpolation of the rotation
and displacement of the mid-plane are employed for the foundation (Cook et al. 2002). Shear
deformation over the thickness direction is allowed in accordance with the Mindlin-Reissner
assumption. The lid of the bucket is assumed to be relatively stiff, modelled as a 1 m thick,
massless plate of the material denoted “rigid” in Table 1. The skirts are assumed to be massless
and rigid, made by the same material as the lid, or they consist of massless steel. The mass
of the skirts has almost no impact on the impedance of the foundation, whereas the flexibility
(i.e. Young’s modulus) has a significant effect on the response as further discussed in Section 3.

The material properties of the soil are listed in Table 1. The P-wave velocity is about 436 m/s
and the S-wave speed is approximately 131 m/s, corresponding to soft sand in drained conditions.
For the subsoil, quadrilateral boundary elements with quadratic Lagrangian interpolation of the
displacement and the surface traction are applied (Domínguez 1993). The full-space Green’s
function is employed, and therefore the surface of the half-space needs to be discretized. As
illustrated in Fig. 3, the surface is truncated at the distancer1 away from the foundation. In
the present analyses,r1 = 32 m has been found to ensure that the artificial boundary will not
influence the response of the foundation significantly.

Table 1. Material properties of the massless bucket foundation and the subsoil used in the computations.

Material E (MPa) ν ρ (kg/m3) η

Soil 100 0.45 2000 0.05
Bucket (steel) 2 · 105 0.30 0 0.01
Bucket (rigid) 2 · 1010 0.30 0 0.01
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To increase the computational efficiency, the symmetry of the problem has been utilised
by modelling only half of the foundation and the surrounding half-space. The discretization is
illustrated in Fig. 3 (right), where it is noted that the soil inside and outside the bucket have
been modelled as two separate boundary-element domains. The complete model is obtained by
transforming the boundary-element domains into equivalent macro finite elements that may, sub-
sequently, be coupled with the finite-element model of the foundation. Details about the FE/BE
model can be found in the previous work by Andersen & Jones (2001) and Andersen (2002).

At each frequency, the FE/BE model is subjected to a set of loads providing a vertical force,
Q3, a torsional moment,M3, a horizontal force,Q1 or a rocking moment,M2. Example results
are shown in Fig. 4 for a rocking moment applied at the frequencies 5 an 10 Hz. The displace-
ments and the rotations of the lid are computed for each set of loads, leading to the compo-
nents of a dynamic flexibility matrix for the foundation. This matrix is finally inverted to get the
impedance matrixC(ω). Due to discretization errors, the FE/BE model provides different values
for C24 andC42. The symmetry ofC(ω) is enforced by using the mean value(C24 + C42)/2.

(a) (b)

Fig. 4.Response of the skirted foundation plotted0.2 excitation period out of phase with the load: (a) Rocking moment of the
magnitude1 · 1011 applied at the frequencyf = 5 Hz; (b) rocking moment of the magnitude3 · 1011 applied at the frequency
f = 10 Hz. The light and dark shades of grey indicate vertical displacements upwards and downwards, respectively.

2.2 Consistent lumped-parameter model for time-domain analysis

Component(i, j) of the impedance matrix may be expressed asCij(ω) = KijSij(ω), where
Kij = Cij(0) is the static stiffness component andSij is the normalised dynamic stiffness. As
proposed by Wolf (1994), the frequency-dependent stiffness is decomposed into a singular and
a regular part. In terms of the normalised dynamic stiffness, and skipping indicesi andj, each
component may be written as

C(ω) = KS(ω), S(ω) = Ss(ω) + Sr(ω). (2)

Here,K is the static stiffness component, whereasSs(ω) andSr(ω) are the singular part and the
regular part ofS(ω), respectively. These are given as

Ss(ω) = k∞ + iωc∞, Sr(ω) ≈ Ŝr(iω) =
P (iω)

Q(iω)
, (3a)

where i =
√
−1 is the imaginary unit, whileP (iω) andQ(iω) are polynomials of the orders

M − 1 andM , respectively, i.e.

P (iω) = 1− k∞ + p1(iω) + p2(iω)2 + . . . + pM−1(iω)M−1, (3b)
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Q(iω) = 1 + q1(iω) + q2(iω)2 + . . . + qM(iω)M . (3c)

In Eq. (3) all coefficients are real. The rational approximationŜr(iω) → 0 for ω → ∞, and
Ŝr(0) = 1 − k∞. Hence, the static stiffness is recovered forω = 0, andKSs(ω) provides the
entire dynamic stiffness in the high-frequency limit, leading to a double-asymptotic solution.

For a rigid footing, the termKk∞ vanishes and the singular part of the dynamic stiffness
is reduced to a pure mechanical impedance. Withρ, cP andcS denoting the mass density, the
P-wave speed and the S-wave speed of the soil, respectively, the high-frequency limit of the
impedance related to the coupled sliding and rocking of a rigid bucket foundation are given as

c∞11 = c∞22 = ρcSAlid +
1

2
(ρcS + ρcP )Askirt , (4a)

c∞24 = c∞42 = −
1

4
(ρcS + ρcP )h0A

skirt = −c∞15 = −c∞51, (4b)

c∞44 = c∞55 = ρcPI
lid +

1

2
(ρcS + ρcP )Iskirt +

1

2
ρcSr2

0A
skirt . (4c)

c∞33 = ρcP Alid + ρcSAskirt , c∞66 = 2ρcSI
lid + ρcSr2

0A
skirt , (4d)

The areas and the geometrical moments of inertia around the centroid of the lid are given as

Alid = πr2

0, Askirt = 4πr0h0, I lid =
π

4
r4

0, Iskirt =
4π

3
r0h

3

0. (4e)

The contributions from both sides of the skirt are included inAskirt andIskirt.
Equation (4) may provide an overestimation of the high-frequency impedance of a flexible

foundation. Alternatively a solution with no contributions from the skirt may be proposed, or the
skirt may be treated as a part of the subsoil. In the latter case, the coupling between sliding and
rocking vanishes in the high-frequency limit, i.e.c∞24 = c∞42 = c∞15 = c∞51 = 0, and

c∞11 = c∞22 = ρcSAlid + ρskirtcskirt
S Aring , c∞33 = ρcP Alid + ρskirtcskirt

P Aring , (5a)

c∞44 = c∞55 = ρcPI
lid + ρskirtcskirt

P Iring , c∞66 = 2ρcSI
lid + 2ρskirtcskirt

S Iring , (5b)

whereρskirt , cskirt
P and cskirt

S are the mass density, the P-wave speed and the S-wave speed of
the skirt material, respectively. Further,Aring ≈ 2πt0 andIring ≈ πt0r

3
0 are the area and the

geometrical moment of inertia around the centroid related to the horizontal cross section of
the skirt. Selecting a proper value of the high-frequency impedance components is crucial to
obtaining a well-posed lumped-parameter model as discussed in the next section.

Regarding the regular part of the non-dimensional dynamic stiffness,Sr(ω), the orderM of
the rational approximation,̂Sr(iω), must be high enough to ensure an accurate fit to the target
solution, obtained by the FE/BE scheme, and low enough to avoid wiggling outside the range of
frequencies considered in the FE/BE model. Furthermore, to provide a physically valid solution
the poles of the rational approximation, i.e. the roots of the denominator polynomial, must all
have a negative real part. In particular, if there areN complex conjugate pairs of poles,Q(iω)
may advantageously be written as

Q(iω) =

N
∏

n=1

(iω − sn) (iω − s∗n) ·

M−N
∏

n=N+1

(iω − sn) . (6)

wheresn, n = 1,2, . . . ,N , are complex roots withs∗n defining their complex conjugates. The
remainingM − 2N roots are real.
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The rational approximation̂Sr(iω) is now fitted to the target solutionSr(iω) computed by the
FE/BE model at the circular frequenciesωj, j = 1,2, . . . , J , employing a weighted least squares
approach with the weight functionw(ω). The polynomial coefficientspn and the polessm are
identified as the optimisation variables. Hence, the object function

F (pn, sm) =
J

∑

j=1

w(ωj)
(

Ŝr(iωj)− Sr(ωj)
)2

(7)

is minimised subject to one equality constraint,

G0 = 1−
N
∏

n=1

(sn) (s∗n) ·
M−N
∏

n=N+1

(−sn) = 0, (8a)

andM inequality constraints,

Gk = ℜ(sk) + ε < 0, k = 1,2, . . . ,N, (8b)

Gk = sk + ε < 0, k = N + 1,2, . . . ,M −N, (8c)

Gj = ζℜ(sk) +ℑ(sk) < 0, j = M −N + k, k = 1,2, . . . ,N. (8d)

Here,ℜ(sk) andℑ(sk) are the real and imaginary parts of the complex conjugate poles, respec-
tively. Further,ζ ≈ 10− 100 andε ≈ 0.01 are two real parameters introduced to avoid errors due
to limited computational accuracy. The equality constraint ensures thatŜr(0) = 0 in accordance
with Eq. (3c), whereas the third inequality constraint guaranties that the complex first-order poles
will not form non-negative real second-order poles. As suggested by Wolf (1994) and Andersen
(2008), the weight functionw(ω) is designed as a decreasing function of the frequency, which
ensures a good match at low frequencies. Obviously, the initial values of the poles must conform
with the constraintG0 = 0.

The polynomial-fraction form of the rational approximation, given by Eq. (3), is recast into
a partial-fraction form. WithN complex conjugate pairs of poles in̂Sr(ia0), the total approxi-
mation of the dynamic stiffness coefficientS(a0) can be written as

Ŝ(ia0) = k∞ + ia0c
∞ +

N
∑

n=1

β0n + β1nia0

α0n + α1nia0 + (ia0)2
+

M−N
∑

n=N+1

An

ia0 − sn
. (9a)

HereAn are the residues corresponding to the real polessn, n = N + 1,N + 2, . . . ,M −N . The
real coefficientsα0n, α1n, β0n, andβ1n are given by

α0n = {ℜ(sn)}2 + {ℑ(sn)}
2, α1n = −2ℜ(sn), (9b)

β0n = −2ℜ(An)ℜ(sn) + 2ℑ(An)ℑ(sn), β1n = 2ℜ(An), (9c)

whereℜ(An) andℑ(An) are the real and imaginary parts of the complex conjugate residues.
The total approximation of the dynamic stiffness given by Eq. (9) consists of three character-

istic types of terms, namely a constant/linear term,M −2N first-order terms andN second-order
terms. Each of these expressions may be interpreted as the frequency-response function for a so-
called discrete-element model as illustrated in Fig. 5. The spring and damping coefficients as
well as the point masses in these models are uniquely defined in terms of the coefficients in
Eq. (9). A detailed explanation may be found, for example, in the work by Wolf (1994) or Li-
ingaard (2006). Here, it shall only be noted that the optimal solution includes as many complex
conjugate pairs as possible modelled by the alternative second-order system, cf. Fig. 5e, since
this reduces the number of internal degrees of freedom in the resulting lumped-parameter model
(LPM) to a minimum for a given order,M , of the rational approximation.
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Fig. 5. Discrete-element models: (a) Constant/linear term; (b) standard first-order term; (c) alternative first-order term, also known
as a “monkey tail”; (d) standard second-order term (two internal degrees of freedom); (e) alternative second-order term.

3 RESULTS AND DISCUSSION

A bucket foundation with the geometry described in Subsection 2.1 is analysed in the frequency
domain by a coupled FE/BE model. The target solution is computed at the discrete frequencies
f = 0,0.1,0.2, . . . ,20 Hz for two cases: a bucket foundation with rigid skirts and a bucket foun-
dation with skirts made by steel. In both cases, the skirts are assumed to be massless, but it has
been tested that the mass of the skirts has almost no impact on the overall response. As outlined
in Subsection 2.2, lumped-parameter models are fitted to the target solutions. The LPMs are
tested in the time domain by comparing the response to a transient load with the results obtained
by inverse Fourier transformation of the target solution carried out in the frequency domain.

3.1 A bucket foundation with rigid skirts

Based on the results of FE/BE analysis for the foundation with rigid skirts, the target solutions
S33(ω), S22(ω), etc. have been computed. Figure 6 shows the results in terms of the magnitudes
|S33|, |S22|, etc. and the phase anglesarg(S33),arg(S22), etc. and as functions of the frequency,
f . Note that only one out of ten data has been included in the figure, but evidently the local tips
and dips occurring due to interference of waves inside the bucket are well represented.

As indicated by Fig. 6, the FE/BE model provides results that oscillate around the singular
part of the normalised dynamic stiffness, computed by Eq. (4) for the rigid bucket. Moreover,
lumped-parameter models if the orderM = 4 can be used at frequencies below approximately
2 Hz for the present foundation and subsoil. At higher frequencies, up to about 5–10 Hz, an LPM
of the orderM = 8 is valid. Utilising the discrete-element model illustrated in Fig. 5e, four inter-
nal degrees of freedom are added for each non-zero component of the impedance matrix,C(ω).
It is noted that the off-diagonal terms representing the coupling between sliding and rocking (and
vice versa) must be considered separate quantities in the development of LPMs—even though
the impedance matrix is symmetric. Hence, a great reduction in the total size of the model can
be achieved if the coupling may be disregarded.

The quality of the lumped-parameter models of the ordersM = 4 and8 are tested in the
time domain by application of a transient load. The time histories of the load and the response
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are given in Fig. 7, whereq3(t) is a vertical force applied at the centre of the lid andv3(t) is
the vertical displacement of the lid. Likewise,θ3(t) is the torsional rotation due to the torsional
momentM3(t), and so on. A rigid cylinder with a mass density of 2000 kg/m3, a radius of
r0 = 8 m and a height of 32 m has been put on top of the foundation, and the response has been
integrated over time. For the present time-history of the excitation, both LPMs provide useful
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Fig. 6. Dynamic stiffness coefficients for the bucket foundation with rigid skirts obtained by the FE/BE model (target solution)
and lumped-parameter models with different orders.
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results, i.e. the responses provided by the LPMs are in good agreement with the results achieved
by inverseFourier transformation of the frequency-domain solutions based on the FE/BE model.
The approximation of the orderM = 8 is slightly more accurate regarding the prediction of
the maximum response during the application of the load as well as the geometrical damping
occurring after the excitation has ended. Clearly, sliding–rocking coupling cannot be disregarded.
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Fig. 7. Response of the bucket foundation with rigid skirts obtained by inverse Fourier transformation (reference solution) and
lumped-parameter models. The dots indicate the load time history.
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3.2 A bucket foundation with flexible skirts

Similarly to the previous analysis of a rigid bucket foundation, lumped-parameter models are
established for a bucket foundation with flexible skirts with a stiffness corresponding to that of
steel. The frequency-domain and time-domain results are given in Figs. 8 and 9, respectively.
Again, a good match to the target solution is obtained with LPMs of the orderM = 4 to M = 8.
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Fig. 8. Dynamic stiffness coefficients for the bucket foundation with flexible skirts obtained by the FE/BE model (target solution)
and lumped-parameter models with different orders.
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It is noted that the singular parts given by Eq. (5) have been applied for the sliding and rocking
degrees of freedom, including the coupling terms. However, for the heave and the torsion, a mix
with half the impedances defined by Eq. (4) and half the impedances given by Eq. (5) has been
found to provide a good approximation in the high-frequency domain. Even if the sliding-rocking
coupling is weaker than in the case of the rigid footing, it cannot be disregarded.
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Fig. 9. Response of the bucket foundation with flexible skirts obtained by inverse Fourier transformation (reference solution) and
lumped-parameter models. The dots indicate the load time history.
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4 CONCLUSION

Consistent lumped-parameter models have been devised for rigid as well as flexible bucket foun-
dations situated in homogeneous soil. It has been found that rational approximations of the order
4 to 8 provide useful results at frequencies below 2 to 10 Hz. Hence, models with about 3 in-
ternal degrees of freedom per non-zero component of the impedance matrix for the foundation
will suffice for most practical purposes, given that the external and the parametric excitations of
offshore wind turbines are dominant in the low-frequency range below 5 Hz.

It is concluded that the coupling between horizontal sliding and rocking must be considered
by the lumped-parameter models to avoid significant loss of accuracy. Further, it has been found
that the asymptotic behaviour in the high-frequency domain must be based the flexibility of the
skirts. Thus, a great difference has been identified between the dynamic stiffness of idealised
rigid and more realistic, flexible foundations. Future research will focus on the application of the
lumped-parameter models for the analysis soil–structure interaction related to wind turbines.
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