
Aalborg Universitet

Peer-Assisted Content Distribution with Random Linear Network Coding

Hundebøll, Martin; Ledet-Pedersen, Jeppe; Sluyterman, Georg; Madsen, Tatiana Kozlova;
Fitzek, Frank
Published in:
Vehicular Technology Conference (VTC Spring), 2014 IEEE 79th

DOI (link to publication from Publisher):
10.1109/VTCSpring.2014.7023041

Publication date:
2014

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Hundebøll, M., Ledet-Pedersen, J., Sluyterman, G., Madsen, T. K., & Fitzek, F. (2014). Peer-Assisted Content
Distribution with Random Linear Network Coding. In Vehicular Technology Conference (VTC Spring), 2014 IEEE
79th (pp. 1-6). IEEE (Institute of Electrical and Electronics Engineers).
https://doi.org/10.1109/VTCSpring.2014.7023041

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: July 04, 2025

https://doi.org/10.1109/VTCSpring.2014.7023041
https://vbn.aau.dk/en/publications/89f41d1c-c3b0-4d41-9492-b1e09091b529
https://doi.org/10.1109/VTCSpring.2014.7023041

Peer-Assisted Content Distribution
With Random Linear Network Coding

Martin Hundebøll, Jeppe Ledet-Pedersen, Georg Sluyterman, Tatiana K. Madsen, Frank H.P. Fitzek
mhu@es.aau.dk, jlp@satlab.org, georg@sman.dk, {tatiana,ff}@es.aau.dk

Department of Electronic Systems, Aalborg University, Denmark

Abstract—Peer-to-peer networks constitute a widely
used, cost-effective and scalable technology to dis-
tribute bandwidth-intensive content. However, the ma-
jority of todays peer-to-peer systems require complex
algorithms to schedule what parts of obtained content
to forward to other peers. Network Coding (NC) has
been proposed as a method for optimizing this schedul-
ing and previous work supports that a gain in overall
throughput may be possible. Networks that apply NC
differs from store-and-forward networks by distributing
content as a linear combination of received packets.

In this paper we propose the structure of the
BRONCO peer-to-peer system, which applies random
linear network coding. To support simulation results in
related studies, we focus on experimental evaluation
of performance. Our protocol is implemented using
coding in the binary Galois field, which is computa-
tionally efficient compared to coding in higher order
fields. The overlay network is easy to establish and
nodes communicate using a simple protocol.

We show that BRONCO outperforms regular HTTP
transfers and is, even with a simple protocol, com-
parable with BitTorrent. Furthermore, we evaluate
the performance of different coding parameters and
suggest a suitable trade-off between CPU utilization
and network overhead. Within the limitations of the
used test environment, we have shown that NC is usable
in peer-assisted content distribution and we suggest
further improvements to reduce redundancy overhead.

Index Terms—Content Distribution, Implementa-
tion, Network Coding, Overlay Network, Peer-to-peer

I. Introduction

When distributing content from one source to multiple
destination nodes, simple file transfer protocols such as
FTP and HTTP are limited by the upload capacity of the
source. A method to obtain more efficient transfers is peer-
to-peer networks, where the destination nodes cooperate
on the distribution of information. Peer-to-peer networks
have proved to be a cost-effective and widely used method
for distribution of bandwidth-intensive content and are
especially tolerant to rapid increases in the number of con-
nected clients, generally known as flash crowds[1]. Exam-
ples of peer-assisted services include software updates for
the World of Warcraft multiplayer game[2], distribution of
the Ubuntu Linux operating system[3], and Skype Internet
Telephony[4].

As illustrated in Figure 1, peer-to-peer networks dif-
fers from conventional content distribution by forming a
logical, cooperative overlay network, where data is shared
between nodes and thus taking advantage of the resources
available on the destination nodes. The formed network is
scalable in the sense that when the capacity demand is in-
creased due to new nodes entering the network, the nodes
also provide additional capacity to the network. Nodes
may choose to stay in the network even after receiving
the complete content, resulting in a further increase of the
network capacity.

Fig. 1. Left: Content distribution using conventional client-server
systems. Right: Content distribution using peer-to-peer distribution.

The majority of todays peer-to-peer networks for file
distribution (e.g. BitTorrent[5] and Gnutella[6]) operates
by dividing the content in blocks, which are then stored
and forwarded by nodes in the network. This allows nodes
in the network to concurrently download multiple blocks
from different nodes and saves bandwidth costs on the
source, as this only needs to deliver content into a subset
of the network. Traditionally, the scheduling of the blocks
a node transmits to other nodes have required complex
algorithms and knowledge of the block distribution of
connected nodes. One strategy is the rarest-first where
nodes prioritize the distribution of blocks that are rare
among the connected nodes. As this selection is based
solely on knowledge of a local part of the network topology,
this can lead to suboptimal content distribution because
the perception of rare blocks can be very different for
connected nodes.

In [7] it is suggested that incorporating Random Linear
Network Coding (RLNC) methods in a peer-to-peer con-
tent distribution system could lead to a potential gain in
the overall network throughput due to simplification of the
block scheduling. In networks where RLNC is employed,
nodes exchange random linear combinations of received
data, contrary to conventional networks where nodes sim-
ply forward received content. When a sufficient number

of linear independent combinations have been received,
the original data can be reconstructed. This may lead
to a theoretical gain in overall network throughput, but
at the cost of increased usage of computational resources
due to the coding. Furthermore, the randomness of the
encoded blocks can result in nodes receiving linear depen-
dent blocks containing no new information. The coding
operations are performed in a finite field. In [8] it is shown
that using the binary Galois field, GF(2), facilitates very
efficient implementations of both encoding and decoding,
by accepting a higher probability of generating redundant
linear combinations.

Avalanche is a peer-to-peer system with RLNC devel-
oped by Microsoft Research. The system is simulated in
[7] and a prototype implementation in C# is evaluated
in [9]. Avalanche implements network coding in GF(216),
which results in approximately 20% CPU utilization while
downloading, 40% utilization while decoding, and 10%
utilization while seeding (Pentium IV 2 GHz, 512 MiB
RAM). The performance validation only mentions a down-
load duration of 5.2 hr but nothing on the specific file
size. From the papers test specification it is specified to
be between 2.8 GiB to 3.7 GiB, yielding a download speed
of 157 kB/s to 207 kB/s.

In this paper, we focus on an experimental evaluation
of the feasibility of using NC as an approach for content
distribution. We propose the structure of a peer-to-peer
file distribution network with RLNC in the binary Galois
field. By employing RLNC methods, the network allows
for easy block scheduling with a very simple protocol.

We have structured the rest of the paper as follows.
Section II outlines the scenario and presents the BRONCO
(BRONCO Random Overlay with Network Coding Op-
timization) protocol, explaining how peers connect, ex-
change data and leaves the network. A prototype im-
plementation in C++ is described and compared with
existing protocols in Section III, which also contain tests to
support the selection of NC parameters. Conclusions and
suggested subjects for further work is given in Section IV.

II. BRONCO: Random Overlay with Network
Coding Optimization

In this paper we consider the scenario, that one server
with limited upload capacity distributes one file to mul-
tiple nodes with a total download capacity greater than
that of the server. This scenario is a clear example of a
situation where peer-to-peer technology can provide a gain
in throughput. The nodes downloading the file should take
part of the content delivery network themselves. This is
conceptually illustrated in Figure 2. The objective is to
put the load in the network of nodes having requested the
file, lowering traffic from the server and giving an overall
performance gain.
A. Network Topology

To facilitate a simple protocol and implementation, the
overlay network is designed to be easy to establish and

Fig. 2. The topology of the BRONCO overlay network.

computationally inexpensive to maintain. The network is
defined around a centralized server and multiple nodes
arranged in a randomly formed, partially connected mesh
network. The server holds the file for distribution and
maintains a list of all active nodes in the network. Figure 2
illustrates how nodes are randomly connected to both the
server and other nodes. The random topology is simple
to construct and can easily cope with peers leaving the
network as remaining peers can simply request additional
peers from the server.

Nodes communicating with the server are denominated
clients and nodes communicating with other nodes are
denominated peers. During the file transfer the server acts
exactly as a peer and follows the data exchange protocol
outlined in Section II-C. All peers, including the server,
are identified by a 40-byte SHA1 hash generated by the
individual peer. The hash should be generated from data
unique to the node, e.g. IP address, listen port and startup
time. The original file is also identified by a 40-byte SHA1
hash of the content.

BRONCO uses two distinct application layer protocols.
The Overlay Network Protocol is used for communication
between clients and the server, while the Data Exchange
Protocol is used for inter-peer communication and to
control the flow of encoded data. Both protocols use the
connection-oriented TCP/IP stack.

B. Overlay Network Protocol
The dedicated Overlay Network Protocol describes how

peers join and leave the network by connecting to the
server.

1) Joining: To join the network, a connection to the
server is established from the client and a PEER message
is sent to the server. The packet contains the file hash,
the peer hash, a flag indicating if the client has the
complete file, and the port number other peers should use
for establishing connections to the peer. Furthermore, the
packet includes the number of existing peers requested by
the joining peer.

The server replies with a CONFIG message containing
information of the shared file, as well as packet size and
generation size. The server selects the requested number
of peers as a random subset of the nodes that are already
in the network and returns these to the joining node as
a PEERS packet. Finally, the joining peer is added to the

list of nodes. The joining node connects to a predefined
number of nodes in the received list and proceeds with
data exchange as described later in this section. The server
itself may be included in the returned peer list with the
same probability as any regular peer.

A number of the returned peers may have reached their
ingoing connection limit or have left the network without
notifying the server, and peers should therefore request
more peers than their maximum number of outgoing
connections.

2) Leaving: To keep the list of peers in the network up
to date, the server is notified when peers leave the network.
When leaving gracefully, a peer notifies connected peers
and the server with a LEAVE message containing its peer
hash. The server then removes the peer from the list of
peers to prevent it from being returned as part of a peer
join.

Due to failure or broken network connection, the peer
may also leave the network non-gracefully, in which case
the server is unaware of the unavailable peer. Affected
peers notifies the server on behalf of the absent peer
by sending a REPORT message with the peer hash of the
missing peer.

C. Data Exchange Protocol
To initiate the content transfer between peers, a joining

peer connects to peers in the received peer list. Upon a suc-
cesful connect, a handshake is carried out to exchange peer
informations. The handshake consists of a PEER message
from the connecting peer and a REPLY message from the
remote peer. The remote peer sets a busy flag in the reply,
to inform the connecting peer whether the connection is
accepted. In addition, the handshake contains peer hashes,
file hashes, and a flag indicating if the peer has the
complete file. If both peers has the complete file, i.e. when
a peer join the network to aid the content distribution
only, the connection is discontinued.

If a joining peer is unable to create a connection to a
remote peer, this is reported to the server in a REPORT
message similar to a non-graceful leave.

When the connection is established, both peers may
request data by sending a START message containing its
peer hash. When receiving a START, data transfer is started
and continues until the receiving peer either sends a STOP
or LEAVE message. Linear combinations are transmitted
using DATA messages holding the encoded data, the en-
coding vector and the generation from which the packet is
generated.

Peers in the network are in one of three states: encoding,
decoding, or recoding. Encoding peers has the complete
file and is thus able to create linear combinations from
all generations. Encoding peers select the first generation
randomly and the following in a round-robin manner to
scatter data from all generations in the network. Decoding
peers has no connections to incomplete peers and are only
processing received data using coding operations. Peers

in the recoding state are both receiving and transmit-
ting linear combinations, thus having only part of the
file available. When recoding, the peer should generate
linear combinations from available generations selected in
a round-robin manner. When the file is complete, the peer
must inform all connected peers with a STOP message.

D. Network Coding Parameters
The original content is organized in generations of g

packets, where each packet has size b. The field size used
for network coding parameters is denoted q.

Selection of the parameter values g, b, and q poses a
trade-off between the computational complexity of the
coding and the possibility of generating linear dependent
packets. If the size of the original content is kept constant,
increasing g or q lowers the expected number of linear
dependent encoding vectors, as the total number of valid
vectors is also increased. However, the processing required
to encode and decode packets increases as well, since
more original packets are expected to be included in the
encoded packet. The total number of generations also
depend on b, the packet size. If the content size requires
multiple generations, lowering the packet size will decrease
the possibility of receiving packets from a non-complete
generation.

E. Implementation
For testing purposes, we have implemented a prototype

of the BRONCO peer-to-peer system. The prototype is im-
plemented in the C++ programming language and applies
the libgf2 network coding library provided by the authors
of [8]. Each peer connection is running in separate threads,
while the network coding is performed by a set of threads
to simplify mutual exclusion to the central coding data.
Encoded or recoded packets are inserted by the encoding
thread in an outgoing buffer. Similarly, connections insert
received packets in an incoming buffer to be processed by
the decoding thread. Both buffers are organized as fixed-
size last-in, first-out queues to give preference to the most
recent data.

The defined packets from both protocols are trans-
mitted using TCP/IP connections with data following a
predefined header, allowing varying size and type of con-
tent. The content field is generated with Google Protocol
Buffers[10], which provides a simple, portable, and efficient
binary object serialization protocol. The packet header is
organized with an 8 bit type field and an 8 bit length field,
which permits packets of up to 4 GB and leaves plenty of
room to extend the protocol with more packet types.

III. Performance Evaluation
Here we evaluate the performance of the implementation

of BRONCO. Before comparing BRONCO to other proto-
cols and evaluating performance with varying parameters,
the environment in which the tests are carried out is
described. The purpose of the comparison is to state
whether BRONCO is a viable protocol.

A. Test Environment
We setup a test environment consisting of multiple

controllable and connected nodes and a central server.
Furthermore, the bandwidth is limited to each node as
well as the server.

The described test environment is obtained with 36
nodes, one server and one router controlling the band-
width. The server is configured with a 10 Mb/s upload
link and each node is configured with symmetric 5 Mb/s
links. By selecting the server upload rate smaller than the
overall download capacity of the nodes, we are able to
test if BRONCO gives a gain in network throughput. The
similar link rates makes comparison of results between
nodes easier. On the router, IPFW and the Dummynet
traffic shaper[11] are used to configure the selected rates
and VLANs are set up to control traffic flow.

B. Comparison with Existing Protocols
BRONCO should show an improvement in transfer

time over the standard method for file transfers, which
we consider to be HTTP downloads. Furthermore, an
indication of the performance of BRONCO in comparison
to BitTorrent is relevant, since both are based on peer-
to-peer technology and BitTorrent is widely used on the
internet [12]. We therefore test BRONCO by measuring
total transfer times for each protocol.

The test is carried out for HTTP by transferring a
10 MiB file from the server to all nodes, with connections
limited as described above. BitTorrent is tested by trans-
ferring a 100 MiB file, since slow transfer initialization
for BitTorrent gives biased results when comparing with
10 MiB files. The results are summarized in Table I.

HTTP BRONCO BitTorrent BRONCO
File Size 10 [MiB] 10 [MiB] 100 [MiB] 100 [MiB]
Mean 279.4 [s] 33.8 [s] 292 [s] 291 [s]
Std. Dev. 0.55 [s] 1.7 [s] 2.3 [s] 22 [s]

TABLE I
Transfer times for HTTP, BitTorrent and BRONCO when

transferring simultaneously.

As expected, the results in Table I shows that BRONCO
clearly outperforms HTTP when multiple nodes download
simultaneously. Independent of file size, BitTorrent uses
approximately 20 - 30 seconds to establish peer connec-
tions, before the transfer is started. This indicates that
BitTorrent is better suited for larger transfers, where
initialization accounts for less of the total transfer time.

Despite the early prototype of BRONCO, BitTorrent
is only marginally faster when initialization is ignored.
Taking the maturity of the BitTorrent protocol into ac-
count, BRONCO performs relatively well, suggesting that
further tests should be carried out to improve BRONCO.
The deviation seen when transferring 100 MiB files with
BRONCO is caused by the last joining peers struggling to

find peers with available connections, thus having lower
transfer rate.

C. Scalability
To test how BRONCO scales, transfers with increasing

number of nodes are measured and compared to HTTP
transfer from a single server. The results in Figure 3 show
that the HTTP transfer times increases proportionally
to the number of nodes when the download capacity of
the clients exceeds that of the server. By utilizing the
peers upload capacity, BRONCO shows an approximately
constant distribution time

1 2 4 8 16 36
0

50

100

150

200

250

300

Downloading Peers

T
o
ta

l
T

ra
n
s
fe

r
T

im
e
 [
s
]

HTTP

BRONCO

Fig. 3. Comparison of scalability between HTTP and BRONCO
when transferring 10 MiB files to increasing number of nodes.

The overhead from redundant packets in the network
is apparent when the capacity of the server matches the
capacity of the clients, as seen in the tests with one and
two nodes.

D. Parameters
We have shown that the BRONCO protocol is scalable

and nearly on par with BitTorrent in terms of transfer
rate when considering the specific test conditions. Here we
evaluate how the generation size affects the performance
of the system by addressing the link utilization, CPU
utilization, redundant packets share, and the transfer rate.
The tests are conducted by distributing a 12.5 MiB file
from a server with 10 Mb/s upload capacity. All 36 peers
are configured with symmetric 5 Mb/s links and initiate
the transfer with a one second interval.

1) Link Utilization: In Figure 4 the average link utiliza-
tion for all peers is shown for different generation sizes.
Total rate is packets received per second, regardless of
redundancy. Effective rate is received packets providing
linear independent packets, which is determined from the
change in combined ranks of all generations.

The figure shows that BRONCO is able to receive
packets at a total rate close to the full link rate and

32 64 128 256 512 1024
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Generation Size [Packets]

S
p
e
e
d
 [
M

b
/s

]

Total Speed

Effective Speed

Link Speed

Fig. 4. Link utilization with generation sizes

for higher generation sizes, the rate of redundant packets
decreases. This supports that network coding with larger
generation size reduces the number of redundant packets,
as the probability of generating linear dependent encoding
vectors decrease. The residual link capacity is due to slower
rates during the beginning of the transfer and framing
overhead for TCP/IP and Ethernet.

2) Server Upload Speed: A motivating factor for peer-
assisted content distribution is a reduction of data trans-
mitted by the server. In Figure 5 we show the average
upload rate of the server. The first peers connecting to the
network receive the server as part of the peer list, which is
clearly seen by the peak in the region around five seconds.
As more peers join the network and data becomes available
from peers, the link utilization of the server is decreased.

Generation Size 32 64 128 256 512 1024
Bytes TX [%] 7.4 8.0 8.6 7.7 7.7 7.2

The above table lists the servers share of all data
distributed to the peers at different generation sizes. It
is seen that with the conditions in our test setup, less
than 9% of total data distributed originates from the
server. This gives an opportunity for content providers
to cut bandwidth costs compared to HTTP. The nearly
constant percentage complies with the similar upload rates
in Figure 5 and shows that server load is unaffected by
change in generation size. CPU utilization of the server is
further addressed in Section III-E.

3) Redundant Packet Share: As showed earlier, the
probability of receiving redundant packets increases for
lower generation sizes. Figure 6 shows the percentage
of received packets containing linear dependent encoding
vectors, i.e. no new information.

The results in this test are obtained by transferring
12.5 MiB data with a packet size on 6400 bytes, giving
equally sized generations for the considered generation

0 10 20 30 40 50 60 70
0

200

400

600

800

1000

1200

Time Elapsed [s]

U
p

lo
a

d
 S

p
e

e
d

 [
k
B

/s
]

g = 32

g = 64

g = 128

g = 256

g = 512

g = 1024

Fig. 5. Server upload rate while peers download.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Transfer Complete [%]

R
e
d
u
n
d
a
n
t
p
a
c
k
e
t
re

c
e
iv

e
d
 [
%

]

g = 32

g = 64

g = 128

g = 256

g = 512

g = 1024

Fig. 6. Redundant packets received during download with different
generation sizes.

sizes. Peers transmit packets from a generation selected
in a round-robin manner. For configurations where the file
size does not divide evenly in bg, the smaller generation
is most likely to complete first, rendering the following
packets from this generation redundant, thus increasing
the total share of redundant packets.

From Figure 6 it is easily seen that the redundancy is
drastically increased during the end of the transfer when
only a few packets from each generation are missing. To
reduce this behaviour, one solution is to introduce an
end-game strategy which allows peers to request a specific
uncoded packet.

4) Client CPU Utilization: As discussed earlier, coding
in the binary Galois field can give a performance gain
compared to higher field orders. Figure 7 illustrates the
average CPU utilization for the clients when de- and
recoding data during file transfer.

The decoder uses the Gauss-Jordan algorithm to invert
the encoding matrix. The linear trends in the figure are
caused by the increasing number of row operations per-
formed for each received packet. The sudden drop near
95% is caused by the increased number of received redun-
dant packets, as discarding a packet when identified as
redundant is computationally simpler than full decoding.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

Transfer Complete [%]

C
P

U
 U

s
a
g
e
 [
%

]

g = 32

g = 64

g = 128

g = 256

g = 512

g = 1024

Fig. 7. CPU usage of peers while download at different generation
sizes. (3 GHz Pentium 4)

Comparing Figure 6 and Figure 7 shows the trade-off
between redundancy and CPU utilization. Accepting a
higher CPU utilization, i.e. increasing the generation size,
allows lower redundancy.

5) Transfer Progress: By illustrating the average share
of time spent receiving one percent of a file, Figure 8 sum-
marizes the performance of BRONCO with a generation
size of 256. When joining the network, a short time is
spent establishing connections to peers, which is seen as
the increased transfer time of the first percentage. From
3% to 95% of the transfer, the figure shows that BRONCO
receives data at a steady rate. The need for an end-game
strategy is supported by the figure, as the final two percent
of the file requires eight percent of the total transfer time.

E. Coding Performance
In this section we evaluate the maximum coding

throughput in situations where the network connections
between peers is not the limiting factor. Two nodes in
the test setup are configured as client and server and a
250 MiB file is transferred from the server with varying
generation size. The results of this test is listed in Table II.

As expected, both the average and peak encod-
ing/decoding speed are decreased when the generation
size is increased as more matrix operations are required
for both encoding and decoding. The clients experience
CPU loads of more than 90% for all generation sizes,
suggesting that the effective transfer speed is limited by
the performance of the decoder. This is further supported

10 20 30 40 50 60 70 80 90 100

1

2

3

4

5

Transfer Complete [%]

T
ra

n
s
fe

r
T

im
e

 [
%

]

Fig. 8. Percentage of download time used on download one percent-
age of the file with generation size 256.

Generation Size 32 64 128 256 512 1024
Avg. Speed [MiB/s] 35.0 29.1 18.8 10.4 5.6 3.0
Peak Speed [MiB/s] 53.4 39.9 26.2 15.2 8.9 5.0
Redundant Packets [%] 32.7 14.5 8.7 3.4 1.4 0.7
Client CPU Util. [%] 97.9 98.5 99.5 94.9 94.6 92.5
Server CPU Util. [%] 72.3 75.4 72.3 69.5 65.6 63.6

TABLE II
Coding measurements of 250 MiB transfer between two

peers using an uncapped 1 Gb/s link.

by the server CPU load decreasing for higher generation
size, as the client struggles to decode the received data.
The share of redundant packets is approximately half
of the ones included in Figure 6, due to the peer only
receiving packets from one other peer.

These results indicate that the generation size should be
selected based on both the processing power of the peers
and the link speed. If e.g. the transfer speed between peers
is limited by a 100 Mb/s link, lowering the generation size
to less than 256 will not increase transfer speed but only
the share of redundant packets.

IV. Conclusions and Further Directions
In this paper, we have proposed the structure of a

peer-to-peer content distribution system based on random
linear network coding. Our system, BRONCO, uses a
simple overlay network topology which facilitates easy
scheduling of block propagation. By implementing the
system, we have evaluated the performance of BRONCO
in a real life network with finite computational resources.
The system effectively reduces link usage of the server
and decreases overall transfer time by utilizing bandwidth
resources available in the peers. This demonstrates that
peer-to-peer systems with network coding is possible in
practical implementations with acceptable CPU utiliza-
tion and transfer speed.

By performing the coding operations in the binary
Galois field, the computational requirements of the coding
are lowered. Compared to Avalanche, which transfers files
at approximately 2 Mb/s with a CPU utilization between
20% and 40%, our prototype, when configured for a gener-
ation size of 256, can transfer files with 5 Mb/s at a CPU
utilization of approximately 5% and a redundant packet
overhead of 9%.

Our results are limited by the conditions of the test
environment, where nodes are configured with symmetric
links. Additional tests should be carried out in setups with
more detailed configurations to evaluate BRONCO in an
environment with conditions more similar to the internet.

The simple protocol forms a basis for the development of
an improved protocol where the rate of redundant packets
is reduced. The high rate of redundant packets during the
end of the transfer can be reduced by including an end-
game strategy, that allows peers to request specific packets
to be transmitted. A further reduction can be obtained by
avoiding the recoding of packets, when no new content has
been received.

In addition, the protocol can be improved by specifying
how generation size and packet size should be selected in
order avoid the extra redundancy introduced by uneven
generations.

References
[1] J. F. Buford, H. Yu, and E. K. Lua, P2P Networking and

Applications. Morgan Kaufmann Publishers, 2009.
[2] “Blizzard Downloader F.A.Q.” Blizzard Entertainment, http://

www.worldofwarcraft.com/info/faq/blizzarddownloader.html.
[3] “Alternative Download Options,” Canocical Ltd., http://www.

ubuntu.com/getubuntu/downloadmirrors#bt.
[4] “P2P Telephony Explained,” Skype Limited, http://www.

skype.com/help/guides/p2pexplained/.
[5] “What is Bittorrent,” Bittorrent, Inc., http://www.bittorrent.

com/btusers/what-is-bittorrent.
[6] “What is Gnutella,” RFC-Gnutella, http://rfc-gnutella.

sourceforge.net/.
[7] C. Gkantsidis, P. Rodriguez et al., “Network coding for large

scale content distribution,” in IEEE INFOCOM, vol. 4. Cite-
seer, 2005, p. 2235.

[8] J. Heide, M. Pedersen, F. Fitzek, and T. Larsen, “Network
Coding for Mobile Devices–Systematic Binary Random Rateless
Codes.”

[9] C. Gkantsidis, J. Miller, and P. Rodriguez, “Comprehensive
view of a live network coding P2P system,” in Proceedings of
the 6th ACM SIGCOMM conference on Internet measurement.
ACM, 2006, p. 188.

[10] “Protocol Buffers - Google’s data interchange format,” Google,
http://code.google.com/p/protobuf/.

[11] M.Carbone and L.Rizzo, “Dummynet revisited,” Università di
Pisa, Technical Report, May 2009, available at
urlhttp://info.iet.unipi.it/ luigi/papers/20091201-
dummynet.pdf.

[12] H. S. . K. Mochalski, “Internet study 2008/2009,”
Internet, PDF, 2009, http://www.ipoque.com/resources/
internet-studies/internet-study-2008 2009.

http://www.worldofwarcraft.com/info/faq/blizzarddownloader.html
http://www.worldofwarcraft.com/info/faq/blizzarddownloader.html
http://www.ubuntu.com/getubuntu/downloadmirrors#bt
http://www.ubuntu.com/getubuntu/downloadmirrors#bt
http://www.skype.com/help/guides/p2pexplained/
http://www.skype.com/help/guides/p2pexplained/
http://www.bittorrent.com/btusers/what-is-bittorrent
http://www.bittorrent.com/btusers/what-is-bittorrent
http://rfc-gnutella.sourceforge.net/
http://rfc-gnutella.sourceforge.net/
http://code.google.com/p/protobuf/
http://www.ipoque.com/resources/internet-studies/internet-study-2008_2009
http://www.ipoque.com/resources/internet-studies/internet-study-2008_2009

