
Aalborg Universitet

Aggregating and Disaggregating Flexibility Objects

Siksnys, Laurynas; Khalefa, Mohamed; Pedersen, Torben Bach

Published in:
Scientific and Statistical Database Management

DOI (link to publication from Publisher):
10.1007/978-3-642-31235-9_25

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Siksnys, L., Khalefa, M., & Pedersen, T. B. (2012). Aggregating and Disaggregating Flexibility Objects. In A.
Ailamaki, & S. Bowers (Eds.), Scientific and Statistical Database Management: 24th International Conference,
SSDBM 2012, Chania, Crete, Greece, June 25-27, 2012. Proceedings (pp. 379-396). Springer.
https://doi.org/10.1007/978-3-642-31235-9_25

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025

https://doi.org/10.1007/978-3-642-31235-9_25
https://vbn.aau.dk/en/publications/abeab896-810a-42da-aedb-b4fbe01bd87d
https://doi.org/10.1007/978-3-642-31235-9_25

Aggregating and Disaggregating Flexibility
Objects

Laurynas Šikšnys, Mohamed E. Khalefa, and Torben Bach Pedersen

Department of Computer Science, Aalborg University
{siksnys,mohamed,tbp}@cs.aau.dk

Abstract. Flexibility objects, objects with flexibilities in time and amount
dimensions (e.g., energy or product amount), occur in many scientific and
commercial domains. Managing such objects with existing DBMSs is in-
feasible due to the complexity, data volume, and complex functionality
needed, so a new kind of flexibility database is needed. This paper is the
first to consider flexibility databases. It formally defines the concept of
flexibility objects (flex-objects), and provide a novel and efficient solu-
tion for aggregating and disaggregating flex-objects. This is important
for a range of applications, including smart grid energy management. The
paper considers the grouping of flex-objects, alternatives for computing
aggregates, the disaggregation process, their associated requirements, as
well as efficient incremental computation. Extensive experiments based
on data from a real-world energy domain project show that the pro-
posed solution provides good performance while still satisfying the strict
requirements.

1 Introduction

Objects with inherent flexibilities in both the time dimension and one or more
amount dimensions exist in both scientific and commercial domains, e.g., energy
research or trading. Such objects are termed flexibility objects (in short, flex-
objects). Capturing flexibilities explicitly is important for smart grid domain, in
order to consume energy more flexibly. In the ongoing EU FP7 research project
MIRABEL project [2], the aim is to increase the share of renewable energy
sources (RES) such as wind and solar, by capturing energy demand and supply,
and the associated flexibilities. Here, flex-objects facilitate planning and billing of
energy. First, consumers (automatically) specify the flexible part of their energy
consumption, e.g., charging an electric vehicle, by issuing flex-objects to their
energy company. A flex-object defines how much energy is needed and when,
and the tolerated flexibilities in time (e.g., between 9PM and 5AM) and energy
amount (e.g. between 2 and 4 kWh). In order to reduce the planning complexity,
similar flex-objects are aggregated into larger “macro” flex-objects. Then, the
energy company tries to plan energy consumption (and production) such that
the desired consumption, given the macro flex-objects plus a non-flexible base
load, matches the forecasted production from RES (and other sources) as well as
possible. During the process, the flex-objects are instantiated (their flexibilities

2

are fixed), resulting in so-called fix-objects, where fixed concrete values are as-
signed for time and amounts, within the original flexibility intervals. Finally, the
“macro” fix-objects are disaggregated to yield “micro” fix-objects corresponding
to the instantiation of the original flex-objects issued by the consumers, which are
then distributed back to the consumers. The consumers are rewarded according
to their specified flexibility.

For typical real world and scientific applications (e.g., MIRABEL), there
exists, hundreds of millions of flex-objects have to be managed efficiently. This
is infeasible using existing DBMSs. First, due to the complexity of flex-objects,
queries over flex-objects are also complex and cannot be formulated efficiently, if
at all, using standard query languages. Second, the number of flex-objects can be
very large and timing restrictions are tight. Third, incremental processing must
be supported natively. In order to efficiently evaluates queries over flex-objects,
a new tailor-made database for handling flex-objects is needed.

Contributions This paper is the first to introduce the vision of flex-object
databases by discussing their functionality, queries, and application. As the most
important operations of a flex-object database, the paper focuses on flex-object
aggregation and disaggregation, which are analogous to a roll-up and drill-down
queries in an OLAP database. As will be shown later, the aggregation of even
just two flex-objects is non-trivial as they can be combined in many possible
ways. The paper formally defines flex-objects, how to measure the flexibility of
a flex-object, aggregation and disaggregation of flex-objects. Our flex-object ag-
gregation approach takes a set of flex-objects as input and, based on the provided
aggregated parameters, partitions the set of flex-objects into disjoint groups of
similar flex-objects. This partitioning is performed in two steps - grid-based
grouping and bin-packing. The grouping of flex-objects ensures that flex-objects
in a group are sufficiently similar (in terms of chosen flexibility attributes). The
bin-packing ensures that the groups themselves conform to the given (aggre-
gate) criteria. After bin-packing, an aggregation operator is applied to merge
similar flex-objects into aggregated flex-objects. In one possible scenario, when
the flexibilities of the aggregated flex-objects are fixed, e.g., in the planning
phase, our disaggregation approach takes the respective fix-objects as input and
disaggregate them into fix-objects that correspond to the original flex-objects.
Our solution inherently supports efficient incremental aggregation, which is es-
sential to handle continuously arriving new flex-objects. An extensive set of
experiments on MIRABEL data shows that our solution scales well, handling
both aggregation and disaggregation efficiently.

The remainder of the paper is structured as follows. Section 2 outlines the
functionality of envisioned flex-object databases. Section 3 formally defines the
concept of flex-object and the problem of aggregating and disaggregating flex-
objects. Section 4 describes how to aggregate several flex-objects into one. Sec-
tion 5 generalizes the approach to aggregate a set of input flex-objects into a
set of output flex-objects. Section 6 considers incremental aggregation. Section 7
describes the experimental evaluation, while Section 8 discusses related work.
Finally, Section 9 concludes and points to future work.

3

2 Flex-object Databases

Although the paper focuses on two specific operations on flex-objects, aggrega-
tion and disaggregation, in this section, we provide a broader context by outlining
our vision for the functionality of flex-object databases. A flex-object database
is a database storing flex-objects, possibly of several different types and with
different types of flexibilities. Thus, flex-objects must be first-class citizens in
such a database and the associated complex functionality must be supported. In
some application scenarios, the flex-object database will be stand-alone and fo-
cused only on flexibility management, in other scenarios, the flex-object database
will be part of a larger database storing also other kinds of objects and with a
mixed query workload. Support for dimensions and hierarchies is important to
be able to view flex-objects at the desired level of granularity, however, the
dimension hierarchies must be more complex than in current systems to sup-
port complex real-world hierarchies such as energy distribution grids. Similarly,
spatio-temporal support is essential, as many flex-object applications have strong
spatial and/or temporal aspects. Several options for query languages are pos-
sible. For standalone flex-object-specific applications, a JSON-style declarative
language like that used by MongoDB would be effective. For more general mixed
databases, an extension of SQL with specific syntax and operators for flexibility
manipulation is desirable.

The storage of flex-objects is not a trivial issue. A flex-object database should
be able to store massive amounts of flex-objects while still ensuring very fast
response time. Due to their complex internal structures (to be detailed in the
next section), flex-offers cannot be directly stored as atomic objects in standard
relational databases. Here, accessing flex-objects becomes an expensive operation
requiring joins and aggregations over two or more large tables. Alternatives
include nested object-relational storage and or dedicated native storage, where
it is important to strike the right balance between efficiency and the ability to
integrate easily with other types of data. The storage issue is beyond the scope
of this paper, and will be addressed in future work. We now present at the most
important types of queries to be supported by a flex-object database.

Flexibility availability queries provide an overview over the amount flexibil-
ities that are available at given time intervals. For example, such a query may
retrieve the min, max, and average amounts available, or build a time series with
the (expected) distribution of amounts at every time instance. Such queries are
used in feasibility/risk analysis where nominal or peak values are explored, e.g.,
to see how much energy consumption can be increased or decreased at a given
time to counter unexpected highs or lows in the RES production.

Adjustment potential queries computes the distribution of amounts that can
be potentially injected into (or extracted away from) a given time interval, tak-
ing into account the amounts which are already fixed with fix-objects. Several
options for the amount injection (or extraction) are possible, including adjusting
amounts within amount flexibility ranges, shifting amounts within available time
flexibility ranges, or a combination.

4

Fixing queries alter (or create) fix-objects (the plan), based on user selected
amounts to inject or extract. Fixing queries are used in the analysis and plan-
ning phase, to interactively explore flexibility potentials (the first two types of
queries), followed by modifying the existing plan (fix-objects) if needed.

Flex-object aggregation queries combine a set of flex-objects into fewer, “larger”
flex-objects. In some sense, this is analogous to a roll-up query in an OLAP
database (going from finer to coarser granularities), although considerably more
complex (as will be discussed in the next sections). The aggregation usually re-
duces flexibilities, so it is important to quantify and minimize how much of the
original flexibilities are lost due to aggregation. The aggregation of flex-objects
can substantially reduce the complexity of the above-mentioned analysis queries
as well as the complexity of various flex-object-based planning processes. For
example, a very large number of flex-objects must be scheduled in MIRABEL.
Since scheduling is NP-complete problem, it is infeasible to schedule all these
flex-objects individually within the (short) available time. Instead, flex-objects
can be aggregated, then scheduled (not considered in this paper), and finally
disaggregated (see below) into fix-objects.

Flex-object disaggregation queries go the opposite way, “exploding” a large
“macro” fix-object into a set of smaller “micro” fix-objects corresponding to
the instantiation of the original flex-objects. This yields the refinement of the
“macro” plan necessary for carrying out the plan in practice. In some sense,
this is like a drill-down query in an OLAP database (going from coarser to finer
granularities), but more complex.

Flex-object aggregation and disaggregation queries are particularly impor-
tant and more challenging. In the next section, we formulate the problem of
aggregating and disaggregating flex-objects.

3 Problem Formulation

We now formalize our proposed problem of aggregating and disaggregating flex-
ibility objects. Our formalization includes (1) a definition of flex-object, (2) a
measure to quantify flex-object flexibility, and (3) aggregation and disaggregation
functions and their associated constraints.

The introduced flex-object is a multidimensional object capturing two as-
pects: (1) the time flexibility interval, and (2) a data profile with a sequence of
consecutive slices each defined by (a) its start and end time and (b) the min-
imum and maximum amount bounds for one or more amount dimensions. We
can formally define a flex-object as follows:

Definition 1: A flex-object f is a tuple f = (T (f), profile(f)) where T (f) is
the start time flexibility interval and profile(f) is the data profile. Here, T (f) =
[tes, tls] where tes and tls are the earliest start time and latest start time, re-
spectively. The profile(f) = s(1), . . . , s(m) where a slice s(i) is a tuple ([ts, te],

[a
(1)
min, a

(1)
max], . . . , [a

(D)
min, a

(D)
max]) where [a

(i)
min, a

(i)
max] is a continuous range of

the amount for dimension i = 1..D and [ts, te] is a time interval defining the

5

extent of s(i) in the time dimension. Here, tes ≤ s(1).ts ≤ tls and ∀j = 1..m :
s(j).te > s(j).ts, s(j+1).ts = s(j).te. We use the terms profile start time to denote
s(1).ts, duration of the slice to denote sdur(s) = s.te − s.ts, duration of pro-
file to denote pdur(f) =

∑
s∈profile(f) s.te − s.ts, and latest end time to denote

tle(f) = f.tls + pdur(f).

For simplicity and without loss of generality, time is discretized into equal-
sized units, e.g., 15 minute intervals, and we have only one amount dimension
(i.e., D = 1). Figure 1 depicts the example of a flex-object having a profile with
four slices: s(1), s(2), s(3), and s(4). Every slice is represented by a bar in the
figure. The area of the light-shaded bar represents the minimum amount value
(amin) and the combined area of the light- and dark-shaded bars represents the
maximum amount value (amax). The left and the right sides of a bar represent
te and ts of a slice, respectively.

Time

Earliest

start time

(tes)

Time flexibility interval

Latest

start time

(tls)

Profile

Maximum Amount

s(1)
Slice

Latest

End time

(tle)

T(f)

s(2) s(3) s(4)

A
m

o
u

n
t/
s
lic

e
 d

u
ra

ti
o

n

A possible Fix

FlexObject Profile Minimum Amount

Fig. 1. A generic flex-object

We distinguish two types of flexibility as-
sociated with f . The time flexibility, tf (f),
is the difference between the latest and ear-
liest start time. Similarly, the amount flex-
ibility, af (s), is the sum of amount flexi-
bility of all slices in the profile of f , i.e.,

af (f)=
∑

s∈profile(f)

(s.te−s.ts)·(
∑D

j=1 s.a
(j)
max−∑D

j=1 s.a
(j)
min). Based on these notations, the

total flexibility of f is defined as follows:

Definition 2: The total flexibility of an
flex-object f is the product of the time flexi-

bility and the amount flexibility, i.e., flex (f) = tf(f) · af(s).

Consider a flex-object f=([2, 7], s(1), s(2)) where s(1) = ([0, 1], [10, 20]) and
s(2) = ([1, 4], [6, 10]). The time flexibility of f is equal to 7− 2 = 5. The amount
flexibility af (f) is equal to (1 − 0)(20 − 10) + (4 − 1)(10 − 6) = 22. Hence, the
total flexibility of f is equal to 110.

A flex-object with time and profile flexibilities equal to zero is called a fix-
object. In this case, the fix-object f = ([tes, tls], s

(1), . . . , s(m)) is such that tes =

tls and s.a
(d)
min = s.a

(d)
max ∀s ∈ profile(f),∀d = 1..D.

Definition 3: An instance (instantiation) of a flex-object f = ([tes, tls], s
(1),

. . . , s(m)) is a fix-object fx = ([ts, ts],s
(1)
x ,. . . ,s

(m)
x) such that tes ≤ ts ≤ tls and

∀i = 1..m, d = 1..D : s(i).a
(d)
min ≤ s

(i)
x .a

(d)
min = s

(i)
x .a

(d)
max ≤ s(i).a

(d)
max. We refer to

ts as the start time of the flex-object f .

There is an infinite number of possible instances (fix-objects) of a flex-object.
One possible instance is shown as the dotted line in Figure 1. We can now define
aggregation and disaggregation as follows:

6

Definition 4: Let AGG be an aggregate function which takes a set of flex-
objects F and produces a set of flex-objects A. Here, every fa ∈ A is called an
aggregated flex-object, and |A| ≤ |F |.

Definition 5: Let DISAGG be a function which takes a set of A instances and
produces a set of F instances. We denote these sets of fix-objects as AX and
FX , respectively, and assume that A = AGG(F), ∀f ∈ F ⇔ ∃fx ∈ FX and
∀fa ∈ A⇔ ∃fxa ∈ AX . Moreover, to ensure the balance of amounts at aggregated
and non-aggregated levels, for all time units T = 0, 1, 2, · · · and all dimensions
d = 1..D, the following equality must hold:

T∑
t=0

[
s.a

(d)
min|∀f

x
a ∈ AX ,∀s ∈ profile(fxa), s.te ≤ t

]
=

T∑
t=0

[
s.a

(d)
min|∀fx ∈ FX ,∀s ∈ profile(fx), s.te ≤ t

]
.

Evaluation of the functions AGG and DISAGG is called flex-object aggrega-
tion and disaggregation, respectively. Due to the amount balance requirement,
disaggregation is, however, not always possible for any arbitrary AGG function.
Depending on whether disaggregation is possible or not for all instances of aggre-
gated flex-objects, we identify two types of flex-object aggregation: conservative
and greedy, respectively. Aggregated flex-objects resulting from greedy aggrega-
tion might define more time and amount flexibilities compared to the original
flex-objects. Obviously, instances of such flex-objects might not be disaggregated
using DISAGG. Nevertheless, this type of aggregation is still important in fea-
sibility/risk analysis where extreme amount values are explored (see flexibility
availability queries in Section 2). On the contrary, aggregated flex-objects re-
sulting from conservative aggregation always define less (or equal) flexibilities
compared to the original flex-objects. Consequently, it is always possible to disag-
gregate instances of such flex-objects using DISAGG. Conservative aggregation
is important in use-cases where planning is involved, e.g., in MIRABEL. The
flex-object database has to support both types of aggregation, however, in this
paper, we focus on conservative aggregation only.

The following requirements for the aggregation originate from the MIRABEL
use-case, but they are also important for general flex-object aggregation:

Compression and flexibility trade-off requirement. It must be possible
to control the trade-off between (1) the number of aggregated flex-objects and
(2) the flexibility loss, i.e., difference between the total flex-object flexibility (see
Definition 2) before and after aggregation.

Aggregate constraint requirement. Every aggregated flex-object fa ∈
AGG(F) must satisfy a user-defined so-called aggregate constraint C, which
is satisfied if the value of a certain flex-object attribute, e.g., total maximum
amount, is within the given bounds. For example, Such constraints can ensure
that aggregated flex-objects are “properly shaped” to meet energy market rules
and power grid constraints.

7

Incremental update requirement. Flex-object updates (addition/removal)
should be processed efficiently and cause minimal changes to the set of aggre-
gated flex-objects. Thus functionality is vital in scenarios, e.g., MIRABEL, where
addition/removal of flex-objects are very frequent.

In the following sections, we present a technique to perform flex-object ag-
gregation and disaggregation while satisfying all requirements.

4 Aggregation and Disaggregation

In this section, we first propose a basic N-to-1 flex-object aggregation algorithm
and explain how to generalize for it a large set of flex-objects. Additionally, we
explain how disaggregation can be performed.

According to the flex-object definition, the profile start time (s(1).ts) of a
flex-object f is not pre-determined, but must be between the earliest start time
f.tes and the latest start time f.tls. Hence, the aggregation of even two flex-
objects is not straightforward. Consider aggregating two flex-objects f1 and f2
with time flexibility values equal to six and eight, respectively. Thus, we have 48
(6∗8) different profile start time combinations, each of them realizing a different
aggregated flex-object. Three possible profile start time parameter combinations
are shown in Figure 2(a-c).

In general, to aggregate a set of flex-objects F into a single aggregated flex-
object fa, we follow these three steps:

1. Choose a profile start time value f.s(1).ts = sf ∀f ∈ F such that f.tes ≤
sf ≤ f.tls. Later, we will refer to this choice of profile start time as profile
alignment.

2. Set the time flexibility interval for fa such that fa.tes = minf∈F (sf) and
fa.tls = fa.tes +minf∈F (f.tls − sf).

3. Build a profile for fa by summing the corresponding amounts for each slice
across all profiles.

There are many ways to align profiles (by choosing the constants sf1 , sf2 , . . . ,
sf|F |). Each of these alignments determine where amounts from individual flex-
objects are concentrated within the profile of fa. We focus only on the three
most important alignment options: start-alignment, soft left-alignment, and soft
right-alignment. Start-alignment spreads out amounts throughout the time ex-
tent of all individual flex-objects, making larger amounts available as early as
possible. On the contrary, soft left-/right-alignment builds shorter profiles with
amounts concentrated early (left) or late (right) in the profile. In the context
of MIRABEL, start-alignment is suitable for the near real-time balancing of elec-
tricity, where energy has to be available as early as possible; and soft left/right
alignment allows the consumption of anticipated wind production peaks with
steep rises (left-alignment) or falls (right-alignment). The three alignment op-
tions are illustrated in Figure 2. Here, the crossed area in the figure represents
the amount of time flexibility that is lost due to aggregation when different
profile alignment options are used. The alignment option are elaborated below:

8

f2

f3

f1
3

3

3

Soft left-aligning profiles Soft right-aligning profiles

f2

f3

f1
4

3

3

Δ=2
Δ=1

f2

f3

f1
5

3

4

Start aligning profiles

Aggregation Aggregation Aggregation

a1
3 3 3

a2 a3

(a) Start-alignment (b) Soft left-alignment (c) Soft right-alignment

f3
3 3.5

4.5

1

6 2

4 8

2.5

s
(1)
s
(2)

s
(3)

s
(4)

f2

2

3

1.5 4

2
5

f1

2

1.51.5

2

2.5 2.5

22

s
(1)
s
(2)

s
(3)

s
(1)
s
(2)

s
(3)

s
(4)

f1

f2

3

4

2
3

1.5 8

2
10

s
(1)

s
(2)

s
(1)

s
(2) Segmentation Addition

(d) Aggregating profiles

Fig. 2. Profile alignment and aggregation

Start-alignment. We set sf1 , sf2 , . . . , sf|F | so that ∀f ∈ F : sf = f.tes.
This ensures that profiles are aligned at their respective earliest start time values
(see f1 and f2 in Figure 2(a)).

Soft left-alignment. We set sf1 , sf2 ,..., sf|F | so that ∀f ∈ F : sf =min(f.tls
− ming∈F (g.tls− g.tes),maxg∈F (g.tes)). Figure 2(b) illustrates the effect of soft
left-alignment. Here, f1 and f2 are left-aligned, meaning that their profile start
times are equal. However, the profile of f3 cannot be left-aligned with respect
to the profiles of f1 and f2 as that would shorten the remaining time flexibility
range of the aggregate. f3 lacks one time unit (∆ = 1) for its profile to left-align.

Soft right-alignment. We set sf1 , sf2 , ..., sf|F | so that ∀f ∈ F : sf =
min(f.tls−ming∈F (g.tls−g.tes),maxg∈F (g.tes +pdur(g))−pdur(f). Figure 2(c)
illustrates the effect of soft right-alignment. Here, f1 and f2 are right-aligned,
meaning that their profiles align at the right hand side (i.e., have equal tes+pdur
values). However, the profile of f3 cannot be right-aligned with respect to the
profiles of f1 and f2 as this would shorted the remaining time flexibility range
of the aggregate.

After the alignment, the time flexibility interval is computed for the aggre-
gated flex-object. As illustrated in Figure 2(a-c), for all three alignment options,

9

the time flexibility of fa is equal to that of the flex-object with the smallest time
flexibility in the set F , i.e., fa.tls − fa.tes = minf∈F (f.tls − f.tes). However,
other types of alignment, e.g., hard left or hard right where all profiles are forced
to align at the left or right hand side, might reduce the time flexibility of the
aggregated flex-object.

Finally, the minimum and maximum amounts of adjacent slices in the aligned
profiles are summed to construct the profile of the aggregated flex-object. If adja-
cent slices at any time unit have different durations, those slices are partitioned to
unify their durations. During the partitioning, minimum and maximum amounts
are distributed proportionally to the duration of each divided slice. This step
is called segmentation. The segmentation step reduces the amount flexibility,
af (f), as it imposes more restrictions on the amount for each divided segment.
For example, consider the slice s(1) of f1 in Figure 2(d), which illustrates the
segmentation for two flex-objects. Originally, the minimum amount is 3 and the
maximum amount is 4 over two time units. Thus, we can supply one amount
unit in the first time unit, and three units in the second time unit. However, this
supply is not acceptable after dividing the slice into two equal-sized slices s(1)

and s(2) with minimum and maximum amount of 1.5 and 2, respectively. Af-
ter the segmentation, the addition of profiles is performed. During the addition,

a
(1)
min and a

(1)
max amounts are added for every corresponded profile slice.

It is always possible to disaggregate a flex-object produced by this aggre-
gation approach. Consider the following disaggregation procedure. For a given
instance fxa of flex-object fa, we produce the set of fix-objects {fx1 , fx2 , ..., fx|F |}
such that ∀i = 1..|F | : fxi .tes = fxi .tls = sfi +(fxa .tes−fa.tes). It is always possi-
ble to fix the start time of every fxi , i = 1..|F | because the time flexibility range
of the aggregate fa is computed conservatively, and the aligned profiles of f ∈ F
can always be shifted within this range (see Figure 2). Also, the amount values
from every slice sxa ∈ profile(fxa) are distributed proportionally to the respective
slices of fxi , i = 1..|F | so that minimum and maximum amount constraints are
respected for every f ∈ F . This can always be achieved, and consequently, for
any instance of fa, it is always possible to build instances of flex-objects from
F . Moreover, the newly built fix-objects will collectively define a total amount
which is equal to that of the initial fix-object fax .

To summarize, the N-to-1 aggregation approach can be used to aggregate
flex-objects in F . However, the time (and total) flexibility loss depends on the
flex-object with smallest time flexibility in the set F . Due to this issue, much of
the flexibility will be lost when aggregating flex-objects with distinct time flexi-
bilities. To address this, we will now propose an N-to-M aggregation approach.

5 N-to-M Aggregation

As discussed in Section 4, aggregating “non-similar” flex-objects results in an
unnecessary loss of time flexibility. This loss can be avoided, and the profile
alignments can be better enforced, by carefully grouping flex-objects and thus

10

ensuring that their time flexibility intervals overlap substantially. We now de-
scribe an (N -to-M) approach to aggregate a set of flex-objects, F , to a set of
aggregated flex-objects, A, while satisfying all requirements (see Section 3). The
algorithm consists of three phases: grouping, bin-packing, and N-to-1 aggregation:

Grouping phase. We partition the input set F into disjoint groups of similar
flex-objects. Based on the application scenario, the user specifies which attributes
to use in the grouping. For example, the user may choose the earliest start
time, latest start time, time flexibility, and/or amount flexibility as grouping
attributes. Two flex-objects are grouped together if the values of the specified
attributes differ no more than a user-specified threshold. The thresholds and the
associated grouping attributes are called grouping parameters. As shown later,
the choice of grouping parameters yields a trade-off between compression and
flexibility loss. In the example in Figure 3, flex-objects f1, f2, ..., and f5 are
assembled in two groups g1 and g2 during the grouping phase.

Bin-packing phase. This phase enforces the aggregate constraint (see Sec-
tion 3). Each group g produced in the grouping phase is either passed to the next
phase (if g satisfies the constraint already) or further partitioned into the mini-
mum number of bins (groups) such that the constraint wmin ≤ w(b) ≤ wmax is
satisfied by each bin b. Here, w(b) is a weight function, e.g., w(b) = |b|, and wmax

and wmin are the upper and lower bounds. We refer to wmin, wmax, and w as
bin-packing parameters. By adjusting these parameters, groups with a bounded
number of flex-objects or a bounded total amount can be built. Note that it
may be impossible to satisfy a constraint for certain groups. For example, con-
sider a group with a single flex-object, while we impose a lower bound of two
flex-objects in all groups. These groups are discarded from the output (see g22
in Figure 3), and, depending on the application, these flex-objects can be ei-
ther: (1) excluded from the N-to-M aggregation output, or (2) aggregated with
another instance of the N-to-M aggregation with less constraining grouping or
bin-packing parameters.

N-to-1 Aggregation phase. We assemble the output set A by applying
N-to-1 aggregation (see Section 4) for each resulting group g. The alignment
option is specified as the aggregation parameter. Every aggregated flex-objects
satisfies the aggregate constraint enforced in the bin-packing phase.

f1

f2

f3

f4

f5

g1

g2
Grouping Bin-packing

f1

f3

f2

f4

f5

g1

g21

f1

f3

f2

f4

f5

g22

N-to-1

aggregation

fa1

fa2

Omitted as it does not satisfies the

bin-packing constraints

Grouping

parameters

Bin-packing

parameters

Aggregation

parameters
fa1

Fig. 3. Aggregation of flex-objects in the N-to-M aggregation approach

11

The complete N-to-M aggregation process is visualized in Figure 3. Here,
given the initial flex-object set {f1, f2, ..., f5} and grouping, bin-packing, and
aggregation parameters, two aggregated flex-objects, fa1 and fa2, are produced.
The grouping parameters are set so that the difference between the earliest start
time (tes) is at most 2. The bin-packing parameters require that the number
of flex-objects in resulting groups are 2, i.e., wmin = wmax = 2, w(g) = |g|.
In the aggregation phase, the start-aligned option is used. In practice, the user
will choose from a number of meaningful pre-defined parameter settings, e.g.,
short/long profiles or amount as early as possible.

6 Incremental N-to-M Aggregation

In this section, we present an incremental version of the N-to-M aggregation
approach. The set of flex-objects F is updated with a sequence of incoming
updates: u1, u2,...,uk. Each update ui is of the form (f, ci), where f is a flex-
object and ci ∈ {+,−} indicates insertion (‘+’) or deletion (‘−’) of f to/from
F . The incremental approach outputs a sequence of aggregated flex-object up-
dates which correspond to u1, u2,...,uk. The approach has four phases: grouping,
optimization, bin-packing, and aggregation.

Grouping phase. We map each flex-object into a d-dimensional point. This
point belongs to a cell in a d-dimensional uniform grid. Users specify the extent
of each cell in each dimension using thresholds T1, T2, ..., Td from the grouping
parameters. Every cell is identified by its coordinates in the grid. We only keep
track of populated cells, using an in-memory hash table, denoted as the group
hash. This table stores key-value pairs, where the key is the cell coordinates
and the value is the set of flex-objects from F mapped to this cell. We combine
adjacent populated cells into a group. A group can be either created, deleted,
or modified. Group changes are stored in a list, denoted as the group changes
list. Figure 4 visualizes the effect of adding a flex-object f1. f1 is mapped to a
2-dimensional point which lies in the grid cell c2. The coordinates of c2 are used
to locate a group in the group hash. The found group is updated by inserting f1
into its list of flex-objects. Finally, a change record indicating that the group was
modified is inserted into the group changes list. In the cases when a group is not
found in the group hash, a new group with an unique id and a single populated
cell c2 is created. Also, if the group changes list already contains a change record
for a particular group, the record is updated to reflect the combination of the
changes.

Optimization phase. This phase is only executed when aggregation is trig-
gered, either (1) periodically, (2) after a certain number of updates, or (3) when
the latest aggregates are requested. During this phase, we consolidate the group
changes list. For each update of a group g in the list, we identify its adjacent
groups ga1 , ga2 , . . . by probing the group-hash. Then, for each adjacent group gai ,
a minimum bounding rectangle (MBR) is computed over all points that contains
flex-objects from the groups g and gai . If the extent of the MBR in all dimen-
sions are within the user-specified thresholds, we combine the groups g and gai

12

Grid Group hash Group
changes list

….
….
….

-modified

Flex-object
f1

c2

c2

Stores all groups with all
objects from F

Probing/
addingMapping

Group
updating

c2: f5,f2,f1
c4: f6,f7,f8

Change
tracking

Group with
populated cells

f1 g2

g2:

g2

…
…
…

Fig. 4. Processing the addition of a flex-object in the grouping phase

Group merge

g1 g2

g3

g2

g5 g5

Group split

Group
changes list

g6

Group Hash

0 1 2

7

8

9

0 1 2

7

8

9

0 1 2

4

5

6

0 1 2

4

5

6c04
c05
c07
c08
c15
c18

Before optimization After optimization

g5
g5
g3
g1
g5
g2......

g2
g5

-modified
-modified

......

Group Hash
c04
c05
c07
c08
c15
c18

g6
g5
g2
g2
g5
g2......

g2
g5
g1
g3
g6

-modified
-modified
-deleted
-deleted
-added......

due to
merge

opportunity

due to
oversized

group

Group
changes list

Fig. 5. Flow of data in the optimization phase

(see merge in Figure 5). Otherwise, if the MBR of g in any dimension is larger
than the size of a grid cell, we perform a group split (depicted in Figure 5). Any
over-sized group is partitioned into groups of a single grid cell, and, for every
individual group, an MBR is computed. Then, the two groups with the closest
MBRs are merged until the grouping constraint is violated. Then, g is substi-
tuted the with newly built groups. Groups changes incurred during merging and
splitting are added to the group change list.

Bin-packing phase. We maintain a hash table, denoted the bin hash, which
maps from each group, produced in the grouping phase, to its bins (as described
in Section 5). In this phase, we propagate updates from the group change list
to bins. We first compare existing bins with an updated group to compute the
deltas to obtain added and deleted flex-objects, ∆added and ∆delete, respectively.
Then, we discard from the bins the flex-objects that are in ∆delete. Groups with
total weight less than wmin are deleted and flex-objects from these groups as well
as from ∆added are included into other existing bins using the first fit decreasing
strategy [22]. New bins are created, if needed.

Figure 6 shows how the bins of the group g7 are updated when lower and
upper bounds wmin and wmax are set. Finally, all bins changes are pipelined
to the aggregation phase. Flex-objects that did not fit to any bin (due to their
weight being lower than wmin or higher than wmax) are stored in a separate list.

13

Bin Hash

g7
b71: f7
b72: 2f4

......

Group
changes list
g7 -modified

......

Bin Hash

g7

......

DFind
Integrate into

sub-groups
Generate
changes

wmin wmax

b71

b72

0

w(f4)w(f2)

w(f1)

wmin wmax

b71

b72

0

w(f2)w(f1)

w(f3)

w(f5)b73

b71: f1f2
b72: f3
b73: f5

Changes to the
aggregation phase

Before bin-packing After bin-packing
(b71, -modified)
(b72, -modified)
(b73, -created)

add={f3,f5}D D delete ={f4}

Fig. 6. Flow of data in the bin packing phase

Aggregate Hash

b72 a72: f2f4

......

DFind

Apply N-to-1
aggregation

incrementaly

Generate
changesChanges from the

bin-packing phase

Before aggregation After aggregation

(a72, -modified)(b72:f3, -modified)

D Apply N-to-1
aggregation
for 2 objects

a72={f3}

Aggregate Hash

b72 a72: f3

......

i=1..n
|D |¹Æ ®delete n=|b72|

|D |=Æ ®delete n=| |addD
add=b72-a72={f3}

Ddelete=a72-b72={f2f4}

Fig. 7. Aggregation phase

Aggregation phase. We maintain a hash table, denoted as the aggregate
hash, which maps from each individual bin to an aggregated flex-object. Each
aggregated flex-object has references to the original flex-objects. Thus, for every
bin change, added and deleted non-aggregated flex-objects (see ∆add and ∆delete

in Figure 7) are found and used to incrementally update an aggregate flex-
object. If there are no deletes, N-to-1 aggregation is applied for every added
object. Otherwise, an aggregate is recomputed from scratch by applying N-to-1
aggregation on all object in a bin. Finally, all changed aggregated flex-objects
are provided as output.

7 Experimental Evaluation

In this section, we present the experimental evaluation of the full incremental
N-to-M aggregation approach. As there are no other solutions for flex-object
aggregation and disaggregation, we propose two rival implementations: Hierar-
chical Aggregation and SimGB. In Hierarchical Aggregation, we use agglomera-
tive hierarchical clustering for the grouping phase. First, the approach assigns
each flex-object to individual clusters. Then, while no grouping constraints are
violated, it incrementally merges the two closest clusters. The distance between
two clusters is calculated based on the values of the grouping parameter flex-
object attributes. For SimGB, we apply the similarity group-by operator [19]
for one grouping parameter at a time, thus partitioning the input into valid
groups of similar flex-objects. For the evaluation, We use a synthetic flex-object

14

0 2 4 6 8 10

x 10
5

0

0.5

1

1.5

2

2.5
x 10

5

Flex−object count

A
gg

re
ga

te
d

fle
x−

ob
je

ct
 c

ou
nt

EST=0, TFT=0
EST=250, TFT=0
EST=0, TFT=6
EST=250, TFT=6

0 2 4 6 8 10

x 10
5

0

5

10

15

20

25

30

35

Flex−object count

A
gg

re
ga

tio
n

tim
e,

 s

EST=0, TFT=0
EST=250, TFT=0
EST=0, TFT=6
EST=250, TFT=6

0 10 20 30 40
−5

0

5

10

15

20

Aggregation time, s

D
is

ag
gr

eg
at

io
n

tim
e,

 s

y = 0.47*x − 0.43

Experiment points
 linear fit

(a) Compr. perf. (b) Aggregation time (c) Disagg./agg. time

BP−off BP−on
0

0.5

1

1.5

2

2.5

P
ro

ce
ss

in
g

tim
e,

 s

BP−off BP−on
0

200

400

600

800

1000

1200

M
em

or
y

us
ag

e,
 M

B

Grouping
Bin−packing
Aggregation

500k obj.
182k agg. obj
Work space

500 1k 2k 4k 8k 16k 32k 64k128k256k
0

1

2

3

4

Flex−object additions and removals

In
cr

em
en

ta
l a

gg
re

ga
tio

n
tim

e,
 s

Incremental aggregation time
500k objects aggregation time

0 2 4 6 8 10

x 10
5

0

5

10

15

20

25

30

35

Flex−object count

A
gg

re
ga

tio
n

tim
e,

 s

Hier. Agg.,EST=250,TFT=6
SimGB,EST=250,TFT=6
Our Inc. Approach,EST=250,TFT=6

(d) Time/memory usage (e) Incr. agg. time (f) Diff. approaches

Fig. 8. Results of the scalability and incremental behavior evaluation

dataset from the the MIRABEL project. The dataset contains one million energy
consumption request flex-objects. The earliest start time (tes) is distributed uni-
formly in the range [0, 23228]. The number of slices and the time flexibility values
(tls − tes) follow the normal distributions N (8, 4) and N (20, 10) in the ranges
[10, 30] and [4, 12], respectively; the slice duration is fixed to 1 time unit for all
flex-objects, thus profiles are from 2.5 to 7.5 hours long. Experiments were run
on a PC with Quad Core Intel R©Xeon R©E5320 CPU, 16GB RAM, OpenSUSE
11.4 (x86 64), and Java 1.6. Unless otherwise mentioned, the default values of the
experiment parameters are: (a) The number of flex-objects is 500k. (b) EST = 0
(Earliest Start Time Tolerance) and TFT = 0 (Time Flexibility Tolerance) are
used as the grouping parameters. They apply on the Earliest Start Time (tes)
and Time Flexibility (tls−tes) flex-object attributes, respectively. (c) The aggre-
gate constraint is unset (bin-packing is disabled). We also perform experiments
with bin-packing enabled (explicitly stated).

Scalability For evaluating flex-object compression performance and scala-
bility, the number of flex-offers is gradually increased from 50k to 1000k. Aggre-
gation is performed using two different EST and TFT parameter values: EST
equal to 0 or 250, and TFT equal to 0 or 6. Disaggregation is executed with
randomly generated instances of aggregated flex-objects. The results are shown
in Figure 8(a-d). Figure 8(a-b) shows that different aggregation parameter val-
ues lead to different compression factors and aggregation times. Disaggregation
is approx. 2 times faster than aggregation (see Figure 8(c)) regardless of the flex-
object count and grouping parameter values. Most of the time is spent in the
bin-packing (if enabled) and N-to-1 aggregation phases (the 2 left bars in Fig-
ure 8(d)). Considering the overhead associated with incremental behavior, the
amount of memory used by the approach is relatively small compared to the

15

10
0

10
1

10
2

10
2

10
3

10
4

10
5

10
6

Eearliest start time tolerance (EST)

A
gg

re
ga

te
d

ob
je

ct
 c

ou
nt

10
0

10
1

10
2

10
0

10
1

10
2

A
gg

re
ga

tio
n

tim
e,

 s

Aggregated flex−object count
Aggregation time

0 1 2 3 4 5 6
0

0.5

1

1.5

2
x 10

5

Time flexibility tolerance (TFT)

A
gg

re
ga

te
d

fle
x−

ob
je

ct
 c

ou
nt

0 1 2 3 4 5 6
0

10

20

F
le

xi
bi

lit
y

lo
ss

, %

Flexibility loss
Aggregated flex−object count

0 2 4 6 8 10

x 10
5

2

2.5

3

3.5

4

4.5

5
x 10

4

Flex−object count

A
gg

re
ga

te
d

fle
x−

ob
je

ct
 c

ou
nt

Group opt. − on,EST=0,TFT=6
Group opt. − off,EST=0,TFT=6

(a) Effect of EST (b) Effect of TFT (c) Grp. opt. effect

0 2 4 6 8 10

x 10
5

0

1

2

3

4

5

6

7

Flex−object count

E
xe

cu
tio

n
tim

e,
 s

Total time,Grp.opt−on,EST=0,TFT=6
Total time,Grp.opt−off,EST=0,TFT=6
Grp. time,Grp.opt−on,EST=0,TFT=6
Grp. time,Grp.opt−off,EST=0,TFT=6

0 2 4 6 8 10

x 10
5

5

10

15

20

25

Flex−object count

F
le

xi
bi

lit
y

lo
ss

, %

BP−off,EST=0,TFT=6
BP−off,EST=250,TFT=6
BP−on,EST=0,TFT=6
BP−on,EST=250,TFT=6

0 2 4 6 8 10

x 10
5

0

20

40

60

80

100

120

140

Flex−object count

A
gg

re
ga

tio
n

tim
e,

 s

BP−off,EST=0,TFT=6
BP−off,EST=250,TFT=6
BP−on,EST=0,TFT=6
BP−on,EST=250,TFT=6

(d) Grp. opt. cost (e) Bin-packing effect (f) Bin-packing cost

Fig. 9. Results of the grouping, optimization, and bin-packing evaluation

footprint of the original and aggregated flex-objects. Memory usage increases
when bin-packing is enabled.

Incremental Behavior. When evaluating incremental aggregation perfor-
mance, we first aggregate 500k flex-objects. Then, for different k values ranging
from 500 to 256k, we insert k new flex-objects and remove k randomly selected
flex-objects. The total number of flex-objects stays at 500k. For every value of k,
we execute incremental aggregation. As seen from Figure 8(e), the updates can
be processed efficiently so our approach offers substantial time savings compared
to the case when all 500k flex-objects are aggregated from scratch (the line in
the figure). We then compare the total time to process flex-objects with our in-
cremental approach to the other two (inherently non-incremental) approaches -
Hierarchical Aggregation and SimGB. As seen in Figure 8(f), our incremental ap-
proach is competitive to SimGB in terms of scalability. The overhead associated
with the change tracking in our approach is not significant in the overall aggrega-
tion time. Additionally, the hierarchical clustering-based approach (Hier. Agg.)
incurs very high processing time even for small datasets (due to a large amount
of distance computations), and is thus not scalable enough for the flex-object
aggregation problem.

Grouping Parameters Effect. As seen in Figure 9(a), the EST signif-
icantly affects the flex-object compression factor. For this dataset, increasing
EST by a factor of two leads to a flex-object reduction by approximately the
same factor. However, the use of high EST values results in aggregated flex-
object profiles with more slices. Aggregating these requires more time (see “ag-
gregation time” in Figure 9(a)). The TFT parameter has a significant impact on
the flexibility loss (see “flexibility loss” in Figure 9(b)). Higher values of TFT
incur higher flexibility losses. When it is set to 0, aggregation incurs no flexibility

16

loss, but results in a larger amount of aggregated flex-objects. When the number
of distinct time flexibility values in a flex-object dataset is low (as in our case),
the best compression with no flexibility losses can be achieved when TFT = 0
and the other grouping parameters are unset (or set to high values). However,
due to the long durations of profiles and high total amount values, the produced
aggregated flex-object might violate the aggregate constraint.

Optimization and Bin-packing. We now study the optimization and bin-
packing phases. As seen in Figure 9(c-d), the optimization phase is relatively
cheap (Figure 9(d)), and it substantially contributes to the aggregated flex-
object count reduction (Figure 9(c)). For bin-packing evaluation, the aggregate
constraint was set so that the time flexibility of an aggregate is always at least
8 (wmin = 8, equiv. to 2 hours). By enabling this constraint, we investigate the
overhead associated to bin-packing and its effect on the flexibility loss. As seen
in Figure 9(e), by bounding the time flexibility for every aggregate, the over-
all flexibility loss can be limited. However, bin-packing introduces a substantial
overhead that depends on the number of objects in flex-object groups after the
optimization phase (see Figure 9(f)). When this number is small (EST = 0,
TFT = 6), the overhead of bin-packing is insignificant. However, when groups
are large (EST = 250, TFT = 6), bin-packing overhead becomes very signifi-
cant.

In summary, we show that our incremental aggregation approach scales lin-
early in the number of flex-object inserts. The overhead associated with incre-
mental behavior is insignificant. Our approach performs aggregation incremen-
tally just as fast as efficient non-incremental grouping approaches (SimGB). The
trade off-between flex-object compression factor and flexibility loss can be con-
trolled using the grouping parameters. The compression factor can be further
increased efficiently by group optimization. Disaggregation is approx. 2 times
faster than aggregation.

8 Related Work

Related research fall in several categories.

Clustering. Many clustering algorithms have been proposed, including den-
sity-based (e.g., BIRCH [24]), centroid-based (e.g., K-Means [13]), hierarchical
clustering (e.g., SLINK [18]), and incremental algorithms such as incremental
K-means [25] and incremental BIRCH [10]. In comparison to our approach, clus-
tering solves only the grouping part of the problem, which is a lot simpler than
the whole problem. For grouping alone, the closest work is incremental grid-
based clustering [16,9,12], where we, in comparison, improve the clusters across
the grid boundaries and limit the number of items per each cluster.

Similarity Group By. SimDB [20] groups objects based on the similarity
between tuple values, and is implemented as a DBMS operator in [19]. However,
SimDB again only solves the grouping part of the problem, and is (unlike our
approach) not incremental, which is essential for us.

17

Complex objects. Complex objects with multidimensional data exists in
many real-world applications [14] and can be represented with multidimensional
data models [17]. Several research efforts (e.g., [5] and [23]) have been proposed
to aggregate complex objects. However, these efforts do not consider the specific
challenges related to aggregating flex-objects.

Temporal Aggregation. Several papers have addressed aggregation for
temporal and spatio-temporal data including: instantaneous temporal aggrega-
tion [3], cumulative temporal aggregation [21,1,11], histogram-based aggrega-
tion [6] and multi-dimensional temporal aggregation [4]. These techniques differ
in the way how a time line is partitioned into time intervals and how an ag-
gregation group is associated with each time instant. The efficient computation
of these time intervals poses a great challenge and therefore various techniques
that allow computing them efficiently are proposed [8,7,15]. Unfortunately, these
techniques only deal with simple data items without flexibilities, making them
unsuitable for aggregation of flex-objects.

9 Conclusion and Future Work

Objects with inherent flexibilities, so-called flexibility objects (flex-objects), oc-
cur in both scientific and commercial domains. Managing flex-objects with ex-
isting DBMSs is infeasible due to their complexity and data volume. Thus, a
new tailor-made database for flex-objects is needed. This paper was the first
to discuss flex-object databases, focusing on the most important operations of a
flex-object database: aggregation and disaggregation. The paper formally defined
the concept of flexibility objects and provided a novel and efficient grid-based
solution considering the grouping of flex-objects, alternatives for computing ag-
gregates, the disaggregation process, and the requirements associated to these.
The approach allowed efficient incremental computation. Extensive experiments
on data from a real-world energy domain project showed that the apporach
provided very good performance while satisfying all entailed requirements.

As future work, other challenges related to the flex-object database have to
be addressed. These include flex-object storage and visualization, as well as sup-
port for other types of queries (flexibility availability, adjustment potential,..).
Another interesting topic is aggregation and disaggregation techniques for flex-
objects with flexibility in the profile slices durations.

References

1. Arasu, A., Widom, J.: Resource sharing in continuous sliding-window aggregates.
In: Proc. of VLDB. pp. 336–347 (2004)

2. Boehm, M., Dannecker, L., Doms, A., Dovgan, E., Filipic, B., Fischer, U., Lehner,
W., Pedersen, T.B., Pitarch, Y., Siksnys, L., Tusar, T.: Data management in the
mirabel smart grid system. In: Proc. of EnDM (2012)

3. Böhlen, M.H., Gamper, J., Jensen, C.S.: How would you like to aggregate your
temporal data? In: Proc. of TIME. pp. 121–136 (2006)

18

4. Böhlen, M.H., Gamper, J., Jensen, C.S.: Multi-dimensional aggregation for tem-
poral data. In: Proc. of EDBT. pp. 257–275 (2006)

5. Cabot, J., Mazón, J.N., Pardillo, J., Trujillo, J.: Specifying aggregation functions
in multidimensional models with ocl. In: Proc. of ER. pp. 419–432 (2010)

6. Chow, C.Y., Mokbel, M.F., He, T.: Aggregate location monitoring for wireless
sensor networks: A histogram-based approach. In: Proc. of MDM. pp. 82–91 (2009)

7. Gao, D., Gendrano, J.A.G., Moon, B., Snodgrass, R.T., Park, M., Huang, B.C.,
Rodrigue, J.M.: Main memory-based algorithms for efficient parallel aggregation
for temporal databases. Distributed Parallel Databases 16(2), 123–163 (Sep 2004)

8. Gordevičius, J., Gamper, J., Böhlen, M.: Parsimonious temporal aggregation. In:
Proc. of EDBT. pp. 1006–1017 (2009)

9. Hou, G., Yao, R., Ren, J., Hu, C.: A clustering algorithm based on matrix over
high dimensional data stream. In: Proc. of WISM. pp. 86–94 (2010)

10. Jensen, C.S., Lin, D., Ooi, B.C.: Continuous clustering of moving objects. IEEE
Trans. Knowl. Data Eng. 19(9), 1161–1174 (2007)

11. Jin, C., Carbonell, J.G.: Incremental aggregation on multiple continuous queries.
In: Proc. of ISMIS. pp. 167–177 (2006)

12. Lei, G., Yu, X., Yang, X., Chen, S.: An incremental clustering algorithm based on
grid. In: Proc. of FSKD. pp. 1099–1103. IEEE (2011)

13. Macqueen, J.B.: Some methods of classification and analysis of multivariate ob-
servations. In: Proc. of 5th Berkeley Symposium on Math. Stat. and Prob. pp.
281–297 (1967)

14. Malinowski, E., Zimnyi, E.: Advanced Data Warehouse Design: From Conventional
to Spatial and Temporal Applications. Springer, 1 edn. (2008)

15. Moon, B., Fernando Vega Lopez, I., Immanuel, V.: Efficient algorithms for large-
scale temporal aggregation. TKDE 15(3), 744–759 (March 2003)

16. Park, N.H., Lee, W.S.: Statistical grid-based clustering over data streams. SIG-
MOD Rec. 33(1), 32–37 (2004)

17. Pedersen, T.B., Jensen, C.S., Dyreson, C.E.: A foundation for capturing and query-
ing complex multidimensional data. Information Systems 26(5), 383–423 (Jul 2001)

18. Sibson, R.: SLINK: An optimally efficient algorithm for the single-link cluster
method. The Computer Journal 16(1) (Jan 1973)

19. Silva, Y.N., Aly, A.M., Aref, W.G., Larson, P.A.: SimDB: A similarity-aware
database system. In: Proc. of SIGMOD (2010)

20. Silva, Y.N., Aref, W.G., Ali, M.H.: Similarity group-by. In: Proc. of ICDE. pp.
904–915 (2009)

21. Yang, J., Widom, J.: Incremental computation and maintenance of temporal ag-
gregates. VLDB 12(3), 262–283 (Oct 2003)

22. Yue, M.: A simple proof of the inequality FFD(L) ≤ 11
9
OPT (L) + 1, ∀L for the

FFD bin-packing algorithm. Acta Mathematicae Applicatae Sinica 7(4), 321–331
(Oct 1991)

23. Zhang, D.: Aggregation computation over complex objects. Ph.D. thesis, University
of California, Riverside, USA (2002)

24. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering
method for very large databases. In: Proc. of SIGMOD. pp. 103–114 (1996)

25. Zhang, Z., Yang, Y., Tung, A.K.H., Papadias, D.: Continuous k-means monitoring
over moving objects. IEEE Trans. Knowl. Data Eng. 20(9), 1205–1216 (2008)

