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Preface

This book contains the proceedings of the Twenty Second Nordic Seminar on Computational
Mechanics (NSCM22), taking event 22–23 October 2009 at Aalborg University, Denmark. The
papers presented at the Optimization Seminar in Honour of Niels Olhoff, held 21 October 2009 at
Aalborg University, Denmark, are included at the end of the proceedings.

The Nordic Seminars on Computational Mechanics are organized annually by the Nordic Associa-
tion of Computational Mechanics (NoACM). The association represents the interest of the Nordic
countries (Denmark, Finland, Iceland, Norway, Sweden) and the Baltic countries (Estonia, Latvia,
and Lithuania) in the International Association for Computational Mechanics (IACM) and the
European Community on Computational Methods in Applied Sciences (ECCOMAS).

NoACM was founded in 1988 with the overall mission to promote and stimulate research within
the field of computational mechanics. The annual seminars are intended as a meeting place for
researchers developing computational methods, and for scientists and engineers focusing on chal-
lenging applications in broad aspects of mechanics. Young researchers, including doctorate and
graduate students, are particularly welcome.

This year, the Nordic Seminar on Computational Mechanics is organised and hosted by the Depart-
ment of Civil Engineering and the Department of Mechanical Engineering, Aalborg University,
Denmark. The book of proceedings includes four invited papers and a total of 66 other contribu-
tions, divided into 18 sessions. Seven invited lectures are given at the Optimization Seminar in
Honour of Niels Olhoff. The corresponding papers are included at the end of the proceedings.

Sincere appreciations are extended to all participants in the seminar, not least to the invited speak-
ers and all other lecturers at the NSCM22 and the Optimization Seminar for their efforts in prepar-
ing and presenting papers. The success of the event closely relies on these contributions. Especially
we would like to thank our main sponsor Siemens Wind Energy A/S and our co-sponsor Medeso
AB for their most kind financial contributions to the seminar.

Aalborg, October 2009

Lars Damkilde
Lars Andersen
Anders Schmidt Kristensen
Erik Lund
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PDE-interpolations in Topology Optimization

O. Sigmund
Department of Mechanical Engineering, Solid Mechanics

Technical University of Denmark, Lyngby, Denmark
e–mail: sigmund@mek.dtu.dk

Summary The paper discusses recent developments in interpolation schemes for density based multi-
physics topology optimization problems. The paper is a slight update of an article that has appeared earlier
in the IACM-expressions [1].

Introduction

Since its invention by Bendsøe and Kikuchi two decades ago, the topology optimization method
as a computational tool [2] has undergone a tremendous development. In the early days of the
method, it was mainly seen as an academic toy for optimizing material distributions in mechanics
and lots of post-processing and -interpretation had to be performed before realistic and useful de-
signs could be extracted. In the early 90’s, the automotive industry took up the method with mainly
in-house codes but since then, the method has spread rapidly into all other mechanical engineering
disciplines. By now, all major FE-software houses provide topology optimization functionalities
and there exists a small handfull of dedicated topology optimization software providers that of-
fer mechanical design solutions with manufacturing constraints like deep drawing and casting
constraints. This expansion process has culminated with the use of the method in the structural
design of the new A380 mega-plane by EADS [3]. Whereas the method enjoys great popularity
for simple mechanical design criteria like stiffness, buckling, and dynamic eigenfrequencies, the
method is only slowly spreading to other physics disciplines - most probably because it is dif-
ficult to systematize the transfer of the method to other disciplines. As is, every new application
requires reconsideration of modeling aspects, design parameterizations, design goals and penaliza-
tion schemes. Especially problems involving boundary loads have been difficult to deal with due
to the paradox: where to add the boundary loads if the boundaries are unknown? In this article, we
will discuss some recent developments in providing a unified scheme for topology optimization in
multiple physics and loading settings.

The original topology optimization method consists of repeated finite element analyses, gradi-
ent evaluations, and material redistributions based on optimality criteria or Math Programming
approaches1. For stiffness optimization, the design variables are the individual element material
densities. In order to be able to use efficient gradient-based optimization approaches, the design
variables are allowed to take any value between zero (void) and one (solid), however, discrete and
well-defined solid-void solutions are obtained by choosing appropriate penalization schemes that
favor discrete solutions from porous intermediate stiffness solutions [4]. The topology optimiza-
tion procedure is demonstrated on a wing rib example in Figure 1.

Lately, alternatives to the above described density approach have appeared. In level-set approaches
material boundaries are described by the zero level-set surface and boundary optimization is ob-
tained by solving of Hamilton-Jacobi equations [5]. Parameterized level-set functions allowing for

1The reader is kindly invited to visit the homepage www.topopt.dtu.dk (compliance design) to try out a topology
optimization Java applet that illustrates the technique.
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1.

3.20.

150.

Material redistribution (topology optimization)

FE−discretizationDesign domain

Conventional wing rib design with circular holes

? ?

Figure 1: Wing rib design by topology optimization. Top: Conventional design with circular holes for weight
reduction. Bottom: definition of design domain, FE-discretization and snap shots from the optimization
history.

the use of Math Programming approaches have also been suggested based on the use of radial
basis functions [6]. The different approaches each have their pros and cons, however, common
for all is that they are based on fictitious domain modeling and hence they require interpolation
schemes for the correct modeling of the solid and void domains. In simple stiffness optimization
problems this may not be a problem because the void domain has no influence on the structure.
However, in other physics cases, the void domain may contain pressurized fluids, moving fluids,
acoustic waves, electric fields, etc. If the topology was given, such modeling problems could eas-
ily be solved by staggered approaches, i.e. for a structural-acoustic problem, the Helmholtz and

2



Navier equations could be solved separately in each their subdomains but coupled through bound-
ary terms. In topology optimization, the boundaries are unknown a priori and hence staggered
approaches are impractical and must be substituted with monolithic approaches where all physics
is modeled on the same mesh. In the following we demonstrate how monolithic (non-staggered)
analysis schemes suitable for topology optimization of multiphysics problems can be based on
suitable interpolations of PDEs (Partial Differential Equations).

Elasticity

The first examples of topology optimization were based on minimum compliance design of me-
chanical structures. The PDE for elasticity without volume load is given in Table 1a. The design
variable ρ interpolates between empty space (ρ = 0) and solid material (ρ = 1) governed by the
elasticity PDE. In practice, this is done by letting the Young’s modulus or the whole stiffness ten-
sor of solid material be a function of ρ. A compliance minimization example for airplane wing-rib
design is shown in Figure 1. A range of other design problems are also covered by this simple
interpolation between void (empty space) and solid material. Examples are thermal and electric
conduction problems and also multiphyscis problems like electrothermomechanical actuators [7].

PDE Interpolation Void region ρ=0 Solid region ρ=1

a) Elasticity, compliance minimization
∇ · (C(ρ)∇u) = 0 C(ρ) = ρCs void ∇ · (Cs∇u) = 0

b) Elasticity and porous flow, bone optimization
∇ · (C(ρ)∇u) = 0
∇ · (κ(ρ)∇ψ) = 0

C(ρ) = ρCs

κ(ρ) = (1− ρ)κf

porous flow
∇ · (κf∇ψ) = 0

elastic bone
∇ · (Cs∇u) = 0

c) Stokes flow
−∇ · (µ∇u− Ip) + α(ρ)u = 0
∇ · u = 0

α(ρ) = (ρ− 1)αf + ραs fluid (αf = 0)
∇·(µ∇u− Ip) = 0
∇ · u=0

support (αs = ∞)
u = 0

d) Elasticity with pressure loads
∇ · (2G(ρ)∇u− Ip) = 0
p = −K(ρ)∇ · u

K(ρ) = (ρ− 1)Kf + ρKs

G(ρ) = ρGs

fluid
p = −Kf∇ · u

solid
∇ · (2Gs∇u− Ip) = 0
p = −Ks∇ · u

e) Electrostatic actuation
∇ · (C(ρ)∇u) = ∇F
F = ε(ρ)∇φ∇φ− 1

2
∇φ · ∇φI

∇ · (ε̃(ρ)∇φ) = 0

C(ρ) = ρCs

ε(ρ) = (1− ρ)ε0 + ρε0εr

ε̃(ρ) = ε0(1 + ραεr),
α À 1

vacuum
∇ · (ε0∇φ) = 0
F = ε0∇φ∇φ− 1

2
∇φ ·

∇φI

solid
∇ · (Cs∇u) = ∇F
∇ · (αε0εr∇φ) = 0
F = εr∇φ∇φ− 1

2
∇φ · ∇φI

Subscript s means solid, and subscript f means fluid. No volume loads assumed.

Table 1: PDE-interpolation schemes for various physics problems.

Photonic crystals

A simple extension of the solid-void scheme is to have the same PDE governing the solid and the
void regions, i.e. the design variable interpolates between e.g. a low and a high value of refractive
index as seen in the design of photonic crystals governed by Maxwell’s equations [8]. A photonic
crystal based wave guide nano-scale splitter is shown in Figure 2.

Elasticity and porous flow

It has long been known that human bone structure adapts to external loads and generates an-
isotropic porous microstructures. However, the exact objective function behind the adaption is still
not clearly understood although it is clear that competing objectives such as maximum stiffness

3



Figure 2: A nano-scale photonic wave guide splitter designed by topology optimization.

or strength as well as nutrition transport are in play. In order to study optimal microstructures
governed by the porous flow PDE in the void region and the elasticity PDE in the solid regions,
reference [9] suggested to interpolate between the two PDEs as seen in the Table 1b. With ρ = 0
we obtain porous flow governed by Poisson’s equation and with ρ = 1 we obtain solid struc-
ture governed by Navier’s equation. An example of micromechanical bone design with varying
constraints on permeability/conductivity is shown in Figure 3.

Stokes flow

The extension of the topology optimization to fluid mechanics problems was not straightforward
and has only been solved recently [10]. Following the ideas from elasticity, a first thought was to
interpolate the material property, i.e. the viscosity between fluid and non-fluid region by switching
between the physical viscosity of the relevant fluid and an infinitely high viscosity (non-fluid)
region. However, this does not work since the high viscosity regions only will stop flow if they
are attached to no-slip boundaries. A better solution proved to be to add a dissipation (inverse
permeability) term to the Stokes equation, i.e. turning it into the Brinkman equation and then
letting the design variable determine the magnitude of the dissipation term. As seen in Table 1c,
switching the inverse permeability α between 0 and infinity, one can interpolate between the pure
Stokes flow equation (ρ = 0) and no flow (ρ = 1). Examples of topology optimization for fluids
are shown in Figure 4.

Elasticity with pressure loads

Solving pressure load problems using the topology optimization is inherently a problem since it
is unclear where to apply the pressure loads if the boundaries are unknown. In order to solve the
problem previous works used various shape descriptors and boundary optimization techniques on
top of the topology optimization parameterization. However, it has turned out [12] that a refor-
mulation of the standard elasticity formulation into a mixed form makes it possible to solve the
problem by simple interpolation between zero shear stiffness but finite bulk modulus (i.e. a com-
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Conductivity = 10% Conductivity = 30%Conductivity = 0%

Figure 3: Top: Cut through human hip bone. Bottom: results for topology optimization of bone microstruc-
ture with constraints on porosity (from [8]).

Figure 4: Stokes flow examples. Left: minimizing drag of obstacles of given volume (from [11]). Right: a
flow mixer with flow lines and colors indicating temperature from inlet (left) to outlet (right) (from [?]).
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Figure 5: Topology optimization with pressure loads. Left: Suboptimal topology obtained by conventional
formulation with fixed pressure load line. Right: Optimized solution based on mixed formulation (from
[12]).

pressible stationary fluid) in the pressurized void region and finite shear and bulk moduli in the
solid region. The equations are given in Table 1d and an example is shown in Figure 5. The idea
can also be extended to structural acoustic problems by the same interpolation of the mixed form
but now including inertia terms [13].

Electrostatic actuation

The last and most challenging example of a PDE-interpolation for topology optimization, that we
will discuss here, is the design of electrostatically actuated micro systems. Electrostatic forces
between two conductors are inversely proportional to the square of the gap between them, hence
in micro scale these forces become large enough for mechanical actuation. Normally the elec-
tromechanical modeling problem is solved by staggered analysis approaches but recently it was
shown that monolithic schemes amenable to topology optimization can be set up [14, 15]. Table
1d shows the scheme that interpolates between the electrostatic Poisson’s equation (void regions)
and the elasticity equations (solid region). The boundary loads (Maxwell stresses) F generated
by the electrostatic field enter the elasticity equation as volume loads. An example of electrostatic
actuator design is shown in Figure 6.

Concluding remarks

With these five examples presented in this paper it has been demonstrated how various multi-
physics and boundary load problems can be posed in monolithic settings amenable to topology
optimization formulations by proper interpolations between the governing PDEs. It is the authors
vision that any kind of physical design problem can be formulated in similar monolithic forms.
Ideally, one would set up a table of all known PDEs and generate the proper interpolations between
them. As long as the PDEs are formulated in the same coordinate systems this should indeed be
possible. However, when considering ”incompatible PDEs” like for instance the fluid-structure
problem where the fluid problem is formulated in an Eularian coordinate system and the elastic
problem is formulated in a Lagrangian system, the proper interpolation scheme is not yet clear.
Also, the penalization rule that ensures black and white designs for complicated multi-physics
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Figure 6: Topology optimization with electrostatics forces for MEMS. Left: design domain. Center: topol-
ogy optimized micro gripper. Right: Electric field distribution (from [15]).

problems is not easy to find. Amongst others, it is the formulation and solution of such advanced
incompatible coupled problems that constitute the future challenges within the field of topology
optimization.
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Numerical simulations of wall-bounded shear flows

Luca Brandt
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SE-100 44 Stockholm, Sweden
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Summary Numerical investigations performed at the Department of Mechanics, KTH Stockholm, are
reviewed to show how recent developments in computational capability, both in terms of computer power
and algorithm efficiency, have deeply changed our approach to fluid mechanics problems leading to
significant improvement of our understanding. After introducing the numerical approach adopted, two
different problems will be considered, both concerned withthe behavior of wall-bounded shear flows. The
interest for this type of flows is also related to our ability to understand and predict the performance of
man-made devices. Firstly, we will consider the transitionfrom laminar to turbulent flow in a boundary
layer exposed to high levels of external free-stream disturbances. The work is performed in collaboration
with Philipp Schlatter and Dan S. Henningson, also at the Linné Flow Centre in Stockholm, andRick
deLange at the Department of Mechanical Engineering, Eindhoven University of Technology. Secondly,
numerical simulations of turbulent channel flow seeded withdifferent populations of diluted, tiny particles
are presented. The investigation, in collaboration withPhilipp Schlatter, Gaetano Sardina andCarlo M.
Casciola from the Department of Mechanics and Aeronautics, University of Rome La Sapienza, focuses
on the large scale accumulation patterns of inertial particles.

Introduction

The equations of motion for gases and simple liquids, such aswater, are well known; nevertheless,
exact solutions of the equations are known for only a few cases. The reason for this is twofold,
firstly the equations are highly nonlinear, exhibiting solutions with a large range of scales and
secondly the boundary conditions are usually not well defined. During the last 30 years, however,
a new revolution in fluid mechanics research has been apparent, namely the use of computers,
both for numerical simulations and for collecting and analyzing experimental data. The computers
have drastically changed the possibilities to understand and analyze complex flow situations. In
particular, direct numerical simulations (DNS) have provided physical insight into the phenomena
of transitional and turbulent flows, despite the simulations are limited to simple and moderate
Reynolds-number flows. Our understanding has significantlyimproved over the past two decades;
in particular, the identification of relevant flow structures and the recognition of their role in the
near-wall dynamics are among the major advances in transition and turbulence research. Two
showcases will be presented here: simulations of transition to turbulence in the presence of high
levels of ambient noise and analysis of inertial particles in turbulent channel flow.

Numerical method

The simulation code (see Chevalier et al. [4]) employed for the simulations presented here has
been developed at KTH Mechanics over the last fifteen years and uses spectral methods to solve
the three-dimensional time-dependent incompressible Navier-Stokes equations in plane geome-
tries. This is used to study simpler canonical flows like channel flow and the boundary layer over
a flat plate. The streamwise, wall-normal and spanwise directions are denoted byx, y andz, re-
spectively, and the corresponding velocity vector isu = (u, v,w)T . The algorithm is based on
Fourier discretization in the streamwise and spanwise directions, and an expansion in Chebyshev
polynomials in the wall-normal direction. The nonlinear convection terms are evaluated pseudo-
spectrally in physical space using fast Fourier transforms. Aliasing errors from the evaluation of
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the nonlinear terms are removed by the 3/2-rule in the wall-parallelx/z plane. In the wall-normal
direction, it has been found more convenient to increase resolution rather than to use dealiasing.
The time is advanced using a four-step low-storage third-order Runge-Kutta method for the non-
linear and forcing terms, and a second-order Crank-Nicolson method for the linear terms. The
code is fully parallelized for efficient use on both shared and distributed-memory systems.

In the case of boundary layer flows, the downstream growth of the shear layer thickness must be
correctly accounted for, and therefore a so-called spatialtechnique is necessary. This requirement
is combined with the periodic boundary conditions in the streamwise direction by adding a fringe
region, similar to that described by Bertolotti et al. [1]. In this region, located at the downstream
end of the computational box, the functionλ(x) in equation (1) is smoothly raised from zero and
the flow is forced to a desired inflow solutionv in the following manner,

∂u

∂t
+ (u · ∇)u = −∇p +

1

Reδ∗
0

∇2
u + λ(x)(v − u) + g , (1)

∇ · u = 0 , (2)

wherep indicates the pressure andu is the solution vector. Bothg, which is a disturbance forcing,
andv may depend on the three spatial coordinates and time. The forcing vectorv is smoothly
changed from the laminar boundary layer profile at the beginning of the fringe region to the pre-
scribed inflow velocity vector. This is normally a boundary layer profile, but can also contain a
disturbance. A convenient form of the fringe function is as follows:

λ(x) = λmax[S(
x − xstart

∆rise

) − S(
x − xend

∆fall

+ 1)], (3)

whereλmax is the maximum strength of the damping,xstart to xend the spatial extent of the
region where the damping function is nonzero and∆rise and∆fall the “rise” and “fall” distance
of the damping function.S(a) is a smooth step function rising from zero for negativea to one
for a ≥ 1. This method damps disturbances flowing out of the physical region and smoothly
transforms the flow to the desired inflow state, with a minimalupstream influence. In the case of
boundary layers, it is also important to be able to set the free-stream boundary condition closer to
the wall. To this aim, the behavior of disturbances approaching the undisturbed flow away from the
wall is mimicked. For the simulation of channel flows, conversely, periodic boundary conditions
are applied directly, together with no-slip boundary conditions at the wall.

Bypass transition

Transition in boundary layers exposed to moderate to high levels of free-stream turbulence, termed
bypass transition, has in recent years been studied by a number of authors. The overall picture of
the transition scenario can be deduced from figure 1, where the impinging free-stream turbulence
is indicated by the yellow vortical structures at the inlet of the computational domain. This tran-
sition scenario is dominated by the – randomly in space and time – appearance of streamwise
elongated structures in the boundary layer with alternating positive and negative streamwise dis-
turbance velocity, so-called streaks. The amplitude of theboundary-layer disturbance grows in the
downstream direction, and finally – through a rapid process bypassing the exponential growth of
Tollmien-Schlichting waves – breakdown into localized turbulent spots occurs. These spots also
increase in size and merge until a fully turbulent boundary layer can be observed. A review of
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Figure 1: Numerical visualizations of boundary layer transition induced by free-stream turbulence. The flow
is from bottom left to top right. The blue and red isosurfacescorrespond to low and high velocity while the
green and yellow are used to indicate vortical structures bymeans of theλ2 vortex identification criterion.
The flow is fully turbulent in the second half of the domain.

early experimental work can be found in Matsubara and Alfredsson [9] while more recent exper-
iments focussing on the appearance of turbulent spots are presented by Mans et al. [7, 8]. The
first direct numerical simulation (DNS) of bypass transition was performed by Jacobs and Durbin
[6], who found good overall agreement with previous experiments. Further numerical simulations
have been performed by Brandt et al. [3] and Nagarajan et al. [11].

From the previous work, there is a consensus about the overall features of the bypass-transition
process. Free-stream vortical disturbances enter the boundary layer, mainly at the leading-edge
area, where their streamwise vorticity components induce transiently growing streamwise streaks
by the lift-up effect (see e.g. [14]). The streaks break downlocally and growing turbulent spots
appear. The spots subsequently merge causing a fully developed turbulent boundary layer fur-
ther downstream. However, the cause of the breakdown into turbulent spots has generated some
controversy, something we aim to clarify by means of large scale numerical simulations.

To understand the mechanisms of streak breakdown, a model problem is considered first. The
linear and nonlinear stability of steady and spanwise periodic streaks is analyzed by means of
numerical simulations. Two instability modes have been identified: sinuous and varicose, denoted
according to the motion of the streak during the disturbancegrowth. It is also observed that the
former type occurs earlier. In figure 2 the streak nonlinear response to a impulse is depicted at
different times following the downstream propagation of the perturbation. The localized sinuous
oscillations of the low-speed streak, associated to staggered quasi-streamwise vortices are clearly
visible.

Results from the numerical simulations of the full transition scenario (see figure 1 and [3, 13]) are
presented next. Three-dimensional instantaneous views offour different sinuous spot precursors
observed during an integration time of 4000 non-dimensional units, corresponding roughly to four
passages through the computational domain, are displayed in figure 3. During that integration
time, a total of 22 incipient turbulent spots have been observed. In the plots, red (medium gray)
and blue (dark gray) represent surfaces of constant streamwise velocity perturbationu′ = ±0.15,
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Figure 2: Top view of the flow development for the nonlinear impulse response on a spatially evolving
streak at times a)t = 120, b) t = 160, c) t = 220. Low-speed streaks are indicated by dark gray (blue)
isocontours, medium gray (red) isocontours correspond to high-speed streaks (u′ = ±0.12). Light gray
(green) isocontours in b) correspond to theλ2 criterion used to identify vortical structures.

whereas the green (light gray) structures indicate negative values ofλ2, used here to identify
vortical structures. The flow features common to all cases displayed are the spanwise oscillations
of the low-speed streak and the presence of quasi-streamwise vortices on the flank of the low-speed
region. The streak instability appears as a wave packet, with staggered patterns of streamwise
vortices consisting of three to five structures. The resemblance with the results from the model
problem provides evidence that the instability mechanismshave been corrected identified. Note
also that the sinuous breakdown was found to be the most likely to occur. The flow structures
in the fourth plot of figure 3 are those most similar to the nonlinear impulse response presented
in figure 2. The low-speed streak in the first plot in figure 3 is highly asymmetric as observed
by the fact that a region of high-speed fluid is found only on its left side. As a consequence,
the following instability is also asymmetric and the quasi-streamwise vortices observed are only
those bending in the positive spanwise direction. The second plot, Figure 3, depicts the effect of
the streak finite length. It can be seen in the figure that the instability is triggered at the head of
an incoming region of high-momentum fluid: as this approaches the low-speed streak on its left
a region of high spanwise shear is forming and here the instability is first seen. Motivated by
these observations, Brandt and de Lange [2] have recently investigated numerically the interaction
between optimal streaks assumed periodic but of finite streamwise length. These authors observe
that this interaction is able to trigger the streak breakdown and that the following flow structures
are very similar to those in bypass transition.

The data collected from linear streak instability, impulseresponses on parallel and spatially de-
veloping streaks essentially give the same results as full simulations and experiments of bypass
transition; not only with respect to flow visualizations butalso concerning characteristic measures
of the involved instability mechanism. Namely, the streaksbreak down due to a sinuous secondary
instability with a wave length about an order of magnitude larger than the local boundary-layer
displacement thickness, a growth rate of the order of one percent of the free-stream velocity over
the boundary layer thickness and a group velocity of about 0.8 of the free-stream velocity. The sec-
ondary instability manifests itself in all cases as a growing wave packet situated on the low-speed
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Figure 3: Three-dimensional visualizations of sinuous streak instability prior to the formation of a turbulent
spot identified from the numerical simulations of a boundarylayer subject to free-stream turbulence. Iso-
contours of positive and negative streamwise disturbance velocity±u′ = 0.15 in medium (red) and dark
gray (blue), respectively, and surfaces of theλ2 vortex identification criterion (λ2 = −0.002) in light gray
(green).

streak, increasing in magnitude as it is dispersing in the streamwise direction. In summary, numer-
ical simulations allowed us to conclude that the streak secondary instability process is responsible
for the generation of turbulent spots in bypass transition.

Inertial particles in turbulent channel flow

The dynamics of small inertial particles transported by a turbulent flow is crucial in many environ-
mental and engineering applications. For instance internal combustion engines or rockets as well
as diffusion processes in the atmosphere.
Small, diluted particles, much heavier than the carrier fluid, are essentially forced only by the vis-
cous drag. For the dispersed phase we therefore consider thefollowing simplifying assumptions:
the particles are rigid spheres, their diameters are much smaller than the viscous scales of the tur-
bulence, they are very diluted, and the density of the solid phase is taken much larger than the fluid
one,ρp/ρ = 1000. In these conditions the feedback acting on the fluid phase and collisions can
be safely neglected (one-way coupling) and the only force acting on the particles is the viscous
Stokes drag. The particle dynamics is described by a Lagrangian formulation [10] and each parti-
cle evolves according to Newton’s law:v̇ = (u−v)/τp wherev denotes the particle velocity and
τp = ρp d2

p/(ρν18) is the particle response time (Stokes time), withdp the particle diameter andν
the fluid viscosity. This leaves the Stokes number, ratio ofτp and the characteristic time scale of
the carrier fluid, as the only parameter defining the particledynamics for given flow field. In this
model Lagrangian fluid particles are recovered in the limit of vanishing Stokes time. The opposite
limit of ballistic particles is achieved forτp tending to infinity. In wall-bounded flows the viscous
time ν/u2

∗
is the natural choice, leading toSt+ = τp u∗2/ν. The outer scale Stokes number is

thanSt = τp R/U0 = St+Re2
τ/Re. Elastic collisions are assumed when the particle surface hits

the wall, i.e. when the distance from the particle center to the wall equals the radius. The nominal
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Figure 4: a) Mean concentration (number of particle per volume) of particles in the channel flow simulation
at Reτ = 180, (−) St+ = 0, (−−) St+ = 0.2, (·) St+ = 1, (−·) St+ = 5, (o) St+ = 10,(2) St+ = 50.
b) Instantaneous visualization of particles (departing: black points, approaching red ones) withSt+ = 10
near the wall (y+ = 10). The background color indicates the instantaneous streamwise fluid velocity (high
speed:red; low speed: blue).

particle diameter has then an active role in the interactionwith the wall, i.e.d+
p is an additional di-

mensionless parameter of the system. The difference between particle and fluid velocity produces
various anomalous phenomena such as small-scale clustering or preferential accumulation at the
wall even for incompressible flows, see among others [12].

Inertial particles in turbulent wall flow are characterizedby the so-called thurbophoresis phenom-
ena, that is, preferential particles accumulation at the wall. Under appropriate conditions, particles
may achieve extremely large concentrations at the wall, up to thousands times the mean value.
This turbulence-induced transport and the issuing preferential accumulation as been addressed in
a number of paper dealing with a variety of configurations, from boundary layers to plane channels
and pipe, attacked both from the experimental and the numerical side. Another peculiarity of these
phenomena is represented by the non-uniform instantaneousparticle concentrations at the wall;
in fact, particles at the wall seem to accumulate in preferential structures and these are extremely
long and straight along the mean velocity direction. The specific nature and dynamics of these
structures is not understood well enough, so the aim of our work is to investigate the origin of
these phenomena and in particular their link with large-scale turbulence motions.

Simulations are run in two different domains, a smaller domain of size4π × 2× 4π/3 (where 2 is
the channel height) and a bigger one of dimensions12π × 2 × 4π as in [5]. The latter represents
the largest domain used so far for the simulation of particle-laden flows. Both simulations assume
a turbulent Reynolds numberReτ = 180. The effect of turbophoresis is exemplified in Figure 4a)
showing the wall-normal profile of the (Eulerian) mean particle concentrationC, defined as the
number of particles per volume. This figure clearly indicates the well-known behavior of particle-
laden flows that heavier particles tend to accumulate close to the wall. Fluid tracers, on the other
hand, are equally distributed throughout the channel. The most accumulating particle populations
(St+ = 10, 50) show values of particles concentration at the wall a thousand times larger than
those at the center of the channel. These mean Eulerian observables are the same in both simu-
lations so it may appear that box dimensions do not affect mean quantities, nonetheless they do
influence correlations and particle patterns. The accumulation patterns are shown in figure 4b)
where a snapshot of the instantaneous streamwise velocity field is given in a wall-parallel plane at
y+ ≈ 10. It is apparent the dominance of wall-layer streaks. Particles form streamwise elongated
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Figure 5: Spanwise autocorrelation functions (left panels) and streamwise autocorrelation functions of parti-
cle concentration fluctuations (right panels), top-bottompanels are referred to small-big domain simulation
respectively, symbols as in Fig.4.

patterns, which are very thin in the spanwise direction. These particle streaks are predominantly
located in low-speed velocity streaks and are characterized by an outward (i.e. away from the wall)
velocity vector. On the other hand, particles moving towards the wall are mostly found in between
the streaks,i.e. in the region of the streamwise vortex cores.

To analyze in details the accumulation structures we make use of the concentration functionC. In
figure 5 streamwise〈c′(x)c′(x + ∆x)〉x,z,t(y) and spanwise two-point correlations〈c′(z)c′(z +
∆z)〉x,z,t(y) are shown for particles close to the wally+ = 5. Concerning the small box simu-
lation, particles with a small Stokes number are correlatedneither in the streamwise nor in the
spanwise direction. Actually their two-point correlations decay to 0 already at the lowest separa-
tion distance. However, heavier particles appear more correlated in both direction. In particular, a
clear sinuous behavior can be observed in the spanwise direction. The characteristic length of this
structures is∆z+ ≈ 120 as for the streamwise-velocity spanwise-correlation at similar wall dis-
tance. However, unlike for the velocity components, particles show a clear sinusoidal behavior of
the two-point correlation also at larger separations (e.g.see at∆z+ ≈ 240). This indicates that the
particle patterns are much more regular and straight than the corresponding velocity streaks. The
large domain shows a similar negative peak in the spanwise correlation, although the sinusoidal
trend for large separations appears attenuated. As far as the streamwise correlations are concerned,
the lightest particles show again virtually no correlationfor both simulations. ForSt+ > 5 the long
structures visible in figure 4b) give rise to positive correlations even for large streamwise displace-
ment. Nonetheless the large box computations show smaller values of the streamwise correlation
at fixed separation. In particular forSt+ = 5 at ∆x+ = 1000, a value of∼ 0.35 is computed in
the small box simulation, while the value of∼ 0.2 emerges from the large domain DNS. These
results clearly show that particle streaks extend for very long distances and are influenced by the
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periodic boundary conditions if simulations are performedwith the typical domain size suited for
mono-phase flows.

In summary, we have shown that particles predominantly formnarrow, but very long streamwise
patterns, located in the low-speed streaks and characterized by an outward wall normal motion.
However, the analysis of the streamwise two-point correlations clearly shows that the length of
these particle streaks is significantly larger than the corresponding velocity structures. In addi-
tion, the spanwise organization is extremely regular and corresponds to a mean spacing of about
120 plus units. The turbulent channel flow simulations with an increased size of the numerical
box highlight some significant differences in the correlation of particle concentrations. A possible
explanation of this feature can be related to large-scale structures of velocity field, which might
carry a considerable amount of energy (seee.g.[5]). These structures usually scale with the channel
height, and span the whole wall-normal extent. The influenceof these structures on the particle
pattern has not been studied before and probably is the key tounderstand the particle pattern
formations.
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Summary Some hyperelastic constitutive models and solid finite element analyses of the mitral valve
are presented herein. Focus is on healthy tissue, but some comments regarding diseased tissue and clinical
applications are given. Current state of art on physiology and anatomy of the native mitral apparatus
shows that a full understanding and explanation of tissue response is incomplete. Hence, further studies
on characterising microstructure, and coupling of this to constitutive modelling, are necessary. With this,
one has the potential to develop numerical tools that can be used in the clinic for improved diagnostics and
treatment planning.

Introduction

The mitral valve controls the blood flow direction in the left part of the heart, and prevents blood

from flowing back into the right atrium during systole. Diseases that affect the mitral valve have

severe consequences. Due to the complexity of the valve, surgeons would try to repair before

replacement with an artificial valve. The constitutive modeling of the leaflets and chordae is quite

well established now, with hyperelastic transverse isotropy defined by a dominating collagen fibre

family embedded in an isotropic matrix and incompressibility as the main setting (Kunzelman et al,

1993a, Kunzelman et al, 1993b, May-Newman and Yin, 1998, Liao and Vesely, 2003, Kunzelman

and Cochran, 1990, Prot et al, 2009a). It seems that the collagen fibers are oriented parallel to

the circumferential (annular) direction for significant parts of the leaflets, see e.g. Einstein et al

(2005). Elastin is also contributing to tissue stiffness, and is usually lumped into the the isotropic

bulk elasticity of the matrix. Muscle fibers and cells also contribute to the stiffness and motion of

the valve (Williams and Jew, 2004).

Most studies on material models for mitral tissue are based on animal tissues and in-vitro tests

(May-Newman and Yin, 1995). With this one gets an understanding of the passive response of the

material. Some initial studies on human tissue constitutive modeling are provided by Prot et al

(2009b).

Constitutive modelling

In this section we briefly introduce the continuum mechanical framework. The purpose is to pro-

vide the derivation of the appropriate tensors in order to use the anisotropic hyperelastic constitu-

tive model with solid finite elements. Further details can be found in (Prot and Skallerud, 2009).

Kinematics

Let Ω0 and Ω be the reference and current configurations, respectively. The deformation map

ϕ(X) : Ω0 → R3 transforms a material point X ∈ Ω0 into the related current position x =

ϕ(X) ∈ Ω. Hence, the deformation gradient F is defined as F = ∂ϕ(X)/∂X = ∂x/∂X, with

the volume ratio J = detF > 0 (J = 1 for an incompressible material).

We consider the multiplicative decomposition of the deformation gradient F, first introduced by

Flory (1961):F = (J1/3
1)F̄ C = (J2/3

1)C̄. The terms J1/3 and J2/3 are associated with
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volume changing deformation. F̄ and C̄ = F̄T F̄, which are called modified deformation gradient

and modified right Cauchy-Green tensor, are associated with the volume preserving deformations

of the material. The modified left Cauchy-Green tensor then reads B̄ = F̄F̄T .

We assume that the anisotropic properties arise from two fibre families embedded in the continuum

and that the two directions of the fibres at point X in the reference configuration Ω0 are defined

by unit vectors a0(X) and b0(X), respectively. During deformation these fibres move with the

material points of the continuum body and arrive at the deformed configuration Ω. Therefore, the

new fibre directions at the associated point x in Ω is defined by the vectors a = Fa0 and b = Fb0,

and the stretch of the fibres in these direction are |a| and |b|, respectively. For further use, we

define the following vectors: ā = F̄a0, b̄ = F̄b0.

Strain energy function

In order to describe the anisotropic hyperelastic response of mitral valve leaflets with two fiber

families, we use the following strain energy function Ψ:

Ψ = Ψ(C, a0 ⊗ a0,b0 ⊗ b0), (1)

and adopt the following decomposition of Ψ into two parts (Holzapfel, 2000),

Ψ(C, a0 ⊗ a0) = U(J) + Ψ̄(C̄, a0 ⊗ a0,b0 ⊗ b0), (2)

where U and Ψ̄ are the volumetric and isochoric contributions of Ψ, respectively. For the particular

case of mitral valve leaflets, we assume that the energy function may be expressed in terms of four

invariants:

Ψ(C, a0 ⊗ a0) = U(J) + Ψ̄(Ī1, Ī4, Ī6) (3)

= U(J) + Ψ̄p(Ī1, Ī4) + Ψ̄a(Ī6), (4)

where Ī1 = trC̄ = trB̄, Ī4 = C̄ : a0 ⊗ a0 and Ī6 = C̄ : b0 ⊗ b0.

We employ the following form for the strain energy function Ψ:

Ψ(Ī1, Ī4, Ī6, J) = c0

(

ec1(Ī1−3)2+c2(Ī4−1)2 − 1
)

︸ ︷︷ ︸

Ψ̄p(Ī1,Ī4): passive isochoric part

+ Ψ̄a(Ī6)
︸ ︷︷ ︸

Ψ̄a(Ī6): active isochoric part

+ κ(J − 1)2
︸ ︷︷ ︸

U (J): volumetric part

,

(5)

where c0, c1, c2 are material parameters, κ is a positive penalty parameter and (J−1)2 is known as

the penalty function. Herein, Ψ̄p and Ψ̄a are associated with the passive behaviour (May-Newman

and Yin, 1998, Prot et al, 2009a) and to the active behaviour of the leaflets due to muscle fiber

contraction, respectively.

Stress and elasticity tensors

The second Piola-Kirchhoff stress tensor S is derived from eq.(4):

S = 2
∂Ψ

∂C
= 2

∂U

∂C
︸ ︷︷ ︸

Svol

+ 2
∂Ψ̄

∂C
︸ ︷︷ ︸

Siso

(6)
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The Cauchy stress tensor σ is obtained by the push-forward operation of S to the current configu-

ration, σ = 1
J FSF

T . Thus,

σ = 2κ(J − 1)1 +
1

J
devσ̄, σ̄ = 2ψ1B̄ + 2ψ4ā⊗ ā + 2ψ6b⊗ b. (7)

The material elasticity tensor obtained from eq.(4) reads:

C = 4
∂2Ψ

∂C∂C
= 4

∂2U

∂C∂C
︸ ︷︷ ︸

Cvol

+ 4
∂2Ψ̄

∂C∂C
︸ ︷︷ ︸

Ciso

. (8)

We adopt the following notation:ψij = ∂2Ψ
∂Īi∂Īj

, i, j = 1, 4, 6. Hence,

Cvol = 4κ(J2 − J)
∂C−1

∂C
+ 4κ(J2 −

J

2
)C−1 ⊗C

−1, (9)

Ciso = 4ψ11
∂Ī1
∂C

⊗
∂Ī1
∂C

+ 4ψ14

(
∂Ī1
∂C

⊗
∂Ī4
∂C

+
∂Ī4
∂C

⊗
∂Ī1
∂C

)

+ 4ψ44
∂Ī4
∂C

⊗
∂Ī4
∂C

(10)

+4ψ66
∂Ī6
∂C

⊗
∂Ī6
∂C

+ 4ψ1
∂2Ī1
∂C∂C

+ 4ψ4
∂2Ī4
∂C∂C

+ 4ψ6
∂2Ī6
∂C∂C

.

The spatial description the elasticity tensor is obtained by push-forward operation of C:

C = χ
∗
(C), cijkl =

1

J
FiIFjJFkKFlLCIJKL. (11)

Finite element models

The above models were implemented in ABAQUS UMAT. All simulation are based on ABAQUS.

Fig. 1 shows the finite element model in initial configuration (beginning of systole). Eight noded

hybrid solid elements were employed for the two leaflets, and transversely isotropic hyperelastic

truss elements were employed for the chordae tendinae (Prot and Skallerud, 2009). The lower

attachment points for the chordae were fixed, the attachment of the leaflets along the annulus were

fixed with respect to displacements and free with respect to rotations. The left ventricle blood

pressure from beginning of systole to peak systole was applied according to a measured history.

Quasi-static analyses were performed, only. Fig. 2 depicts the orientation of the collagen fibers on

the deformed mesh at peak systole. Contact surfaces were defined on the atrial side of the leaflets

in order to account for valve closure.

Results and discussion

Fig. 3 shows three deformed meshes of the valve at peak systole (Prot et al, 2009b). These analyses

employed passive material modeling only. The first corresponds to a healhty, but very old, donor

(88 years), the second corresponds to a younger (42 years) donor with the HOCM affected heart.

Interestingly, the age of the old donor promoted a change in the exponent of the collagen tissue

term in the strain energy potential from 2 to 4 in order to capture increased tissue stiffness. It is

well documented that collagen stiffness increases with age. Furthermore, the mitral tissue from

the HOCM heart was much softer than the old donor, and even softer in some directions than the
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Figure 1: Initial geometry for the healthy mitral valve at the beginning of systole. The finite element mesh

is shown with two layers of solid elements for the leaflets.
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Figure 2: Collagen fiber orientation.

porcine model shown in Fig. 3c, and this affected the resulting material parameters obtained from

nonlinear LSQ estimation. Hence, the HOCM condition affects the mitral tissue elasticity signifi-

cantly. Including muscle fibers in the constitutive model improve the predictions of the deformed

shape of the leaflets at peak systole, with a reduced displacement into the left atrium. We believe

that this improves the hemodynamics when the blood is pushed out of the left ventricle during

systole. Hence, in a fluid structure interaction approach to this system this additional fibre system

will be important.
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(a) Healthy (b) HOCM

(c) Porcine

Figure 3: Deformed configurations of a) a healthy human, b) hypertrophic obstructive cardiomyopatic

(HOCM), and c) healthy porcine mitral valves at 120 mmHg. From Prot et al, (2009b).

With above modelling, one has the possibility to adjust material parameters depending on the state

of the tissue. E.g. connective tissue disorders (Marfan’s syndrome etc) leads to softer collagen.

This then affects the shape and motion of the mitral leaflets, eventually disturbing physiological

blood flow. If one can obtain such material parameters, one can carry out numerical simulations

studying different disease scenarios and corresponding surgical procedures in order to optimise

treatment. However, how to obtain material data by non-invasive means is a big challenge.
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Summary The study provides a review of computer methods that can be used in the dynamic analysis
of large deformations in multibody applications. Particular emphasis is placed on developments of the
absolute nodal coordinate formulation. The absolute nodalcoordinate formulation is a recently proposed
approach to the analysis of multibody systems that takes into account nonlinearities, including large
deflections and plasticity. In the absolute nodal coordinate formulation, finite elements are defined in the
global coordinate system using position coordinates together with independent global slopes that are,
in fact, partial derivatives of the position vector with respect to the element coordinates. Due to the use
of a large number of slope coordinates, an arbitrary rigid body motion can be described by the shape
function matrix and the vector of nodal coordinates. This unique feature leads to a constant mass matrix
in two- and three-dimensional cases. Due to the constant description of the mass matrix, the inertia vec-
tor that depends quadratically on velocities vanishes, simplifying the expression of the equations of motion.

Introduction

During the past decades, the dynamic analysis of machines has become important in terms of
advanced designs. Increased computational power and enhanced formulations allow for the possi-
bility to solve mathematical models that describe the dynamic performance of complex mechanical
systems. These types of complex systems may consist of a number of interconnected rigid or flexi-
ble bodies, where an analytical solution may not be available. In the field of multibody dynamics, a
large number of formalisms are introduced for the dynamic analysis of mechanical systems [1, 2].

Multibody system dynamics offer a computer-based approachto treat and solve dynamic problems
of mechanical systems. The multibody approach can be applied to a wide variety of engineering
fields, including robotics, aerospace applications, vehicle dynamics, biomechanics and rotating
structures. In these applications, optimization and sophisticated design tools are often required.
Generally, a multibody system consists of a number of bodiesthat are connected together via
constraints. Figure 1 illustrates a general multibody system depicted in an abstract form.

In multibody formalism, equations of motion can be formulated in a systematic manner while
no assumptions regarding the magnitude of rotations of bodies are made. Equations of motion
of a multibody system are based on fundamental laws of systems of particles. This leads to the
principal difference between rigid and the flexible bodies that depends on the relative movement
of the particles in the body. In the case of rigid bodies, all of the particles in the body are rigidly
coupled, while in the case of flexible bodies, particles can exhibit relative movement with respect to
each other. By employing multibody formalisms, the system level analysis of mechanical systems
can be obtained in a straightforward manner [4, 5, 6].

Usually, the bodies in the multibody system are assumed to berigid, which may be an accept-
able assumption for the analysis of motion and forces in manypractical engineering problems.
However, in some cases, the deformation of the bodies shouldbe taken into consideration in order
to improve the accuracy of the numerical solution. The deformation of bodies can be described
using a number of approaches. In simple approaches, linear strain-displacement as well as linear
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Figure 1: Abstract description of a multibody system. [3]

stress-strain relations are used by assuming that deformations are small and the material behavior
is elastic. In some practical applications, the geometric change of a body may become signifi-
cant in terms of the dynamic response, making it necessary toemploy a nonlinear stress-strain
relation in the mathematical modeling. In addition to geometrical nonlinearity, advanced mod-
eling approaches are capable of taking material nonlinearities into account by using a nonlinear
stress-strain relation [7, 8].

Figure 2 shows helicopter blades, a belt pulley system and a tire. In these practical applications,
the flexibility of mechanical components is significant and the deformations of bodies should be
accounted for in order to obtain accurate results from the mathematical model.

Figure 2: Multibody systems where geometrical nonlinearities and material nonlinearities may occur in
some of the bodies. [9]

For flexible bodies, the description of motion can be derivedusing numerous different formalisms.
According to [2], the floating frame of reference formulation, the large rotation vector formulation
and the absolute nodal coordinate formulation are widely used formulations in the description of
flexible bodies in multibody applications. These formulations differ from each other in a num-
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ber of ways, although a common feature of the formulations isthat they reproduce exactly zero
strain under rigid body movements. This could be consideredas a minimum requirement to reach
the energy balance in the case of lengthy multibody dynamic simulations. It is noteworthy that
nonlinear finite element formulations can also be used in flexible multibody system dynamics.
Formulations used in flexible multibody dynamics are often related to finite element formulations.
In the floating frame of reference formulation, elastic deformations can be approximated by em-
ploying conventional finite elements, whereas in the large rotation vector and the absolute nodal
coordinate formulations, the total Lagrangian approach isemployed.

Due to the fact that bodies of a multibody system undergo a different magnitude of deformations,
it is common to combine different formulations in the multibody simulation. Accordingly, some
bodies can be assumed to be rigid while some flexible bodies can be modeled using the floating
frame of reference formulation with the assumption of smallelastic deformations. For bodies that
experience large deformations, such that geometrical and material nonlinearities are involved, the
large rotation vector or absolute nodal coordinate formulations can be used in the modeling.

The study provides a review of computer methods that can be used in the dynamic analysis of
large deformations in multibody applications. This reviewis mainly based on doctoral thesis by
Matikainen [9]. Particular emphasis is placed on developments of the absolute nodal coordinate
formulation.

Floating frame of reference formulation

The floating frame of reference formulation can be applied tobodies that experience large rigid
body displacements and rotations and linear deformations.In the formulation, a non-inertial refer-
ence frame is used to describe large translations and large rotations with respect to inertial coordi-
nation. The deformation of a flexible body is defined with respect to a non-inertial reference frame
using a set of elastic coordinates. In the floating frame of reference formulation, the deformations
are usually assumed to be linear with respect to the non-inertial reference frame. Elastic defor-
mation within the reference frame can be approximated by using the Ritz-method, or by using
the assumed deformation modes of the body. In [10], where theformulation is introduced for the
planar flexible mechanisms, the deformation of the body is approximated using the conventional
Bernoulli-Euler finite beam elements that are interconnected by constraints. It is possible to obtain
the deformation modes of the body through the use of component mode synthesis [11, 12].

Component mode synthesis is a model reduction technique that can be used to decrease the degrees
of freedom of the finite element model. The reduction makes the computation more effective and
it may decrease the stiffness of the system but unfortunately, it also leads to a loss of accuracy.
The usage of the reduction technique in the floating frame of reference formulation is explained
in detail in [13, 14]. When the component mode synthesis is used, the floating frame of reference
is difficult to apply to geometrically or materially nonlinear problems. If nonlinearities are taken
into account, using for example Ritz approximation for the displacement field, the elastic forces
are nonlinear. It is demonstrated in [15] that material nonlinearities can be accounted for within
the floating frame of reference formulation by using isoparametric finite elements and a body fixed
reference frame. Due to the use of a body fixed reference frame, the approach is different than the
traditional updated Lagrangian formulation [15].

The use of the floating frame of reference formulation leads to a simple description for strain
energy with a constant representation of the stiffness matrix, and a highly nonlinear description
of kinetic energy. This is due to coupling between variablesof reference and relative motion. In
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some cases, the constraint equations may become cumbersometo model due to the kinematics
description of a flexible body. The main advantages of this approach are the exact description of
rigid body motion and the possibility to decrease the numberof degrees of freedom by employing
component mode synthesis. It is also notable that the formalism is not limited to beam and plate
type structures. However, due to the use of relative variables in the description of deformation,
centrifugal and Coriolis terms will occur in the equations of motion.

Geometrically exact formulations

A geometrically exact beam element has been examined in numerous studies. In theory, geometri-
cal approximations, such as the linearization of rotation parameters, are not employed. This formu-
lation is suitable for multibody applications in which large deformations, i.e. large displacements
and large strains, need to be accounted for. When the theory is applied to practical applications,
the element can be described within the concept of the total Lagrangian formulation. However,
to overcome the singularity problem associated with rotation parameters in the total Lagrangian
formulation, the updated Lagrangian formulation or quaternions, can be used. Simo and Vu-Quoc
present the geometrically exact beam formulation based on the Reissner theory with respect to the
large rotation vector formulation in [16, 17]. In this approach, spatial basis functions are used in
the element discretization procedure [17].

The large rotation vector formulation is a widely used approach and it has been extensively studied
for two and three-dimensional beam elements [18]. The finiteelements based on the large rotation
vector formulation are discretized using position and rotational nodal coordinates. This discretiza-
tion leads to a constant description of the mass matrix in thecase of two-dimensional elements.
However, in three-dimensional cases, discretization leads the mass matrix to no longer be constant,
regardless of the choice of rotational coordinates. It is important to note that the cross-section is
described by an orthonormal moving basis leading to an orthogonal representation of the rotation
matrix. This representation is favorable, as it simplifies the element computation [19].

In [20], the beam element based on the geometrically exact beam theory is introduced within
the framework of a total Lagrangian formulation without singularity problems. The element is
based on the Timoshenko-Reissner theory, and singularities of the angle2π and its multiples are
avoided by the varying parameterization on the rotation manifold. From a computational point
of view, the beam formulation is favorable to be presented ina manner in which the solution
can be determined with a constraint free manifold, as it leads to a system of ordinary differential
equations. In this formulation, the expression of the mass matrix is simple, but unfortunately, not
constant. The three-dimensional element is defined using six degrees of freedom at a node. In the
element, linear interpolation is used for displacements and rotations. This formulation appears to
be effective since quaternions are not employed. It is noteworthy that the use of quaternions, such
as Euler parameters, will result in one extra constraint andone extra rotation parameter at the node
when compared to the use of Euler rotations. This type of total Lagrangian parameterization is
also introduced for rigid bodies in [21].

Absolute nodal coordinate formulation

The absolute nodal coordinate formulation is a nonlinear finite element approach that is based
on the use of a global position and gradient coordinates. Using gradient coordinates, i.e. the
components of the deformation gradient, instead of conventional rotational coordinates, the ab-
solute nodal coordinate formulation leads to the exact description for inertia of the rigid body
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with a constant mass matrix. Since the presentation of the formulation [2], the numerous finite
elements based on the absolute nodal coordinate formulation are introduced; see for example
[22, 23, 24, 25, 26]. However, within fully-parameterized elements, different types of locking
phenomena may occur due to low order interpolation in the transverse direction [27, 38]. In order
to overcome this problem, alternative approaches are introduced to define the elastic forces; see
for example [28, 29, 30, 31, 32]. In order to clarify the absolute nodal coordinate formulation,
the fully-parameterized element is described at the beginning of this section. Fully-parameterized
elements allow for the energy from kinetic, strain and external forces to be defined in a consistent
manner.

The kinematics description of an element based on the formulation does not include conventional
rotational coordinates. Therefore, the use of quaternionsis not needed to avoid the singularity
problem of finite rotations under three-dimensional rotations. In this formulation, gradient coordi-
nates that are partial derivatives of the position vector are used to describe the cross-section or fiber
orientations and deformations. Therefore, all nodal coordinates are described in an inertial frame
allowing for the usage of the total Lagrangian approach, such as in the case of large rotation vector
formulations and conventional solid elements. Elements based on the absolute nodal coordinate
formulation can be considered as geometrically exact because no geometrical simplifications are
necessary. Based on the special features of the formulationmentioned above, elements based on
the absolute nodal coordinate formulation can be considered more advanced than classical beam
and plate elements. The use of the absolute nodal coordinateformulation leads to benefits in-
cluding a constant mass matrix, which simplifies the description of the equations of motion. Due
to the use of the global description of the element configuration, the estimation for contact sur-
faces and the description of geometric constraints, such asfor a sliding joint, are straightforward
- particularly compared to the floating frame of reference formulation [33]. On the other hand,
non-conservative forces in the formulation, such as internal damping, lead to a more complex de-
scription [34]. Due to the use of positions and their derivatives, the Hermite base functions are
usually employed in the elements based on the absolute nodalcoordinate formulation.

Kinematics

In elements based on the absolute nodal coordinate formulation, kinematics can be expressed
using spatial shape functions and global coordinates. Position of an arbitrary particlep in the
isoparametric element (Figure 3) can be defined in the inertial frame as follows:

r = Sm(x)e = Sm(ξ(x))e, (1)

whereSm is a shape function matrix,e = e(t) is the vector of nodal coordinates and vector
x = xe1 + ye2 + ze3 includes physical coordinates. For the isoparametric elements, the shape
functions can be expressed using physical coordinatesx or local coordinatesξ in the range -1. . .
+1. The kinematics of the element in the reference configuration at timet = 0 can be described as
r = Sm(x)e, wheree = e(0). The vectore contains both translational and rotational coordinates
of the element and it can be written at nodei of the three dimensional fully-parameterized element
as follows:

e(i) =
[

r(i)T

r
(i)T

,x r
(i)T

,y r
(i)T

,z

]T

; (2)
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where the following notations for gradients are used:

r(i)
,α =







r
(i)
1,α

r
(i)
2,α

r
(i)
3,α






=

∂r(i)

∂α
; α = x, y, z.

In Figure 3, the kinematics of the fully-parameterized beamelement is shown. The beam includes
two nodes, both of which are defined by 12 degrees of freedom.

Figure 3: Description of the position of an arbitrary particle in the fully-parameterized beam element. Points
p andp refer to the same particle at different configurations afterdisplacementu. The gradient vectors at
nodes are shown by dashed arrows. [9]

Equations of motion

The weak form (variational form) of the equations of motion in the Lagrangian (material) descrip-
tion can be derived from the functionalI, see for example [35], which can be written as

I =

∫ t2

t1

(Wkin − Wpot) dt, (3)

whereWkin is the kinetic energy of the element andWpot is the potential energy which includes
the internal strain energyWint and the potential energyWext due to conservative external forces.
The potential energy can be written as follows:

Wpot = Wint − Wext (4)

In this study, non-conservative forces are not taken into account. The variation of the functional
leads to

28



δI = δ

∫ t2

t1

(Wkin − Wint + Wext) dt = 0, (5)

The variations of the energies can be written as

δWkin =

∫

V

ρṙT δṙ dV (6)

δWint =

∫

V

S : δE dV (7)

δWext =

∫

V

bT δr dV (8)

where : denotes the double dot product,ρ is the mass density,S is the second Piola-Kirchhoff
stress tensor,E is the Green strain tensor andb is the vector of body forces. In the special case of
gravity, the body forces can be written asb = ρg, whereg is the field of gravity. The Green strain
tensor can be written as

E =
1

2
(F T F − I) (9)

whereI is the identity tensor andF is the deformation gradient tensor, which can be presented in
terms of the initial and current configurationsr andr as follows:

F =
∂r

∂r
=

∂r

∂x

(

∂r

∂x

)

−1

. (10)

Integrating the variation of the kinetic energy by parts within the time intervalt1 andt2, the weak
form of the equations of motion for an element can be written as follows:

∫

V

ρr̈T δr dV +

∫

V

S : δE dV −

∫

V

bT δr dV = 0. (11)

Using the interpolation for the position vectorr, the variations of energy with respect to the nodal
coordinates can be expressed. The variation of the kinetic energy can be represented as

δWkin =

∫

V

ρr̈T δr dV = ëT

∫

V

ρST
mSm dV δe, (12)

from which the mass matrix of the element can be identified as follows:

M =

∫

V

ρST
mSm dV. (13)

As can be concluded from Equation (13), the mass matrix is constant, as it is not a function of the
nodal coordinates. This will save time on computation, especially when the explicit time integra-
tion method is used. However, this advantage may be marginalwhen implicit time integration is
required. The virtual work for the externally applied forces can be written as
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δWext =

∫

V

bT δr dV =

∫

V

bT Sm dV δe, (14)

whereb is the vector of body forces. The vector of externally applied forces can be identified from
Equation (14) as follows:

F ext =

∫

V

bT Sm dV. (15)

The variation of the strain energy with respect to the nodal coordinates can be written as

δWint =

∫

V

S : δE dV =

∫

V

S :
∂E

∂e
dV δe. (16)

The vector of elastic forces can be identified from Equation (16) as follows:

F e =

∫

V

S :
∂E

∂e
dV. (17)

Due to the fact that inertia description is simple and interpolations of rotational parameters are not
needed, the formulation has potential to be effective in large deformation multibody applications.
Examples where the absolute nodal coordinate formulation performs more effectively than the
floating frame of reference formulation are described in [36]. Recently, the usability of elements
based on the absolute nodal coordinate formulation in practical applications is considered in belt-
drive and pantograph-catenary systems [37, 38]. Furthermore, in order to extend the usage of
the absolute nodal coordinate formulation in fluid-structure interaction, a special pipe-element is
introduced [39].

Conclusions

A review of computational methods for the dynamic analysis of large deformations in multibody
applications was provided in this study. In the floating frame of reference formulation, large ref-
erence motions are described using a reference frame, whilethe deformations of the body are
described relative to the reference frame. The use of a reference frame allows coupling of defor-
mations and large reference motions in the inertia description of the body. The geometrically exact
formulation can be applied to beam structures where large deformations, i.e. large displacements
and large strains, need to be accounted for. In this approach, the element can be described within
the concept of the total Lagrangian formulation. The absolute nodal coordinate formulation ex-
tends the multibody simulation approach to cases where large deformations and contacts need to
be accounted for. In this formulation, the nodal coordinates of finite elements are defined using
global positions and components of the deformation gradient of the nodes. Due to the linear re-
lation between nodal coordinates and position coordinates, the element mass matrix is constant
and can be defined in the same manner as in the linear finite element approach. Contradictory
to the simple expression of the inertia forces, the expression of elastic forces of the elements is
highly nonlinear and computationally demanding. However,due to the use of global coordinates,
the Coriolis and centrifugal forces are not present simplifying the expression of the equations of
motion. It is also important to note that the interpolation of nodal positions and the deformation
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gradient components does not restrict the rigid body rotation. In fact, an arbitrary rigid body mo-
tion of an element is presented exactly in the absolute nodalcoordinate formulation.
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Summary A novel concept for a multi-layer, multi-functional vehicle body panel is presented and weight
optimized to a set of structural and acoustic constraints. Design variables include both macroscopic and
microscopic properties of the various layers. Advanced FE software is used which enables the effects
of fluid-structure interaction of the open celled porous foam materials to be included in the optimiza-
tion. Promising weight savings and acoustic improvements over conventional solutions are shown possible.

Introduction

The vast majority of modern automobile structures are constructed by spot welding together
pressed metallic components. Body panels, such as the roof, hood, trunk lid, etc, often have large
areas of unsupported sheet metal which are prone to vibration. Viscoelastic damping treatments
are a common method of controlling such unwanted vibrations[1], and minimizing their impact
on the acoustic environment in the vehicle. These treatments are effective, however successful
implementation often relies heavily on experimentation and the experience of the engineer [2, 3].

An alternative approach to acoustic damping is the use of porous, light weight, open celled foams.
By varying the properties of each layer in a multiple layer foams stack, favourable acoustic be-
haviour can be achieved at a relatively low weight penalty. More importantly, the treatments can
be accurately tuned for a specific behavioural response using models based on numerical meth-
ods for poro-elastic media which have recently become available in commercial finite element
software.[4]

Within this work, a multi-layered, multi-functional body panel concept has been proposed which
includes the functionality of the following conventional components present in the roof of a pas-
senger car: outer sheet metal, panel damping treatments, acoustic absorption treatments, structural
reinforcement, and interior trim. The panel consists of composite face sheets, and multiple layers
of structural and acoustic foam. This configuration has been suggested as a method of meeting the
structural and quality needs present in an existing vehicle design.

The panel is mass optimized to a given set of structural and acoustic constraints. Macroscopic
properties examined include layer thickness of various components,and their mechanical proper-
ties. The effects of changes to the microstructure of the acoustic foam are also included within the
optimization. Results of the optimization are presented and discussed.

Method

The work described herein is an extension of previous work[5] and has been carried out in the
following manner.

Firstly, a novel concept is proposed. The novel concept is mass optimized to a set of structural
and acoustic constraints. Static deflection and normal vibration behaviour are used as structural

Proceedings of the Twenty Second Nordic Seminar on Computational Mechanics
© Aalborg University 2009 | ISSN 1901-7278 DCE Technical Memorandum No. 11

35



constraints and mechanical properties and thicknesses of the various layers are used as design
variables. Acoustic sound pressure levels in a fluid cavity resembling the vehicle interior are the
acoustic constraints, and the thickness and cellular construction of the acoustic layers are the
design variables.

Calculations are performed using NXNastran FE software in combination with CDH/EXEL soft-
ware for poro-elastic acoustic calculations. Optimization was performed using tools based on the
method of moving asymptotes (MMA) [6]

Concept Proposal

A conceptual design was proposed based upon a five layer construction consisting of the following
components:

• Exterior sheet – Glass fibre reinforced vinyl-ester composite laminate
• Structural foam layer – thermoplastic based expanded polymer foam (closed cell)
• Acoustic foam layer – A three component low stiffness open celled elastic foam treatment
• Air Gap– A 1mm thick air gap for increased acoustic performance
• Interior sheet – CSM Glass fibre reinforced sheet, perforated for acoustic functionality

Figure 1: Cutaway view of panel concept
The exterior sheet of the panel is a glass fibre laminate. The acoustic foam treatment consists of
three layers of open celled foam placed within a large pocket of structural foam in the centre of the
panel. The interior sheet is a CSM glass fibre reinforced plastic perforated with circular holes in a
rectangular pattern to allow fluid interaction between the passenger cavity and the acoustic foam in
the sandwich panel. The air gap exists between the acoustic foam treatment and the interior sheet.
An adhesive bond is assumed to exist between all layers of the structure, including between the
interior sheet and the structural foam. Figure 1 shows a cutaway view of the proposed construction.

Model Description, Load Cases, and Boundary Conditions

The square panel was modelled using a one quarter model with symmetrical boundary conditions.
NXNastran was used, and with the exception of the external sheet, wich was modelled using com-
posite shell elements, all layers were modelled using 3D brick elements. Porous material properties
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were described using Biot theory as implemented within CDH/EXEL[7, 8, 9, 10]. A fluid cavity
was coupled to the interior side of the panel to represent the passenger compartment.

The first static analysis included a localized load of 150 N applied to the roof spread over a circular
area of approximately 100 mm in diameter.

The second static load case involved a uniform distributed pressure across the entire outer surface
of the panel equivalent to 1.25 times the vehicles weight.

The dynamic analysis was a normal modes analysis to calculate the frequency of the first mode of
vibration of the panel.

Boundary conditions for all the structural analysis were as follows; along the sides of the panel,
all edge nodes in all layers were constrained in x, y, z directions. Along the front and rear edge of
the panel, the lowermost edge of the bottom face sheet was constrained in x, y, z.

For the acoustic analysis, the panel was excited using two phase-shifted dynamic forces at posi-
tions corresponding to where the a- and b-pillar (and due to symmetry also the c- and d-pillar)
would introduce vibrations in the structure. As the acoustic panel only represents a part of the
entire roof the layers were constrained in the x- and y-direction along the edges.

Results and Observations

Previous work on optimization of similar structures has yielded a panel of reduced mass in com-
parison to the conventional solution, while maintaining structural constraints, and exhibiting a
large potential for acoustic improvements[5, 11]. The current method of optimization is expected
to yield similar results, with improved acoustic performance via inclusion of design variables with
a strong influence on acoustic behaviour.

Concluding Remarks

Simultaneous structural and acoustic optimization of complex, multifunctional vehicle structures
represents the next generation of vehicle design.The results of this type of optimization yield a sig-
nificant reduction in mass, in comparison to the conventional solution, and promising acoustic per-
formance while maintaining structural integrity. The advanced finite element software used within
this work is an enabler for high level multi-disciplinary design including structural and acoustic
requirements. This type of design strategy offers new possibilities for vehicle manufactures, and
may in fact be required in order for to reduce weight, maintain performance, and increase comfort
of new vehicles while maintaining or reducing the amount of resources necessary for production
in future generations of passenger carrying vehicles.
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Summary In many cases the topology optimization method yield inadmissible solutions in respect to a 

particular manufacturing process, e.g. injection molding. In the present work it is chosen to focus on the 

most common injection molding parameters/factors determining the quality of the mold geometry, i.e. 

uniform thickness, filling of the die and ejection of the molded item, i.e. extrusion. The mentioned injection 

mold parameters/factors are introduced in the topology optimization by defining a centerline of the initial 

domain and then penalize elements in respect to the distance to the defined centerline of the domain. 

 

Introduction 

One of the widely used processes for manufacturing is injection molding. In this paper an effort is 

made to implement constraints given by the process of injection molding into the process of 

topology optimization. Introduction of manufacturing constraints have been considered by Ishii et 

al [3] which proposes a modified frame based unit cell approach providing symmetrical cross 

sections. Also commercial topology optimization software include methods to impose 

manufacturing constraints as devised by Schramm et al. [4], [5] suggesting a coupled topology-

size approach. In the present work the topology optimization method developed by Bendsøe  et al. 

[1] is used as basis.  

 

Algorithm to impose injection molding constraints in topology optimization 

An algorithm implementing molding constraints in the process of topology optimization is 

described shortly in the following. The approach is to define the structures center lines on the 

background of topology optimization and using those lines to weaken the sections, which would 

make the injection molding of the solution difficult or impossible.  

The use of lines 

By defining the center lines of the structure the following constraints of the injection molding 

process can be easily implemented: 

 Filling of the die: I there are a uninterrupted lines from the user defined placement of the 

injection nozzle to all parts of the structure, than the liquid material can fly in all parts of 

the structure in the molding process. 

 Direction of draw: If the lines are limited in a way that respects the direction of draw, the 

possible ejection of the item is guaranteed.  

 Uniform thickness and no intermediate densities: If all elements, which center point is 

closer to the line than half the thickness, are assigned with the density 1 and all others with 

the density 0 (or a very small value to avoid singularities), then the resulting item is of 

uniform thickness and does not contain intermediate densities. 
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The definition of lines 

At each step of iteration the lines are defined subsequently starting at the user defined placement 

of the injection nozzle by adding the neighboring node, which both respects the angle of draw and 

is assigned with the highest density. The nodes are assigned with the average density of the 

elements, which center points are within the circle with the diameter of the thickness.  

The node is not obtained in the line, if the assigned density is lower than a certain value, in the 

used cases 0.2. 

If two neighboring nodes have the same assigned density, the circle’s diameter is increased. 

Adjusting the compliance sensitivity 

The compliance sensitivity of an element is adjusted in respect to the distance between its center 

point and the line: 
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Definition of the volume fraction 

The volume of the structure is defined by the sum of all elements’ volume, which centre point is 

closer to the line than half of the thickness and a tenth or a thousandth of the other elements 

volume, if the line length is increasing or steady respectively. 
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Advantages of this algorithm 

The solution from this algorithm is always an item, which easily can be manufactured by the 

process of injection molding, has uniform thickness and the ejection is possible. It is optimized by 

the process of topology optimization within the limits given by the manufacturing constraints.  
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Because the combination of line and thickness defines, which elements are kept and which 

elements are left out of the solution, the method of SIMP is dispensable.   

 

Disadvantages of this algorithm 

The algorithm increases the calculation time, because the line has to be built up sequentially in 

every step of iteration and this includes assigned nodes with density. Afterwards the compliance 

sensitivity of all elements is adjusted in respect to the distance between the element’s centre point 

and the line. The calculation time is not increase heavily compared to other filtering methods. 

 

Verification of the algorithm 

The algorithm is verified by a standard case, a quadratic cantilever beam with the force applied in 

the center of the free side. The algorithm’s result is compared to the result found by the topology 

optimization process with Esbjerg filtering and the SIMP-penalty of 3.5. 

New algorithm 

Esbjerg filtering 

SIMP-penalty 

p=3.5 

  

After 83 steps: 

Overall change of density < 1/10,000 

After 122 steps: 

Overall change of density < 1/10,000 

Compliance: 

20.6321-20.6810 

Compliance: 

19.8397-20.1115 
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The solution of the Esbjerg algorithm has a compliance of ca. 20, while the new algorithm is a 

little weaker with compliance of 20.7. In the Esbjerg filtering the higher value of the compliance is 

the value shown after optimisation, still under the SIMP penalty. The lower value is cleaned for 

this influence. The little difference shows, that a few elements have intermediate densities. 

The lower value in the new algorithm is the compliance of all the elements assigned with the 

density 1, while the higher value is the compliance for all elements.  

In respect to the limitations to the new algorithm this seems reasonable. The difference in the 

compliance can be explained with the areas above and below the centre of the right edge. Here the 

Esbjerg filtering has material, which violates the limitation of uniform thickness. Therefore these 

areas are not a part of the solution of the new algorithm. At the upper right corner there is an area 

below the dark area, which is dark in the solution of the topology optimisation using the Esbjerg 

filtering. This area and the similar and the lower left corner violate the direction of draw and are 

therefore not a part of the new algorithm’s solution. 

Concluding remarks 

The new algorithm might be a useful tool for developing and optimizing items, if it is integrated in 

commercial software. Instead of strengthening or weakening individual elements, the process 

works on sections. 
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Summary The paper presents an approach to general type nonlinear buckling fiber angle optimization of
laminated composite shell structures. The approach accounts for the geometrically nonlinear behaviour of
the structure by utilizing response analysis up until the buckling point, i.e. bifurcation or limit point. The
proposed procedure handles bifurcation and limit point stability simultaneously and optimizes the buckling
point first to arrive on the equilibrium path and thereby avoid problems related to mode or stability type
switching during optimization. The optimization is formulated as a mathematical programming problem
and solved using gradient-based techniques.

Introduction

Polymeric resin fibre reinforced materials (FRPs or composite materials) are being used increas-
ingly for structural applications where properties such ashigh strength, high stiffness and low
weight are determining design parameters. The driving force behind the development and ap-
plication of these materials has been the demands posed by the aerospace industry, but the use of
advanced composite materials is expanding rapidly to otherindustrial sectors including marine/off-
shore, wind turbines (blades), automotive, train and civilengineering applications. Designing
structures made out of composite material represents a challenging task, since both thicknesses,
number of plies in the laminate and their relative orientation must be selected. The best use of the
capabilities of the material can only be gained through a careful selection of the layup. This work
focuses on optimal design of laminated composite shell structures i.e. the optimal fiber orienta-
tions within the laminate which is a complicated problem. One of the most significant advances
of optimal design of laminate composites is the ability of tailoring the material to meet particular
structural requirements with little waste of material capability. Perfect tailoring of a composite
material yields only the stiffness and strength required ineach direction.
Stability is one of the most important objectives/constraints in structural optimization and this also
holds for many laminated composite structures, e.g. a wind turbine blade. In stability analysis the
buckling behaviour is often considered by linearized eigenvalue analysis at an initial pre-buckling
point (linear buckling analysis) without any consideration to the type of buckling and the buckling
load is generally overestimated. [1] studied buckling optimization of structures with geometrical
nonlinear behaviour and found that formulations based on linear buckling analysis may lead to
unreliable design results. Certain types of nonlinear buckling optimization of laminated compos-
ites have been investigated, see [2] and [1], but there are absence in optimization procedures that
handles a general type of stability.
This paper focuses on the development of an integrated nonlinear buckling optimization proce-
dure that handles a general type of buckling of composite structures. Different buckling behaviour
is defined and characterized by a simple numerical example ofa point loaded cylindrical shell,
first introduced by [3] and later used extensively in the literature to investigate advances in finite
elements for handling load and/or deflection reversals in nonlinear buckling problems. The nu-
merical example will be used as the foundation for discussing and defining the challenges that
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may be encountered while optimizing geometrically nonlinear structures with respect to a gen-
eral type of stability. The proposed procedure and optimization formulation that handles a general
type of nonlinear buckling includes the nonlinear responseby a path tracing analysis, here by the
arc-length method after [4], using the Total Lagrangian formulation. The nonlinear path tracing
analysis is stopped when a buckling point is encountered andthe buckling load is approximated
at a precritical load by an eigenvalue analysis on the deformed configuration. Design sensitivities
of the critical load factor are obtained semi-analyticallyby the direct differentiation approach on
the approximate eigenvalue problem described by discretized finite element matrix equations. The
proposed optimization procedure that handles a general type of nonlinear buckling will be pre-
sented at NSCM22 together with numerical results obtained by applying the proposed procedure
to optimize fiber orientations in composite laminated structures.

Buckling Behaviour of the Point Loaded Cylindrical Shell

The cylindrical shell example, see figure 1, introduced by [3] is used to illustrate the complicated
behaviour that may be encountered in shell buckling. The isotropic thin circular cylindrical shell
panel, modelled by 200 equivalent single layer solid shell finite elements, is transversely loaded
undergoing large deformations including buckling and post-buckling. The panel is supported by
its two straight axial edges having a pinned fixture that cannot move, i.e. the mid-surface of the
axial edges are restrained in displacements and rotations in u, v,w,Rx,Ry but free to rotate about
thez-axis.

xz

y

r

α

Concentrated Load,R

l

r = 2540mm E = 3.10275GPa

l = 508mm G = 1.19337GPa

t = 6.35mm ν = 0.3

α = 0.1rad S = 508mm

R = 2400N

Figure 1: Geometry, loads, boundary conditions, and material properties for the cylindrical shell example.
The hinged support is related to the mid surface of the shell,which is realized by multi point constraints
(MPC) between the top and bottom edge nodes. The segment is loaded by two point loads in the negative
y-direction, at the top and bottom node in the centre of the segment. All dimensions refer to the mid surface,
where the thickness is denoted byt and the length of the curved edges is denoted byS.

Two solutions exist for the model, a symmetric and an asymmetric, see figure 2. The symmetric
solution, introduced by [3] and later reported by many authors, may be obtained by geometric
nonlinear analysis upon the original perfect system. The stability limit is characterized by a load
limit point. A path tracing algorithm as the arc-length method after [4] is needed for this solution
as both load and deflection reversals occur. Snap-through would occur at the load limit point in
load control, and snap-down/snap-back at the deflection limit point in deflection control. Spanwise
mode shapes along the shell centerline are symmetric about the centerline and loading point for
the symmetric solution.
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Figure 2: Left: Load-deflection response solutions of the perfect and imperfect systems together with the
linear pre-buckling solution. Right: Central spanwise mode shapes at different values of center deflection,
wc, obtained by FEA on the imperfect system with imperfection amplitude of0.1%.

Lately, [5] discovered that the symmetric solution of the shell benchmark problem was incorrect
and concluded by numerical analyses and related experiments that there exists an asymmetric so-
lution to the problem. The symmetric solution of the problemmakes the assumption that limit
point buckling will occur and does not consider bifurcationand an associated asymmetric buck-
ling mode. At a bifurcation point the system have multiple solutions and a secondary equilibrium
path may exist which at the point of bifurcation branches away from the fundamental path (the
equilibrium path for the perfect system). Bifurcation points are commonly predicted by either
linear pre-buckling analysis or geometrically nonlinear analysis of a slightly distorted imperfect
system which may be accomplished by introducing a geometricimperfection in the form of the
first linear buckling mode with some prescribed amplitude. Such a bifurcation point exists for
this model and occurs approximately12% below the load limit point for the symmetric solution,
thus this is the preferred lower energy path. The linear pre-buckling analysis yields a very poor
prediction of the bifurcation point which is caused by the inherent assumption that the structure
is assumed to behave linearly up until the buckling point. Several imperfect systems have been
analyzed with different amplitudes where the imperfectionamplitude is defined as the largest
translational component of the first linear buckling mode with respect to the shell thickness. The
use of imperfections as a method to discover bifurcation points and associated branches may not
always be trustworthy. It can be observed by the equilibriumpaths of the imperfect systems in
figure 2 that the imperfection amplitude has to be lower than approximately1% in order not to
change the problem and thereby the solution of the original problem which demonstrates the dif-
ficulty in discovering bifurcation point, i.e. the imperfection amplitude has to be large enough to
induce bifurcation but also small enough so as not to change the problem. The same difficulties
apply in the selection of the imperfection mode.
The two reliable imperfect equilibrium paths show a limit point in the region of the bifurcation
point which indicates that the bifurcation point is unstable, i.e. the bifurcation path is unstable
in load control thus the tangent stiffness is negative directly after bifurcation. The bifurcation re-
sponse does not exhibit a deflection limit point but rejoins the equilibrium path with the symmetric
response at large values of center deflection. In this regionthe response is dominated by membrane
streching with symmetric modes, see figure 2 right.
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Challenges in General Nonlinear Buckling Optimization

The starting point for a reliable nonlinear buckling optimization procedure is the ability to eval-
uate the point of stability with reasonable precision. As exemplified by the proceeding numerical
example, linear pre-buckling analysis is not valid for determining buckling of general type and
in cases where geometric nonlinearity cannot be ignored, thus geometrically nonlinear analysis is
required. Furthermore, the analysis procedure should be able to handle and discover bifurcation as
limit point instability, depending on what type of stability is first to arrive on the equilibrium path.
It is desirable only to analyse the perfect structure and notapply imperfections as a method for
predicting bifurcation points due to the problems in selecting a reasonable imperfection mode and
amplitude. During optimization the stability type may evenchange and the chosen imperfection
for the system may no longer be valid for inducing the structure to bifurcate. Finally, in case of a
stable bifurcation point the buckling point may simply disappear with the introduction of imper-
fections and thereby not be identified during the analysis.
During optimization, mode or stability type switching may occur, i.e. the first buckling point to
arrive on the equilibrium path may change from a bifurcationpoint to a limit point or vice versa,
and should be considered in the optimization formulation.
For effective treatment of the optimization problem it should be formulated as a mathematical pro-
gramming problem that is solved by gradient based optimizers, thus design sensitivities must be
derived and calculated in an efficient way. This will be outlined in the presentation at NSCM22.

Concluding remarks

There is a need for development of an integrated approach that reliably optimizes structures with
respect to a general type stability, i.e. simultaneously handles bifurcation and limit point stability,
and especially in cases where geometrically nonlinear effects cannot be ignored. This study ad-
dresses these issues and presents a unified optimization procedure that solves these problems. This
allows the material utilization of buckling critical laminated structures to be pushed to the limit in
an efficient way in order to obtain lighter and stronger structures.
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Summary Stiffness maximization is a well–described problem in structural design optimization. In this
paper we consider stress-constrained multi–material design of composite structures. Constraining stresses
requires interpolation schemes that have an unambiguous representation of stress in the mixed–phase
computational material. We propose an averaged interpolation scheme for the effective failure function for
mixtures.

Introduction

Optimal design of laminated composite structures is a challenging field for a number of reasons.
The complexities associated withmodeling and analysisof laminated composites makesdesignan
even more complicated task. However, not only modeling poses difficulties, but also non-convexity
of the resulting optimization problem is a challenge if ply orientations are used as design variables
in e.g. compliance minimization. Alternatively, the lay-up design problem may be formulated as
a material selection problemusing a different parameterization, and in this paper the so-called
Discrete Material Optimization (DMO) approach is applied.This approach is based on ideas from
multi-phase topology optimization where the discrete material selection problem is relaxed to
a continuous problem by expressing intermediate material properties as weighted sums of user-
defined candidate material properties allowing for the use of gradient based mathematical pro-
gramming techniques. Computationally, the optimization models coming from such formulations
are very large scale in terms of number of design variables and criteria functions combined with
large shell finite element models. The methodology has been applied successfully to problems
involving global criteria functions such as compliance, see e.g. [5], but may as well be extended
to problems involving local criteria functions such as constraints on the allowable stresses and
strains. This includes criteria on the local strength leading to designs that perform well not only
from a stiffness point of view but also have sufficient strength in terms of satisfaction of some
failure criterion of the chosen materials. In this paper we investigate different multi-material inter-
polation schemes. The stiffness and strength of mixtures isdeduced from physical interpretations
of the mixing rules. The aim is to obtain consistent failure criteria for the mixture rules on basis of
the failure behavior of the individual constituent phases.First, a mechanical interpretation of two
interpolation schemes is given, followed by the formulation of consistent first-constituent failure
criteria. In a relaxed material selection problem, the concern is not the microstructural realization
of intermediate densities as in e.g. [1], but rather the physical behavior that a given mixture rule
represents and that it eventually leads to a distinct material selection in order to enable a manufac-
turable physical interpretation of the final result. Also, interpolations should be reasonably simple
and computationally efficient since the resulting optimization problems are very large scale. Var-
ious schemes fulfilling these are formulated and studied. One class of interpolations are special
SIMP-like weighting functions which have been used with DMOto solve compliance minimiza-
tion problems, [5]. These weighting functions use penalization of intermediate densities to avoid
mixtures. However, the penalization is not always enough todrive the design to full convergence
(0/1 solutions) due to a necessary scaling that flattens the design space and consequently the op-
timizer gets stuck for certain problems. Convergence to a distinct material choice turns out to be
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of utmost importance since a final rounding to 0/1-designs has been shown to severely affect the
result when local failure criteria are included, contrary to the situation with only global criteria
functions where rounding typically is reasonable. In this work the hybrid Voigt-Reuss scheme
proposed by [6, 7] provides a physically based mixing rule that leads to solutions closely fulfilling
the 0/1-constraint of the originally discrete problem. This scheme has been adopted for DMO and
turns out to be well suited for a number of reasons. The schemehas some desirable properties
in terms of an unambiguous representation of the stress and strain state within each phase of the
mixed material which allows for a consistent evaluation of the failure index of each phase. To
assess failure of the mixed–phase material we propose an averaged failure criterion.

Problem Formulation

Given a number of predefined materials,ne, with known constitutive properties and material
strengths the goal is to minimize some objective function subject to constraints. In general, failure
measures may be included in the objective function but may aswell appear as constraints.

A material selection variablexij ∈ {0, 1} is introduced to represent the selection of a given
material for each candidate material,i, in every design domain,j.

xij =

{

1 if materiali is chosen in design domainj

0 if not
(1)

A (design) subdomain may for instance be a single layer in an element, a layer covering multiple
elements, multiple layers within a single element etc.

In each subdomain we require only one material to be chosen. This is modeled by the following
equality constraint.

ne

∑

i=1

xij = 1 ∀j (2)

Material selection is parametrized by the decision variables introduced in (1). These variables
are originally binary (0 or 1) but by allowing intermediate values between0 and1 the selection
problem can be treated as a continuous sizing problem. If thesolution to the continuous relaxation
is binary, a useful solution has been found to the original problem. However, during optimization
the variables take intermediate values and consequently interpolation of the material properties
is needed to handle this. These interpolation schemes should preferably favor discrete selections
over mixtures such that the continuous result converges to adiscrete solution.

Material interpolation

In this work we use the so-called hybrid Voigt–Reuss material interpolation scheme [6, 7]. This
scheme bases the stiffness interpolation on an unambiguousrepresentation of the stress and strain
state within the individual constituents of the mixed–phase material. The scheme forms the ef-
fective stiffness as a linear combination of pure Voigt and Reuss behavior respectively. The hy-
bridization parameterα controls the amount of Voigt behavior and the remaining1 − α is Reuss
behavior. The stiffness obtained with the Voigt scheme assumes that all phases in the mixture are
exposed to the same state of strain contrary to the Reuss scheme that represents the stiffness of a
mixed material where all phases are exposed to the same stateof stress. Consequently the stiffness
obtained with the hybrid Voigt–Reuss scheme is associated with an unambiguous state of stress
and strain in each phase of the mixture.
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Failure definition

As a measure of failure we use the so-called inverse load scaling factor or inverse reserve factor,
k. If the reserve factorR is defined as the proportional scaling of the load until failure, the inverse
load scaling factor isk = 1

R
. This formulation is completely general and failure may be predicted

by any known failure criterion such as Tsai–Wu, Von Mises, etc. [2, 3, 4] recommend the use of this
form of the failure criterion for optimization since directminimization of e.g. the Tsai-Wu failure
index might lead to non-optimal designs. It has the propertythat it takes on the value zero for the
unloaded state(R = ∞) and unity for a failure load(R = 1). More importantly a value ofk = 1

2

means that the applied load may be doubled before failure. This number is regarded as a more
meaningful measure of failure compared to the value of the failure index function. For instance
the value of the Tsai–Wu failure criterion may take onnegative valuesfor certain combinations
of load and material strength parameters. Clearly, this is undesirable since no physical meaning is
associated with a negative failure index.

Mixed–phase failure averaging

To asses the amount of failure of a mixed–phase material we propose to use the weighted average
of the inverse reserve factors.

〈k〉 = α

ne

∑

i=1

xik
V
i + (1 − α)

ne

∑

i=1

xik
R
i (3)

wherekV
i = ki(σ

V
i , Si) is the inverse reserve factor of thei’th phase in the Voigt part andkR

i =
ki(σ

R
i , Si) is the inverse reserve factor of thei’th phase in the Reuss part.

Illustrative Example

To illustrate the concepts outlined above we study a simple example where the problem is to select
the best orientation among two available material orientations for different loading situations.

Graphite-epoxy

E1 125.0 GPa
E2 8.0 GPa
ν12 0.30
G12 5.0 GPa
S1t 1950.0 MPa
S1c 1480.0 MPa
S2t 48.0 MPa
S2c 200.0 MPa
S12 79.0 MPa
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Figure 1: Left: Material properties and bi-axial stress states with coordinate system. Right: Averaged inverse
reserve factor (wrt. Tsai-Wu failure prediction) with hybrid Voigt–Reuss scheme for different bi-axial stress
states.
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The approach outlined above is used to select the best of two orthotropic materials with identical
properties, oriented atθ = θ1 = 90◦ and θ = θ2 = 0◦, respectively. This selection problem
can be parametrized byx1 using the material selection constraint from Equation (2) to eliminate
x2. The bi-axial state of stress is illustrated in Figure 1 along with the corresponding interpolated
inverse reserve factor. The example illustrates a number offeatures of the proposed averaging
scheme. First we note that the scheme is interpolatory, i.e.it recovers the known failure index of
distinct material choices (x1 = 0 andx1 = 1) for all values of the hybridization parameterα. The
scheme provides a continuous and differentiable failure function that is consistent with the stiffness
parametrization from which the load sharing between the phases is given. The scheme handles
differences in tensile and compressive strength through use of an appropriate failure criterion in
the averaged measure, which is seen from the top left plot in Figure 1.

Concluding remarks

This work presents a general framework for handling of stress- and strain-based failure criteria
within continuous multi–material optimal design problems. The paper proposes to use a weighted
average of the failure measure in each constituent phase. The failure measure is based on a hybrid
Voigt–Reuss scheme with a stress/strain state which is consistent with the interpolation used for
the stiffness. This is not a limitation of the principle of using the weighted average of failure
measures based on consistent-stress failure evaluation.
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Summary The development of a meso-level model of Compacted Graphite Iron (CGI) based on micrographs 
has been developed. The modelling at the meso-level combines pearlitic grains with graphite nodules to produce 
compacted graphite iron  structures. The behaviours of pearlite and graphite are described individually using the 
Johnson-Cook elasto-viscoplastic model describing continuous as well as discontinuous (fracture) deformation. 
Models are then used for finite element method simulation of orthogonal machining process. 

Introduction 

The development of models to predict physical behaviour during metal cutting has been a major 
preoccupation within the machining research community over the past 60 years. However, when 
new product materials like CGI with their sometimes heterogeneous microstructure are introduced, 
the simulation tools need to be modified in terms of the new mechanical properties that 
characterize the material. Usually, the finite element models are developed for simulations of 
homogeneous materials. Such models are not able to accurately describe local behaviour of highly 
heterogeneous materials like cast irons. This paper proposes a modelling procedure that simulates 
the material behaviour of heterogeneous materials on a microstructure-level scale. The meso-level 
models identify the role and behaviour of individual constituents which is not possible with 
macroscopic machining models. The use of this model is demonstrated on CGI. More specifically, 
the approach taken in the project, in order to account for the specific material structure of CGI (fig 
1), is based on the explicit modelling of the suitably chosen meso-scale of the heterogeneous 
material. Of particular concern in the present context is the mechanical modelling of CGI with 
respect to relevant mechanisms within machining operations. The paper is concluded by a 
numerical simulation of the fracture process during orthogonal cutting. We also intend to consider 
the sensitivity of the cutting force with respect to the nodularity degree. 

Simulation of microstructure 

Compacted Graphite Iron contains primarily a mixture of pearlite, ferrite and graphite. The 
graphite phase in two dimensions appears as “worm-shaped” or vermicular particles. The 
particles are randomly oriented as in gray iron, however they are shorter and thicker, and have 
rounded edges. In three dimensions the individual worms are connected to their nearest 
neighbours and form the complex coral-like morphology which gives rise to thermal and 
mechanical properties between those of gray and ductile iron. 
 
 
 

 
 
 
Figure 1: Microstructure of CGI in 2-D and 3-D 
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In order to analyse the heterogeneous microstructure of CGI the mesh based on micrograph 
was created through the software. OOF2 allows for the generation of a two-dimensional mesh 
with plane strain triangular elements representing the different phases observed in digitalized 
micrographs, cf. [1]. This mesh represents two separated groups of elements, each one 
associated with each of the two most important phases, graphite and pearlite. The CGI 
microstructures used in the industrial applications contain only small amounts of ferrite. The 
mesh is more refined in regions along the graphite/pearlite interfaces in order to increase the 
accuracy of calculations in those regions due to significant influence of graphite form on cast 
iron machinability (fig 2).  

 

       
 

Figure 2: Example of meshes based on CGI micrographs 

Material model 

 
During machining the work-peace material is subjected to considerable levels of strain, strain 
rate, temperature and pressure. The constitutive model suitable for machining simulations 
should be able to describe stress-strain response together with its dependence on factors 
influencing flow stress, cf. [2] The Johnson-Cook (JC) constitutive model is used in this work 
due to good accessibility of material constants in literature, relatively low number of material 
constants, the fact that the JC model is often already implemented in commercial software and 
the JC damage model is used in analysis. JC model is suitable for high-strain-rate deformation 
of many materials, including most metals and is typically used in adiabatic transient dynamic 
simulations. The JC model assumes that the equivalent flow stress eqσ is a function of the 
accumulated plastic strain eqε , plastic strain rate eqε& and temperature T written as:  
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Each bracket in (1) describes flow stress dependence on different behaviour. The first one 
defines dependence on strain with respect to isotropic hardening. Second and third expresses 
the effects of strain rate and temperature, respectively. No data on JC related constants for 
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pearlite and graphite are available. Only “static” material properties can be found in ref. [3]. 
Therefore, the material constants are borrowed from materials with similar carbon content and 
mechanical properties. The JC model itself cannot predict the adiabatic phenomenon. To 
model an adiabatic process, a governing equation of converting deformation work to thermal 
energy has been used. 

Fracture model 

In this work the Johnson-Cook ductile fracture model is used. The JC model has been often used in 
simulations of metal cutting to obtain insight of chip formation. According to Johnson and Cook 
[4] the fracture strain for a constant stress state can be expressed by three uncoupled factors. For 
this model five parameters need to be calibrated. The material fracture is simply described by the 
element removal technique, where a fracture state is obtained as soon as the damage measure has 
reached a critical value. The damage measure is defined as:  

 
∑Δ

= pl
f

pl

D
ε
ε

 (2)

Simulation 

 
The material model described above was used to simulate orthogonal machining of compacted 
graphite iron. The geometry is shown in fig. 3. The tool has 0 deg rake angle, 3.5 deg 
clearance angle, and 50 micrometer edge radius. The tool moves with a constant speed of 
160m/min. The model outputs include forces, displacements, strains, stresses, and 
temperatures.  
 

 

 
Figure 3: Problem geometry 
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Results and concluding remarks 

 
The present model allows for determining the behaviour of different kinds of cast iron 
materials once the proper material models for pearlite, ferrite and graphite are provided. The 
development of simulation model is ongoing and only preliminary results are available at this 
point. Due to complexity of material behaviour during machining many issues remains to be 
considered. The orthogonal cutting process on CGI material has earlier been studied by Quick 
Stop Tests and external longitudinal turning operations in related project [5]. A comparison 
regarding chip formation is made and described simulation shows good agreement with 
experimental results.  
 
 
 
 
 
 
 
 
 
Figure 4: Results from Quick stop experiments 
 
 
 
 
 

 

 
Figure 5: Simulation results 
 
In the future the model will be used for cutting simulations of pieces with different nodularities. 
Nodularity is important parameter in CGI material. Variations in nodularity results in 
variations of mechanical properties and leads to decreased machinability of material. 
Comparison of different levels of nodularity in CGI material behaviour during machining with 
focus on chip morphology, cutting forces and temperatures is of great interest for industry. 
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Summary In this contribution, different types of homogenization methods of a micromechanically based
plasticity model for pearlitic steel are investigated. The model was proposed in [?] and takes into account
large strains as well as deformation induced anisotropy. The initially randomly oriented cementite lamellas
in the pearlitic steel will tend to align with the deformation which causes a development of anisotropy.

Introduction
Pearlite is a two-phase material where each grain has a preferred direction that is determined by the
cementite lamellas. The hard and brittle cementite lamellas are embedded in a softer ferrite matrix.
Each grain can be considered to be transversally isotropic. The initial random orientation of the
cementite lamellas gives an isotropic pearlitic material. After shear deformation, the orientations
of individual grains tend to align with each other which causes a development of anisotropy.
In this contribution, the modelled anisotropy on the macroscopic length scale is obtained from
homogenization procedures of a micromechanical model of �crystal plasticity�-type, proposed in
[?], of the pearlitic microstructure. In this model the plasticity is assumed to be driven by shear
stress of the ferrite between the cementite lamellas, and the re-orientation of the cementite lamellas
is assumed to be of areal-af�ne type, cf. [?] The two different homogenization procedures investi-
gated in this paper are: the Taylor assumption where all grains in the microstructure are assumed
to be subjected to the same deformation gradient, and a procedure where the yield function of the
grains have been replaced by a macroscopic yield function motivated from the micromechanical
yield function.
Finally, results showing the development of the yield surface, macroscopic stress-strain response
for the different homogenization procedures are given and compared.

Micromechanical model
The point of departure is the micromechanical yield function Φµ which is formulated as follows:

Φµ = τ2
µ/Yµ − Yµ , ∀ µ (1)

where Yµ is the yield stress (taking into account hardening), and τµ is the projected shear stress on
the cementite lamella plane (or rather the ferrite in between the cementite lamellas) de�ned as:

τµ = M̄µ,dev : [m̄µ ⊗ n̄µ] . (2)

In this expression we introduced the deviatoric Mandel stress M̄µ,dev on the intermediate con�g-
uration (the multiplicative split of the deformation gradient F µ = F µ,e · F µ,p is adopted) and the
normal to the cementite lamella n̄µ. Further, the direction m̄µ is de�ned as the closest projection
of the traction stress t̄µ = M̄µ,dev · n̄µ onto the cementite lamella plane.
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The evolution of the cementite lamellas is assumed to be of an areal af�ne type determined by the
plastic deformation gradient, i.e.

n̄µ =
F−t
µ,p · nµ,0

|F−t
µ,p · nµ,0|

, (3)

with nµ,0 being the initial normal to the cementite lamellas. We also propose to adopt an isotropic
elastic law of Neo-Hooke type, an associative type of evolution law for the plastic deformation
gradient, and a nonlinear hardening of the yield stress Yµ.
To compute the response of a microstructure of pearlitic steel for a given macroscopic defor-
mation gradient, a �nite element analysis using the micromechanical model summarized above
with proper boundary conditions can be performed. However, to save computational time we will
investigate the performance of two simpli�ed homogenization procedures denoted model j and
model j + 1 below.

Model j
In this type of modeling we simply adopt the Taylor assumption for the model of the microstruc-
ture. This means that we only have to solve the micromechanical model for each grain µ and then
the stress can be computed as the volume average of all µ, i.e.

P =
1

VRVE

∑
µ

P µ Vµ, (4)

where the P µ is the �rst Piola-Kirchhoff stress obtained in grain µ.

Model j + 1

By homogenization of the micromechanical yield function Φµ and introducing an approximation
(in the spirit of [?]) we obtain

Φ = 〈Φµ 〉 ≈ 1
Y

[
tr
(
ā · M̄2

)
− M̄ : B̄ : M̄

]
− Y, (5)

with
ā = 〈 āµ 〉 = 〈 n̄µ ⊗ n̄µ 〉 , B̄ = 〈 āµ ⊗ āµ 〉 . (6)
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Preliminary results
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Figure 1: Yield surface in the development during simple shear.

Assume that an initially isotropic material is subjected to simple shear loading γ. In Figure ?? we
illustrate how the yield surface (for the 1 − 2 stress plane) develops from γ = 0 to γ = 1 and
γ = 2. For this case, where we have assumed no isotropic hardening, the anisotropy development
gives a shrinking and rotating yield surface.
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Summary A constitutive model is presented, considering grain size refinement through continuous 
dynamic recrystallization together with an evolving dislocation density. The grain refinement is allowed to 
influence both the evolution of the dislocation density and the rate dependence of the material. The model is 
calibrated against experimental data on aluminum and numerical simulations of equal channel angular 
pressing (ECAP) material processing illustrates the capabilities of the model. 

Introduction 

The grain size is becoming an increasingly important parameter in industrial metal processing, 
such as in forming operations. Knowledge of the grain size allows better understanding of both 
hardness and ductility in the material being deformed and, perhaps more importantly, improved 
control the final product. 
   The recrystallization process is driven by a lowering of the energy stored within the material 
microstructure. This occurs through the migration of high-angle grain boundaries, leading to the 
formation of new grains of relatively lower internal dislocation density. Dislocations are, however, 
also to a great extent pinned at the extensively expanded grain boundary area as the grains are 
refined. In addition, dislocations are also trapped in subgrain structures in the new grains. The 
effect is a second-stage hardening of the material due to dislocation immobilization and storage. 
By founding a macroscopic, continuum mechanical, constitutive model on these micromechanical 
processes, it is possible to obtain a versatile tool suitable for simulations of metal forming. 
   Constitutive models of elasto-(visco)plasticity based on the dislocation density have been 
previously formulated by several authors. Some models, such as [1], also include the grain size in 
the dislocation density evolution law, but in many cases the grain size is treated as a constant 
parameter rather than a variable. The present constitutive model gives a coherent viscoplastic 
formulation suitable for large-scale simulations of materials undergoing continuous dynamic 
recrystallization. In addition, the present model allows the recrystallized grain size to influence 
both the evolution of the dislocation density and also the rate-dependence of the material. The 
latter characteristic has been observed in several different materials and also in aluminum, which is 
taken as example material in the calibration of the present model. The calibrated material model is 
employed as a user subroutine in Abaqus Explicit to allow for simulations, illustrating the 
workings of the model. As an example simulation, an equal channel angular processing (ECAP) 
setup is studied. 

Constitutive model 

The model is formulated within a thermodynamic framework giving a finite strain hyperelastic 
formulation. The inelastic response of the material is described by J2 plasticity and the rate 
dependence of the model is established using a Perzyna-type overstress formulation. These 
macroscopic features of the model are based on a micromechanical reasoning where the evolution 
of the grain size D with viscoplastic deformation is described by 
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where, D0 and Df are the initial and final values of the grain size, respectively. Using the 
McCauley brackets ⋅ , the recrystallization will not set in until the effective viscoplastic strain 

quantity p
effε~  exceeds a threshold value of . This replicates the initial period needed for 

subgrain formation, dislocation accumulation at subgrain boundaries and build-up of enough 
stored energy, e.g. in terms of grain misorientation, to induce the recrystallization process. With kX 
and cX being model parameters to be calibrated against experimental data, the evolution of the 
effective viscoplastic strain quantity 
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where θ is the Lode angle. This format is chosen as one possible way to reduce the evolution of 
recrystallization during purely uniaxial loading, motivated by experimental evidence. The 
parameter a allows control of the extent to which the deformation mode is permitted to influence 
the recrystallization. 
   Besides the grain size, the other microstructural variable important to the model is the 
dislocation density ρd which, after normalization with the initial dislocation density , is assumed 
to evolve according to 
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In equation (3), dislocation generation and multiplication is dictated by the parameter d1, 
dislocation annihilation by d2 and the influence of grain size by d3. Dislocation density evolution 
laws on the format (3) have been used previously in e.g. [2]. 
   Considering the influence of the grain size according to the renowned Hall-Petch relation, the 
macroscopic static yield stress appears as 
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where 0yσ corresponds to the Peierls stress needed to overcome lattice friction, H is the 
generalized  Taylor factor and kD the stress intensity coefficient in the Hall-Petch relation. 

Numerical Example - Simulation of ECAP 

Since introduced by Segal in 1981, equal channel angular pressing (ECAP) has been a procedure 
frequently used to produce fine-grained materials through extensive plastic deformation, cf. [3]. A 
typical ECAP setup is shown in Fig. 1. 
 

w

v

DieΨ 

Φ 

Plunger

Die

Figure 1: A typical ECAP setup with definition of the channel width w, plunger velocity v, die angle Ψ and 
channel angle Φ. 
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According to [4], the strain imposed on the workpiece by Npass ECAP runs is approximately given 
by 
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effε  (5)

where a channel angle gives an effective plastic strain of approximately 1, quite 
independent of the die angle Ψ. 

o90=Φ

   Simulations are performed assuming plane strain conditions and using an ECAP specimen with 
dimensions 20×20×150 mm, a channel angle of , plunger velocity mm/s and a 
channel width of mm. The grain size distributions in the workpiece after one and two runs, 
respectively, through the die are shown in Fig. 2. Note that the workpiece is rotated 180° around 
its length axis in between the runs, representing a so-called “route C” ECAP run. As the figures 
show, apart from in the leading tip of the work piece and in the trailing, yet undeformed section, 
the grain size distribution is quite inhomogeneous after the first pass while the additional 
deformation exerted in pass two renders a more or less homogeneous grain size distribution 
corresponding to the final grain size Df. This tendency to reach a saturation grain size quite rapidly 
with increasing plastic strain is clearly shown in experimental results on aluminium. This 
reduction of grain size is captured by the formulation given in equation (1). 

o90=Φ 50=v
20=w

 
Fig.3 shows the distribution of the dislocation density, corresponding to the grain size results in 
Fig. 2. Again it can be seen how the plastic deformation becomes increasingly homogeneous after 
subsequent ECAP passes. Note that the workpiece is rotated 180° around its length axis in between 
each pass, interchanging the Top and Bottom references. Varying the channel angle Φ  to values 
>90° renders situations where one ECAP pass imposes an effective plastic strain less than 1, cf. 
equation (5). This is studied in the present work. 
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Figure 2: Grain size distribution in the ECAP specimen after one and two passes through the die.  
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Considering micromechanical processes such as the multiplication, interaction and annihilation of 
dislocations as well as the influence of continuous dynamic recrystallization, a micromechanically 
motivated constitutive model is formulated. The model recognizes the influence of grain size on 
the material behavior at both macro- and microlevel. The macroscopic yield stress is influenced by 
the grain size through a component corresponding to the Hall-Petch relation. In addition, the 
macroscopic rate dependence of the model is allowed to depend on the grain size. On the 
microlevel, recrystallization influences the evolution of the dislocation density since an increased 
amount of grain boundary area restricts the movement of mobile dislocations and since the 
recrystallization involves the nucleation of new, relatively dislocation-free, grains. By calibration 
of the model against experimental findings a micromechanically motivated and versatile tool for 
macroscale simulations of materials and conditions involving finite strain viscoplasticity and 
dynamic recrystallization is proposed. 
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Summary Classical computational homogenization with a priori assumed scale separation is considered,
whereby the macroscale response is obtained via averaging on Representative Volume Elements (RVE:s).
Focus is placed on dimensional reduction from three-dimensional subscale representation within each
RVE to one- or two-dimensional macroscale formats, a typical example being macroscale plane stress,
which are applications of general mixed stress-strain control. For mixed stress-strain control a novel mixed
variational format and single iteration strategy is proposed and compared numerically with the standard
two-level (nested) iterative strategy based on strain control, that is commonly adopted for macroscale
constitutive models.

Introduction

A classical approach to account for the effect of micro-heterogeneous material substructure in con-
stitutive modeling is to employ fully ”nested” macro-subscale modeling based on homogenization
on a Representative Volume Element (RVE), c.f. Fish et al. [2], Miehe and coworkers [6, 5], Zohdi
and Wriggers [7, 8], Kouznetsova et al. [3] or Aubry et al. [1]. The basic procedure is now quite
well established, although many issues are still unresolved, for example in relation to the model
assumptions that are (implicitly and explicitly) made as part of the computation.

In many situations it is of interest to analyze problems that are essentially one- or two-dimensional
from the macroscopic viewpoint, while it is still desirable to take the three-dimensional subscale
features into account. Typical examples are macroscale uniaxial stress and macroscale plane
stress, as defined below. For example, macroscale uniaxial stress is (still) the predominant situ-
ation for most tests to evaluate the behavior of metallic materials. In such cases of macroscale
dimensional reduction it is indeed possible to establish and exploit the results of RVE-problems
that are fully three-dimensional (in the same spirit as fully three-dimensional macroscopic models
are routinely used in, say, plane stress problems). These two cases obviously represent dimensional
reduction from 3D on the subscale to 1D and 2D, respectively, on the macroscale.

A primitive version of dimensional reduction for macroscale plane stress was proposed by Lill-
backa et al. [4], who carried out the RVE-analysis in 2D as well, while imposing the Taylor as-
sumption on the out-of-plane deformation. Such a method is primitive in the sense that the three-
dimensional features of the subscale structure are completely lost, since the subscale properties
are then implicitly treated as homogeneous across the thickness of the (thin) plate.

In this contribution a novel mixed variational format and monolithic iteration strategy for mixed
stress-strain control is proposed and compared numerically with the standard two-level (unified)
iterative strategy based on strain control, that is commonly adopted for macroscale constitutive
models.
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Preliminaries

We introduce the complete orthonormal basis {N ij}
3
i,j=1

of base dyads for nonsymmetrical 2nd
order tensors the displacement gradient, H , and first Piola Krichhof stress, P . We then introduce
the index set C = {11, 12, 13, 21, . . . , 33} and the split C = CI ∪ CII. For the definition of the
RVE-problem, we shall adopt the convention that strain control is associated with components
defined by CI, whereas stress control is associated with the remaining set CII. We thus decompose
H and P as follows:

H = H I + HII, Hα =
∑

ij∈Cα

N ijHij, α = I, II (1)

P = P I + P II, P α =
∑

ij∈Cα

N ijPij , α = I, II (2)

Finally, we introduce the split 4th order identity tensor

Iα
def
=

∑

ij∈Cα

N ij ⊗ N ij α = I, II (3)

which has the property that Iα : H = Hα and Iα : P = P α.

The same split can be stated for the macroscale (homogenized) quantities

P̄
def
= 〈P 〉�, H̄

def
= 〈H〉�, (4)

where we introduced the average over the RVE Ω�,

〈•〉�
def
=

1

|Ω�|

∫

Ω�

•dΩ. (5)

Figure 1: Geometry of a simplified RVE considered in the numerical example: A matrix material surround-
ing a soft spheroid inclusion.

Dirichlet boundary conditions

In order to formulate the monolithic iteration strategy an auxiliary constraint equation is introduced

c
(P)
� (u; δH̄)

def
= 〈P 〉

�
: δH̄ = P̄ : δH̄ ∀δH̄ ∈ R

3×3 (6)

With the use of the introduced form in Eq (6), the meso-scale problem can be written as follows:
For given values of H̄ I ∈ RI and P̄ II ∈ RII, find us ∈ U

D,s
� and H̄ II ∈ RII such that

a�(uM(H̄ I + H̄ II) + us; δus) = 0 ∀δus ∈ U
D,s
�

(7)

c
(P)
� (uM(H̄ I + H̄ II) + us; δH̄) = P̄ II : δH̄ II ∀δH̄ II ∈ RII (8)
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Given a solution us, H̄ II the stress can be solved as P̄ I

def
= 〈II : P 〉

�
= II : 〈P 〉

�
in a ”post-

processing step”.

Neumann boundary conditions

For Neumann boundary conditions with strain control an auxiliary condition is introduced in stan-
dard fashion using the bilinear form

c
(H)
� (u; δP̄ )

def
= 〈H〉

�
: δP̄ . (9)

The monolithic iteration strategy follows from the use of the decomposition of H̄ and P̄ and the
meso-scale problem can be stated as follows: For given values of H̄ I ∈ RI and P̄ II ∈ RII, find
u ∈ U

N
�

and P̄ I ∈ RI such that

a�(u; δu) − c
(H)
� (δu; P̄ I) = c

(H)
� (δu; P̄ II) ∀δu ∈ U

N
�
. (10)

c
(H)
� (u; δP̄ I) = δP̄ I : H̄ I ∀δP̄ I ∈ RI (11)

Given a solution u the sought strain can be solved as H̄II

def
= 〈III : H〉

�
= III : 〈H〉

�
in a

”post-processing step”

Results and Conclusion
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Figure 2: Relative calculation time for monolithic/two level iteration solution plotted against the number of
degrees of freedom of the RVE, Ndof .

The proposed monolithic solution has been compared to the two level iteration strategy with re-
spect to computational effort for a simple model problem. A rectangular Representative Volume
Element consisting of a stiff matrix material with a soft spherical inclusion is considered, cf. Figure
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1. Both material phases are modeled as elastic-plastic solids, using the von Mises yield criterion
and mixed linear hardening, with different material parameters.

The load case is uniaxial stress, whereby we prescribe set P̄ II = {P̄22, P̄33} = {0, 0} and H̄ I =

{H̄11, H̄12, H̄21, H̄13, H̄31, H̄23, H̄32} = {1, 0, 0, 0, 0, 0, 0, 0} · ˙̄H11 · t, where ˙̄H11 = 4 · 10−3 s−1

is a prescribed (constant) strain rate.

In Figure 2 the relative calculation time for the monolithic solution/two level iteration solution
is plotted. As can be seen the reduction in computational time is considerable; the monolithic
approach is between 3-5 times faster than the two level iteration strategy. There is no clear trend
that the speed-up becomes less for higher number of degrees of freedom Ndof . The solution to
the given problem is, of coarse, identical in the two formulations and the robustness appears to be
unaffected (preliminary result).
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A statistical method for structural damage identification using
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Summary A change in modal parameters of a structure due to damage is related to both the extent and
the location of the damage. Having a model of the structure and of the way damage changes it, the occured
damage can be estimated from the measured changes in the parameters. This is, however, an inverse
problem and thus ill-conditioned. In this work a regularization scheme based on Bayesian inference is
investigated.

Introduction

Structural health monitoring has been under active research over the past 20 years [1, 2]. Many
of the proposed methods are based on the fact that modal parameters of a structure change when
it receives damage. This change is not only related to the extent of the damage, but also to its
location [2].

The methods which seek also to locate the damage, in addition to just detecting its presence, are
most often based on a model of the structure and on an assumption of the way damage changes
that model. The simulated modal parameters of the structure model are compared against those
measured from the actual structure. A damage state minimizing the difference is then sought for
the model. This is an inverse problem and as such it is ill-conditioned, which means that some
form of regularization has to be added in order to get any results.

As measurement noise and modelling error are always present in a realistic case, our approach is
a statistical one. Using Bayesian inference, the posterior probability distribution, which states the
probability density of the structure having a certain damage state given the measured parameters,
is formed. The maximum a posteriori estimate of this distribution is then solved.

Damage identification

Modes of a structure

A discretized model of an undamped linear structure under free vibration is expressed as

MÜ(t) +KU(t) = 0, (1)

where M ,K ∈ Rn×n are the mass matrix and stiffness matrix respectively. U(t) is a vector
containing the DOFs of the discretized displacement field as a function of time.

Solving the generalized eigenvalue problem

KX = MXΛ (2)

gives a diagonal matrix of the eigenvalues Λ and a matrix of eigenvectorsX .

By changing variables to the eigenbasis, given by

U(t) = Xη(t), (3)
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equation (1) and the normalization of the eigenvectors give

η̈(t) + Λη(t) = 0. (4)

As Λ is diagonal, equation (4) describes n independent harmonic oscillators. The oscillation fre-
quencies are identified as the square roots of the eigenvalues and denoted as ωi =

√
λii.

The solution to (1) is given by

U(t) = Xη(t) =
n∑

i=1

xiηi(t), (5)

which is a linear combination of independent vibration modes xiηi(t). Hence the eigenvectors xi

are the mode shapes corresponding to the DOFs.

Measurement model

The structure is observed using a number of measurement devices. In order to use the measure-
ments, a model that relates the motions of the structure to the output of the devices is needed.

Any linear functional on the displacement field can be expressed as an inner product with the
DOFs. Assuming that the measuring devices can be modelled as linear functionals of the displace-
ment field, their measurements can be written as

Y (t) = HU(t) =
n∑

i=1

Hxiηi(t). (6)

Presented with such time-domain data from the actual measurement devices, there exist methods
for extracting some number, say m, of the modal frequencies ωi and the corresponding observable
mode shapesHxi [3]. Hence these quantities are used as the measured parameters. The measure-
ment vector is defined as

m =


ω1

Hx1
...
ωm

Hxm

 . (7)

Damage model

Damage can be modelled as a loss of local stiffness in a structure [4]. The mass of the structure
can be assumed to be not affected by the damage [1, 2, 4]. In the discretized model, this translates
as a change in the stiffness matrixK and no change in the mass matrixM .

Assuming a constant loss of stiffness within each element of the discretized model, the change in
the stiffness matrix ∆K can be expressed simply as

∆K = −
N∑

i=1

diK
e
i , (8)

where theKe
i are the individual element stiffness matrices. The parameters di ∈ [0, 1] are element-

wise damage parameters describing the amount of stiffness loss. The parameter value 0 indicates
no damage and 1 is indicative of a complete loss of stiffness.
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Forward model

The forward model combines the damage model with the measurement model. It simulates mea-
surements for a given damage state. It is expressed simply as

m = f(d), (9)

where d is a vector containing the elementwise damage parameters andm is a vector of measure-
ments as defined in equation (7) corresponding to the damage state d.

Statistical inverse

In reality, the measurements differ from the forward model. This is because of measurement noise
and modelling error. These effects are taken into account by adding a random error term to the
forward model. In the Bayesian framework, all variables are thought as random variables. Using
the convention that random variables are denoted by capital letters and their outcomes with corre-
sponding lower case letters, the relation between the measurement, the damage state and the error
term is written as

M = f(D) +E. (10)

Assuming that E is multivariate normal distributed with covariance Σ and mean value εm, it has
the probability density

p(E = ε) = C exp
(
−1

2
(ε− εm)T Σ−1(ε− εm)

)
. (11)

The statistics of E can be estimated from repeated measurements, given that the damage state of
the actual structure is known. This is most easily done when the structure is still undamaged.

Assuming that E is independent ofD, which is to say the statistics of E stay the same regardless
of the damage state, we can write the conditional probability density for obtaining measurement
m under damage state d, as

p(M = m|D = d) = p(E = m− f(d)). (12)

Using Bayes’ formula, the posterior probability density is

p(D = d|M = m) =
p(M = m|D = d)p(D = d)

p(M = m)
. (13)

This is the conditional probability density of damage state d when the measurement is known to
be m. The density p(D = d) is a prior distribution, which encodes all the information known of
the damage state prior to measurementm.

The posterior density can be considered as the solution of an inverse problem, however point es-
timates are often more illustrative as they provide a single answer. Two common point estimates
are the maximum a posteriori estimate and the conditional mean estimate. The maximum a poste-
riori estimate is presented here. It is simply defined as the maximum of the posterior probability
density, that is

dMAP = argmax
d

p(M = m|D = d)p(D = d)
p(M = m)

. (14)

Since the measurement m is fixed, p(M = m) is a constant and acts only to normalize the
distribution, hence it doesn’t affect the optimization and the MAP estimate can be simplified as

dMAP = argmax
d

p(M = m|D = d)p(D = d). (15)
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Results

A steel cantilever beam 1400 millimeters long, 60 millimeters wide and 5 millimeters thick was
measured with 7 accelerometers. The vibration of the beam was excited with a tap of a rubber
hammer. A set of baseline measurements were taken from the undamaged beam, after which a slot
was sawed to the beam with a hacksaw. The frequencies and mode shapes of the lowest 6 modes
were identified in both cases. The mean of the relative standard deviations for the identified modal
frequencies ended up being 0.05% whereas it was 0.97% for the observable mode shapes.

The beam was modelled using the finite element method as an Euler-Bernoulli beam discretized
with 50 elements. A model updating scheme was used to update the FEM model to better reflect
the baseline measurements. The remaining error was left to the error variable E, the statistics of
which were estimated from the measurements.

The prior distribution was chosen so that the damage parameters di were independent and identi-
cally distributed. The distribution needed to allow for values nearly zero, but no values below zero.
It also had to give low probability for large damage. For this purpose the half-normal distribution,
which has a single parameter, was chosen.

Figure 1 shows the MAP estimate of the damage parameters di. The location of the largest spike
matches the location of the sawed slot. The parameter in the prior distribution is not critical, the
damaged location is singled out over a large parameter range. In figure 1 it was chosen as σ2 = 1

2 .

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.05

0.1

0.15

0.2

0.25

0.3

distance from fixed end (m)

da
m

ag
e 

pa
ra

m
et

er
 v

al
ue

Figure 1: MAP estimate of the damage state in the beam. The largest spike matches with the actual damage.
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Summary Structural vibrations are typically governed by resonance, and thus damping of these vibrations
can often be increased by using the resonant properties of these modes. In the present paper the basic
principles of resonant absorbers are presented based on a general format in terms of sensors and actuators.
A design procedure is developed for resonant displacement and acceleration feedback, respectively,
introducing both ’equal modal damping’ and almost equal response amplitudes of the two modes. In
flexible structures the sensors and actuators also interactwith background modes. A procedure is developed,
in which a quasi-static representation of the higher modes is subtracted from the direct response. It is
demonstrate that this explicit quasi-static correction procedure for resonant damping of flexible structures
is very effective with high and nearly-equal damping aroundthe resonance frequency.

Design of resonant control

The control problem is illustrated in Fig. 1. The structure is represented bya massm with dis-
placementx(t). The external load on the structure is represented by the forceF (t). The control
is accomplished via a sensor signaly(t) used to control an additional forceFc(t). Figure 1a il-
lustrates the case of a flexible structure, with the first mode being represented by the mode shape
vectoru1 and the modal amplitudex1. A single-degree-of-freedom representation is obtained, if
this mode is considered without including interaction with higher modes. The governing equations
can be written in the following general frequency format [2],

Gxx(ω)x + Gxy(ω) y = F/m

Gyx(ω)x + Gyy(ω) y = 0
(1)

introducing the frequency transfer functionsGxx, Gxy, · · · . In the case without internal damping
the structural response is governed by the following frequency function with natural frequencyωs,

Gxx(ω) = ω2
s − ω2 (2)

The controller consists of an oscillator defined by the second order filter function

Gyy(ω) = ω2
c − ω2 + 2iζcωcω (3)

with characteristic frequencyωc and bandwidth parameterζc. The quality of the control is associ-
ated with its ability to limit the response of the structure around the resonance frequencyωs.

(a) (b)

q

u1x1
F + Fc

Fc

Gxx

GxyGyx

Gyy

Figure 1: Structure with sensor and control force: (a) Flexible MDOF structure, (b) Control loop.
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Parameter Acceleration feedback Displacement feedback

ωc ωs/(1 + β) ωs/(1 + γ)

ω2

0 ωcωs ωcωs

α β γ(1 − γ)

ζ2

c

1

2

β

1 + β

γ

4

2 + γ

1 + γ

Table 1: Optimal parameters for resonant damping in terms ofβ or γ.

Two types of resonant control are considered with generalized acceleration and displacement feed-
back, respectively. In the case ofacceleration feedback the sensor functionGyx and the actuator
functionGxy are conveniently formulated as

Gyx(ω) = ω2 , Gxy(ω) = α ω2
c + β 2iζcωcω (4)

with gain parametersα andβ. On the other handdisplacement feedback can be written as

Gyx(ω) = ω2
c , Gxy(ω) = α ω2 + γ 2iζcωsω (5)

introducingγ as the final gain parameter. For both acceleration and displacement feedback the
system of equations contains four governing parameters to be determined:The filter parameters
ωc, ζc and the two gain parametersα, β (acceleration feedback) orα, γ (displacement feedback).
The optimal calibration of the parameters is based on two desirable properties:

• Equal modal damping of the two associated vibration modes.

• Optimal frequency amplitude for both structural response and control force.

The equal modal damping property follows from a root locus analysis anddetermines of the opti-
mal filter frequencyωc and a reference frequencyω0. The parametersα andζc are determined to
give a ‘flat plateau’ of the frequency amplitude around the resonance frequency, see [1, 2, 3]. The
optimal design parameters are given in Table 1 withβ andγ as gain parameters, respectively.

Resonant damping of flexible structures

Let a multi-degree-of-freedom system be represented by the stiffnessmatrixK and the mass ma-
trix M. The displacements are denotedq and the corresponding external loadsF. In addition to
the external load an actuator with control signalη is connected to the structure as described by the
connectivity vectorw. The corresponding frequency equation is

(K − ω2
M )q = F − w Gqη(ω) η (6)

The actuator is controlled by the collocated signalη governed by the frequency equation

Gηη(ω) η = −Gηq(ω)wT
q (7)

It is assumed that the response is dominated by the first vibration modeu1 with natural frequency
ω1. When introducing a modal representation, where the higher modes are represented quasi-
statically [2, 4], the motion of the damper can be approximated as

w
T
q ≃ −

[ ν2
1

Gqq(ω)
+ κ1

]

Gqη(ω) η = ν1x1 − κ1 Gqη(ω) η (8)
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where the modal amplitude over the damper link isν1 = w
T
u1, andκ1 representing the effect of

the higher modes is defined as

κ1 = w
T
(

K
−1 −

u1u
T
1

ω2
1

)

w = w
T
K

−1
w − (ν1/ω1)

2 (9)

The first term is the displacement between the degrees of freedom of the sensor for a unit force
exerted by the actuator, and the second term subtracts the part associated with the first mode. It
is convenient to introduce the normalized formκ = (ω1/ν1)

2κ1 = (ω1/ν1)
2
w

T
K

−1
w − 1. The

combined set of equations for the first mode and the controller then takes theform

Gqq(ω)x1 + ν1Gqη(ω) η = F1

ν1Gηq(ω)x1 +
[

Gηη(ω) − κ1 Gηq(ω)Gqη(ω)
]

η = 0
(10)

where the resonator frequency functionGηη(ω) is modified by the termκ1Gηq(ω)Gqη(ω). The
calibration procedure for the MDOF system consists in establishing an equivalence with the op-
timal control of the SDOF system in (1) with optimal parameters given in Table 1.The modal
frequency function and the resonant controller are represented in theform

Gqq(ω) = ω2
1 − ω2 , Gηη(ω) = ω2

η − ω2 + 2iζηωηω (11)

In the case ofacceleration feedback the sensor and actuator functions are given as

Gηq(ω) = ω2 , ν2
1Gqη(ω) = αηω

2
η + βη 2iζηωηω (12)

The corresponding expressions for displacement feedback can be found in [2].

Example: Effect of flexibility

The efficiency and characteristics of filtered acceleration feedback are illustrated by the two cases
in Figure 2: a force actuatorFc acting on the bottom floor of a 25 storey portal frame and a force
actuator acting on a taut cable at 2% of the cable length from the support. Inboth cases the actuator
is located where the amplitude of mode 1 is relatively small, implying a large influencefrom the
higher modes and a large value of the correction factor;κ = 11.76 for the portal frame andκ =
23.52 for the cable. The optimal parameters and modal damping ratios are summarizedin Table
2. The basis of the design is a desired damping ratioζdes. Because of the equal modal damping
property the filter damping parameter is approximately twice the desired value:ζc ≃ 2ζdes [1].
It is seen from the table that the resulting damping ratios for the two vibration modes are both
practically equal to the desired value. The last column gives the damping ratios forκ = 0, showing
that without the correction for higher modes the equal modal damping property is lost, and one
of the modes is only very lightly damped. The frequency response for a uniformly distributed
harmonic load is shown in Fig. 3, exhibiting the desired flat plateau around resonance without any
overshoot in the control force.

11

2
2

25 49

Fc Fc

Figure 2: Portal frame and taut cable with force actuator.
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Table 2: Mode 1 damping ratios for portal frame and taut cable.

ζdes ζc β ωc/ω1 βη αη ωη/ω1 ζη ζ∓

1
ζ∓

1
|κ=0

Portal frame with force actuator:κ = 11.76

0.02 0.04 0.0032 0.9968 0.0031 0.0032 1.0160 0.04230.0202
0.0198

0.0261
0.0117

0.04 0.08 0.0130 0.9872 0.0113 0.0130 1.0699 0.09990.0408
0.0394

0.0505
0.0146

0.06 0.12 0.0297 0.9712 0.0220 0.0297 1.1856 0.19760.0626
0.0595

0.0640
0.0146

Taut cable with force actuator:κ = 23.52

0.02 0.04 0.0032 0.9968 0.0030 0.0032 1.0364 0.04470.0205
0.0194

0.0285
0.0072

0.04 0.08 0.0130 0.9872 0.0099 0.0130 1.1776 0.12450.0418
0.0376

0.0470
0.0067

0.06 0.12 0.0297 0.9712 0.0175 0.0297 1.6607 0.34830.0647
0.0549

0.0502
0.0055
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Figure 3: Frequency response of portal frame (top) and cable(bottom) forβ = 0.0032 (——), 0.0130
(– – –) and 0.0297 (–· –).
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Summary The present paper deals with addition of damping to a specificvibration mode of a rotating
beam using an active resonant controller. A recent general format for controller tuning is adopted and
applied in a three-dimensional finite beam element formulation. The effects on controller tuning and
performance due to changes in modal properties of a cantilever beam under different operational angular
frequencies are investigated.

Introduction

Vibrations in rotating beams is a naturally occurring phenomenon in e.g. helicopter and wind
turbine rotors. In some cases vibrations are concentrated on a single or a few lightly damped
modes and it may be of practical interest to suppress these vibrations. The present paper deals
with addition of damping to a specific vibration mode of a rotating beam using an active resonant
controller. A resonant controller targets a specific mode byinherent resonant behaviour near the
eigenfrequency of the mode. The principle was illustrated in an early, passive form as the tuned
mass damper by Ormondroyd & den Hartog [1]. Recent work by Krenk & Høgsberg [2, 3] has
provided a general format for tuning of a resonant, active device addressing a given mode of a
flexible structure. This method is adopted here and applied in a three-dimensional finite beam
element formulation where the controller can be attached attwo arbitrary cross-section locations.
Internal application of an active strut controller is illustrated in Fig. 1. A recent use of this type of
controller is described by Preumont et al. [4].

x

y
z

Ω

Figure 1: Active strut controller connected to two cross-sections of a beam.

As part of the resonant tuning the controller feedback system relates directly to physical system
states. This differentiates the approach from control procedures where observers are used to es-
timate modal states, e.g. Khulief [5]. In cases where rotating machinery operates with different
angular velocities, notable variations in eigenfrequencies due to centrifugal stiffening may occur,
as illustrated by e.g. Maqueda et al. [6]. In the present paper the effects on controller tuning and
performance due to changes in modal properties of a cantilever beam under varying operational
angular frequencies are investigated.

Basic Equations

Linear structural equations of motion with nodal degrees offreedomu, stiffness matrixK, damp-
ing matrix C, mass matrixM and external harmonic forcesfe with excitation frequencyω are
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represented in the frequency domain by assuming a harmonic solution ueiωt,
(

K + iωC − ω2
M

)

u = fe − Gqη(ω)wη (1)

where the controller force is represented by the controllerfeedback transfer functionGqη, the
controller connectivity vectorw and the controller stateη. The controller state is governed by the
equation

Gηη(ω)η = −Gηq(ω)wT
u (2)

whereGηη is the controller transfer function andGηq is the structural feedback transfer function.
The beam is described in a local, rotating frame of referencewith constant angular velocity and
gyroscopic effects are neglected. Consequently,M is the classic beam element mass matrix, and
the damping matrixC is omitted. System stiffnessK is given as

K = Ke + Ks + Kc + Kg (3)

with constitutive stiffnessKe, support stiffnessKs, centrifugal stiffnessKe and geometric stiff-
nessKg based on an initial stress formulation.

Acceleration Feedback Controller

A controller operating with acceleration feedback has transfer functions of the form

Gηη(ω) = ω2
η − ω2 + 2iζηωηω, Gηq(ω) = −ω2, Gqη(ω) =

1

ν2
1

(

αηω
2
η + βη2iζηωηω

)

(4)

where the resonant behaviour of the controller resides in the second-order filterGηη . ωη is con-
troller eigenfrequency,ζη is controller damping andαη andβη are tuning parameters, including a
background correction. Tuning of the controller (4) follows the procedure from [2, 3] where the
desired additional modal damping ratioζdes and targeted natural modal eigenfrequencyωn are
specified,

ζc = 2ζdes, β =
2ζ2

c

1 − 2ζ2
c

, αη = β, βη =
β

1 + κnβ
,

ω2
η =

1

1 −
κnβ

(1 + β)2

( ωn

1 + β

)2

, ζη =
1

ωη (1 + κnβ)

(

1 −
κnβ

(1 + β)2

)

ζcωn

1 + β

(5)

The modal controllability depends on the amplitude of modaldisplacement over the controller.
This is represented by the modal connectivity factorνn,

νn = w
T
un (6)

whereun is the targeted mode shape. Controller performance is affected by the presence of addi-
tional structural flexibility from higher modes at the location of the controller. This is represented
by the modal quasi-static flexibility parameterκn,

κn =
(ωn

νn

)2

w
T
K

−1
w − 1 (7)

The formulas (5) to (7) constitute the complete parameter tuning when the controller/structure
connection has been chosen.
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Active Strut Controller with Acceleration Feedback

Controller performance under different angular velocities is investigated in terms of a homoge-
neous, prismatic cantilever beam. The beam is oriented as shown in Fig. 1, i.e. fixed at{x, y, z} =
{0, 0, 0} and rotating about they-axis with angular velocityΩ = [Ωx, Ωy, Ωz ]T , whereΩy is the
only non-zero component. Structural properties of the beamare given in terms of material density
ρ = 2700kg/m3, modulus of elasticityE = 72GPa, Poisson’s ratioν = 0.3, lengthL = 8.2m,
width dy = 0.035m and heightdz = 0.35m.

The mode shapes of mode 1 are shown in Fig. 2 whereuy are nodal displacements in they-
direction andϕz are nodal cross-section rotations about thez-axis. It is seen that the centrifugal
stiffening introduces a tensioning of the beam which straightens the free end of the beam. In Table
1 the development ofω1 is given and notable variation is seen in the chosen intervalfor Ωy.
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Figure 2: Mode 1: a) Transverse nodal displacements, b) Cross-section rotations.

The controller is an active strut located between the first and second node from the clamped beam
end. The{y, z}-coordinates at both cross-sections are{−dy, 0}, meaning that the controller is
located on the beam surface.

Table 1: Mode 1 controller parameters.

Ωy ω1 ωη νn · 103 κ ζη βη αη ζ1,1 ζ1,2 ∆ζ1

0 2.7282 2.7266 0.178 1.9906 0.1308 0.0280 0.0297 0.0612 0.0609 0.0003

5 6.0250 6.2728 0.236 4.6415 0.1463 0.0261 0.0297 0.0618 0.0601 0.0017

10 10.885 11.665 0.316 6.3888 0.1575 0.0249 0.0297 0.0622 0.0593 0.0029

15 15.848 17.413 0.372 7.8182 0.1672 0.0241 0.0297 0.0624 0.0592 0.0032

20 20.831 23.605 0.405 9.4895 0.1794 0.0231 0.0297 0.0626 0.0592 0.0034

25 25.822 30.455 0.425 11.508 0.1955 0.0221 0.0297 0.0628 0.0593 0.0035

The controller is tuned at various angular velocitiesΩy using updated modal properties and a de-
sired additional dampingζdes = 0.06. When the tuned controller is applied the targeted mode
splits into two closely spaced modes. When the tuning is optimal the two new modes have iden-
tical damping ratiosζn,1 andζn,2. It is seen from Table 1 that the modal connectivity factorνn

increases withΩy. This is due to the increased difference in cross-section rotations at node 1 and
2 as seen in Fig. 2b. However, the modal quasi-static flexibility factor κn also increases, indicat-
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ing increased interference from other modes. Consequently, the controller tuning becomes less
efficient, as indicated by the increase in∆ζ1 = ζ1,1 − ζ1,2.
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Figure 3: Frequency loading of free beam end: a) Displacement of beam end, b) Controller force.

In Fig. 3a the controlled frequency response to a unit load atthe beam end is plotted for various
angular velocities. The increasing effect of modal interference is clear, as the two resonant peaks
are almost perfectly equal atΩy = 0, while a slight loss of symmetry is seen forΩy > 0. The
controller force frequency response is seen in Fig. 3b. It isseen that controller effort is reduced
with increasing angular velocity, corresponding to the observed increase in modal connectivityνn.

Concluding remarks

The tuning procedure from [2, 3] for an active resonant controller has been investigated for an ac-
tive strut with acceleration feedback applied to a rotatingbeam under different angular velocities.
In the present case the tuning procedure has been found to be quite robust, as it provides close
to optimal tuning in all cases. The implication is that an active controller of the present type can
be applied to machinery facing various operation conditions, if continuous change of controller
parameters can be realized.

Acknowledgements This work has been supported in part by the Danish Agency for Science, Technol-
ogy and Innovation and Vestas Wind Systems A/S via the project ”Modal Control of Wind Turbines”.

References

[1] J. Ormondroyd, J. P. den Hartog, The theory of the dynamicvibration absorber,Trans. ASME, 50, 9–22
(1928).

[2] S. Krenk, J. Høgsberg, Optimal resonant control of flexible structures,Journal of Sound and Vibration,
323, 530–554, (2009).

[3] S. Krenk, J. Høgsberg, Resonant damping of flexible structures,COMPDYN 2009, Rhodes (2009).

[4] A. Preumont, B. de Marneffe, A. Deraemaeker, F. Bossens,The damping of a truss structure with a
piezoelectric transducer,Computers & Structures, 86, 227–239, (2008).

[5] Y. A. Khulief, Vibration suppression in rotating beams using active modal control,Journal of Sound
and Vibration, 242, 681–699, (2001).

[6] L. G. Maqueda, O. A. Bauchau, A. A. Shabana, Effect of the centrifugal forces on the finite element
eigenvalue solution of a rotating blade: A comparative study, Multibody System Dynamics, 19, 281–
302, (2008).

78



A numerical study of the aerodynamic admittance of bridge sections

Mads Mølholm Hejlesen∗1 and Johannes Tophøj Rasmussen1

1Department of Mechanical Engineering
Technical University of Denmark, Lyngby, Denmark

e–mail: s061937@student.dtu.dk and jtra@mek.dtu.dk
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Summary Presented is a discrete vortex method of a turbulent oncoming flow with application to bluff
body aerodynamics. The method is implemented in the DVMFLOW flow solver, enabling extended spectral
analysis of the aerodynamic admittance used in bridge aerodynamics. A validation against thin airfoil theory
and experimental results is provided. The numerical method provides a good agreement to experimental
results, and captures significant aerodynamic effects such as vortex shedding and the effect of turbulence.

Introduction

Since the original Tacoma Narrows bridge collapsed in 1940 the study of bridge aerodynamics
has been subject to intense research, and many resources is normally used conducting extensive
wind tunnel tests in order to prevent a similar failure, when designing a new bridge. The main
parameters when analyzing the aerodynamics of a bridge are the influence of static, periodic and
random forces acting on the bridge i.e. the effect of steady wind, vortex shedding and turbulence
in the oncoming wind.
Methods to derive the steady wind and vortex shedding parameters have been successfully applied
in both wind tunnel tests and numerical computational calculations [6], however methods to in-
vestigate the effect of the turbulence are still of great interest.
The aerodynamic admittance function relates the turbulent oncoming wind and the resulting buf-
feting aerodynamic forces acting on the bridge. It has been well established that the aerodynamic
admittance function vary significantly between different bridge designs, and the thin airfoil theory
is due to non-negligible separation, inapplicable from a physical viewpoint.
The mesh free and re-meshed particle vortex method [5, 8, 10] is widely used in academia and
industry to model two-dimensional flow past bluff bodies. The two-dimensional implementation
DVMFLOW [10] is used by the bridge design company COWI to determine steady flow param-
eters and visualize the flow field around bridge sections. Presented in this paper is an implemen-
tation of turbulence in the oncoming flow into DVMFLOW, together with an extensive spectral
analysis, enabling an improved aerodynamic analysis capturing the effect of turbulence.
In this paper the method is tested on a thin pate and two different bridge sections seen in figure 1.
The results are validated against thin airfoil theory and experimental data.

(a) Thin plate (b) Øresund bridge (c) Busan-Geoje bridge

Figure 1: The three sections investigated.
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Numeric method

The discrete vortex method

DVMFLOW applies a Lagrangian formulation to a two-dimensional discrete vortex method in
order to form and develop a flow, consisting of vorticity particles. The fluid velocity is computed
effectively using the adaptive Fast Multipole Method (FMM) [1]. To define the boundary condi-
tions of the solid body a boundary element method is used to enforce a non slip boundary condi-
tion, and thereby creating surface circulation that is allowed to diffuse into the flow, forming the
fluid boundary layer. To calculate the aerodynamic forces acting on the section a finite difference
method is used calculating the total momentum of the particle cloud.

Turbulence modeling

To implement the unsteady oncoming flow, the turbulence is modeled as turbulent eddies moving
freely as interacting vorticity particles. The resulting velocity signal induced by the particles rep-
resents the velocity fluctuations experienced by the section.
The oncoming turbulent flow is modeled using the statistical method proposed by [2]. The turbu-
lent velocity field is generated from the velocity spectra [3] and the coherence function [4] defining
the spatial correlations of the flow. The spectral representation of the velocity field is then Fourier
transformed into a discrete time progressing vector field, and transformed into vortex particles
carrying the circulation defined by the generated turbulent velocity field.

Simulation parameters

The simulations was performed at a Reynolds number Uc
ν of 104. The frequencies f of the velocity

spectra is discretized using 4096 discrete frequencies with an upper and lower cut-off frequency
of 5.83 and 1.4210−3 reduced frequencies k = fc

U , respectively. Frequencies beyond this are con-
sidered to have negligible energy. This provides an adequate resolution and a turbulence intensity
close to that, which is desired.

Spectral analysis

To create the spectra needed for the spectral analysis, Fourier transformation with basic signal
processing techniques is used on the sampled force and velocity signals. The time signals are di-
vided into subsamples with 50% overlap, and a Hanning window function is applied to each of the
subsamples, to reduce the spectral leakage of the Fourier transform. After the Fourier transform,
the spectra of the subsamples are averaged to create a reinforced spectra with less noise.

Aerodynamic admittance function

The aerodynamic admittance functions |χL(k)|2 for lift and |χM (k)|2 for pitching moment [9] is
defined by the relations of the force spectrum for lift SL or pitching moment SM and the velocity
spectra Suu and Sww normalized by the static coefficients CL and CM , and their the slope of lift
or moment. ρ is the density of the air, U the horizontal mean velocity and c the chord length.

χL(k)2 =
SL(k)

(

1

2
ρUc

)2

[

4C2
LSuu(k) +

(

dCL
dα + CD

)2

Sww(k)

] (1)

χM (k)2 =
SM (k)

(

1

2
ρUc2

)2

[

4C2
MSuu(k) +

(

dCM
dα

)2

Sww(k)

] (2)
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Results

Velocity spectra

A validation of the method by simulating the turbulent flow past a flat plate Seen in figure 2 is the
two spectra of the velocity components sampled in the simulation compared to the modified von
Kármán spectra of [3] which are chosen as the predefined velocity spectra.
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Figure 2: The simulated velocity spectra for the flow past Øresund bridge at a turbulence intensity
of 5%. Sampled 6 chord lengths upstream of the bridge section

The sampled spectra of figure 2 correspond well to the input target spectra with slightly higher
values at the lower frequencies. Further analysis shows that the velocity spectra is consistent and
only varies spatially, when affected by the presence of a bridge. The velocity spectra is affected
by numerical parameters such as the number of discrete frequencies and the width of the released
particle cloud, whereas these parameters are selected sufficiently high to create converged spectra.

Aerodynamic admittance

The simulated aerodynamic admittance functions of the three sections are shown in figure 3.
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(b) Lift Admittance - Øresund
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(c) Lift Admittance - Busan-Geoje
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Figure 3: Admittance of the three sections at a turbulence intensity of 5%.
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The aerodynamic admittance functions obtained by the simulation agrees well to the experimental
data as well as the thin airfoil theory presented by Liepmann’s approximation of the Sears function
[7]. The thin plate shows no significant deviation from the Liepmann approximation whereas the
bridge sections reveals a higher sensitivity towards turbulence especially regarding the pitching
moment.
It is seen that the simulation provides results over a far wider frequency range than possible in wind
tunnel tests, which suffers from restrictions regarding equipment. The wider frequency range re-
veals more information about aerodynamic characteristics of the section and enables an estimation
of the vortex shedding frequency, as it is seen mainly in figure 3b and 3c. A study of different turbu-
lence intensities can then be used to investigate the effect that turbulence has on other aerodynamic
parameters, such as vortex shedding and the aerodynamic stability of the bridge section.

Concluding remarks

Presented is a method of implementation of a turbulent oncoming flow in DVMFLOW to derive
the aerodynamic admittance of bridge sections. The method is tested on a thin plate and two
bridge sections, which is validated against the theory of an infinitely thin plate, and experimental
results of wind tunnel tests of the bridge sections, respectively. The method is also found useful to
investigate other aerodynamic parameters, providing results where the effect of the turbulence is
added.
Finally, the parameters of the simulation is easily adjusted so that many different scenarios can be
investigated without extensive modifications, making the method a valuable tool when designing
a bridge.
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Summary In this paper we revisit the Womersley-theory, and present a 1D approach for analytical
estimates of the pulse wave velocity and the damping factor, which both may be useful for validation of
FSI-codes.

Introduction

The development of reliable and stable fluid-structure interaction (FSI) solvers has been an impor-
tant area of research in the recent years. FSI solvers may be applied in a wide range of disciplines
e.g. [1, 5] as well as biomechanics [2]. In this contribution we revisit the Womersley theory and
present a 1D-approach, which both predict a frequency dependent pulse wave velocity (pwv) and
damping factor. These predictions may prove useful for validation of FSI-codes.

Methods

1D approximations Following the lines of derivation in [3] the governing equations for one-
dimensional wave propagation for incompressible fluids in compliant vessels may presented:

∂A

∂t
+
∂Q

∂z
= 0 (1a)

∂Q

∂t
+ (1 + δ)

∂

∂z

(
Q2

A

)
= −A

ρ

∂p

∂z
+Abz +

πD

ρA
τw (1b)

where the primary variables are cross-sectional area A, volume flow rate Q, ρ fluid density, and
pressure p, whereas D is vessel diameter and δ a velocity-profile correction parameter. By intro-
ducing the compliance of the vessel as C = ∂A/∂p, and disregarding body forces bz, wall shear
stress τw and the nonlinear convective term in equation (1b), one may find an expression for the
pulse wave velocity by cross-derivation and subtraction:

c20 =
dp

dA

A

ρ
=

1
C

A

ρ
=

η h

2ρ ri
(2)

The latter expression, commonly referred to as the Moens-Korteweg equation, follow by assuming
a thin-walled Hookean structure, for which one may show 1/C = ηh/2Ari. To estimate τw, the
velocity profile for fully developed straight pipe flow is employed [4]:

v̂z(r) =
i

ρω

∂p̂

∂z

[
1− J0(i3/2αr/ri)

J0(i3/2α)

]
(3)

where J0 is a Bessel-function of first kind, order zero. An approximation for the wall shear stress
may be found by differentiation of equation (3):

τw = −ri
2
F10(α)

∂p

∂z
and τw = µ

∂vz
∂r

(4)

where we have introduced the Womersley function:

F10(α) =
2J1(i3/2α)

αi3/2 J0(i3/2 α)
(5)

Equation (4) may be substituted into the linearized form of equation (1), without body forces.
Proposition of solutions of equation (1) on the form Q = Q̂ ei(ωt−kz) and Â = Cp̂ yields:[

iωC −ik
−ik(1−F10)A0

ρ iω

] [
p̂

Q̂

]
= 0 (6)
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which has non-trivial solutions if:

k c0 = ±ω
√

1
1− F10

with k =
ω

c
− iγ

λ
= kr + iki (7)

The complex propagation factor k is related with the pwv c and the damping factor γ as given by
equation (7) and thus:

c

c0
=

ω

krc0
= ±<

(
1√

1/(1/F10)

)
and γ = −2π

ki
kr

(8)

Axi-symmetric solution The following derivation is based the seminal report of Womersley [4].

The fluid

The momentum equations for a Newtonian fluid without convective terms, assuming axi-symmetric
flow conditions may be presented:

∂vz
∂t

= −1
ρ

∂p

∂z
+ ν

(
∂2vz
∂r2

+
1
r

∂vz
∂r

)
(9a)

∂vr
∂t

= −1
ρ

∂p

∂r
+ ν

(
1
r

∂

∂r

(
r
∂vr
∂r

))
(9b)

The equation for conservation of mass takes the form in cylindrical coordinates:

∂vr
∂r

+
vr
r

+
∂vz
∂z

= 0 (10)

Assume solutions on the form1:

p = p̂eiω (t−z/c), vz = v̂ze
iω (t−z/c), vr = v̂re

iω (t−z/c) (11)

Introduce the nondimensional scale s = i3/2 α y, where y = r/ri and the Womersley parameter
α = ri

√
ω/ν. The general solutions may be found, after some algebra, to be:

v̂z =
C

J0(i3/2α)
J0(s) +

A

ρc (1− k2)
J0(ks) ≈ C

J0(i3/2α)
J0(i3/2α y) +

A

ρc
(12a)

v̂r =
Ciriω J1(s)

i3/2αc J0(i3/2α)
+

riA

µi3/2α

k

k2 − 1
J1(ks) ≈ iriω

2c

(
2C J1(i3/2α y)
αi3/2J0(i3/2α)

+
A

ρc
y

)
(12b)

by assuming |k| � 12. The constants, denoted A and C, will be determined in the following.
Further, by imposing continuity:

ks = ∓ iriω
c
y = ∓ iω

c
r (13)

In order to match the solutions of the structure and the fluid (kinematic condition), it is convenient
to provide expressions for the solutions of the fluid given in equation (12) at the vessel wall:

v̂z

∣∣∣
y=1

= C +
A

ρc
(14)

v̂r

∣∣∣
y=1

=
iriω

2c

(
CF10(α) +

A

ρc

)
(15)

For the evaluation of the wall shear stress the following can be found:

∂v̂z
∂y

∣∣∣
y=1

= −C
2
i3α2F10(α) +

1
2

(ωri
c

)2 A

ρc
(16)

1Note: This assumption will yield a complex c
2Note that here and in the sequel k has not the meaning as in equation (7).
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The structure

The fundamental Cauchy equations in continuum mechanics: ρa = ∇ · σ + ρb, may be averaged
over the over the cross-sectional area of a thin-walled structure to yield:

ρw az h =
∂σz
∂z

h+ τw and ρw arh = p− σθ h

ri
(17)

when body forces are neglected. Assuming a thin-walled vessel (i.e. plane stress) the constitutive
equation for a thin walled vessel of a Hookean material, takes the form in cylindrical coordinates3,
and η for the Young’s modulus and νp for the Poisson’s ratio:

σz =
η

1− ν2
p

(
∂uz
∂z

+ νp
ur
r

)
and σθ =

η

1− ν2
p

(
ur
r

+ νp
∂uz
∂z

)
(18)

By assuming az = ∂2uz/∂t
2 and ar = ∂2ur/∂t

2, i.e. neglecting convective terms, the averaged
governing equations for a thin walled vessel may be obtained by substitution of equation (18) into
(17):

∂2uz
∂t2

=
η

(1− ν2
p)ρw

(
∂2uz
∂z2

+
νp
r

∂ur
∂z

)
+

τw
ρw h

(19a)

∂2ur
∂t2

=
p

ρw h
− η

(1− ν2
p) ρw

(
ur
r2

+
νp
r

∂uz
∂z

)
(19b)

Assume solutions of the governing equations (19) for the vessel wall on the form:

ur = Deiω(t−z/c) and uz = Eeiω(t−z/c) (20)

where D and E are constants. Kinematic condition:
∂uz
∂t

= v̂z

∣∣∣
y=1

eiω(t−z/c) and
∂ur
∂t

= v̂r

∣∣∣
y=1

eiω(t−z/c) (21)

Fulfilment equation (21) of along with substitution of equations (20) into the governing equations
(19) for the vessel wall yields:

1
ρ c

1 0 −iω

iω ri
2ρ c2

iω ri
2c

F10 −iω 0

1
ρwh

0 ω2 − B

ρwri2
iBω νp
ρwric

ρ

ρw

ν

2rih

(ωri
c

)2 1
ρc

− iρ ω riF10

2ρwh
−iBω νp
ρwric

ω2

(
1− B

ρwc2

)




A
C
D
E

 = 0 (22)

Non-trivial solutions when:

det(M) = (1− F10)(1− ν2
p) x2 − (k(1− F10) + F10 (1/2− 2νp) + 2) x+ F10 + 2k = 0 (23)

which is a simple second order nonlinear equation with solution:

x = k
η

1− ν2
p

1
ρw

1
c2

=
h

ρri

η

1− ν2
p

1
c2

(24)

By substitution of the expression for c0 in equation (2) in equation (24) and rearrangement we get
as c = cr + ici:

c

c0
=

(
(1− ν2

p)x
2

)−1/2

and
cr
c0

= <
(
c

c0

)
and γ = 2π

ci
cr

(25)

3Engineering notation for stresses.
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Results and discussion

In figure 1 the pulse wave predictions of the 1D approach are compared with the classical predictions
of Womersley. Both approaches predict gross features of the c/c0 dependency of the Womersley
parameter α and the damping factor γ as a function of α. As most biological tissues are considered
to be close to incompressible, the predictions with Poisson’s ratio νp = 0.5 are likely of most
physiological relevance. The 1D-predictions were observed to under-estimate the c/c0 ratio (for νp =

(a) c/c0 in lower α-range (b) c/c0 with log-scale for α

(c) γ in lower α-range (d) γ with log-scale for α

Figure 1: Pulse wave velocities for various Poisson’s ratios νp and for 1D estimate.
0.5) consistently over the whole α-range. The relative error decrease monotonously with increasing
α: from approximately 17% for α = 2 to approximately 2.1 % for α = 10. For high frequencies, the
c/c0-ration were found to approach 1. The opposite behavior is observed for the damping factor γ
which has a relative over-prediction for the 1D-approach at α = 2 of approximately 8%, whereas it
is approximately 60% for α = 10. In conclusion, both Womersley-theory for axi-symmetric flows,
and the 1D approach in the present paper provide analytical estimates of the pwv and the damping
factor in compliant vessels, which may be useful for validation of FSI-codes.
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Summary We construct and analyse an alternating direction implicit method for a two-dimensional
parabolic equation with nonlocal integral conditions. The main attention is paid to the stability of the
method. We demonstrate that depending on the parameters of nonlocal conditions the proposed method can
be stable or unstable. The results of numerical experiments with several test problems are also presented
and they validate theoretical results.

Introduction

We consider the two-dimensional parabolic equation

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
+ f(x, y, t), 0 < x < 1, 0 < y < 1, 0 < t 6 T, (1)

subject to nonlocal integral conditions

u(0, y, t) = γ0

∫ 1

0
α(x)u(x, y, t)dx + µ1(y, t), (2)

u(1, y, t) = γ1

∫ 1

0
β(x)u(x, y, t)dx + µ2(y, t), 0 < y < 1, 0 < t 6 T, (3)

boundary conditions

u(x, 0, t) = µ3(x, t), u(x, 1, t) = µ4(x, t), 0 < x < 1, 0 < t 6 T, (4)

and initial condition

u(x, y, 0) = ϕ(x, y), 0 6 x 6 1, 0 6 y 6 1, (5)

where f(x, y, t), µ1(y, t), µ2(y, t), µ3(x, t), µ4(x, t), α(x), β(x), ϕ(x, y) are given functions, γ0,
γ1 are given parameters, and u(x, y, t) is an unknown function.

The stability of implicit and explicit finite-difference schemes for a corresponding one-dimensi-
onal parabolic problem with nonlocal integral conditions is investigated in paper [1]. In that paper,
the differential problem (1)–(5) is formulated as the example of problem for the possible extension
of the proposed stability analysis technique.

The present work is devoted to the alternating direction implicit (ADI) method for the two-
dimensional differential problem (1)–(5). Various ADI methods for two-dimensional parabolic
problems with nonlocal integral condition (the specification of mass/energy) have been investi-
gated by M. Dehghan (see [2] and references therein). Paper [3] deals with the ADI method for
the two-dimensional parabolic equation (1) with Bitsadze-Samarskii type nonlocal boundary con-
dition. We use the technique and argument of paper [3] in order to construct the ADI method for
the differential problem (1)–(5) and to investigate the stability of this method.
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The alternating direction method

To solve the two-dimensional differential problem (1)–(5) numerically, we apply the finite-diff-
erence technique and use the idea of alternating direction [4]. Let us define discrete grids with
uniforms steps,

ωh
x = {xi = ih1, i = 1, 2, . . . , N1 − 1, N1h1 = 1},

ωh
y = {yj = jh2, j = 1, 2, . . . , N2 − 1, N2h2 = 1},

ωτ = {tn = nτ, n = 1, 2, . . . , M, Mτ = T},
ωh

x = ωh
x ∪ {x0 = 0, xN1 = 1}, ωh

y = ωh
y ∪ {y0 = 0, yN2 = 1},

ωτ = ωτ ∪ {t0 = 0}, ω = ωh
x × ωh

y , ω = ωh
x × ωh

y .

We use the notation Un
ij = U(xi, yj , t

n) for functions defined on the grid ω × ωτ or its parts, and

the notation U
n+1/2
ij = U(xi, yj , t

n + 0.5τ) (some of the indices can be omitted).

Now we explain the main steps of the ADI method for numerical solution of problem (1)–(5). First
of all, we replace the initial condition (5) by equations

U0
ij = ϕij , (xi, yj) ∈ ω. (6)

Then, for any n, 0 6 n < M − 1, the transition from the nth layer of time to the (n + 1)th layer
can be executed by solving two one-dimensional finite-difference subproblems:
1. For each xi ∈ ωh

x , solve system




U
n+1/2
ij − Un

ij

0.5τ
= δ2

xUn
ij + δ2

yU
n+1/2
ij + f

n+1/2
ij , yj ∈ ωh

y ,

U
n+1/2
i0 = (µ3)

n+1/2
i , U

n+1/2
iN2

= (µ4)
n+1/2
i ;

(7)

2. For each yj ∈ ωh
y , solve system





Un+1
ij − U

n+1/2
ij

0.5τ
= δ2

xUn+1
ij + δ2

yU
n+1/2
ij + fn+1

ij , xi ∈ ωh
x ,

Un+1
0j = γ0

(
α,U

)n+1

j
+ (µ1)n+1

j ,

Un+1
N1j = γ1

(
β, U

)n+1

j
+ (µ2)n+1

j ;

(8)

where

δ2
xUij =

Ui−1,j − 2Uij + Ui+1,j

h2
1

, δ2
yUij =

Ui,j−1 − 2Uij + Ui,j+1

h2
2

,

(
α, U

)n+1

j
= h1

(
α0U

n+1
0j + αN1U

n+1
N1j

2
+

N1−1∑

i=1

αiU
n+1
ij

)
,

(
β, U

)n+1

j
= h1

(
β0U

n+1
0j + βN1U

n+1
N1j

2
+

N1−1∑

i=1

βiU
n+1
ij

)
.

Every transition is finished by calculating

Un+1
i0 = (µ3)n+1

i , Un+1
iN2

= (µ4)n+1
i , xi ∈ ωh

x. (9)

Thus, the procedure of numerical solution can be stated as follows:
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procedure The ADI Method
begin

Calculate U0
ij , (xi, yj) ∈ ω, from Eqs. (6);

for n = 0, 1, . . . , M − 1
for each xi ∈ ωh

x

Solve system (7) and calculate U
n+1/2
ij , yj ∈ ωh

y ;
end for
for each yj ∈ ωh

y

Solve system (8) and calculate Un+1
ij , xi ∈ ωh

x;
end for
Calculate Un+1

i0 and Un+1
iN2

, xi ∈ ωh
x, from Eqs. (9);

end for
end

The difference scheme (7), (8) can be written in the form

Un+1 = SUn + F
n
, (10)

where
S =

(
E +

τ

2
A1

)−1(
E − τ

2
A2

)(
E +

τ

2
A2

)−1(
E − τ

2
A1

)
,

F
n is the vector of dimension (N1−1)·(N2−1), E is the identity matrix of order (N1−1)·(N2−1),

A1 = −EN2−1 ⊗ Λ1, A2 = −Λ2 ⊗EN1−1, EN is the identity matrix of order N , A⊗B denotes
the Kronecker (tensor) product of matrices A and B,

Λ1 = h−2
1




−2 + γ0h1a1 1 + γ0h1a2 γ0h1a3 . . . γ0h1aN1−2 γ0h1aN1−1

1 −2 1 . . . 0 0
0 1 −2 . . . 0 0

. . . . . . . . . . . . . . . . . .
0 0 0 . . . −2 1

γ1h1b1 γ1h1b2 γ1h1b3 . . . 1 + γ1h1bN1−2 −2 + γ1h1bN1−1




,

Λ2 = h−2
2




−2 1 0 . . . 0 0
1 −2 1 . . . 0 0
0 1 −2 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . −2 1
0 0 0 . . . 1 −2




are (N1 − 1)× (N1 − 1) and (N2 − 1)× (N2 − 1) matrices, respectively, and

ai =
1
D

(
αi − γ1h1αiβN1

2
+

γ1h1αN1βi

2

)
,

bi =
1
D

(
βi − γ0h1α0βi

2
+

γ0h1αiβ0

2

)
,

D =
(
1− γ0h1α0

2

)(
1− γ1h1βN1

2

)
− γ0h1αN1

2
· γ1h1β0

2
.

We assume that the grid step h1 is chosen so that D > 0.
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Analysis of the stability
A sufficient stability condition for the finite-difference scheme (10) is the inequality

ρ(S) = max |λ(S)| < 1,

where λ(S) is the eigenvalues of S and ρ(S) is the spectral radius of S. To be precise, one can
prove that the finite-difference scheme (10) is stable if (−Λ1) is a simple-structured matrix and
λ

(i)
1 > 0 or Reλ(i)

1 > 0, where λ
(i)
1 , i = 1, 2, . . . , N1 − 1, are real or complex eigenvalues of the

matrix (−Λ1). As noted in [3], the finite-difference scheme (10) can be stable even if the matrix
(−Λ1) has a negative eigenvalue or a complex eigenvalue with a negative real part.

Numerical experiments
In order to demonstrate the efficiency of the considered ADI method and practically justify the
stability analysis technique, several test problems with different types of weight functions α(x)
and β(x) were solved. We used results related with the structure of the spectrum of the matrix
(−Λ1) which were obtained in papers [1, 5], where the corresponding one-dimensional examples
have been investigated. In all of our test examples, functions f(x, y, t), µ1(y, t), µ2(y, t), µ3(x, t),
µ4(x, t) and ϕ(x, y) were chosen so that the function u(x, y, t) = x3+y3+t3 would be the solution
to the differential problem (1)–(5). The ADI method was implemented in a stand-alone software
application. However, for the numerical analysis of the spectrum of the matrix S, MATLAB (The
MathWorks, Inc.) software package was used.

Numerical experiments with test problems and calculations of the maximum norm of computa-
tional errors allow us to estimate the accuracy of the numerical solution. We identify the ranges
of the values of parameters γ0 and γ1 such that the proposed ADI method is stable. The stability
domains are rather wider than the ranges of such the values of γ0 and γ1 that all real eigenvalues
of the matrix (−Λ1) are non-negative or real parts of complex eigenvalues are non-negative.

Concluding remarks
We developed the ADI method for the two-dimensional parabolic equation with nonlocal integral
conditions. Applying quite a simple technique (see, e.g., [1, 3, 5]) allow us to investigate the stabil-
ity of this method. The technique is based on the analysis of the spectrum of the transition matrix
of the finite-difference scheme. The results of numerical experiments with several test problems
justify theoretical results. We demonstrate that the proposed ADI method can be stable or unstable
depending on the parameters of nonlocal conditions.
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Summary We study the non-conforming finite element approximation of the Brinkman problem with
H(div)-conforming elements. Nitsche’s method is applied to achieve consistency and stability in the
mesh-dependent energy norms introduced. Furthermore, we present a numerically lightweight local
postprocessing scheme for the pressure. Using the postprocessed pressure we are able to derive both an
efficient and reliable a posteriori error estimator for the problem.

Introduction

We study the application ofH(div)-conforming finite elements designed for the Darcy problem to
the more complicated Brinkman problem. This constitutes a non-conforming approximation of the
Brinkman problem. An extensive analysis of various conforming finite element approximations for
the Brinkman equations has been recently presented in [1]. To get a stable method, we use the so-
called Nitsche’s method first introduced in [2], which in turn requires the use of a mesh-dependent
bilinear form. The motivation for using a non-conforming approximation lies in the widespread
use of H(div)-conforming elements in industrial applications for solving the Darcy equations.
Thus, we aim at introducing an easy way of incorporating viscosity to the existing models and
implementations.

The Brinkman model

The Brinkman model describes the flow of a viscous fluid in a porous medium. Let Ω ⊂ R
n, with

n = 2, 3. Let u be the velocity field of the fluid and p the pore pressure. Denoting by the parameter
t the effective viscosity of the fluid, the Brinkman equations are

−t2Δu + u −∇p = f , in Ω (1)

div u = g, in Ω. (2)

For t > 0, the equations are formally a Stokes problem. The solution (u, p) is sought in V ×Q =
H1(Ω) × L2(Ω). For the case t = 0 we get the Darcy problem, and accordingly the solution is
sought in V ×Q = H(div,Ω) × L2(Ω). We define the following bilinear forms

a(u,v) = t2(∇u,∇v) + (u,v), (3)

b(v, p) = (div v, p) (4)

and
B(u, p;v, q) = a(u,v) + b(v, p) + b(u, q). (5)

The Brinkman problem in the weak formulation then reads: Find (u, p) ∈ V ×Q such that

B(u, p;v, q) = (f ,v) + (g, q), ∀(v, q) ∈ V ×Q. (6)
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Mesh dependent norms

Let Kh be a triangulation of the domain Ω, and Eh the set of all the edges of Kh. We introduce the
following mesh-dependent norms for the problem. Note, that both of the norms are also parameter
dependent. We denote the jump in the value of a generic function f on the edge E by [[f ]] =
f |K1

− f |K2
, where E = ∂K1

⋂

∂K2. Similarly, we denote the average on the edge by {f} =
1

2
(f |K1

+ f |K2
). For the velocity we use the norm

‖u‖2
t,h = ‖u‖2 + t2

∑

K∈Kh

‖∇u‖2
0,K + t2

∑

E∈Eh

1

hE
‖[[u· τ ]]‖2

0,E , (7)

and for the pressure

|‖p‖|2t,h =
∑

K∈Kh

h2
K

h2
K + t2

‖∇p‖2
0,K +

∑

E∈Eh

hE
h2
E + t2

‖[[p]]‖2
0,E . (8)

Mixed finite element method

As a finite element approximation we use the following Brezzi-Douglas-Marini family of ele-
ments [3]

V BDM
h = {v ∈ H(div,Ω) | v|K ∈ [Pk(K)]n ∀K ∈ Kh}, (9)

Qh = {q ∈ L2(Ω) | q|K ∈ Pk−1(K) ∀K ∈ Kh}. (10)

By the definition of the spaces, the velocity is only continuous in the normal direction, thus re-
sulting in a non-conforming method for t > 0. The spaces are chosen such that the following
equilibrium property holds:

div Vh ⊂ Qh. (11)

To get a stable non-conforming method, we use Nitsche’s method with a suitably chosen stabiliza-
tion parameter α. We define the following mesh-dependent bilinear form

Bh(u, p;v, q) = ah(u,v) + b(v, p) + b(u, q), (12)

in which

ah(u,v) = (u,v) + t2
∑

K∈Kh

(∇u,∇v)K

+ t2
∑

E∈Eh

{
α

hE
〈[[u]], [[v]]〉E − 〈{

∂u

∂n
}, [[v]]〉E − 〈{

∂v

∂n
}, [[u]]〉E}. (13)

Then the discrete problem is to find uh ∈ Vh and ph ∈ Qh such that

Bh(uh, ph;v, q) = (f ,v) − (g, q), ∀(v, q) ∈ Vh ×Qh. (14)

Let Ph be the L2-projection onto Qh. Assuming full regularity, we have the following a priori
result:

‖u − uh‖t,h + |‖Php− ph‖|t,h ≤ Chk+1(‖u‖k+1 + t‖u‖k+2). (15)

We now have a superconvergence result for |‖Php−ph‖|t,h. This implies that the pressure solution
can be improved by local postprocessing.
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Postprocessing method

In this section we present a postprocessing method for the pressure in the spirit of [4]. We seek the
postprocessed pressure in an augmented space Q∗

h ⊃ Qh, defined as

Q∗

h = {q ∈ L2(Ω) | q|K ∈ Pk+1(K) ∀K ∈ Kh} (16)

The postprosessing method is: Find p∗h ∈ Q∗

h such that

Php
∗

h = ph (17)

(∇p∗h,∇q)K = (−t2Δuh + uh −∇ph − f ,∇q)K , ∀q ∈ (I − Ph)Q
∗

h|K . (18)

Thus, we use the finite element solution to improve the pressure approximation. Since the proce-
dure is executed element-by-element, it adds very little computational complexity to the problem.
Using the postprocessed solution, we have full convergence for both the pressure and the velocity:

‖u − uh‖t,h + |‖p− ph‖|t,h ≤ Chk+1(‖u‖k+1 + t‖u‖k+2). (19)

A posteriori estimates

Finally, the postprocessing procedure allows us to introduce a residual based reliable and efficient
a posteriori error estimator. The elementwise and edgewise estimators are defined as

η2
K =

h2
K

h2
K + t2

‖ − t2Δuh + uh −∇p∗h − f‖2
0,K + (t2 + h2

K)‖g − Phg‖
2
0,K (20)

η2
E =

t2

hE
‖[[uh]]‖

2
0,E +

hE
h2
E + t2

‖[[p∗h]]‖
2
0,E +

hE
h2
E + t2

‖[[t2
∂uh

∂n
]]‖2

0,E (21)

The global estimator is

η =

⎛

⎝

∑

K∈Kh

η2
K +

∑

E∈Eh

η2
E

⎞

⎠

1/2

(22)

We can show that this choice of estimator is both a lower and an upper bound for the error with
constants independent of the viscosity parameter t.

Concluding remarks

It was shown, that elements tailored for the Darcy problem can be extended to cover the case of
viscous flow in a porous medium. In addition, the pressure solution can be postprocessed with
little computational cost to achieve optimal convergence for both of the variables. Postprocessing
also allows us to introduce a well-behaving a posteriori error estimator.
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On the Instability of an Axially Moving Elastic Plate
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Summary Problems of stability of an axially moving elastic band travelling at constant velocity
between two supports and experiencing small transverse vibrations are considered in a 2-D
formulation. The stability of the plate is investigated with the help of an analytical approach. The
results are illustrated via numerical examples, and it is observed that the transverse displacement
becomes localised in the vicinity of free boundaries.

Introduction

This paper is devoted to application of analytical methods to instability analysis of an
axially moving rectangular plate and to investigation of the dependence of the solution
on the problem parameters. In the frame of the general dynamic approach, a functional
expression for the characteristic index of stability is found and can be effectively used
for frequency evaluation. It is proved that the loss of stability is realised for some critical
velocity in a divergence mode, i.e.

Vdiv
0 < Vfl

0 .

Then a static analysis of instability is performed and the possible buckled forms of the
plate (symmetric and antisymmetric) are studied as functions of geometric and mechani-
cal problem parameters. In particular, we show that the buckled plate shape is symmetric
and that the elastic deflections are localised in the vicinity of free edges of the plate.

Basic relations for transverse vibrations of axially moving elastic plate

Let us investigate the elastic stability of a band travelling with a constant velocity V0 in
the x direction between two rollers located at x = 0 and x = ℓ.

The transverse displacement of the travelling band is described by the deflection function
w which depends on the space coordinates x, y and time t. The differential equation for
small transverse vibrations has the form

m
d2w

dt2
= Txx

∂2w

∂x2
+ 2Txy

∂2w

∂x∂y
+ Tyy

∂2w

∂y2
− D∆

2w (1)
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Figure 1: Open draw: Axially moving elastic plate between two rollers.

Here m is the mass per unit area of the middle surface of the plate, ∆
2 is the biharmonic

operator, Txx, Txy, Tyy are in-plane tensions and

D∆
2w = D

(

∂4w

∂x4
+ 2

∂2w

∂x2∂y2
+

∂4w

∂y4

)

, D =
Eh

3

12(1 − ν2)
(2)

The in-plane tensions Txx, Txy and Tyy are assumed to satisfy the equilibrium equations

∂Txx

∂x
+

∂Txy

∂y
= 0,

∂Txy

∂x
+

∂Tyy

∂y
= 0 (3)

with the boundary conditions

Txx = T0, Txy = 0 at x = 0, |y| ≤ b and x = ℓ, |y| ≤ b ,

Tyy = 0, Txy = 0 at y = ±b, 0 ≤ x ≤ ℓ . (4)

We assume that the deflection function w and its partial derivatives are small, and that
they satisfy the boundary conditions corresponding to simply supported boundaries at
x = 0, |y| ≤ b, and x = ℓ, |y| ≤ b, and free boundaries at |y| = b, 0 ≤ x ≤ ℓ. That is (see,
for example, Timoshenko and Woinowsky-Krieger 1959),

(w)x=0, ℓ = 0,

(

∂2w

∂x2

)

x=0, ℓ

= 0 , −b ≤ y ≤ b (5)

(

∂2w

∂y2
+ ν

∂2w

∂x2

)

y=±b

= 0 , 0 ≤ x ≤ ℓ (6)

(

∂3w

∂y3
+ (2 − ν)

∂3w

∂x2∂y

)

y=±b

= 0 , 0 ≤ x ≤ ℓ . (7)

In the following we use stationary relations, i.e. it is supposed that w = w(x, y) and
all partial derivatives with respect to t are equal to zero. The following expressions for
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Figure 2: V0 is velocity and T0 is tension of the plate. Plate is simply supported at x = 0 and x = ℓ.

in-plane forces are found using the boundary conditions (4) and the partial differential
equations (3):

Txx(x, y) = T0, Tyy(x, y) = Txy(x, y) = 0 (x, y) ∈ Ω . (8)

Thus, we have the following dynamic equation for small vibrations of the travelling plate:

L(w) =
∂2w

∂t2
+ 2V0

∂2w

∂x∂t
+ (V2

0 − C2)
∂2w

∂x2

+
D

m

(

∂4w

∂x4
+ 2

∂2w

∂x2∂y2
+

∂4w

∂y4

)

= 0 , C =

√

T0

m
. (9)

As is seen from (5)-(9), our boundary-value problem is homogeneous and invariant with
respect to the symmetry operation y → −y, and consequently, all solutions of the prob-
lem can be considered as symmetric or antisymmetric functions of y, i.e.,

w(x, y, t) = w(x,−y, t) or w(x, y, t) = −w(x,−y, t) . (10)

Concluding remarks

The loss of stability of axially moving plates was investigated in a two-dimensional for-
mulation, taking into account their bending resistance and in-plane tension. The studies
performed were mainly based on analytical approaches, and the basic relation charac-
terising the behaviour of the plate at the onset of instability was found in an analytical
form.

As the result of the general dynamic analysis performed, it was proved that the onset of
instability takes place in a divergence (static) form for some critical value of the transport
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velocity when the frequency of the plate vibrations is equal to zero. It was shown that the
flutter modes arise only for higher values of the transport velocity.

Detailed analysis was performed in an analytical manner for static modes of instabil-
ity. The critical divergence velocity and the corresponding buckling shapes were studied
as functions of geometric and mechanical problem parameters. It was proved that the
buckled plate shape is symmetrical, i.e. the antisymmetric shapes correspond to higher
values of the transport velocity. It was shown that the meaningful elastic deflections are
localized at the vicinity of free edges of the plate.

It is necessary to note that for some buckling problems for plates where the ratio of width
to length, b/ℓ, is large, in practice a one-dimensional panel model is used. For this model,
the critical parameter is equal to one (γ∗ = 1). However, as was seen from our studies
of the two-dimensional buckling problem, the limit of γ∗ when the width to length ratio
tends to infinity (panel limit) depends on the Poisson ratio, and is less than 1. For any
meaningful Poisson ratio (ν > 0), this difference is small but finite. The largest difference
is obtained when the Poisson ratio is equal to 0.5. This unusual conclusion is important
for rigorous estimation.

Acknowledgement: This research was supported by the MASI Tekes Technology Pro-
gramme.

References

F. R. Archibald and A. G. Emslie. The vibration of a string having a uniform motion along
its length. ASME Journal of Applied Mechanics, 25:347–348, 1958.

V. V. Bolotin. Nonconservative Problems of the Theory of Elastic Stability. Pergamon Press,
New York, 1963.

S. Chonan. Steady state response of an axially moving strip subjected to a stationary
lateral load. J. Sound Vib., 107:155–165, 1986.

C. C. Lin. Stability and vibration characteristics of axially moving plates. Int. J. Solids
Structures, 34(24):3179–3190, 1997.

C. C. Lin and C. D. Mote. Eigenvalue solutions predicting the wrinkling of rectangular
webs under non-linearly distributed edge loading. Journal of Sound and Vibration, 197
(2):179–189, 1996.

W. L. Miranker. The wave equation in a medium in motion. IBM J. R&D, 4:36–42, 1960.

C. D. Mote. Dynamic stability of axially moving materials. Shock Vib. Dig., 4(4):2–11, 1972.

A. Simpson. Transverse modes and frequencies of beams translating between fixed end
supports. J. Mech. Eng. Sci., 15:159–164, 1973.

R. D. Swope and W. F. Ames. Vibrations of a moving threadline. J. Franklin Inst., 275:
36–55, 1963.

98



S. P. Timoshenko and S. Woinowsky-Krieger. Theory of plates and shells. New York : Tokyo
: McGraw-Hill, 2nd edition, 1959. ISBN 0-07-085820-9.

J. A. Wickert. Non-linear vibration of a traveling tensioned beam. Int. J. Non-Linear
Mechanics, 27(3):503–517, 1992.

J. A. Wickert and C. D. Mote. Classical vibration analysis of axially moving continua. J.
Appl. Mech., 57:738–744, 1990.

99



 

100



Instability Analysis of Axially Travelling Membranes and Plates
Interacting with Axially Moving Ideal Fluid

Juha Jeronen∗ and Tero Tuovinen and Pekka Neittaanmäki
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Summary In this research, the statical instability problem for axially travelling membranes and plates
interacting with surrounding axially moving ideal fluid was considered. The study was limited to the case
of small cylindrical deformation, and the aerodynamic reaction was found analytically as a functional of
the deformation function. The Fourier–Galerkin method was used for numerical computations, and some
of the numerical results will be presented here.

Introduction

From the viewpoint of papermaking, the inherent mechanical instability of axially moving con-
tinua is an important question. An extensive amount of research has been conducted on the various
aspects of travelling flexible strings, membranes, beams and plates, see e.g. [1] [2] [3] [4] [5] [6]
[7] [8] [9] [10] [11, 12].

It is known from experimental studies and some theoretical estimations [13] that mechanical in-
stability in a travelling paper web can arise at some critical velocities. These velocities are of
both theoretical and practical interest, as they set an upper limit for the running speed of a paper
machine. Under certain conditions, statical instability is known to occur first [14].

An important factor that affects the instability is the interaction between the elastic continuum
and the surrounding medium. As has been noted [13], the critical velocities and eigenfrequencies
obtained using the results from the vacuum case [15] may be up to 400% too high.

The simplest approach toward the fluid-structure interaction is to assume potential flow [16] [17].
Added-mass approaches have been used [13], usually in combination with a finite element solution
[17]. A version with boundary layer theory was used in [18].

The potential flow problem, while not entirely accurate [18], is a standard reference case. It has
been studied for axially moving materials in stationary air (e.g. [13]), and for stationary structures
in axial flow (e.g. [19]). In this study, we have combined these two cases, solving the statical
instability problem for a travelling web subjected to axial flow, with the assumptions of potential
flow and cylindrical deformation.

We have used a Green’s function approach to derive an analytical functional representation for the
reaction of the ideal fluid, when axial motion is accounted for both the plate and the fluid. The
form of the problem is similar to the problems of pipes conveying fluid, and stationary structures
subjected to axial flow [20]. Indeed, a similar functional analytical solution has been found in the
case of a stationary plate in axial flow [21].
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Figure 1: Plate travelling axially between two rollers at constant velocity V0, submerged in ideal fluid
moving axially at velocity v∞.

Results

The idealised physical situation is shown in Figure 1. As is well known, small cylindrical defor-
mations of the plate are described by the partial differential equation

m
∂2w

∂t2
+ 2mV0

∂2w

∂x∂t
+ (mV 2

0 − T )
∂2w

∂x2
+ D

∂4w

∂x4
= qf . (1)

In our study, simply supported boundary conditions were used. The main result of the study is
an analytical functional representation for the aerodynamic reaction term qf in equation (1). We
present our result in dimensionless variables x′ ≡ x/`, x′ ∈ [−1, 1] and t′ ≡ t/τ, t′ ∈ [0,∞),
where τ is an arbitrary normalisation constant for time. In our study, it was found that for the
dynamic system (omitting the primes),

qf = −ρf

(
1
τ

∂

∂t
+

1
`
(v∞ − V0)

∂

∂x

) ∫ 1

−1
N(ξ, x)

[
`

τ

∂w

∂t
(ξ, t) + (v∞ − V0)

∂w

∂x
(ξ, t)

]
dξ , (2)

where the aerodynamic kernel N is defined as

N (ξ, x) ≡ 1
π

ln
∣∣∣∣1 + Λ
1− Λ

∣∣∣∣ , where Λ (ξ, x) ≡
[
(1− x) (1 + ξ)
(1− ξ) (1 + x)

]1/2

. (3)

For buckling analysis, the corresponding statical instability problem was formed (Figure 2). By
solving the quadratic eigenvalue problem formed from the Fourier–Galerkin discretisation of the
steady-state case, it was found that, as expected, the presence of ideal fluid decreases the critical
velocity when compared to the vacuum case (Figure 3, left). In the case of stationary ideal fluid,
the results support those of Pramila [13].

However, a difference was found upon computing the complex eigenvalues of the discretisation of
the dynamic equation (1). It was found that unlike in the added mass approach, the scaling factors
for the eigenfrequencies and critical velocities are different (Figure 3, right). Thus, couplings exist
between the vacuum eigenmodes that cannot be reproduced by an added mass approach.
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Figure 2: Axially travelling plate, submerged in axially moving ideal fluid, buckling at the lowest critical
velocity V0 = V div
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Figure 3: Some of the numerical results for an ideal membrane (D = 0). Left: Nondimensional critical
velocity as a function of γ ≡ ` ρf

m and θ ≡ v∞/V div
0 mem vac. Right: First nondimensional eigenfrequency

as a function of the nondimensional velocity of the membrane. Dashed line, vacuum case. Solid line, with
stationary ideal fluid.

Concluding remarks

The computations performed show that the surrounding fluid has a meaningful effect on the critical
parameters of instability. Especially, it was found that when the plate is submerged in an external
medium, even if this medium is ideal fluid, couplings exist between the vacuum eigenmodes that
cannot be reproduced by an added mass approach.

It should be noted that the cylindrical deformation assumption is an approximation, due to the
localisation of deformation near the free edges that has been observed in axially moving paper
webs. Based on our comparison to earlier results [13], we conclude that the flat panel model is
nevertheless a reasonable approximation for a narrow strip.

It should also be noted that due to the boundary layer, the critical velocities in viscous fluid may
be significantly higher than those predicted by the ideal fluid model [18]. Thus, the present re-
sults should be primarily seen as academical basic research concerning axial flow phenomena and
axially moving materials.
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Summary In this paper two procedures are suggested for estimating the location and/or magnitude of a 
concentrated mass attached to the isotropic vibrating beam. Artificial neural networks are applied to 
establish the mapping relationship between structural feature vector and status of the concentrated mass 
(location and magnitude). Seven different training methods are applied and compared.  

Introduction 

Several techniques for estimating the elastic parameters of beams, plates and shells have been 
proposed by a number of authors [1-3].  These methods include wave propagation measurements, 
eigenfrequency-based methods, genetic algorithms etc. In recent years, the artificial neural 
networks have become a powerful tool in the fields of forecast because of the special abilities to 
make mappings and simulations of complicate systems and functions. Artificial neural networks 
have been applied for solving the inverse prediction problems with non-linearity. The supervised 
multi-layer feed-forward neural network is one of the most popular architecture used today [4]. It 
is a universal approximator and is taken as the benchmark for comparing the performance of other 
neural network architectures. The structural parameter estimation based on neural networks 
includes the following steps: selection of network parameters, determination of network structure, 
collection and normalization of learning samples, initialization of network weight values, to 
perform the training in order to obtain the convenient accuracy. 
In the present work, the dynamic response of vibrating beams with an attached mass is studied. 
Karlik and Ozkaya [5] applied neural networks to predict five natural frequencies of a beam if the 
mass ratios and locations were known. The basic idea in the vibration-based estimation is that 
these parameters depend on the physical properties of the systems structure. Changes in the mass 
ratio and location can result in detectable alterations in the natural frequencies, displacements or 
mode shapes. The key problem is how to extract useful features from the vibration signals for 
identification. However, successful network learning and its ability to generalise characteristic 
features of the system from input-output pairs requires large training sets.  
The aim of the present research is to elaborate two methods which are capable of calculating: (i) 
the mass ratio if the position of the applied mass is known, (ii) the position of the attached mass if 
mass ratio is known, (iii) the ratio and position of the attached mass. 
In the case of the first method the input vector of network consists of five natural frequencies of 
the system. The network is trained with different training algorithms. A comparison of the 
algorithms is done in order to find the most accurate method for solving the stated problem.  
The second method uses the combined approach: the structural feature vector is calculated with the 
aid of Haar wavelets. Wavelet transform has been used in many fields including vibration-based 
damage detection of beams and plates [2, 6-8]. The wavelet packets and neural network 
identification were suggested by Hein [9] to inversely determine the elastic foundation parameters 
of delaminated vibrating beams. In most cases the continuous wavelet transform has been used. 
Non-sufficient attention has been paid to the discontinuous Haar functions, which are 
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mathematically the simplest wavelets. Nevertheless it has been demonstrated that the Haar 
wavelets can be successfully applied for solving differential and integral equations [10, 11].     
In the present study the integrated method of Haar wavelets and neural networks is suggested. The 
main ideas of Chen-Hsiao method [10] are applied, according to which the derivatives of the 
functions were approximated for solving differential equations. This approach has been developed 
further by Lepik [11]. 

Dynamic response of vibrating beams carrying the concentrated mass 

In this section, the analytical solution to the free vibration of a beam with a concentrated mass 
located at x=a is formulated. The geometry of the beam is shown in Fig. 1.  

                                              

Fig. 1: The beam-mass system. 

The differential equation associated with the present eigenvalue problem is [12]:   
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In (1) ρ denotes the beam’s density, A is the cross-sectional area, E is Young’s modulus and I is 
the moment of inertia.  
The general solutions of the ordinary differential equation (1) can be presented as 
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where V1 and V2 are the left and right transverse displacements with respect to the concentrated 
mass M and Ci (i = 1, …, 8) are the constants to be determined from boundary and continuity 
conditions. In the present work the following boundary conditions are considered: (i) V = V’ = 0 
(clamped end); (ii) V’’ = V’’’ = 0 (free end); (iii) V’ = V’’’ = 0 (guided end). Here primes denote 
differentiation with respect to the spatial variable x. The compatibility conditions at the location of 
concentrated mass, which apply to all cases [13, 14], are given as follows: 
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where α is the mass ratio defined by M/(ρAl).  
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Identification using artificial neural networks  

For identification problem the feed-forward back propagation network is used. The neural network 
contains only one hidden layer which neurons are assigned the log-sigmoid transfer function. The 
network is trained by seven different training algorithms in order to find out the most efficient one.   
In order to compare the performances of the network, trained by different methods, several criteria 
are used. These are the number of epochs, the mean squared error (MSE), training time, the mean 
absolute error (MAE = (1/N)Σ|nt – nc|), the variance account for (VAF = 1 – var(nt – nc)/var(nt)) and 
the coefficient of multiple determination (R2 = 1 – Σ( nt – nc)

2/ Σ( nt – nm)
2). Here nt is the target 

output value, nc is the computed value, nm is the mean of the target values nt , N is the number of 
patterns in the test set; var denotes the variance.  

Performance assessment of the neural network models trained by natural frequencies 

The accuracy of seven methods to predict the attached mass location on a beam with clamped ends 
is shown in Table 1. The most reliable forecasts have been made by the network which was trained 
by the Levenberg-Marquardt method. The network made 99.98 percent reliable predictions within 
3.7 seconds. The least accurate methods were the steepest gradient methods. Among the conjugate 
gradient methods the most efficient was the Polak-Ribiére, whose variance account for was almost 
the same as the Levenberg-Marquardt’s.  
 
Table 1. Prediction of mass location  on the beam with clamped ends. 

 Sequential 
mode 

Batch mode Resilient 
method 

Polak-
Ribiére 

Fletcher-
Powell 

Powell-
Beale 

Levenberg
Marquardt 

No of epochs NA 1800 127 133 628 172 7 
MSE NA 0.0086 0.9903 0.9.954 0.9.991 0.0003 2.2e-5 
Training time 1.0150 16.469 2.3590 2.7810 8.9070 3.3900 3.7030 
MAE 0.0268 0.0102 0.0013 0.0012 0.0013 0.0018 0.0008 
VAF 0.4425 0.9636 0.9991 0.9997 0.9991 0.9990 0.9999 
R2 0.2244 0.9559 0.9991 0.9994 0.9989 0.9987 0.9998 

Performance assessment of the neural network models trained by Haar coefficients 

First, the response of vibrating beam has been calculated numerically. Various possible 
combinations of beam parameters were considered. Second, the vibration responses (mode shapes) 
of the beam with and without concentrated mass were expanded into Haar series [10, 11]. A 
comparison of energy of vibration responses between beams with and without mass in some 
frequency bands will exhibit some remarkable difference. The input vectors for artificial neural 
networks have been calculated with the aid of energy values of sub-signals. The data training sets 
for artificial neural networks have been formed from input vectors and of corresponding mass 
locations and ratios.  
 
Table 2. Predictions of the attached body location on a beam; α = 20. 

 
Sequential 
mode 

Batch mode 
Resilient 
method 

Polak-
Ribiére 

Fletcher-
Powell 

Powell-
Beale 

Levenberg-
Marquardt 

No of epochs NA 1800 36 102 87 64 2 
MSE NA 0.0044 9.03e-5 9.97e-5 9.92e-5 9.74e-5 1.95e-6 
Training time 0.7810 20.688 1.3440 1.8440 2.4380 1.6720 0.8910 
MAE 0.1074 0.0115 0.0017 0.0008 0.0010 0.0005 0.0002 
VAF 1.1348 0.9666 0.9995 0.9998 0.9998 1.0000 1.0000 
R2 0.8308 0.9976 0.9999 1.0000 1.0000 1.0000 1.0000 

The results of the predictions made by the networks, trained by seven different methods, are 
presented in Table 2. During the learning nine-element patters were used. As a result, the 
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Levenberg-Marquardt and the steepest gradient methods showed the best results. Finally, the tests 
showed that the training time and number of epochs in second approach was smaller than in the 
case of previous method.   

Concluding remarks 

In this work two methods to inversely estimate the attached mass ratio and location on the 
vibrating beams were proposed. Numerical simulations showed that the integrated approach with 
Haar wavelets saved the computation time and showed the better accuracy.  
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Summary The paper deals with different updating algorithms of the moving frame of reference
parameters in a multibody formulation for flexible structures. The updating algorithms are based on
the motion of one or two beam element nodes in the belonging substructure. An example of a clamped
wind turbine demonstrates that the updating algorithm by the use of two beam element nodes is far superior.

Introduction

The basic idea of flexible multibody dynamics is to introducea moving frame of reference to each
substructure. Relative to the moving frame elastic displacements are relatively small, rendering
linear analysis possible. This moving frame is defined by a position vector and a parameter vector
defining the origin and rotation of the moving frame relativeto a fixed frame of reference. In
the floating frame of reference formulation these referential coordinates describe the rigid body
translation and rotation of the structure and become a part of the degrees of freedom in the system
vector of the multibody system, see e.g. Shabana [1]. The useof such a mixed set of referential and
elastic coordinates leads to highly non-linear system equations. To circumvent these difficulties
Kawamoto et al. [2, 3, 4, 5] suggested to let the moving frame of reference float in a controlled
way relative to the moving substructure, so these are alwayssufficiently close to each other, in
order for the small displacement assumption to be fulfilled.They named this type of moving frame
a Local Observer Frame. Hereby, the system matrices do not depend on the degrees of freedom in
the system vector by explicitly predicting the motion of themoving frame. To reduce or eliminate
the gap between the predicted and actual motion, it is necessary to regularly update the motion
of the moving frame of reference as demonstrated in Kawamotoet al. [5]. In Kawamoto et al. [2]
the updating scheme is originally described, where the orientation, angular velocity, and angular
acceleration of the moving frame are updated based on a localtriad linked to four nodes in the
body. The updating scheme of the moving frame of reference inthe present paper follows the
same principles as described in Kawamoto et al. [3]. A small change when updating the moving
frame is presented, where the orientation of the moving frame is updated based on either the
motion of one or two beam element nodes.

Multibody Formulation with a Local Observer Frame

The idea is to describe the motion of a substructure in a(x1, x2, x3)-coordinate system, which is
freely moving in the vicinity of the substructure. Further,a fixed(x̄1, x̄2, x̄3)-coordinate system
is introduced common for all substructures. The origin of the moving frame is described by a
position vector with the global componentsx̄c, and its rotation is determined by the parameter
vector (or pseudo vector)θ. In dynamic simulations the substructure may drift away from the
moving frame, which requires sequential updating of the position, velocity and acceleration of the
moving frame origin together with the rotation, angular velocity and angular acceleration vectors.
In this paper only static simulations are in focus where the moving frames are updated to reduce
the displacements of the substructure from the belonging moving frame in order for the small
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Figure 1: a) Moving frame and substructure at the load stepj. b) Iterate the system vector for the load step
j + 1. c) Updating of the moving frame based on the motion of the node at the origin. d) Updating of the
moving frame based on the motion of two end nodes.

displacement assumption to be fulfilled. The equations of motion and updating algorithms for
dynamic simulations are described in [6], which reduce to the static case when mass and damping
terms are disregarded.

Update Algorithms for Static Analysis

In this section it is described how the moving frames are updated for use in static simulations.
The reason for updating the moving frames in static analysisis to account for large nonlinear
displacements. In Figure 1 a series of sketches are shown to illustrate the procedure when updating
the moving frames in a static simulation. The lower index ’j’ indicates a load step and an upper
index(k1) is used to specify the updating step of the moving frame of reference parameters within
the load step. Similarly, an upper index(k1, k2) is used for the system vector, wherek2 indicates
the iteration step of the system vector within the present updating stepk1 of the moving frame
of reference. When determining the motion of the multibody system it is necessary that both
the moving frame parameters and system vector have the same upper indexk1. In Figure 1a the
moving frame and substructure are shown for the converged solution at load stepj. In the next load
stepj + 1 the exterior load is changed, and the substructure is iterated to a new position within
the moving frame, see Figure 1b. Due to the nonlinear rotational constraints several iterations
may be necessary to obtain a residual which is within the specified convergency limits. When
the solution has converged it is chosen to update the moving frame. In the present situation two
methods are possible. In Figure 1c the node at the origin of the substructure is used to update the
moving frame. Hereby, the moving frame obtains the same position and orientation as this node.
Another possibility is demonstrated in Figure 1d, where themotion of the node at the origin and an
arbitrary point, here the end node, are used to update the moving frame. At this point the updated
moving frame and displacement vector do not correspond and it is therefore necessary to iterate
the position of the substructure within the updated frame, similarly to Figure 1b.

Tip Displacement of a Clamped Wind Turbine Blade

In this section the accuracy of the updating methods for the multibody formulation are further
investigated. A co-rotational beam formulation with 20 elements is used as the reference model,
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which has been implemented by use of Krenk [7]. This type of formulation corresponds to having
a moving frame for each beam element which is updated based onthe motion of the end nodes in
the respective elements. The examples are based on a clampedwind turbine blade where prismatic
elements are used based on the mean value of the cross sectionparameters at the end points in
the respective beam elements. The blade is discretized by a total of 20 elements with the same
reference length. The total referential length of the bladeis L = 44.8 m. The numeration of the
nodes is chronological from the root to the tip. An exterior tip load in the flapwisēx1-direction is
applied so the tip displacement is approximately 20% of the undeformed blade length.

Convergency of Updating Algorithms

In this section the convergency of the two updating algorithms from section is investigated by
increasing the number of substructures in the blade. In thisexample a constant reference length is
used for each substructure. Because a total of 20 elements ofequal reference length are used in the
discretization of the blade the number of substructures becomensub = [1, 2, 4, 5, 10, 20]. The tip
position of the blade after deformation is shown in Figure 2 based on the two updating algorithms
and the different number of multibodes. In Figure 2 it is shown that the updating algorithm based
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Figure 2: Tip position of the blade by use of 20 elements of equal reference length which are divided into
a number of substructuresnsub of equal reference length. a) Tip position inx̄1 (flapwise). b) Tip position
in x̄2 (edgewise). c) Tip position in̄x3 (spanwise). ( ) Update based on node at origin. ( ) Update
based on end nodes. ( ) Co-rotating formulation by use of 20 elements.

on the motion of both end points in the substructure converges much faster than by only using the
motion of one end point. 4 substructures updated based on theend points give similar results as by
use of 20 substructures updated based on the motion of the node at the origin of the substructures.
A total of 168 and 360 degrees of freedom, respectively, are used in these two cases. Moreover,
far fewer moving frames need to be updated when only 4 substructures are present instead of 20
substructures.

Wind Turbine Blade Modelled by Two Substructures

In this section two substructures are used to model the blade. For both substructures the updating
algorithm based on the position of the nodes at the ends of each substructure is used. It is examined
how the best results are obtained by splitting the blade intothe two substructures at different
nodes throughout the blade. Because at least one element is necessary in each substructure it
can not be split at node 1 and node 21. The results of the tip position by splitting the blade into
two substructures at different nodes are shown in Figure 3. Here, the best results are obtained by
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Figure 3: Position of blade tip when split into 2 substructures at different nodes throughout the blade. Both
moving frames are updated based on the end nodes in the respective substructure. a) Tip position in̄x1. b)
Tip position inx̄2. c) Tip position inx̄3. ( ) 2 substructures. ( ) 4 substructures of equal reference
length. ( ) Co-rotating formulation by use of 20 elements.

splitting the blade into two substructures at node 16. It is also shown that the results by use of
these two substructures are almost identical to the co-rotating formulation and the case where four
substructures of equal reference length are used.

Concluding Remarks

It can be concluded that the updating methods for the presentmultibody formulation and the co-
rotating formulation both converge towards the same results. It is demonstrated that by updating
the moving frame based on the motion of the end nodes in the substructure is far superior to
just using the node at the origin of the substructure. For theclamped wind turbine blade it is
demonstrated that by use of two substructures of unequal reference length makes it possible to
absorb the non-linearities in an efficient way, which otherwise would require four substructures of
equal reference length.
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Summary This study investigates the dynamic interaction between a flexible shaft and the rolling bear-
ing support. The rolling bearing models have six degrees of freedom; include non-Hertzian stress recovery,
crowning, clearance and pretension. A virtual test setup isevaluated, and characteristic bearing parame-
ters are optimized to comply with structural requirements.The importance of including non-Hertzian edge
effects in the contact modeling and the flexibility of the shaft is clearly demonstrated.

Introduction

Contact situations are classically divided into Hertzian and non-Hertzian contacts. The Hertzian
contacts are further divided into line and point contacts with either uniform or elliptical pressure
distributions. The latter describes the ball-raceway contact situations verywell, and numerous text-
books treats this subject, e.g. [4]. Contrary to the elliptical contact for ballbearings, the Hertzian
line contact for roller bearings is only a poor approximation of actual roller-raceway contact due
to its missing ability to take into account misalignments of the bodies in contact as well as geo-
metrical deviations such as the crowning of rollers or the raceway extendingbeyond the length of
the rollers.
To include the influence of non-Hertzian pressure distributions in roller bearings, the roller is tradi-
tionally cut up into 30-100 imaginary cylindrical slices, denoted lamina. Each lamina has a radius
corresponding to their coordinate along the length of the roller. The lamina are usually treated sep-
arately according to Hertzian line-contact theory, i.e. no transfer of forces between the individual
laminae is considered. Despite this it is widely used (see e.g. [3], [4], [5])even though it fails in
predicting the roller edge effects. This matter is treated by various authors,e.g. [6], by introducing
an influence coefficient matrix, that relates the deflections of individual slices. Although the us-
ability of the slicing method is greatly improved by this approach, it is, as stated bythe authors, not
capable of predicting peak pressures at roller edges. This study propose the use of more complex
methods for analyzing non-Hertzian concentrated contacts, as described by e.g. [7] and [8].

Contact pressure modeling

The contact area is discretised into a plane area divided intoN = Nx × Ny rectangles, cut view
shown in figure 1(a), each considered under constant contact pressure. The pressure vector,p,
containing the pressures in theN rectangles is calculated by the following set of linear algebraic
equations:

C
[N x N ]

· p
[N x 1]

= δ − h
[N x 1]

(1)

WhereC is an influence coefficient matrix relating the pressures in the individual rectangles, tak-
ing into account the location of the individual rectangles, rectangle size and material properties,δ
is the perpendicular penetration between the bodies in contact andh is the distance between the
bodies at grid coordinates due to roller and raceway curvatures, crowning and contact misalign-
ment. Solving eq. (1) requires iterations, since rectangles under negative pressure, i.e. tension,
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must be removed from the influence coefficient matrix,C. Figure 1(b) shows eq. 1 solved for a
20mm roller atδ = 0.1mm deflection. Complete information about the calculation procedure is
given in e.g. [7] and [8].
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(b) Contact pressure,N = 24 × 16.

Figure 1: Discretized contact area and contact pressure results.

Although the solution of eq. (1), including iterations, is in the order of1/100s at the fairly coarse
mesh in figure 1(a), it is not an appropriate solution to include in a dynamic simulation including
more bearings, several loaded rollers in each bearing, several roller-raceway equilibrium iterations
against inner and outer raceway, system convergence iterations for each time step. Reference [9]
approximates the number of iterations to48e3/(no. of bearings x time steps), and rejects this ap-
proach due to the potential high number of contact evaluations.
To include the precise pressure calculations described above, but reducing the number of con-
tact evaluations to a minimum, this paper presents the idea of pre-processing series of contact
situations, that are stored in look-up tables. During simulation, the necessary roller equilibrium
calculations are hereby reduced to spline-fitting of the pre-processed results, which are orders of
magnitudes faster than processing the individual contacts when needed.
Figure 2 shows such pre-processed contact situations, where the resultant force and moments are
calculated by integrating the pressure results and figure 2(c) is the maximum contact pressure from
each contact. Each grid point represents one preprocessed contactsituation. The plot contains 13
misalignment angles and 20 deflections, hence a total of13 × 20 = 260 contacts are simulated at
respectively roller-inner raceway contact and roller-outer racewaycontact.
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Figure 2: Pre-processed contact results.

At the 24 × 16 contact mesh size shown in figure 1(b), with the grid size unequally spacedalong
the roller length, potential edge effects are well captured, and increasing the resolution further
has insignificant influence on the calculated pressure, even at significant edge loading. Due to the
smoothness of the pre-processed results, the shown13 × 20 contact simulations do indeed allow
precise interpolation.
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Implementation in Flexible Application

The method of including non-Hertzian contact theory in roller-raceway contacts is utilized in quasi
static cylindrical and tapered roller bearing models with six degrees of freedom between the inner
and outer bearing ring. At each time step, the displacement of the inner ring relative to the outer
ring is used to calculate the contact deflection and misalignment at each roller position. From
the proposed non-Hertzian method, the produced forces and moments of all rolling elements are
summed to a six component reaction between the two bearing rings.
The tapered bearing model is identical to the one proposed by e.g. [5], except the roller-raceway
contact uses the proposed non-Hertzian method instead of the slicing method. The cylindrical
roller model follows the same principle, but without angular roller orientation and flange contact.

Bearing overview, design variables and test setup

Simple relations shown in figure 3 and design variables in table 1 have provedto be a design
guideline witherror < ±15pct. The clearance of the cylindrical roller bearing is defined by SKF
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Figure 3: Design guidelines of the roller bearing models.

values from standard tolerance bearings. The design load is the loading,at which the crowned
roller is subjected to a uniformly distributed contact pressure along the rollerlength. The logarith-
mic crown drop is designed as proposed by [2].

Cylindrical rbore [mm] r[mm] lroller [mm] Design load[N ] - -
Tapered rbore [mm] r[mm] lroller [mm] Design load[N ] α[◦] Pretension[mm]

Table 1: List of bearing design variables.

The test setup considered in this study is shown in figure 4, and loaded according to figure 5. The
flexibility of the shaft is modeled by 9 Timoshenko beam elements.
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Figure 4: Test setup.
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Figure 5: External forces.
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Simulation and Optimization of model

The purpose of the optimization is to minimize the mass of the complete system. Reducingthe
dimension of the shaft will increase the deflection, causing larger angulardeflections at the bearing
positions, hence increasing the tendency to roller edge loading. Despite thesystem is rather simple
compared to many bearing arrangements, the consequences of the individual choices is highly
complex and non-trivial to predict, thus an obvious target for optimization.
The post-processing of the results can be expanded to include bearing life calculations, but for
simplicity, a side constraint that compares the maximum pressure with a maximum allowable
value of1600MPa is used. The optimization can be stated as:

min

(

mshaft +
3
∑

i=1

mbearing(i)

)

, subject to: max (σmax(i)) < 1600MPa (2)

Results

In order to investigate the effects of roller edge loading the system is simulatedand optimized with
both a flexible and rigid shaft. The results are summorized in table 2.

Model rshaft [mm] r(1/2/3)[mm] l(1/2/3)[mm] Pretension[mm] α(2/3)[
◦

] mass[kg]

Flexible 22.3 5.20/10.9/1.33 26.6/38.0/27.2 0.0191 11.8/28.5 17.8
Rigid 8.55 1.58/1.50/1.36 7.26/83.4/55.5 0.0294 5.0/9.4 3.50

Table 2: Design variables at optimum.
The optimization clearly differentiates between the two models; the flexible model weighs 5.1
times the rigid model. The lower mass of the rigid model is due smaller shaft dimensionand the
bearings in the rigid model being much more needle-like. The needle bearingsare much more
sensitive to misalignments.

Concluding remarks

In this paper current methods for contact pressure computations are examined and a method well
suited for time domain simulation, while capable of capturing the important edge loading, is intro-
duced. The new method is used for optimization purposes. This optimization reveals the usefulness
of the method as well as the importance of including flexibility of all components in order to cap-
ture a realistic roller loading.
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[2] Lundberg, G. Elastische Berührung zweier Halbr̈aume. Forschung auf dem Gebiete des Ingenieurwesens,10(5), 201-211, (1939).

[3] DIN ISO 281, Dynammischer Tragzahlen und nominelle Lebensdauer, Deutsches Institut für Normung e.V. 1990

[4] Harris, T. A. Rolling Bearing Analysis. John Wiley & Sons Inc., Third edition, (1991)

[5] Bhowmick et. al. Quasi-Static Analysis of Tapered RollerBearings and Comparison of Bearing Lives for Different Roller
Surface Profiles

[6] Teutsch, R. and Sauer, B. An Alternative Slicing Technique to Consider Pressure Concentrations in Non-Hertzian Line Contacts.

[7] Johnson K. L.Contact Mechanics Cambridge University Press, (1985).

[8] Cretu et. al. The Study of Non-Hertzian Concentrated Contacts by a GC-DFFT Technique.

[9] Houpert, L. An Engineering Approach to Non-Hertzian Contact Elasticity-Part II

[10] Sopanen, J. and Mikkola, A. Dynamic model of a deep-grooveball bearing including localized and distributed defects.

116



An Improved Multibody Model of Closed Chains in Loop-sorter-systems 
 

Søren E. Sørensen* 

Product Engineering 
Crisplant A/S, Denmark  

E−mail: soeren.soerensen@crisplant.com 
 

Ole Ø. Mouritsen 

Department of Mechanical Engineering 
Aalborg University, Aalborg, Denmark 

E−mail: oom@me.aau.dk 

Morten K. Ebbesen 

Department of Engineering 
University of Agder, Norway 

E−mail: morten.k.ebbesen@uia.no 
 

 
Summary An improved formulation for simulation of closed chains in loop-sorter-systems is presented. 

Previous models have shown that reasonable results can be reached using rigid multibody dynamic. The 

improvements done to the model has been aimed on increased accuracy, reduced evaluation time and 

improved pre and post processing of simulation data. The evaluation time is reduced significantly although 

the presented results show only minor improvements to the accuracy.    

Introduction 

Poor dynamic performance in the chain of a loop-sorter-system can result in premature wear on 

vital mechanical components. This can lead to huge expenses on replacing worn down parts. 

Therefore, having the ability to simulate the dynamic of the chain of carts in an early stage of the 

design phase makes it feasible to avoid poor layouts.    

Two vital components in the loop-sorter-system are the chain and the track. The track is composed 

of different building blocks like straight elements, horizontal curves, level curves etc. A closed 

chain of carts runs in the track with a constant speed as sortation is performed along the track. 

Depending on the sortation task the length of the track may vary from 100 [m] up to 3000 [m]. A 

cart is shaped like a T, see Figure 1 left. The cart has a connection point at each end of the main 

profile and two guiding wheels at each end of the end-profile. All carts are coupled by connecting 

the rear link to the front link of the following cart. Depending on the task the cart length may vary 

from 0.5 [m] up to 1.25 [m]. The chain is actuated by a number of linear motors placed along the 

track using an iron core at the bottom of the cart to drive the chain forward.  

[1], [2], [3] developed a simulation model capable of determining forces in the chain of carts. To 

obtain a reasonable computation time [1] based the model on a multibody dynamic approach 

assuming all tracks and carts to be rigid bodies. To describe the flexibility of the chain, 

connections between the bodies were modelled by a system of springs and dampers. Through 

verification tests the dynamic simulation model showed some accordance with measured forces in 

the chain. With the aim of improving the accuracy, [4] build an extended simulation model where 

the flexibility of the track and supports was taken into account. The model incorporates a beam 

finite element model of the track and supports which runs in parallel with the multibody 

formulation given by [1]. In every time step reaction forces from the multibody model are send to 

the FE-model that returns the position and velocity of the track. Results were a model with only 

minor increase of the accuracy and a model with a lot of new parameters to deal with.   

By the experiences gained from [1] and [4] an improved version of the multibody simulation tool 

has been developed. The conducted improvements have been aimed on higher accuracy, reduced 

computation time and improved pre and post processing of the simulation data. In this paper the 

basic theory in the simulation tool is presented in short terms along with a discussion on some of 

117

Proceedings of the Twenty Second Nordic Seminar on Computational Mechanics
© Aalborg University 2009 | ISSN 1901-7278 DCE Technical Memorandum No. 11



the main improvements made. Results from simulations on two layouts are presented and 

compared with results form [1] and [4]. 

Methods 

The model is based on [5] theory for unconstrained multibody dynamics where solving the 

equations of motion numerically impose the movement of each body. The track is modelled as a 

fixed rigid body on which each cart is an individual body, see Figure 1 right. Seven points on each 

cart defines the contact between the carts and the track. To approximate the cart stiffness a penalty 

formulation is used in the contact points by applying the force through a linear spring and a 

viscous damper. To model the friction a Coulomb friction model has shown to be sufficient. 

Defining the contact between the carts and the track [1] has constructed a kinematic model that, 

based on a Newton-Raphson solver, determines the position of each cart relative to the track. 

c k

 

Figure 1: Left: Main components of a cart.  Right: The rigid cart is connected in seven points using a linear 

spring and viscous damper. 

Several improvements have been made to the simulation model. Manny of these involve reduction 

of the computation time and improvements of the pre and post processing of data. This is done in 

order to make the tool easier and faster to use and to prepare it as an evaluation method for 

optimization of the track layout. Reduced evaluation time has especially been achieved through 

rearranging the code and by rearranging the track and contact formulation developed by [1]. In 

total the evaluation time has been reduced by a factor of thousand. This factor is expected to 

increase as a new kinematic model without a the Newton-Raphson solver is being developed. 

To increase accuracy and reduce the evaluation time a new ordinary differential equation (ODE) 

solver has been implemented. A survey on different ODE solvers has shown that some solvers are 

far from accurate when solving stiff problems. The survey showed that the fifth order Cash-Karp 

Runge-Kutta method with an adaptive stepsize control can handle the stiff problems in a robust 

and fast way. A routine for this ODE solver is found in [6]. 

To increase the accuracy a new formulation of the force applied by the motors has been 

implemented. This formulation uses a varying reaction point at the bottom face of the cart. This 

has increased the accuracy, especially for forces in the ζ-direction.     

Results 

Tests of the simulation model have been conducted on two different sorters denoted “Figure Eight 

Sorter” and “Oval Sorter”. The figure eight sorter is 63.3 [m] long and has a chain of 52 carts each 

1.248 [m]. Four linear motors are distributed along the track, see Figure 2. The track consists of an 
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upper and lower part where the incline and decline is made by the use of level curves. Further 

information on the cart setup and the layout is found in [4]. 
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Figure 2: Layout of the figure eight sorter. 

The oval sorter is 37.6 [m] and consists of two 180 [°] curves with two straight sections in 

between. The chain is driven by three motors located along one of the straight sections. The chain 

consists of 47 carts each 0.8 [m]. Further information on the setup is found in [1].  

Evaluation of the simulation is done by comparing results with measurements conducted on the 

two layouts. Forces in the rear link were logged using the transducer described in [1]. An example 

of the measured and simulated force in the ξ-direction with a sorter speed at 2.0 [m/s] on the figure 

eight sorter is shown in Figure 3. 
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Figure 3: Measured and simulated force in the rear link in ξ-direction on the figure eight sorter.  

In Table 1 results from four conducted simulations are shown. Three simulations were performed 

on the figure eight sorter with the chain speeds: 1.0, 2.0 and 3.0 [m/s]. On the oval sorter one 

simulation was made at 2 [m/s]. To evaluate the simulation tool results from [1] and [4] are 

included. Evaluation is done using Rain Flow Counting (RFC) [7] and the Root Mean Square 

Deviation (RMSD). The RFC is used to evaluate the systems lifetime by the number of reversals 

nrev and the equivalent force Feq. The cut-off is set to 80 [N] for simulations on the figure eight 

sorter and 50 [N] for data on the oval sorter. The RMSD provide the correlation between the 

simulated data and the measurements as the percentage deviation. 

In Table 1 it is shown that only minor improvements in the precision have been achieved by the 

improved simulation model compared to results from [1] and [4]. The number of reversals in the 

simulation data is about twice the number of reversals in the measured data. Also, the equivalent 

force range seems to be larger in the simulated data than in the measured data. However, a FFT 

analysis shows a fine correspondence between the main frequencies. Tests have shown that 

varying some of the design variables may improve the results. An enlarged parameter study may 

therefore be able to reduce the deviation even further. The RMSD is generally lower for the new 
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simulations. Particular forces in ζ-direction have improved due to the enhanced formulation for the 

applied motor force.  

 
Figure Eight Sorter  

Measurement Improved formulation Simulations by [4] 

Speed 

[m/s] 

Force 

Direction  

nrev Feq  

[N] 

nrev Feq  

[N] 

RMSD 

[%] 

nrev Feq  

[N] 

RMSD 

[%] 

ξ 650 342 1436 683 18.0 764 377 16.6 

η 23 129 269 240 9.0 31 261 25.9 1.0 

ζ 184 208 421 1112 16.5 13 270 12.0 

ξ 544 490 1094 604 14.6 848 734 11.1 

η 142 150 245 275 8.7 104 200 22.8 2.0 

ζ 113 327 551 963 11.7 29 222 14.0 

ξ 459 646 915 781 20.1 595 884 9.2 

η 212 172 282 263 7.4 157 249 39.5 3.0 

ζ 118 371 431 974 10.0 28 326 20.2 

Oval Sorter 
 

Measurement Improved formulation Simulation by [1] 

ξ 386 214 123 291 18.1 91 279 28.0 

η 26 95 16 120 10.3 7 106 5.0 2.0 

ζ 9 172 7 119 18.3 1 53 18.2 

Table 1: RFC and RMSD results from verification test conducted on the figure eight and oval sorter. 
 

Concluding remarks 

Work has been carried out to improve the accuracy, reduce computation time and improve the use 

of the multibody simulation model presented by [1]. Improvements have in particular been 

achieved through reduced computation time and improved pre and post processing of data. Results 

have shown that computation time is reduced by as much as a thousand times. 

Results from simulations performed on two sorter layouts show that accuracy only has improved 

by a small amount. To further improve the accuracy a detailed parameter study should be 

performed together with studies on how to develop the contact formulation. 

References 

   [1] M. K. Ebbesen. Optimal Design of Flexible Multibody Systems. Ph.D thesis. Department of Mechanical 

Engineering, Aalborg University, Denmark, (2008). 

   [2] M. K. Ebbesen, M.R. Hansen and N.L. Pedersen. Design Optimization of Conveyor Systems. ECCM 

2006, Lisabon, Portugal (2006).  

   [3] M. K. Ebbesen, M.R. Hansen and N.L. Pedersen. A Modular Approach to Analysis of Large Scale 

Baggage Handling Systems. NSCM-17, pp. 23-26, KTH, Mechanics, Royal Institute of technology, 

Stockholm, Sweden, (2004). 

   [4] G. Petersen and J. Kofman. Simulation of Multibody Systems with Flexible Boundaries. Master Thesis. 

Department of Mechanical Engineering, Aalborg University, Denmark (2009). 

   [5] P.E. Nikravesh. Computer-Aided Analysis of Mechanical Systems. Prentice Hall, (1988). 

   [6] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery Numerical Recipes in Fortran 90: The 

art of Parallel scientific Computation, Cambridge University Press, 2. edition, (1996). 

   [7] R. Stephens, R.L. Hoffmann, A. Fatemi and H.O. Fuchs. Metal Fatigue in Engineering. Wiley 

Interscience, 2. edition, (2001). 

120



Constant parameter identification of multi-body systems from motion
data

Michael S. Andersen ∗ and John Rasmussen
Department of Mechanical Engineering
Aalborg University, Aalborg, Denmark

e–mail: {msa,jr}@me.aau.dk

Michael Damsgaard
AnyBody Technology A/S

Aalborg, Denmark
e–mail: md@anybodytech.com

Summary Scaling of cadaver study-based musculoskeletal models to a specific subject frequently
involves trial-and-error to achieve reasonable results. In this study, we demonstrated an optimisation-based
approach, which not only results in the best possible fit of the model to a dynamic trial, but also reduces the
number of variables, which require user interaction.

Introduction

The musculoskeletal system of a human or an animal is frequently modelled as a multi-body
dynamics model, where the bones are modelled as rigid segments connected by idealized joints
and the muscles as lines from origin to insertion that may go through via. points or wrap over
geometrical surfaces [1, 2]. Normally, a base model is defined from cadaver studies, where the
bone lengths, segment inertia, mechanical properties of the muscles and so on are determined [3,
1]. Hereafter, scaling laws are defined such that the base model can be scaled to the size of a
specific subject for which it is desired to perform an analysis of interest, for instance, to calculate
the joint and muscle forces during gait [4].

Since the subject and the cadaver-based model are not identical, scaling the model to the subject
is not trivial and frequently requires trial-and-error, which is both tedious and can result in large
modelling errors. Recently, Andersen et al. [5] developed a general optimisation-based method to
the determination of constant model parameters from given motion data for multi-body models
subject to holonomic constraints. Among many other uses, this method can be used to compute
the scaling of a musculoskeletal model such that it best fits measured motion, for instance, from a
motion capture experiment. Therefore, in this study, we applied the method of [5] to identify the
segment lengths and local marker coordinates of a multi-body model of the lower extremities from
a gait trial measured using motion capture.

Methods

Computational method

The computational method that was applied to the parameter identification problem was originally
described by [5]. This method was designed to determine the optimal model constants, d, as well
as the time-dependent system coordinates, q(t), given a system description by means of two sets
of holonomic kinematic constraint equation: 1) a set of equations that are part of an objective
function, Ψ(q(t), d, t), and 2) a set which define the feasible set, Φ(q(t), d, t). Since the first set of
constraint equations are allowed to be violated, these are refered to as soft, whereas the second set

121

Proceedings of the Twenty Second Nordic Seminar on Computational Mechanics
© Aalborg University 2009 | ISSN 1901-7278 DCE Technical Memorandum No. 11



of equations are refered to as hard constraint equations because they must be satisfied.
With these definitions, the large-scale parameter identification problem can be specified as [5]:

min
∑N

k=1
G(Ψ(q(tk), d, tk))

d, q(t1),q(t2),. . .,q(tN )
s. t. Φ(q(ti), d, ti) = 0

(1)

where i = 1, 2 . . . , N , where N is the number of analysis time steps and G(Ψ(q(tk), d, tk))
specifies the objective function evaluated for one time-step. In this study, we used a least-square
objective function. The basic idea behind the method is to determine the model motion as well
as constant model parameters such that the sum of soft constraint violations, as calculated by
G(Ψ(q(t), d, t)), is minimized over all analysis time steps. For instance, if the soft constraint
equations are specified as the vector difference between measured marker trajectories and the cor-
responding point on the model, the optimal solution is the set of model constants, which are made
part of the problem, and model motion that makes the model follow the measured markers as well
as possible.
As such, this optimisation problem is too large to solve directly due to all the variables in the
problem. However, due to a special structure in the linearized Karush-Kuhn-Tucker (KKT) con-
ditions, Andersen et al. [5], showed that the solution can be found efficiently using the following
algorithm:

1. Specify an initial guess for the system coordinates at the first sample and an initial guess on
the constant parameters.

2. Keep the initial guess on the constant parameters fixed at the initial guess and determine the
system coordinates at all samples.

3. Solve the optimization problem in equation (1):

(a) Initialize the iteration counter and set the initial conditions.

(b) Check if the KKT conditions are satisfied if they are, break and return the result else
go to (c).

(c) Calculate a new search direction.

(d) Calculate a new step length using a backtracking line search.

(e) Update the variables.

(f) Update the iteration counter and go to (b).

In the algorithm, for computational efficiency, the computation of the new search direction in step
3(c) relies on a specific structure in the linearized KKT conditions. Please see [5] for full details
about the method. The method has been implemented in the AnyBody Modelling System version
4.1, which was used in this study.

Lower extremity model

The method has been applied to determine the segment lengths of a multi-body mechanical model
of the lower extremities of a human based on the cadaver study of [1]. The motion of the model was
specified from a motion capture experiment for a gait trial with a Helen Hayes marker protocol.
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Since the placement of the markers on the model was not precisely known, a number of the local
coordinates of the markers were also treated as unknown constant parameters and optimised. All
marker coordinates except the ASIS, y-coordinates of the PSI and ANK, and the TOE markers
were optimised. The marker coordinates, which were not optimised were placed manually on the
model bone geometry. To obtain symmetry in the model, the left and right side were scaled using
the same constant parameters, e.g. left and right thigh were assumed equally long.

Results

The initial model in its initial position can be seen in Figure 1(a), the motion of the model given
the initial segment lengths and local marker coordinates in Figure 1(b) and the motion of the
model after optimisation in Figure 1(c). Please notice that the model in Figure 1(b) has reasonable
guessses of the location of the markers on the model as well as segment lengths and yet the marker
errors are significantly improved by the optimisation.

(a) (b) (c)

Figure 1: (a) The model with its initial segment lengths, markers (the red points) and in its initial starting
position. The illustration also includes the measured markers at the first sample (the gray points). (b) Shows
the marker trajectories before optimization. (c) Shows the marker trajectories after optimization. In both
plots, the blue trajectories show trajectories of segment-fixed markers whereas the red trajectories show the
trajectories of the measured markers.

The convergence history for the segment lengths, the maximum error on the KKT condtions, the
step lengths as well as the objective function are shown in Figure 2.
The main thing to notice is that all segment lengths show small over-shoots before settling at their
finale values. Additionally, the step length is initially reduced to1

4
but over the next two iterations is

brought back to full step length from iteration three and forward. This behavior is likely explained
by the nonlinearity of the problem. Finally, through the optimisation, the objective function is
reduced from 1.06 m2 to 0.072 m2 after the ten iterations used.

Concluding remarks

This study demonstrated the possibility to scale a cadaver-based musculoskeletal model by op-
timising the best possible segment lengths as well as local marker coordinates over a dynamic
trial.

In the study, a uniform scaling law, with only one parameter per segment, as well as the same
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Figure 2: Optimiser convergens history. (a) Shows the convergens history of the segment lengths. (b) Shows
the maximum error on the KKT conditions, the step length and the objective function at each iteration. A
maximum error of 10−6 on the KKT condtions were used.

scaling parameters on the left and right side to ensure symmetry in the model, was used. Yet, after
optimisation, the model successfully tracked measured marker trajectories relatively well.

Which scaling law to use to obtain the best results still requires further studies.
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Selective Integration in the Material-point Method
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Summary The paper deals with stress integration in the material-point method. In order to avoid
parasitic shear in bending, a formulation is proposed, based on selective integration in the background
grid that is used to solve the governing equations. The suggested integration scheme is compared to a
traditional material-point-method computation in which the stresses are evaluated at the material points.
The deformation of a cantilever beam is analysed, assuming elastic or elastoplastic material behaviour.

Introduction

The material-point method (MPM) was proposed by Sulsky and coworkers [1, 2] as an alternative
to the finite-element method (FEM) for analysis of problems in solid mechanics. The MPM can
be described as a variation of the FEM, in which the material and any state variables are tracked
at a finite set of material points that are allowed to move through a background grid of finite
elements or cells. In contrast to a Lagrangian finite-element scheme, this allows the simulation of
solids undergoing extreme deformation and displacements without mesh entanglement. Further,
since the material follows the material points, mass diffusion occurring in Eulerian descriptions
is avoided. Finally, the MPM automatically accounts for the exchange of momentum between
adjacent bodies by solving the governing equations of motion a the nodes of the background grid.

Hence, apparently the MPM is useful for the analysis of problems in solid mechanics in which
huge displacements and interaction between colliding bodies must be accounted for. However, in
a standard MPM formulation, the stresses are evaluated at the material points. This may lead to
grid-crossing errors as well as parasitic shear, in particular when linear interpolation functions
are employed within the background grid.

Grid-crossing errors occur when a material point moves from one cell to another in a time step.
This changes the sign of the stress contribution from that material point to the interior force at
the adjacent grid nodes. As described by Bardenhagen et al. [3] this problem may be solved to
some extent by smearing out the mass associated with a material point, leading to the so-called
generalised-interpolation material-point (GIMP) method. Alternatively, higher-order interpolation
may be applied as proposed by Andersen and Andersen [5].

Parasitic shear was reported by Cook et al. [4] in relation to linear quadrilateral elements applied
to the analysis of bending. Thus, for first-order shape functions, the shear strains and stresses
are only defined correctly at the centre of the element. Hence, full integration with two Gauss
points in each direction may cause shear locking in bending. A similar effect occurs in the MPM
since the material points are generally not placed at the centre of the computational cells. As
described in this paper, it may therefore be advantageous to apply an integration scheme in the
MPM corresponding to selective integration in the FEM.

Stress integration in the material-point method

The material-point method builds on the weak formulation. For the solid domain, Ω,∫
Ω

ρw ⋅adV =−
∫

Ω
∇w : ρσσσ sdV +

∫
∂Ωτ

w ⋅ τττdS+
∫

Ω
ρbdV, (1)
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where w = w(x, t) is the virtual field, a = a(x, t) the material acceleration, ρ = ρ(x, t) the mass
density, σσσ s = σσσ s(x, t) the specific stress, b = b(x, t) the external body force field, and τττ = τττ(x, t)
signifies the surface traction on ∂Ωτ where mechanical boundary conditions are prescribed. Here,
σσσ s = σσσ/ρ and τττ = σσσ ⋅n with n denoting the unit outward normal to the boundary of the domain.

The density field ρ(x, t) =
∑Np

p=1 Mpδ (x− xp) is employed, where Mp is the mass of material
point number p, p = 1, . . . ,Np, and xp = xp(t) is its position. Further, linear interpolation within
the computational background grid, discretization of time and lumping the mass at the grid nodes
provide the following system of equations for node number i and time step k:

mk
i a

k
i = τττk

i +bk
i −

Np∑
p=1

Mpσσσ s,k
p ⋅Gk

ip, mk
i =

Np∑
p=1

MpΦi(xk
p) (2)

where, for example, mk
i is the mass associated with node number i at time step k. The interpolation

function belonging to node i is denoted Φi(x), and Gk
ip = ∇Φi(x)∣x=xk

p
. The first two terms on the

left of Eq. (2) are identified as the external force on the body, whereas the final term represents the
internal forces. In each time step, the velocities at the material points and nodes are updated as

Vk+1
p = Vk

p +Δt
Nn∑
i=1

ak
i Φi(Xk

p), mk+1
i vk+1

i =

Np∑
p=1

MpVk+1
p Φip(xk

p). (3)

Subsequently, the strain increments at the material points are determined by

Δεεεk
p =

Δt
2

Nn∑
i=1

{
Gk

ipvk+1
i +(Gk

ipvk+1
i )T} , (4)

and the stresses are updated by a constitutive law. Two schemes are now compared: (1) a com-
putation based on a standard MPM approach with the strain increments provided by Eq. (4), and
(2) an alternative scheme with Gk

ip replaced by Gk
ic = ∇Φi(x)∣x=xc for the determination of the

shear strain increments, whereas Eq. (4) without modification for the computation of the normal
strains. In the second approach, xc denotes the coordinates of the point at the centre of the cell in
which the material point resides. Hence, scheme no. 2 corresponds to selective integration.

Analysis of a cantilever beam

A cantilever beam is analysed by the MPM method, employing the explicit scheme described in
the previous section. The length is L = 8 m in the x-direction, the height is H = 2 m in the y-
direction and the beam has a mass density of ρ = 10 kg/m3. The mesh size is 0.5 m and 2× 2
material points are employed within each cell. Over a period of 0.5 s the beam is subjected to
an increasing body force in terms of gravity with the final acceleration 10 m/s2 in the negative
y-direction. After this, the external force is kept constant.

Firstly, the analysis is carried out for an elastic material with Young’s modulus E = 10 MPa and
Poisson’s ratio ν = 0. Figure 1 shows the the normal and shear stresses, σxx and σxy after t = 1 s
for Schemes 1 and 2, i.e. with standard MPM stress evaluation or ‘selective integration’. Parasitic
shear is clearly identified for σxy and, to some extent, the equivalent Mises stress σe. On the other
hand, selective integration provides a smooth shear stress variation without reducing the accuracy
of the normal stresses. However, the development of the mechanical energy is almost the same and
only small differences are present in the displacement obtained with Schemes 1 and 2.
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Figure 1: Stresses in the elastic beam at the end of the simulation.

The second analysis concerns a von Mises material with the yield criterion f = σe−σ0 ≤ 0, where
σ0 is the yield stress (σ0 = 4 kPa in this analysis). Otherwise, the parameters are the same as before.
The results are illustrated in Fig. 2, and again parasitic shear occurs in the case of standard MPM
integration of the stresses. Nonetheless, no significant change can be seen in the extent and shape
of the plastified zone. This is likely a result of the fact thatσxx ≫ σxy in the present case.

Concluding remarks

Selective integration in the material-point method provides a better approximation of the shear
stress distribution in a beam subjected to bending than standard MPM analysis with shear stress
evaluation at the material points. Nonetheless, for beams with a length-to-height ratio of more
than 4, standard MPM integration does not degenerate the solution for plastic problems since the
axial normal stresses are dominating in bending. However, for other classes of problems in which
shear stresses dominate, selective integration may be necessary in order to have a physically sound
transition from elastic into plastic response.
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Figure 2: Stresses in the elastic-plastic beam at the end of the simulation.
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Summary The material-point method (MPM) is a new numerical method for analysis of large strain
engineering problems. The MPM applies a dual formulation, where the state of the problem (mass, stress,
strain, velocity etc.) is tracked using a finite set of material points while the governing equations are solved
on a background computational grid. Several references state, that one of the main advantages of the
material-point method is the easy application of complicated material behaviour as the constitutive response
is updated individually for each material point. However, as discussed here, the MPM way updating and
integrating stresses in time is problematic. This is discussed using an example of the dynamical collapse of
a soil column.

Introduction

The material-point point method is a new computational method for modelling large-stain dy-
namical engineering problems. The material-point method was originally developed by Sulsky
and coworkers [1, 2]. An important extension, known as the generalized material point method
(GIMP), is presented by Bardenhagen and Kober [3].

Theory

In the MPM a continuum problem is discretized by representing the domain of the problem, Ω,
by a finite set p = 1, ..Np material points. Each material point is assigned a mass, stress, velocity
and density, denoted mp,σσσp,vp, ρp, respectively. The domain associated with the material point,
p, is denoted Ωp and the volume of this domain is denoted Vp. In addition, a finite set grid nodes
i = 1, ..Nn, are defined where the governing equations are solved. In the original MPM formula-
tion the material points are represented using the Dirac delta function when forming the governing
equations on the grid. Hence, the interpolation between the material points and the mesh is gov-
erned by the nodal shape functions Ni(x). In the GIMP, further a particle characteristic function,
χp(x), is defined for each material point.

The governing equation is the balance of momentum

ρ
dv

dt
= ∇ · σσσ + ρb, (1)

where ρ = ρ(x, t) is the current density, v = v(x, t) is the spatial velocity, σσσ = σσσ(x, t) is the
Cauchy stress tensor and b = b(x, t) is the specific body force. Utilizing the GIMP formulation,
the discrete equation becomes

mi
dvi

dt
= f

int
i + f

ext
i , (2)

where mi
dvi

dt
=

∑
pmp

dvp

dt
N̄ip is the nodal momentum rate of change,

f
int
i = −

∑
p

σσσpVp
∂N̄ip

∂x
and f

ext
i =

∫
∂Ωτ

NiτττdS +
∑
p

mpbpN̄ip (3)
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is the internal force and external forces, respectively.

The weighting and the gradient weighting function are defined by

N̄ip =
1

Vp

∫
Ωp

⋃
Ω

NiχpdV and
∂N̄ip

∂x
=

1

Vp

∫
Ωp

⋃
Ω

∂Ni

∂x
χpdV. (4)

For comparison, if the particle function is defined by χp(x) = δ(x−xp) the original MPM formu-
lation is retrieved. Another comparison relevant for this discussion is that the MPM formulation is
similar to a finite element formulation, where the Gauss points are replaced by material points.

Time-integration scheme

Equation 2 is the basic equation that using appropriate boundary conditions is integrated in time
in order to find the evolution of the state variables, that are defined at the material points. This
constitutes to updating the position, velocity, stress and density at the material points. The typical
procedure applied here and in the references [1, 2] is to use explicit time integration. Hence, the
time domain is divided into a finite set of timesteps and the size of the time-steps has to satisfy the
Courant criterion.

The update of position and velocity is performed by

x
k+1
p = x

k
p +Δt

Nn∑
i=1

N̄ip
mivi +Δt(f int,ki + f

ext,k
i )

mi

(5)

and

v
k+1
p = v

k
p +Δt

Nn∑
i=1

N̄ip

(f int,ki + f
ext,k
i )

mi
. (6)

where the nodal mass and velocity are determined by

mk
i =

Np∑
p=1

mk
pN̄ip and v

k
i =

∑Np

p=1 v
k
pmpN̄ip

mp
, (7)

respectively.

Similarly, the strain increments at the material points are found by

Δεεεp =
Δt

2

Nn∑
i=1

(
∇N̄ipvi + (∇N̄ipvi)

T
)
. (8)

Then the stress increments are found individually at each material point.

Problems regarding stresses

When considered at a specific time-step, the material point method is similar to a finite element
method for the grid, but where the integration in now performed using the set of material points
instead of using Gauss points. This leads to an inaccurate integration. In most implementations
of MPM, the grid nodes are fixed spatially, while the material points will move in a dynamical
problem. Hence, the material points move relatively to the grid between the different time steps,
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which leads to a further loss of precision. Thus although initially optionally discretized, the inte-
gration involved in assembling Eq. 3 will not be complete. An effect of the relative motion is the
co called grid-crossing error. Typically, the gradients of nodal shape-functions are discontinuous
across element boundaries. Hence, as a material point that changes cell between to time-steps be-
tween two time-steps will contribute significantly differently to the internal force, when it moves
relatively to the grid. The definition a particle characteristic function in the GIMP somewhat limit
the grid-crossing error. As a result of this the material point will experience an unphysical accel-
eration according to Eq. 6 and an unphysical strain increment according to Eq. 8. However, due to
the nature of the explicit time integration these effects will be smoothed spatially over time, and
as has been shown realistic results can still be obtained.

However, for general problems the incremental stress update defined at the individual material
points leads to unrealistic stresses. This is due to the sum over stress increments determined from
strain increments which may generally be erroneous for the individual material points. The effect
of this is shown in the following numerical example.

Example: Collapsing soil column

A rectangular soil column placed on a frictional surface is considered. The column is 8 metres high
and 4 metres long and plane strain conditions are considered. The soil column is unsupported along
the vertical boundaries. Further, the stresses are assumed to increase linearly with the distance from
the top. As these stresses cannot be sustained on the vertical sides, a plastic collapse will occur. An
elasto-plastic material model based on the Mohr-Coulomb yield criterion, using an explicit return
mapping scheme as described by Clausen et al. [4] is applied to enforce the yield criterion.

The soil is described using the following set of material properties:

E = 20MPa, ν = 0.42, ρ0 = 103kg/m3, c = 1kPa , φ = 42o and ψ = 0o. (9)

A frictional coefficient μ = 0.6 is prescribed at the lower boundary.

An initial K0-stress state is specified with the vertical and horizontal normal stress given by

σ0yy = −dgρ0 and σ0xx = σ0zz = −dgρ0K0, (10)

where g = 9.8m/s2 is the gravity and d is the distance from the top soil surface. where the earth
pressure coefficient is given by K0 = ν/(1 − ν). Finally, σ0xy = 0 is prescribed for all material
points.

In order to visualize the collapse of the soil-column, each material is assigned a regular domain in
the initial configuration. Further, a deformation tensor is prescribed for each material point with
F
0
p = I at the start. The deformation tensor is integrated in time using the nodal velocities to

track the deformation of the initially rectangular domains. The dynamic simulation is performed
with a time step of Δt = 0.001s. The simulation is performed until the soil has reached a state
of vanishing velocities. For the present model the time of the collapse is t = 2.5s. The initial
configuration consists of 1800 material points. An adaptive scheme for splitting the material points
in case of localized deformation is employed. The final configuration consists of 9402 material
points.

In the MPM, the material points may be at arbitrary locations of the elements defined by the set
of grid-nodes. The individual stresses may be unrealistic. Hence, combined with the effect of grid
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crossing this completely degenerates the stress at an individual material point. In order to better
understand the problems, a new way of visualizing the stresses are introduced. Firstly, grid-node
stress tensors are defined by

σσσi =

Np∑
p=1

σσσpΦipmp

mi
, (11)

where σσσi is the stress tensor, associated with grid node i, σσσp is the stress of material point p, Φip

is the interpolation function while mi and mp is the nodal and material point mass, respectively.
Using the nodal stresses, a smoothed material point stress tensor is defined as

σσσsmooth
p =

Nn∑
i=1

σσσiΦip, (12)

Figure 1 shows the vertical normal stress during the collapse of the soil column. The left side of the
figure shows the stresses at the individual material points, while the right side shows the stresses
calculated by Eq. (12) in order to provide a better visualization.

The first thing to observe is that the deformation occur in a realistic fashion. As the pressure
cannot be obtained, the soil column collapses until, it has reached a state, where its satisfies the
yield condition (in a global sense) and the kinetic energy has dissipated due to the bottom friction
and plastic dissipation. In the final configuration, it is still possible to observe the initial corners
due to the small amount of cohesion present. As observed, the vertical normal stress during and at
the end of the collapse varies in a very erratic fashion. This leads to a principle question: Can we
trust the simulation, when the stresses at the individual material points are so unrealistic?

As seen, the deformation occurs as physically expected although the stresses are completely erro-
neous at the individual material points. From the mentioned analogy to the finite element method
the material points plays the role as integration points when solving the governing equation of
motion. Further, from finite element analysis it is common knowledge that special care need to be
made regarding when interpreting stresses, as stresses as may only be realistic at certain locations
within an element. As observed, the mapping via the grid nodes determines a stress field, that is
physically realistic. Hence, in terms of the grid-nodes, where the equations are solved, the stress
field is realistic.

Concluding remarks

The material-point method is a new promising numerical method for large strain continuum me-
chanic problems. As illustrated it is successfully able to capture in a realistic fashion problems
involving very large deformations. However, this note provides an illustration of problematic is-
sue for the method. This pertains to the fact that stress fields varies in a unrealistic fashion at the
individual material points. As illustrated the overall solution may still be realistic, as the stresses
are realistic at the grid nodes and realistic displacement and velocity fields are observed. However,
in more complex problems the unrealistic stresses pose real problems as localized effects may be
difficult to capture. Hopefully the presented results eventually can lead to a better algorithms for
handling stresses within the MPM.
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Figure 1: Vertical normal stresses during the collapse of the soil column. Left: The stresses at the individual
material points. Right: A smoothing using Eq. (12) is introduced for a better visualization.
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An efficient formulation of the elasto-plastic constitutive matrix on
yield surface corners
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Summary A formulation for the elasto-plastic constitutive matrices on discontinuities on yield surfaces
is presented, for use in finite element calculations. The formulation entails no rounding of the yield surface
or the plastic potential, as it is done in most other formulations, and therefore exact analytical solutions can
be approached. Computational examples are given with the Mohr-Coulomb, the Modified Mohr-Coulomb
and the Hoek-Brown models.

Introduction

In practical geotechnical engineering most design calculations on soil structures are carried out
with the Mohr-Coulomb material model, with the well-known hexagonal shaped yield criterion in
principal stress space, see Fig. 1b. For clays the Tresca criterion, Fig. 1a, is used, and for rocks and
concrete the Modified Mohr-Coulomb and the Hoek-Brown criteria are often used, see Fig. 1c and
d.

As can be seen from the figure these criteria possess corners and apices, which explicitly have to
be taken into account when formulating the constitutive matrices used for formulating the global
stiffness matrix. This is especially true for 3D-calculations where all the different corner and apex
discontinuities may come into play. One option of dealing with these discontinuities is to perform a
local rounding of the yield criterion and/or the plastic potential, see e.g. [1, 2]. This option seems to
work but the obtained numerical results do no longer converge towards the exact analytical results.

Modified
Mohr-Coulomb

Rankine

Tresca Mohr-Coulomb

Hoek-Brown

σ1

σ1
σ1

σ1

σ2

σ2σ2

σ2

σ3

σ3
σ3

σ3

a) b)

c) d)

Figure 1: Examples of yield criteria with corners in principal stress space: a) The Tresca criterion. b) The
Mohr-Coulomb Criterion. c) The Modified Mohr-Coulomb criterion. d) The Hoek-Brown criterion.
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In this paper a formulation is presented that does not include a rounding of the corners or apices. It
is also shown that the numerical solution for a footing on a Mohr-Coulomb soil converges towards
the exact analytical solution.

Constitutive matrix on a surface

When a stress point is located on a yield surface the elasto-plastic constitutive matrix is found as

Dep = D−
DbTaD
aTDb

(1)

wherea= ∂ f/∂σσσ , b = ∂g/∂σσσ andD is the elastic constitutive matrix.f andg is the yield function
and the plastic potential, respectively. Note thatDep is singular with respect tob, i.e.Depb = 0.

Constitutive matrix on a corner and an apex

When the stress point is located on a corner the constitutivematrix must be singular with respect
to bothb1 andb2. In Fig. 3 a direction vector of a yield surface corner,ℓ̄ℓℓ is shown. This can be
regarded as a direction vector of any of the lines defining theyield criteria in Fig. 1. In Fig. 3 the
direction vector of the plastic potential corner,ℓ̄ℓℓ

g
, is also shown. From these direction vectors it is

shown in [3] that the doubly singular constitutive matrix ona line in principal stress space can be
expressed as:

D̄ep
ℓ =

ℓ̄ℓℓ(ℓ̄ℓℓ
g
)T

ℓ̄ℓℓ
T
D̄−1ℓ̄ℓℓ

g =
(ā1× ā2)(b̄1× b̄2)

T

(ā1× ā2)T D̄−1(b̄1× b̄2)
(2)

The overbar indicates the the vectors and matrices are expressed with respect to the principal
coordinates without the shear component terms, i.e. the vectors have three components and the
matrices three by three. The× symbol indicates the cross product. The shear part is added,

σ1 σ2

σ3
b̄1

b̄2

ēℓ

ℓ̄ℓℓ

ℓ̄ℓℓ
g

Figure 2: A direction vector,̄ℓℓℓ, of an intersection
line in principal stress space. The corresponding
potential curve direction vector is denotedℓ̄ℓℓ

g
. An

elastic strain direction vector is denotedēℓ. The
vectorsb1 and b2 are perpendicular to the di-
rection vector of the plastic potential intersection
line, ℓ̄ℓℓ

g
.

D̂ep
ℓ =

[
D̄ep

ℓ

Ḡ

]
(3)

and the matrix is transformed from the principal
stress coordinate system into thexyz-coordinate
system. In the above equation the hat, ,̂ signifies
that the matrix includes all six by six components
and is expressed in the principal coordinate system.
The matrixḠ is the shear part of the elastic consti-
tutive matrix.

There are two different forms of constitutive matrix
on an apex. If the stress point is located on an apex
on the hydrostatic line the constitutive matrix must
be singular with respect to all stress directions, i.e.

D̂ep
a,1 = Dep

a,1 = 0 (4)

This is the case on the Mohr-Coulomb apex, the Hoek-Brown apex and one of the Modified Mohr-
Coulomb apices, see Fig. 1. If, on the other hand, the stress point is located on an apex not on
the hydrostatic line it is singular only in the normal directions, i.e. its composition in the principal
coordinates is

D̂ep
a,2 =

[
0

Ḡ

]
(5)
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This is the case for stress points located on the Modified Mohr-Coulomb apices outside the hydro-
static line, see Fig 1c.

Improved formulation

The formulations for the constitutive matrices given aboveworks well for two-dimensional models
where the (instant) friction angle is not too high, see e.g. [3, 4]. But for high friction angles and/or
three dimensional problems the above formulations can cause the global stiffness matrix to become
ill-conditioned. This is due to many stress points located on either corners or apices which add
many singularities to the global stiffness matrix. This problem can be mended by adding a small
stiffness in appropriate directions.

Improved formulation on the apex

When the elasticity of the material is linear the implicit stress integration can written in the “return
mapping” formulation,

σ̄σσC = σ̄σσB −∆σ̄σσ p, with σσσB = σσσA +D∆εεε and ∆σ̄σσ p = D̄∆ε̄εε p (6)

Here σ̄σσC is the updated stress point on the yield surface,σ̄σσB is the elastic predictor stress and
∆σ̄σσ p is the plastic corrector stress, all three expressed in the principal stress space as indicated by
the overbar. The total strain increment is denoted∆εεε and the plastic strain increment in principal
coordinates is∆ε̄εε p.

A key point of the elasto-plastic constitutive matrix is that it must be singular in the direction of
the plastic strain increment. A simple method to add a littlestiffness in the formulation ofDep on
the apex is given as

D̄ep
a,mod =

1
α

(
D̄−

D̄T ∆ε̄εε p(∆ε̄εε p)TD̄
(∆ε̄εε p)TD̄∆ε̄εε p

)
(7)

This matrix is singular in the plastic strain direction and depending on the value ofα posesses a
small stiffness in other directions. In the presentation a study on the optimal value ofα will be
given.

Improved formulation on a corner

When the updated stress point is located on a corner the basicformulation for the constitutive
matrix is given by Eq. (2). Again a simple formulation that adds a little stiffness is

D̄epc
ℓ =

ℓ̄ℓℓ(ℓ̄ℓℓ
g
)T

ℓ̄ℓℓ
T
(D̄c)−1ℓ̄ℓℓ

g +
1
β

c̄c̄T

c̄T(D̄c)−1c̄
(8)

The direction vector̄c is the direction perpendicular to the plastic strain direction, ∆ε̄ p, and the
line defining the corner,̄ℓℓℓ, see Fig. 2. In the presentation different results indicating the optimal
value of the scalarβ will be given.β controls the amount of stiffness that will be added. The Ref.
[5].

Computational example

To assess the validity of the formulation a calculation is carried out with a rough circular footing
resting on a cohesionless Mohr-Coulomb soil with a frictionangle ofϕ = 30◦, and a selfweight
of γ = 20 kN/m3. For symmetry reasons only a quarter of the footing is modelled, see Fig. 3a.
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Figure 3: a) A quarter of a circular footing and an example of the element mesh with 7425 degrees of
freedom. b) Results from the bearing capacity calculationscompared to the exact value.

The elements are standard ten-node tetrahedrons. A vertical forced displacement is applied to the
footing in steps and the bearing capacity is calculated fromthe sum of the maximum reaction
forces at the footing nodes divided by the footing area. The exact bearing capacity is found in
Ref. [6]. The result of the calculations can be seen in Fig. 3 for different mesh densities. It is seen
that the calculated values converge toward the exact value.In the presentation results for the other
material models shown in Fig. 1 will be given.

Conclusion

A formulation for elasto-plastic constitutive matrices oncorner and apex singularities is given.
The initial formulation is improved in order to make full 3D-calculations stable. It is shown that
finite element calculations based on the formulation converge towards the exact solution.
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Summary The paper defines extensive laboratory testing program perceived as a part of research project 
investigating delayed behaviour of soft structured clays. Tests are to be performed on HUT soft sensitive 
clay and include standard, long duration and constant strain rate oedometer tests, consolidated undrained 
triaxial tests in both compression and extension and triaxial creep tests. Tests results obtained are to be used 
for verification and enhancement of numerical capabilities of EVP SCLAY1S constitutive model. 

Introduction 

The behaviour of soft clay is very complicated. It exhibits several features such as: a significant 
degree of anisotropy developed during their deposition, sedimentation, consolidation history and 
any subsequent straining some apparent bonding which will be progressively lost during straining; 
time-dependent stress-strain relationship which has a significant influence on the shear strength 
and the preconsolidation pressure. Time dependency of stress-strain behaviour in particular still 
presents area of considerable uncertainty. Consequently additional efforts are necessity in order to 
develop sophisticated design methods and tools which could take into account the strain rate 
dependency of deformations and strength.[1] The laboratory testing program defined in this paper 
is a one more step in that direction and therefore presents continuation of previously conducted 
testing programs with an agenda to enhance understanding and improve engineering modelling 
capabilities of soft clay behaviour.[2, 3, 4] Based on the additional experimental results to be 
gathered in the testing programme verification and performance enhancement of existing EVP 
SCLAY 1S elasto-viscoplastic constitutive model is to be conceptualized. The model is one of the 
most sophisticated numerical tools developed for modelling stress-strain-strength behaviour of 
structured clays. Presently, it incorporates options to model specific soil behaviour effects of 
anisotropy, destructuration and viscosity. However, model performance still needs to be improved 
particularly in the area concerning formulation of time influence on destructuration process and 
strain softening, effects of creep and effects of viscosity. The interpreted laboratory results 
obtained within the proposed testing programme are to be used to simulate soft clay behaviour by 
the constitutive model and therefore used for its verification, consequently enabling improvement 
of numerical simulation capabilities and capacitating evaluation of the model performance in the 
field scale. 

Testing program  

Objective of the testing program is detail examination of effects of structure and time dependent 
stress-strain behaviour of soft sensitive clays. Testing program includes several specific types of 
soil tests performed in oedometer and triaxial apparatus, namely; standard oedometer tests, long 
duration odometer tests, oedometer tests at constant strain rate (CRS), anisotropically consolidated 
undrained triaxial tests in compression and extension (CAUC) and finally triaxial creep tests.  
Soil Sampling  
The tests anticipated in this study will be performed on HUT clay, a soft sensitive Finnish clay 
sampled in the area of Helsinki University of Technology (HUT). HUT clay is soft natural clay of 
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postglacial origin typical for Nordic Countries. All of the HUT clay samples are to be taken at the 
same location and at the same range of depth of 1,3 to 2,1 m. Unit weight of the material appears 
to be at about ρt=1,6 g/cm3 and specific gravity is approximately of  ρs=2,7 g/cm3.  Initial void ratio 
is typically very low being 1,7. Initial water content for HUT clay material is relatively low, 
ranging between 65 to 75 %. Typical value of water content in soft Finnish clays is 90 to 100%. 
Furthermore, organic content 0,75 % in HUT clay is low value as well. Below the value of 1.5% 
organic content has no effect on mechanical behaviour of clay. Initial pH value of samples was 6, 
the soil being almost neutral. Low pH data is logical considering that the organic content of HUT 
clay is very low. Typical value of initial plastic limit measured is 26,0 % and liquid limit is of 65,0 
%. According to the plasticity chart these values position HUT clay below A-line in the area of 
organic clays.[5]  
Oedometer tests  
In order to obtain clear insight into compressibility and structure characteristics of soft clay 
standard incremental load oedometer tests are to be performed on natural and reconstituted clay 
samples. As shown on Figure 1a), oedometer tests on natural soils generally show compression 
curves appearing above the intrinsic compression line for the reconstituted material, with the post 
yield compression curve gradually converging with the intrinsic compression line as the bonding is 
progressively lost. Indeed, comparison of stress strain curves obtained on intact and remoulded 
samples allows insight and understanding of the effects of structure and progressive 
destructuration of bonds during inelastic strains, being the main objective of the specific test. The 
test results are to be used to determine yielding points and to define sensitivity characteristics of 
specific clay on the basis of preconsolidation pressure of undisturbed and remoulded samples. In 
addition, interrelation between destructuration process and secondary compression coefficient will 
be examined.  
Long duration oedometer tests (10 days) are to be performed on natural soft clay samples in order 
to examine time and stress compressibility interrelationship by comparison of the characteristics of 
stress-strain curves obtained on samples with respect to different time duration of load increment. 
Indeed, as shown on Figure 1b) longer loading steep time does to certain extent influence stress-
strain behaviour of clay [4]. Special attention is to be given to examining influence of loading time 
on values of preconsolidation pressure and values defining clay behaviour during secondary 
compression.  
In order to analyse viscous effects of soft clay behaviour and relationship between 
preconsolidation pressure and strain rate, constant rate of strain oedometer test are to be performed 
on natural and reconstituted samples of soft clay. As an optimum, following strain rates have been 
selected: 1*10-4, 1*10-5, 1*10-6 and 1*10-8 s-1. The test has two main objectives. Firstly, to study 
relationship between the preconsolidation pressure and actual level of strain-rate. As shown on 
Figure 2, by conducting CRS tests under considerable range of different constant strain rates and 
determining preconsolidation pressure at each strain rate, clear and confident definition of yield 
pressure strain rate interaction will be attained. Indeed, in the selected range of strain rates during 
CRS oedometer test a linear relationship between the logarithm of yield stress and the logarithm of 
strain rate can be established.[6] Second objective is to study influence of strain rate on 
destructuration process. Careful examination of previously conducted CSR test shows actual strain 
rate having significant influence on material softening behaviour [4].  
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Figure 1: a) Compressibility of natural and remoulded clay and b) Influence of loading time duration on clay 

response in oedometer test [6, 7]. 
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Figure 2: Strain rate effect on preconsolidation pressure in CRS oedometer test [4]. 

 
Triaxial tests 
Drained triaxial compression tests at various consolidation and strain rate level are to be conducted 
on undisturbed and reconstituted soft clay samples. Main purpose of the tests is to examine 
progressive destructuration of bonding with time. In fact, the tests are performed on natural and 
reconstituted clay samples anisotropically consolidated to identical stress ratio level being η=0,2, 
0,4 or 0,75 and at cell pressures of 20, 40 and 60 kPa. Indeed, in order to study influence of 
anisotropy, undrained compression tests are performed under distinctively different consolidation 
conditions. Furthermore, the compression tests include both tests performed at constant axial rate 
of strain and tests during which strain rate is varied several times during the actual test. In fact, 
during the tests considerable change of shear strain rate is to be imposed during 
unloading/reloading cycle. Selected strain rates to be applied are 6, 0,6 and 0,06 %/h. In addition 
to those in compression, supplemental anisotropically consolidated undrained triaxial tests in 
extension will be performed on undisturbed clay samples. In those tests samples will be 
anisotropically consolidated to stress ratio η= -0,2 and η= 0,75, respectively. Several tests are to 
be stopped entirely to allow sample test in relaxation, i.e. measurement of porepressures and 
deformations under state of no load applied. Objective of the tests is to identify influence of 
structure and shearing strain rate on sample compressive and extensive behaviour. On the basis of 
the results obtained, yield points corresponding to consolidation at different stress ratios and 
triaxial cell pressure are to be determined and resulting yield surface plotted together with clearly 
defined critical state in compression and extension for clay material tested. Furthermore, the 
results should enable plotting of intrinsic yield surface and determination of initial bounding 

ln (σ’)

NCL

e

105  

104

103

102

101

t  - load step time 
tp- duration of primary  
      consolidation  

1

t/tp

141



amount, as well. Finally, the tests will enable not only determination of yield surface rotation due 
to anisotropy level and yield surface shrinkage due to degradation of bonds but also a clear insight 
on a strain rate influence on both shape and size of yield surface and will therefore form adequate 
base for defining true time dependency of stress-strain-strength behaviour of soft clays (see Figure 
3). 
In order to study destructuration process during the creep deformations and evolution of strain rate 
during the undrained creep stage undrained triaxial creep tests will be performed. Undrained 
triaxial creep tests are to be performed on under different stress levels in undrained condition after 
an identical consolidation stage. Indeed, after saturation the samples are to be consolidated for one 
week so to ensure the identical initial stress states for the creep test as those defined for CAUC 
tests i.e. starting from the same consolidation points. At different deviator stress levels samples are 
to be sheared to failure in an undrained manner. Therefore, additional axial stresses are to be 
applied keeping the lateral stress constant. Objective of the test is to study destructuration process 
during the creep deformations and evolution of strain rate during the undrained creep stage. 
 

 
 

 

 

 

 

 

 

 

 

Figure 3: Influence of strain rate on shape and size of yield surface. 

Concluding remarks 

The testing programme proposed in this paper includes oedometer and triaxial tests on both natural 
and remoulded soil samples of HUT clay material, with varying rates of loading, with constant 
applied stresses by time (creep), and with constant applied strains by time (relaxation).[1] 
Conditions during standard, long duration and CRS oedometer tests are defined so to provide clear 
insight in; a) compressibility and structure characteristics of soft clay, i.e. sensitivity 
characteristics, progressive destructuration of bonds during inelastic strains, and interrelation 
between destructuration process and secondary compression coefficient ; b) time dependent 
compressibility characteristics of soft clay such as effect of loading time on values of 
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preconsolidation pressure and values defining clay behaviour during secondary compression; c) 
viscous characteristics of soft clay i.e. influence of  strain rate level on the  yield stress and 
destructuration process. Furthermore, undrained triaxial tests and triaxial creep tests are perceived 
so to provide substantial amount of data concerning influence of structure and shearing strain rate 
on soft clay behaviour and strength. The data will enable: a) determination of yield points 
corresponding to several consolidation conditions and definition of resulting yield surface with 
clearly defined critical state in compression and extension together with intrinsic yield surface 
defining initial anisotrophy level and  initial amount of bonding; b) a clear insight on strain 
softening behaviour and strain rate influence on both shape and size of resulting yield surface, i.e. 
examination of destructuration effect with time and determination of yield surface rotation due to 
straining conditions and due to destructuration process; c) analyse of destructuration process 
during the creep deformations and evolution of strain rate during the undrained creep stage. To 
conclude, defined testing program enables simultaneous analysis of main aspects of soft clay 
behaviour being: anisotropy, bonding and destructuration, creep and time-dependency of stress-
strain response and therefore forms adequate base for defining true time dependency of stress-
strain-strength behaviour of soft clays.  
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Summary Cross-sectional deformations in a wind turbine blade may cause peeling stresses that can result 
in failure of adhesive joints. Therefore, methods are needed to minimize the deformation of the cross-
section. To address this problem, optimal solutions for the layup of materials used in a wind turbine blade 
trailing edge panel is studied.  

FE-results are used to approximate the loading and boundary conditions for the studied panel. A composite 
layup optimization algorithm is implemented based on the plate problem solution. Several glass fiber layup 
solutions are implemented and analyzed in the blade model. The primary conclusion drawn from this study 
confirms significant improvement in the local behavior of the trailing edge panels obtained by rearranging 
the original layup of the material. 

 

 
Figure 1: Sketch of trailing edge panels with out-of-plane deformations. The close ups show failure in the 

trailing edge and debonding of outer skin from the box girder. 

Introduction 

Recent full-scale tests on wind turbine blades performed at Risø DTU, have placed attention on 
failure mechanisms and loading configurations that often are not considered in wind turbine design 
[1]. Some of these recent tests indicate that failure modes can be directly related to large panel 
deformations, see [1] and [2]. Out-of-plane deformations of the panels between the load carrying 
box girder and the trailing edge can cause peeling stresses in the trailing edge connection, and this 
can lead to failure of the trailing edge adhesive joint as shown in Figure 1. Cross-sectional 
deformations will also change the aerofoil profile and may reduce the aerodynamic efficiency of 
the blade. It will therefore be beneficial to minimize this behavior and to keep the profile in the 
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aerodynamic region as close to the design shape as possible.  Therefore, minimizing the out-of-
plane deformation of the cross-sectional panels is needed in order to reduce these problems. 
In this work a composite layup optimization algorithm is developed for sandwich panels. The 
objective is to minimize the out-of-plane deformation of the panel. Solutions for the layup of the 
trailing edge panels are studied in order to demonstrate the potential improvement that can be 
brought to the structural design without additional costs involved. 
 

Method 

The work is based on a finite element model of a 34m long wind turbine blade. The model consists 
of more than 160000 shell and solid elements. The forces are applied, as it is done in the full-scale 
test, in three positions from the root: 13.2m, 18.6m and 24.9m 
Geometrical non-linearities are taken into account in the analysis and the numerical results are 
validated with experimental data confirming the occurrence of the out of plane deformation. See 
an example of comparison in Figure 2. 
A composite layup optimization algorithm is developed for sandwich panels. The objective is to 
minimize the out-of-plane deformation of the panel. The algorithm is based on solutions to the 
plate problem with combined in-plane forces and lateral distributed load, provided partly by 
available literature (see [3],[4],[5] and [6]). The algorithm is then implemented using a searching 
engine based on Levenberg-Marquardt optimization method [7]. Also, a tailored simplified 
algorithm based on Discreet Material Optimization approach was used for comparison [8]. 
The results of non-linear out-of-plane deformations of the trailing edge panels are used to 
approximate the loading and boundary conditions for the panel. Each of the obtained layup 
solutions is implemented in the blade model and non-linear analyses are conducted focusing on 
out-of-plane deformation of the panels. 
 

 

Frame of reference (5m) 

Figure 2: Comparison of experimental and numerical results for the out of plane deformation. 
2a: Deformation distribution obtained with a digital image correlation system. 

2b: FEM results from the corresponding load step in the same region. 

Fig. 2b Fig. 2a 
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Main Results 

The main results from using the optimization algorithm, confirm that a significant improvement of 
the amplitude of the local deformation of the trailing edge panels can be obtained by rearranging 
the original layup of the sandwich used in the panels, see Figure 3. The improvement reached by 
rearrangement of the sandwich layup only was even 46%.  
Designing a wind turbine blade is a trade-off between improved performance and reducing the 
weight of the blades. Thus, increasing the amount of material in the sandwich panels is not a 
particular efficient solution for reducing deformations.  
Since the study demonstrated a promising improvement in the local behaviour of considered 
trailing edge panel in the edgewise loading, the result was implemented in other load cases in 
order to check the panel reliability under different, realistic loads for the blade. Tests in flapwise 
and combined load application directions, revealed no negative influence of the change in the 
considered sandwich panel’s layup. Therefore, it was reasoned that the change in the plies’ 
orientation in sandwich trailing edge panel suggested by the optimization algorithm indeed 
brought an improvement for the local behaviour of the root section of the blade. 
 

 
Figure 3: Comparison of local deformation of pressure side trailing edge panel at highest amplitude for 
optimized layups. The improvement was 82% for 2 layers added at each face, corresponding to almost 

doubling the thickness of the faces. 

 

Conclusions 

In the design and development of future wind turbine blades, there are several goals that the 
designers will try to meet. These goals can be to decrease the weight, to improve the materials and 
manufacturing process, to optimize the aerodynamic efficiency etc.  
Studying wind turbine blades have shown that the out-of-plane deformation of trailing edge panels 
may cause peeling stresses in the adhesive joints in the trailing edge region. The aim of this work 
is to minimize out of plane deformation of the trailing edge panels by applying different solutions 
for layup of the materials used in wind turbine blade trailing edge panels. An optimization tool 
was created to demonstrate the potential improvement that could be brought to the structural 
design without increasing the weight and cost. The tool was prepared on basis of an analytical-
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numerical solution derived for the plate problem in the established loading and boundary 
conditions. 
The numerical study confirmed a significant improvement in the local behaviour of the trailing 
edge panel obtained by rearranging the original layup of this sandwich panel. A local deformation 
decrease by 46% was obtained only by changing the orientation of the layers present in the current 
design. A complete reorganization of the layup (without adding weight to the panel) brought an 
improvement of 65%. 
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Summary New so-called solid-shell finite elements are proposed for the accurate and efficient modelling
of laminated glass. The elements are applied to a simple test example and the results are compared to 3D
elasticity theory.

Introduction

It has become more common today to use glass as a structural material, although there is a lack
of knowledge about the mechanical properties and structural behavior of glass compared to other
structural materials [6]. This may result in erranous predictions of the glass strength and a greater
risk for sudden failures of a structure.
The use of laminated glass instead of single layered glass is one means of increasing safety. Lam-
inated glass consists of two layers of glass bonded with plastic inter layers, normally made of
PVB. The use of laminated glass increases safety in two ways. Firstly, if the structure is properly
designed, it should be allowed for one glass pane to break while the other glass panes can continue
to carry the design loads. Secondly, fractured glass pieces can stick to the PVB layer and thereby
prevent people from getting hurt.
Due to the combination of a very stiff material (glass) and a very soft material (PVB), a laminated
glass pane displays a complicated structural behavior [1]. The introduction of a very soft PVB
layer in a laminated glass unit leads to a structure whose layers are not perfectly bonded. For in-
stance [8] reports on a decrease in stiffness of a laminated glass-PVB plate due to the relatively
soft inter layer, compared to the case of a perfectly bonded plate. Moreover, discontinuous stress
distributions may develop in laminated glass panes subject to certain loads and boundary condi-
tions. The discontinuities are particularly pronounced around holes and edges and it is in these
regions that the largest stress concentrations often occur.
The numerical modelling of laminated glass by means of the finite element method is difficult,
taking the above mentioned features of laminated glass into account. A finite element model with
3D solid elements accurately determines displacements and stress distributions, but the fine mesh
that is required in order to get the desired accuracy of the solution leads to very large models and
great computational effort. Large real world structures with many point fixings are practically im-
possible to analyze using standard computational resources.
One alternative to the use of 3D solid elements is to use shell elements. However, the shell the-
ories that are required in order to accurately determine the stress distributions in laminated glass
structures are complicated.
In this work, a novel so-called solid-shell finite element, the M-RESS element [3], is implemented
and applied to a simple test example. The element is developed for modelling composite struc-
tures with different material properties in each layer. The reason why the solid-shell element is
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appropriate for the modelling of this type of composite structures is that the element only requires
one element layer per material layer, but includes several integration points through thickness.
This feature leads to great savings in terms of computational time, still preserving great accuracy.
The implementation of the element is relatively straight-forward. Further advantages compared to
shell-elements are that the full 3D constitutive laws are maintained, the use of rotational degrees
of freedom is avoided and that contact situations are more easily modelled through the presence of
physical nodes on top and bottom surfaces. The element has proven to be both robust and efficient
through extensive testing.

The M-RESS solid-shell element

M-RESS stands for Modified Reduced (in-plane) integration, Enhanced strain field, Solid-Shell
concept. The element name indicates several methods that have been used in order to make a stan-
dard (low-order) 3D solid element suitable for analysis of shell-like structures.
The geometry of the element is that of a 3D hexahedral solid element with 8 nodes and 3 trans-
lational degrees of freedom per node. A special reduced integration scheme is used in order to
increase the computational efficiency. The reduced integration scheme uses one single element
layer per material layer, but includes multiple integration points through thickness. The use of a
reduced integration scheme leads to a stiffness matrix that is rank deficient and a physical stabi-
lization procedure is thus required [2]. For instance the B-bar method [7] and the ANS method [5]
are used to alleviate locking problems that occur due to the stabilization procedure.
Solid-shell elements are sensitive to several other types of locking phenomena. In the element
formulation, the EAS method [9] plays an important role in preventing various types of locking
problems. The crucial point of the EAS method is to enlarge the strain field,ε, through adding
a new field of enhanced strain parameters,α. The displacement field,u, is interpolated by the
standard FEM strain-displacement matrix,Bu. The enhanced strain parameters’ field is interpo-
lated by the matrixBα. For each element, the enhanced part of the strain field,εα, is added to the
standard strain field:

ε̃ = ε + εα = [B̂u B̂α]
[

u
α

]
= B̃ũ. (1)

For linear applications, use of the EAS method leads to the following system of equations:

[
K̂uu K̂uα

K̂αu K̂αα

](
u
α

)
=

(
f ext.
0

)
. (2)

The hat denotes evaluations in the local reference frame which is built at the centre of a standard
element. Each of the sub-matrices in the above equation could be obtained as:

K̂uu =
∫

Ω
B̂T

uCB̂udΩ (3)

K̂uα =
∫

Ω
B̂T

uCB̂αdΩ

K̂αu =
∫

Ω
B̂T

αCB̂udΩ

K̂αα =
∫

Ω
B̂T

αCB̂αdΩ,
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whereC is the constitutive matrix. Static condensation of (2) leads to:

K̂u+α = K̂uu − K̂uα(K̂αα)−1K̂αu. (4)

The displacement field can be determined as:

u = (K̂u+α)−1f ext. (5)

It can be shown that the number of enhancing variables in the extra strain field is equal to one. The
enhancing interpolation matrix could be written as:

B̄T
1 = [0 0 ζ 0 0 0], (6)

where the bar indicates evaluations in the convective coordinate system which is a function of
position within one element.ζ is the thickness coordinate in the local reference frame. The fact
that only one enhancing parameter is needed contributes further to the computational efficiency of
the element formulation.
Once the strain distribution has been determined through equation (1), the stress distribution is
given by:

σ = Cε̃. (7)

The stresses are evaluated at the integration points. A method based on a quadratic least squares
fit is used in order to extrapolate the stresses to the nodes [4]. This method requires a3 × 3 × 3
Gaussian integration scheme.

Numerical test

The M-RESS element is implemented and tested using a test problem comprising a cantilever
beam of laminated glass subject to a point load at the tip of the beam. The x-y dimensions of
the beam are100 × 10. The laminate consists of two glass layers with a PVB inter layer. The
thickness of the glass layers is 2 and the thickness of the PVB layer is 1. Glass and PVB are set
to be linear elastic materials. The material parameters for glass areE = 78 GPa,ν = 0.23 and
for PVB E = 6 MPa,ν = 0.43. The point load has the size 40000, and is directed in the negative
z-direction. The beam is discretized using50 × 5 elements in the x-y plane, and one element per
layer in the z-direction.
The same structure is implemented in ABAQUS/CAE. The element type is a standard 8-node
linear brick element (C3D8R). The mesh has the same discretization in the x-y plane as the above
implementation and 4 elements per material layer in the z-direction.
Figure 1 shows the distribution of normal stress along the thickness coordinate at a cross section
located at the center of the beam.
The M-RESS element is well capable of reproducing the stress distribution.
In comparison with the implementation in ABAQUS/CAE, the tip deflection in the z-direction and
the normal stress component in the x-direction at a cross section located at the centre of the beam
show small deviations.

Concluding remarks

Results from a simple test example show that the M-RESS element [3] can be used to reproduce
discontinuous stress distributions for laminated glass. Compared to 3D elasticity theory, results
for important structural mechanic variables correspond well. Further testing is required in order to
fully evaluate the performance of the M-RESS element applied to laminated glass.
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Summary The present study deals with numerical modelling of the Wave Star Energy WSE device.
Hereby, linear potential theory is applied via a BEM code on the wave hydrodynamics exciting the floaters.
Time and frequency domain solutions of the floater response are determined for regular and irregular seas.
Furthermore, these results are used to estimate the power and the energy absorbed by a single oscillating
floater. Finally, a latching control strategy is analyzed in open-loop configuration for energy maximization.

Introduction

Recent studies conclude that 0.2% of untapped ocean energy would be sufficient to cover the
entire world consumption needs [9]. During the past 10 years the deployment of devices such as
different buoy concepts, the OWC plants [5] and the Pelamis have given Wave Energy certain
credit. For the Danish case, the Wave Star Energy device is one of the outstanding concepts [2].
This 1:10 multipoint absorber consists of 40 semispherical floaters with 20 units along each side of
a squared 24m x 5m platform. Latter test rig has been grid connected near-shore with rated 5.5 kW
since 2006. Hereby, the sequential floaters oscillation in heave is converted via a Power Take Off
(PTO) hydraulic system into electricity. Similar to the application of pitch and stall regulation in
wind energy turbines [6], the control of such a PTO is primordial. A major advantage nowadays
with respect to the right control implementation is that of being able to predict down to 48h in
advance the next coming waves [7].

Wave Star Energy model

In the next figure, a view of the Nissum Bredning 1:10 scale is presented in storm protection mode.

Figure 1: left: WSE view at the pier (Nissum Bredning, DK); right: WSE Floater back view
On the right figure a single floater is held fixed while water is dropping over the surface. The
system is simplified through an arm around the xz plane. Hence, the floater is assumed in the
following as an abstraction of a SDOF mass spring damper, with an initially free oscillating floater
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mass. The excitation force Fw caused by the waves is given through Fw = Fe + Fh + Fr, where
Fe is the excitation force, Fh the hydrostatic buoyancy force and Fr the radiation force . They are
frequency dependent, and are being determined over the BEM code. Adding an explicit definition
of the excitation force the governing equation of motion becomes

Mz̈ =
∫ t

0
he(t− τ)η(τ)dτ − (

∫ t

0
kr(t− τ)ż(τ)dτ +Ar∞z̈ + khz). (1)

The right hand side of (1) contains first the excitation force as a product over the Dirac impulse
he and the surface elevation η(t). Second and third terms constitute the radiation force due to the
generated waves by the oscillation z(t). It is noted that kr(t) is the radiation impulse function and
Ar∞ is the added mass value of A(ω) due to inertia, when ω 7→ ∞. The fourth term describes
the Archimedes buoyancy force Fh . Latter integral terms are subject to a causal memory effect
coming from the history of the waves in convoluted form over t. The calculation of the integrals
is simplified over the Prony method [4]. The solution of the differential equation is the floater
response z(t) via a Newmark Algorithm and a Runge-Kutta Algorithm for a defined sea state over
η(t) and Fe(t) to the initial conditions z(t0) = 0 m and v(t0) = 0m

s .

Floater response

The floater response is determined with respect to the mean water level regarding the following
considerations. The oceanic constraints are settled through North Sea conditions, that means short
crested, H

L << 1, shallow waters H
D << 1 (water depth ≈ 2m).The Cummins decomposition

of wave forces [3] is used for a unidirectional JONSWAP wave spectra (through the yz plane),
whereas zero friction viscous losses apply.

Furthermore, the input values for the Boundary Element code are a geometry with a semisphere
(symmetry to x,y), the diameter of 1m and a draught D of 0.5 m. Herewith, a quad mesh with 256
panels and 297 points is generated over the wetted surface. For the numerical model the following
parameters are used

• Floater mass: M = 235 kg

• Significant Wave Height Hs : 1.2m

• Wave Period T ranging from 0.1 : 0.27 : 21 s

For the later control implementation, a mechanical Stiffness for the floater arm is defined over
Kc = 10000kg

s2 . Thereby, the mechanical dampingCc is first exerted as a constant(Cc = 10000kg
s )

and then as a non-linear damping (Ccsign(ż)|ż|).

Power absorption

The power absorbed by the oscillating floater is calculated for a resonant situation. The next equa-
tion reflects the solution of Eq.(1) for a complex floater response, where the mechanical resistance
is damped out by the water (Cc = Ch):

H(jω) =
F̂e(ω)η̂(ω)

−(m+mh(ω))ω2 + jω(Cc + Ch(ω)) + kh(ω) + kc
(2)
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Figure 2: non-dimensionalized Absorbed Power for
variable damping ratios kd

Figure 3: Absorbed RMS [W] over floater mass M
and mechanical damping Cc

Fig.(2) shows the non-dimensionalized behavior of absorbed power Pa over the frequency range
ω
ω0

. Therefore, the damping ratio kd is varied linearly in 0.05 steps up to the operating range (blue
curve), corresponding to the regular sea state of latter simulations. The higher the damping ratio,
the faster the power increases up to resonance frequency, where ω

ω0
= 1. For higher frequencies,

this linearization also results in a wider bandwidth (∆ω). In order to quantify the Power absorbed,
the Root mean square RMS is calculated as a function of mass and PTO damping. The contour
plots are shown in Fig. (3)

Maximal Power between 110 W and 165 W is obtained for a mass variation of 70 - 500 kg (x-
axis). The PTO damping on the y-abscissa variates from 2 - 2.05kg

s for exciting loads ranging from
-72.47 N to 226.98 N.

Finally, a latching control system strategy is applied for the linear damping case in regular waves,
that locks and releases the body motion within given intervals. The objective is to tune the velocity
to be in phase with the excitation force, while keeping the resonance condition. Results to this
discrete phase control are presented in the next graphs.

Figure 4: Floater response [m], Instantaneous absorbed Power [W] and available Energy [J])
The simulation results are fixed to a 31s interval after the transient of the floater response vanishes
( nearly 450 s, with δt = 0.24s). As it can be seen in Fig. (4) the position is held constant during
almost 1s latching intervals. The Power absorbed in the second plot compares the uncontrolled case
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(red curve) with the latched strategy (green curve). Same procedure applies on the third subplot,
where the wave energy absorption in J is compared for both cases. It is noted that the position, the
absorbed power and wave energy correlate closely for time intervals with peak performance (e.g.
at t = 457, 459 or 466s).

Conclusion

The study introduces a standarized approach within the field of control algorithms for point ab-
sorbers. In time domain, the single body model performs with increased computational efficiency
in comparison to previous analysis done in FORTRAN. The hydrodynamics coefficients acquisi-
tion is similar to commercial software examples, like WAMIT [1]. The floater response reveals
the characteristic behavior of a second order delay system in control theory. Moreover, the power
absorption ratio on Fig.(2) shows the significance of fitting the operative range of the device to a
narrow bandwidth close to resonance frequency. The parametrization of mass and damping indi-
cate that an increase of the mass might avoid possible floater slamming for maximum power. For
instance a mass of nearly 400 kg and a damping value of nearly 2e4kg

s can still achieve 80-100
W(RMS) per floater (white circle on Fig. (3)). Through the applied control strategy, it can be seen
that the power can be amplified significantly (in the order magnitude of 2-3 times the latched RMS
power). Though, the peaks of nearly 1 kW per floater are quite unrealistic in comparison to the
range calculated over Fig. (3). Despite of the stability analysis done, further improvements may
be achieved through other control strategies that might be applied in order to smoothen the power
output. Furthermore, the extension to the multibody formulation and the inclusion of stochastical
disturbances is of interest for the WSE development [8].
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Summary The paper addresses the theoretical analysis of possibilities to suppress the mechanical energy 
transmission in a pipe at relatively low excitation frequencies by employing a small number of equally 
spaced inertial inclusions. The methodology of boundary integral equations is used to obtain an exact 
solution of the problem in vibrations of a compound pipe. The power flow analysis in a pipe with and 
without equally spaced inertial attachments is performed and the effect of suppression of the energy 
transmission is demonstrated. These results are put in the context of predictions from the classical Floquet 
theory for an infinitely long periodic structure.  

Introduction 

Control of the vibro-acoustic energy transmission in pipes is an important and challenging 
problem in various industrial and civil applications. The ability to carry out a ‘quiet design’ of, for 
example, a heating system in houses is necessary to meet the modern regulations. Alongside, the 
noise and vibration levels in oil- and gas-transporting industrial pipelines should remain within the 
allowable limits. Therefore, various tools of ‘anechoic termination’ have been developed to 
suppress the wave propagation in piping systems. As is shown in recent publications by one of the 
co-authors, the presence of a small number of periodically located continuous inclusions in an 
otherwise homogeneous wave guide (an elastic plate or cylindrical shell) is capable to produce a 
substantial attenuation of the transmitted waves. The methodology of boundary integral equations 
has been developed to analyse the elastic wave propagation in compound thin-walled structures 
with continuous inclusions. The level of suppression of the wave propagation is controlled by a 
number of the ‘periodicity cells’ embedded in a wave guide. An excellent agreement between the 
Floquet theory predictions and the results of the energy transmission analysis has been found in 
the considered semi-infinite compound structures. If a few ‘periodicity cells’ composed as 
suggested by the Floquet theory are embedded in a wave guide and the excitation frequency lies 
within a predicted stop band, then the energy transmission is severely suppressed. In opposite, the 
same excitation of the same structure at a frequency outside any stop band produces a power flow 
virtually unaffected by the non-homogeneity of the wave guide. This conference paper is based on 
the reference [1] and is concerned with periodicity effects produced by inertial attachments (‘block 
masses’) in the framework of same methodology.    

Modelling  

Consider a straight pipe of the circular cross-section, which may be connected at one end (for 
definiteness, the left edge) to a relatively large structure (or it may be free as well) and extended to 
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sufficiently far distance at the other end (for definiteness, the right edge). The boundary conditions 
at the right edge mimic connection to an outer piping system or a radiator. In the situation, when 
these boundary conditions are ‘non-reflecting’, the pipe may be regarded as being extended to 
infinity. The source of the vibro-acoustic energy injected into the pipe is located in the vicinity of 
its left edge. It is modelled as an inertial attachment exposed to given driving forces. These forces 
have components acting in three orthogonal directions and each component is characterised by its 
spectral density. Therefore, all types of waves – longitudinal, torsion and flexural – may be excited 
in this mechanical system. Due to the linearity of its response, the superposition principle is valid 
and the energy transmission at each individual frequency may be considered independently. It also 
allows one to apply the methodology of Green’s functions and boundary integral equations 
method.  
 
There is no interaction between waves of different types in a homogeneous semi-infinite pipe and 
it is a trivial task to calculate the vibro-acoustic power injected by each component of the driving 
force at each frequency. As soon as several inertial attachments are mounted at a pipe, 
longitudinal, torsion and flexural waves become coupled due to the eccentricity of inertial 
attachments. If these attachments are aligned to be in the same plane (the obvious situation is 
masses hanging in the vertical plane), then the wave interaction is ‘factorised’. Specifically, the 
flexural wave motion in the vertical plane is coupled with the axial wave motion and the flexural 
motion in the horizontal plane is coupled with the torsion wave motion. Violation of alignment of 
the inertial attachments into the same plane results in the full coupling of all four types of waves.  
 
The boundary integral equations method is consistently used as a tool of analysis of time harmonic 
response of a pipe with inertial attachments. The following distinctive features of this method 
should be observed:  

• it yields algebraic rather then integral governing equations, and, therefore, it gives the 
exact solution of any one-dimensional problem  

• it is equally applicable for solving problems in the time harmonic response of infinitely 
long uniform structures and of structures composed of continuous segments with different 
properties       

• it is equally applicable to consider travelling waves in infinite/semi-infinite structures and 
standing waves in structures of finite dimensions  

• inasmuch as Green’s matrices are set up with radiation and decay conditions being taken 
into account, the algorithm of solving problems in time-harmonic response by boundary 
integral equations method is inherently stable 

 
The standard tool to study wave propagation in infinite periodic structures is provided by the 
Floquet theory. It is a straightforward matter to use this theory in the framework of the boundary 
integral equations method. Indeed, for a given segment of the pipe, boundary equations are readily 
available. The continuity conditions at the inertial inclusion are formulated for neighbouring 
segments. Since it is assumed that an infinitely long pipe is composed of repeating identical 
segments and inclusions, periodicity conditions with Bloch parameter  are introduced. It is an 
easy task to apply the Floquet theory for analysis of the wave guide properties of a pipe with 
inertial attachments, because its formulation implies the perfect alignment of inclusions and 
facilitates factorization of the problem into analysis of the coupled flexural-axial wave propagation 
in the vertical plane and the coupled flexural-torsion wave propagation in the horizontal plane.  

BK

 
All technical details of the theory very briefly outline here are presented in the reference [1]. 
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Results  

The steel pipe has the following dimensions: mmd 6.33outer = ; mmd 27inner = . Aluminium 
inertial attachments are of height 206 mm, width 100 mm, length 80 mm and eccentricity 142 mm 
each. The results of calculations of insertion losses (IL) are shown in Figure 1. Triangle-mark, 
rhomb-marked and continuous curves are plotted for the cases when three, five and seven 
inclusions are mounted on a pipe. There is a perfect agreement between these results and 
predictions of the Floquet theory, which are illustrated in Figure 2, see thick dotted curves. 
Attenuation is most pronounced exactly in the frequency range of the first stop band, from 160Hz 
to 281Hz as shown in Figure 1 and reproduced in Figure 2. Furthermore, there is the second stop 
band readily predicted by the Floquet theory, see Figure 2 and its zoomed fragment in Figure 3. It 
is relatively narrow and it extends from 448Hz to 455Hz. To gain a better insight into the wave 
interaction phenomena involved in the formation of the frequency stop bands, it is helpful to 
consider two complimentary cases and put the results into the context of those already presented. 
This task is accomplished by inspection into the three sets of curves in Figures 2-3. Curves marked 
by thick dots present Bloch parameters computed for the coupled flexural-longitudinal wave 
motion in an infinite uniform pipe with inertial attachments in a broad frequency range. Triangle-
marked curves are plotted for the simplified model of flexural wave propagation uncoupled from 
the axial wave. Thin dotted line presents Bloch parameter for the opposite situation: the axial wave 
uncoupled from the flexural wave. It is clearly seen that in the relatively low frequency range, 
approximately up to 140 Hz, the eccentricity-induced coupling of flexural and axial waves is very 
weak. However, this interaction plays the key role in formation of the frequency stop bands. In the 
uncoupled formulation (eccentricity is absent), curves presenting propagation constants intersect 
each other at frequencies of 171 Hz and 454 Hz. To avoid these intersections in a coupled 
waveguide, the purely real propagation constants acquire imaginary parts at 161 Hz and at 448 Hz 
and, therefore, the stop bands emerge. It is interesting to see how this narrow stop band emerges in 
Figure 8, when the number of inertial attachments increases. Exactly the same phenomenon has 
been reported for the case of a compound cylindrical shell with and without heavy fluid loading.   
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Figure 1: The effect of number of equally spaced (700 mm spans) masses. 
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Figure 3: Bloch parameters ( 0Im =BK , )  in the second frequency stop band. 0Re >BK

Concluding remarks 

The results reported in this paper demonstrate that the ‘frequency band gap’ effect in an elastic 
pipe may be achieved within a practically meaningful frequency range by use of the small number 
of inertial elements. Obviously, the location of the band gaps is controlled by the parameters of a 
pipe as well as by the parameters of the inertial inclusions. Although it is influenced by the 
impedance conditions at the point, where a pipe is connected to the outer part of a piping system, a 
reasonable ‘first guess’ for the choice of parameters of the inertial inclusions can be made by using 
the classical Floquet theory.  
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Abstract

Transmissions with multiple parallel paths can be used in special applications where high toques are to be trans-
mitted. The uneven load sharing among all paths is an inherent problem for such kinds of transmissions. The paper
presents an analytical model for transmissions with single input and multiple outputs. In the model, the elasticity of
gear teeth and the stiffness of shafts and bearings are considered. The model takes also into account of factors includ-
ing gear geometric errors and operational conditions. Simulation results show primarily the load-sharing difference
due to variations of these factors.

Keywords Multi-parallel-path transmission, load-share gears, multi-body dynamics

1 Introduction
A multi-parallel-path transmission refers to a parallel shaft gearing arrangement in which the input gear meshes with
multiple output gears, or, visa versa, multiple output gears mesh an output gear. Multi-parallel-path transmissions have
some promising features such as high capability of torque transmission, low complexity of mechanism, and compact
in size. They can be used in applications requiring high torque in a compact structure, such as helicopters and wind
turbines.

While multiple-parallel-path transmissions have the potential to effectively transmit power, a fundamental problem
is the uneven load-sharing among all paths. As a matter of fact, the load applied on the transmission cannot be equally
shared by all paths, due to influences including the nonlinearty of the gear teeth, the manufacture and assembly error,
and backlash, etc. The uneven load sharing increases the noise level, reduces the efficiency and more seriously,
shortens significantly the life expectancy. To make the load is equally distributed among gears is a big concern in the
design and development of multi-parallel-path transmissions.

The multi-parallel-transmissions are relatively new compared with traditional transmissions like planetary gear
trains. White proposed to use a transmission with split-path arrangement in helicopters [1, 2]. Krantz developed
a static model to analyze the load sharing of split-path transmissions [3]. A dynamics model was developed using
rigid-body and lumped mass approximation by Dama, etc. [4].

In this paper, a dynamic model of transmission is developed by taking into account of the elasticity of gear teeth
and stiffness of shafts and bearings. Operational conditions and gear geometric errors such as backlash are considered.
Simulations are conducted using the developed model. It is found from the simulation that the material, the geometric
error all contribute to the inequality in load sharing.

2 Dynamics Model
A model of multi-parallel-path transmission system is depicted in Fig. 1. In the system, power/torque from one motor
is transmitted via multiple parallel paths to load. Only two paths are shown in the figure for clarity.

Let φm and θs be the rotations of the motor and the sun gear, while φl,i and θp,i be the rotations of the load the the
ith output gear (planet gear). The motion equation of the system can be developed as

Jmφ̈m + Csm(φ̇m − θ̇s) + Ksm(φm − θs) = Tm (1)

Jsθ̈s + Csm(θ̇s − φ̇m) + Ksm(θs − φm) +
3

n=1

Fb,nRb0 = 0 (2)

Jp,iθ̈p,i + Csl,i(θ̇p,i − φ̇l,i) + Ksl,i(θp,i − φl,i) + Fb,iRb,i = 0, i = 1, 2, 3 (3)

Jl,iφ̈l,i + Csl,i(φ̇l,i − θ̇p,i) + Ksl,i(φl,i − θp,i) = Tl,i (4)

where
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Figure 1: A multi-path transmission system

Jm and Jl,i — moments of inertia of the motor and the equivalent load applied to the i-th planet gear

Rb0 and Rb,i — radii of the base circles of the sun gear and the i-th planet gear

Csm and Ksm — damping factor and the torsional stiffness of the motor shaft

Csl,i and Ksl,i — damping factor and the torsional stiffness of the shaft connected to the i-th planet gear

Fb,i— gear meshing force along the line of action

Tm, Tl,i—motor torque and the load applied at the i-th output

In deriving the system of equations, each gear is considered as a rigid body. The elastic nature of gear teeth is
included in the determination of gear meshing force. This means that the changes of moments of inertia of gears are
neglected in this model. It is noted that there is another approach as reported in [5], where each teeth is treated as a
separated body connected to the gear body by means of springs.

The solving of the system depends on available gear meshing force Fb,i. The force is highly non-linear and
discontinuous , due to the non-uniform gear profile and operational conditions. A method for the determination of the
meshing force is outlined presently. In the method, the gear deflection and the gear meshing stiffness are calculated
separately. The meshing force is then found as the product of gear meshing stiffness and gear deflection.

3 Gear teeth stiffness in gear meshing
The gear meshing stiffness is nonlinear due to facts such as the moving contact point, non-uniform gear tooth profile,
the periodic engagement of tooth-pairs, the variation of contact ratio, etc.

A gear meshing model developed by Cornell [6] is adopted in this work. Cornell’s model takes into account of
three major factors: (1) the tooth deflection when treated as a cantilever beam, (2) the deflection due to the fillet and
foundation, and (3) the local deflection due to surface compliance, or contact stiffness.

More details of this model are omitted due to space limit. An example of gear meshing stiffness is shown in Fig. 2
for a pair of gears with teeth numbers of n1 = 33 and n2 = 18.
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Figure 2: Gear meshing stiffness, (1) stiffness curve for two gear meshing pairs, (2) teeth stiffness for continuous
rotation.
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4 Gear meshing force
The gear meshing force Fb,i is in principle equal to the product of gear meshing stiffness and gear tooth deflection.
However, it is also subjected to the operational conditions, which are closely related to the gear backlash. Let δb denote
the backlash and δθ = Rb0θs − Rb,iθp the rotation difference between two meshing gears. Three conditions can be
classified according the gear meshing

1. Positive working condition, for which δθ < 0. This is a situation in which sun gear drives planet gears.

2. Negative working condition, for which δθ > δb. In such a situation, a planet gear is in contact with the backside
of the driving gear.

3. None-engagement condition, for which 0 < δθ < δb. In this condition, gear teeth from both the driving and
driven gears are separated. Thus no meshing force is generated.

Based on the three operational conditions, the forces generated in gear meshing can be calculated by

Fb(j) =
k(j)δp if δθ < 0
−k(j)δp if δθ > δb

0 if 0 < δθ < δb

(5)

where δp is the compression between meshing teeth. Referring to fig. 3, the compress is calculated by

δp = (p2
x + p2

y)1/2 (6)

with

px = (Rb0θs − Rb,iθp,i) cos αi + xs; py = (Rb0θs − Rbiθp,i) sin αi + ys (7)

where (xs, ys) are displacement of sun gear support or bearing. Moreover, αi is the angle between the line of action
and the selected x axis. Let α0 be the angle from the line passing centers of the first planet gear and the sun gear to
x-axis, then αi is found as

αi = α0 + π/2 ± φ + 2πi/n (8)

where φ is pressure angle and n the number of planet gears which are assumed to be placed symmetrically around the
sun gear. The sign of φ in the right side of Eq. (8) depends on the rotational direction of the sun gear.
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Figure 3: Equivalent gear meshing mechanism

So far, we have formulated the dynamics equations of the multi-parallel-path transmission, which is readily to be
solved with parameters defined.

5 Results
An example is given for a transmission system consisting of one sun gear and three planet gears. The motor charac-
teristics is assumed as ideal one for AC motors. The system starts running from all parts being rest. The maximum
backlash is set to δb = 0.0005mm. For simplicity, the gear meshing stiffness is approximated by square waves, with
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Table 1: Gear Parameters
planet gear sun gear

Number of teeth 35 18
module[mm] 5 5

addendum [mm] 2.75 4.4
pressure angle[deg] 20 20
teeth width [mm] 50 50

MOI [kg.m2] 0.19 0.056

Table 2: Simulation parameters
damping ratios [N/s] Csm = 5.0 × 102; Csl = 1.0 × 103

shaft stiffness[N.m/rad] Ksm = 1.0 × 104; Ksl = 2.0 × 104

starting position [rad] θs = θp1 = 0.0; θp2 = θp3 = 0.0001
payload [N.m] Tl = 100

a lower bound of 2.5 × 107N.m and a upper bound of 4.5 × 107N.m. Other parameters are listed in Tables 1 and
2. Note that the support for the sun gear is assumed to be rigid. The resultant torques at each gear are displayed in
Fig. 4. The rms values of the torque at each planet are found as 171.0, 172.7 and 158.3 N.m for three planet gears,
respectively. They stand for 34.0%, 34.4% and 31.5% of the average torque transmitted through the transmission. The
difference of load sharing in this example is not so significant, but still noticeable.

The load sharing is influenced by many factors. One more simulation is conducted by changing the gear meshing
stiffness. With a lower limit of 2.5 × 108N.m and a upper limit of 4.5 × 108N.m, the load shares for planet gears
become 33.7%, 33.4% and 32.7%. It is noted the simulation cannot reach a conclusion that more rigid gears will get
better load sharing. More simulations and analyses are required.

to
rq

u
e

[N
.m

]

time [ms] time [ms]

to
rq

u
e

[N
.m

]

to
rq

u
e

[N
.m

]

time [ms]

(a) gear 1 (b) gear 2 (c) gear 3

Figure 4: Variations of applied toques on planet gears

6 Conclusions
A multibody dynamics model of multi-parallel-path transmissions is developed. The model takes into account of
factors including the gear deflection, shaft stiffness, gear backlash, and operational conditions. Numerical examples
are included, which show that the model is able to reveal the difference of load-sharing among paths, hence can be
used for further analysis of systems with multi-path transmissions.
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Summary A methodology of analysis of time harmonic motion is described for arbitrarily shaped 
spatial pipe systems consisting of interconnected slender straight and curved segments. It is validated by 
comparison of eigenfrequencies with FEM solutions in ANSYS. Results of the energy flux analysis for a 
system containing five repeated substructures are compared with stopband predictions obtained by use of 
standard Floquet theory. 

Introduction 

Spatial pipe systems are widely used in domestic and industrial applications. A by-product of 
the operational effect of pumps and valves, on such pipe systems, is generation of vibro-acoustic 
energy, which may be transmitted in the structural part of a pipeline over long distances and 
emit undesirable noise, for example, from a distant radiator. Because a spatial pipe system 
typically contains straight and curved slender pipe segments connected via more compact 
details, e.g. fixtures and flanges, it is of practical relevance and theoretical interest to analyze 
structural energy flux in such a compound system. An appropriate methodology for the slender 
straight and curved segments is boundary integral equations method (BIEM). These boundary 
integral equations (BIE) are obtained by use of Greens matrix and reciprocity theorem. For 
modeling of vibration of fixtures and flanges, finite element method (FEM) is suited better, than 
BIEM. In this paper a methodology to integrate finite element (FE) models into BIE is 
proposed. Standard Floquet theory is applied for analysis of stopband behavior in infinitely long 
structures composed of periodic repeated substructures, modeled by this combined method. 

Methodology 

Linear theory of vibration and wave motion in slender elastic rods is used. Green’s matrix is 
derived as a response of an infinitely long element to a unit point excitation. Somigliana’s 
identities are derived for the given element from reciprocity theorem with Green’s matrix being 
used. These identities contain element boundary values, which are displacements, rotations, 
forces and moments at its endpoint cross sections. BIE are derived from Somigliana’s identities 
by letting the observation point move to the boundaries.  
The FE models of the compact segments yield stiffness and mass matrices from a commercially 
available program (in this case ANSYS11 with shell93 elements).These matrices are put into a 
FE sub-segment formulation which fits into the used BIE formulation. The global set of 
algebraic equations contains BIE’s, FE sub-segment equations and boundary/interfacial 
conditions for all segments. All boundary values are hereafter found by solving this global set of 
equations. When the boundary values are known, displacements, rotations, forces and moments 
within each slender pipe segments can be found from Somigliana’s identities. It is therefore 
possible to calculate energy flux in an arbitrary slender pipe cross-section of a semi-infinite 
global pipe system. By setting determinant of the global set of equations equal zero, 
eigenfrequencies of a finite pipe system can also be found. 
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An infinitely long periodic freely vibrating compound structure can be modeled by use of 
standard Floquet theory if it consists of repeated substructures. The application of this theory on 
a single substructure generates an eigenvalue problem, and its solution predicts existence of 
stopbands in dynamical response of the compound structure. A more detailed description of 
modeling straight and curved pipe segments by means of boundary integral equations can be 
found in [3] and [4]. 
Finite element sub-segment formulation 
Stiffness matrix K and mass matrix M are available from the FE program. When time harmonic 
solutions are assumed, following system of equations of motion can be formulated for the sub-
segment 
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Here pc are nodal forces at the connecting cross section surfaces, uc are nodal displacement at 
the same nods and ui are all the inner nodal displacements. Note that there are assumed no 
external forces at inner nodes. The dynamic stiffness matrix S=K-ω2M is split into following 
four sub-matrices: Scc, Sii, Sic and Sci. Equation (1) is reformulated by help of these sub-matrices 
into a system of equations independent of inner displacements ui [1]. 
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Shell displacements at a node k, in the cross section j, are linked to the cross section j’s beam 
node displacements by a transformation matrix Qk. This matrix employs the Bernoulli-Euler 
constrains (plane cross section assumptions) between these two nods, see equation (3). These 
constrains are defined by help of the node k’s local in-plane cross section j coordinates (xk,yk). 
Note that the node k’s shell displacements uk and local beam displacements at the cross section j 
ubj, are given in the same local coordinate system for the cross section j, see Figure 1. 
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Transformation between the global and the local FE sub-segment coordinate system is done by 
help of matrix RD and between the local FE sub-segment and the local cross section j’s 
coordinate system by the transformation matrix RFj, see Figure 1. By help of Qk, RD and RFj it is 
possible to formulate the global transformation matrix for the node k as Tk = RFj

T Qk RFj RD. By 
help of Tk for all the Nj nodes at cross section j it is possible to reformulate equation (2) to a 
system only dependent on beam nodal forces pb and displacements ub , both given in the global 
coordinate system [1]. 
 

 
[ ]

[ ]

[ ]⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=−= −

T
N

T

T
N

T

T
biciicicc

T
b

j

where
TT

TT
TuTSSSSTp

,,0

0,,

1

1
1

1

LL

MOM

LL
 (4)

166



 

Equation (4) can then easily be transformed into a form applicable for the BIE formulation. 
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Global coordinate 
system
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Cross section j’s 
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e2j
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r2
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RD =[r1,r2,r3]T

RFj =[e1j,e2j,e3j]T

 
Figure 1: Sketch of FE sub-segment and its coordinate systems and transformation matrices. Vectors r1, 
r2 and r3 are given in the global coordinate system and e1j, e2j and e3j in the segment coordinate system. 

Results and discussion 

To verify the codes, free vibrations of the compound substructure shown in Figure 2 left, are 
considered. The methodology is checked by comparing eigenfrequencies, obtained by the 
described method and by means of complete FE modelling in Ansys11 using its shell93 
elements. As the next step in verification, Floquet theory is employed to find frequency 
stopbands in an infinite structure consisted of the same sub-structures. Structural energy flux 
through a chain of five repeated substructures is mapped and compared with these Floquet 
theory predictions 
 

 

X

Y Z

 

Figure 2: At left; sketch of the used sub-structure. At right; shell mesh of the used FE sub-segment.  All 
outer pipe diameters is 28mm, wall thickness for all the structures is 2mm. Material data; E=219GPa,           

ν = 0.3 and ρ = 7800 kg/m3. 

As seen from Table 1, the obtained eigenfrequencies are in good agreement. 
 

ANSYS 24.2 28.4 45.6 54.2 74.5 89.5 145.7 158.2 289.8 296.5 400.0 521.0 593.6 800.1 828.6 

BIE 25.0 29.2 44.1 54.9 73.4 90.4 145.4 160.2 293.3 297.2 408.9 523.4 601.3 807.8 837.9 

Table 1: the 15 first eigenfrequencies in Hz obtained, by help of ANSYS11 and its shell93 elements and 
by help of the described combined method, of the structure illustrated on Figure 2 

Accordingly to the Floquet theory [2] periodicity conditions, λa = b are employed, where a and 
b are vectors containing boundary state variables on each side of the substructure and λ = 
exp(iKB). Free wave propagation is therefore impossible and filtering effects is achieved then all 
the solutions for λ fulfil the condition that |λ|≠1. The obtained results are given on Figure 3 left. 
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Figure 3: At left; |λ| for infinitely many reiterations of the substructure illustrated at Figure 2, mapped for 
frequencies between 1 and 955Hz. At right; total energy flux through the five repeated substructures on 

Figure 2 at excitations frequencies from 1 to 955Hz 

Energy flux through a cross section to the right from the chain of five repeated substructures, 
connected at both ends of the chain to a semi-infinite long straight pipe segment, excited at left 
by transversal and axial harmonic forces of 10N and a torque of 1Nm are mapped at Figure 3 
right. As is seen, minima in energy flux at Figure 3 right match the predicted stopbands at 
Figure 3 left.  

Concluding remarks 

A methodology for time harmonic analysis of compound straight and curved pipe segments 
modeled with BIE combined with FE modeling of sub-segments is described. This methodology 
is validated, firstly by comparison of eigenfrequencies of an individual substructure with results 
of its FE analysis, and secondly by mapping of the frequency dependence of the energy flux 
through a structure containing five repeated substructures  to stopband predictions from standard 
Floquet stopband analysis of an infinite chain of the same substructure.   
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Summary Axisymmetric deflections and vibrations of circular cylindrical shells are considered. The 

problem of optimal design of elastic shells is formulated as an optimal control problem. A discrete 

approximation method resorting to the Bellman’s principle is developed. 

Introduction 

Optimization of structures has obviously great theoretical and practical importance. Many valuable 

results have been obtained for shells subjected to various loadings. However, the most of studies 
are concerned with quasistatic loading or vibration due to initial excitation. In the present paper a 

discrete approximation method is suggested for optimization of cylindrical shells with stepped 

cross sections. The shell is subjected to external loading which intensity varies in time. 

Formulation of the problem and basic equations 

Consider axisymmetric deformations of circular cylindrical shells of length 2l. Let the radius of the 

middle surface of the tube be denoted by R.  Assume that the thickness h of the shell is piece wise 

constant. Let jhh =  for ( )1jj a,ax +∈  where n,,0j K=  and jh  stand for fixed constants in the 

case of the direct problem. However, in the case of an optimization problem jh  and ja  are design 

parameters.  

We shall confine our attention to small deformations and small displacements of the circular 

cylindrical shell. In this case the equilibrium equations of a shell element are for ( )1jj a,ax +∈  (see 

Soedel, 2004) 
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In (1) xN  and θN  stand for membrane forces in the axial and circumferential directions, 

respectively, and  xM  is the axial bending moment whereas ρ is the material density. The 

quantities u and w are displacements of the middle surface in the axial and transversal directions, 

respectively, and ( )t,xpp =  stands for the intensity of the distributed transverse loading, t being 

time. 
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Strain components corresponding to assumptions of the present study are (see Soedel, 2004; 

Ventsel and Krauthammer, 2001) 
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The material of shells is pure elastic obeying Hooke’s law. Generalized Hooke’s law can be 

presented as (Reddy, 2007)  
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Here E and ν stand for Young’s and Poisson’s modulus, respectively and jhh =  for ( )1jj a,ax +∈ . 

It easily follows from (2) and (3) that  
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where prims denote the differentiation with respect to x. In the practically important case when 

0N x =  one has  
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According to (1), (4), (5) one obtains for ( )1jj a,ax +∈   
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Eigenfrequencies of vibrating shells 

Consider now the case of dynamic behaviour of shells whereas 0p = . Now we are looking for the 

solution of (6) for  ( )1jj a,ax +∈  in the form  

 ( ) ( ) ( )tTxXt,xw j=  (7)

 

where ( )xX j  and ( )tT  are unknown functions. Substituting (7) in (6) yields for  ( )1jj a,ax +∈   
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Separating variables in (8) one obtains equations  

 ( ) ( ) 0tTtT 2 =+ω&&  (9)
  

and 

 ( ) ( ) 0xXrxX j
4
j

IV

j
=−  (10)

  

where  
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for  ( )1jj a,ax +∈ ; n,,0j K= . In (11) ω stands for the frequency of free vibrations. Evidently, the 

solution of (9) satisfying initial conditions  ( ) ( ) ω0T0T,00T == &  is 

 tsinTT 0 ω=  (12)

The general solution of (9) can be presented as 
  

 ( ) xchrDxshrCxrcosBxrsinAxX jjjjjjjjj +++=  (13)
  

for  ( )1jj a,ax +∈ . 

Discrete approximation of the problem of optimization 

Let us study an optimization problem which consist in the minimization of the cost function ( 0t is 

a fixed time instant) 
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so that at each x and t governing equations (1) and (6) are satisfied and the material volume of the 
shell 
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is fixed. Here jV  stands for the material volume of the segment of the tube of constant thickness 

jh . If the radius of the internal surface of the tube is R, then ( )R2hhV jjj += π . Thicknesses 

jh are assumed to be bounded, e.g.  

 
j1jj0 hhh ≤≤  (16)

   

where j0h  and j1h are the lower and upper bounds, respectively. 

Let us introduce the grid points i
jx at each section of the shell so that [ ]1jj

i
j a,ax +∈  for each 

jq,,1i K=  where  Nq j ∈  for n,,0j K=  and let us define the differential operators 
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for  ( )1jj a,ax +∈ ; n,,0j K= . It is reasonable to use an equidistant grid where  
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and ( ) jj1jj qaa −= +∆ . 
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Making use of (17), (18) one can present (6) as 
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where jq,,0i K= ; n,,0j K=  and 
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The problem (14) - (19) is solved with the aid of Bellman’s optimality principle. Computational 

methods appropriate to  Bellman’s principle and Bellman’s equation are presented by several 

authors. Here we are following the papers by Azmyakov, Lellep and Schmidt (2008) and Nestler 
(2008).  

 Numerical results 

The posed problem was solved by different methods. Nestler and Schmidt solved the control 

problem by  direct methods. Therefore they approximate the original problem by a discrete one. 

The PDEs concerning to admissible controls are solved by means of  FEM-methods. A gradient 

algorithm  is applied to calculate the optimal solution of the discrete problem. The numerical 

solutions are checked to fulfill the first order optimality conditions  derived for the PDE-problem.  
Results of calculations are presented in Fig. 1, 2.  

   

Figure 1: Optimal thickness for p = x/l(1-x/l)  Figure 2: Optimal thickness for p = sin(x/l)  
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Lower Bound Limit State Analysis using the Interior-Point Method
with Spatial Varying Barrier Function
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Summary A method of conducting lower bound Limit State analysis is to apply the interior-point method.
The aim of the paper is to refine the method by reducing the number of optimization variables consider-
ably by eliminating the equilibrium equations a priori. Another new idea is to adapt a spatially varying
barrier function. Significant gains are made regarding computational speed and robustness of the algorithm.

Introduction

Limit State analysis has been used in design for decades e.g. the yield line theory for concrete
slabs, [1]. The Limit State analysis is very well suited for manual methods especially the upper-
bound methods and is therefore used in practical engineering design calculation. Analysis of elas-
tic structures was around 1960 revolutionized by the introduction of computers and the Finite
Element concept. Soon after the first attempts to solve Limit State problems by computers were
implemented, see [2]. However, the methods did not penetrate into practice in the same impressive
way as the linear Finite Element analysis did. The field of Computerized Limit State analysis did
grow and extended the applications from frame and slabs also to include geotechnical problems,
see e.g. [3] and reinforced plates, see e.g. [4]. In the last decade the main developments have
been in the optimization procedure, where the interior point method in various formulations has
increased the performance considerably, see e.g. [5].

The lower-bound formulation results in a non-linear convex optimization problem. The variables
consist of the stress state in the elements and a load parameter. The object function will in this con-
text be the load carrying capacity. The restrictions are linear equilibrium equations and non-linear
convex yield criteria. The most effective solution methods are based on variants of Karmarkar’s
interior point method. In order to have a more efficient implementation two remedies can be used.
The first is to eliminate the equality constrains a priori. This gives a considerably reduction in the
number of variables. The method has in previous studies shown its capability, see [6]. The second
is to deal with the non-linear yield criteria directly and in this respect avoiding the large number of
linear inequalities, see e.g. [7]. Recently, both aspect as been implemented with success in [8]. In
the present work the method is improved in terms of computational efficiency and improvements
on the optimization algorithm. In the interior-point method a barrier function is used to ensure that
the optimization variables stays feasible during the iterative solution process. It is suggested to
use a spatial varying barrier function for which the barrier is different for each stress point. More
details and further improvements on the optimization algorithm is to appear in [9]. In the paper the
method is illustrated by a single example used by other researchers. However, the method is fully
general and can be used for all types of limit state problems. The method is illustrated on a plane
strain problem, but it is fully general.

Computational aspects

A lower bound solution is a stress state where equilibrium is satisfied and the yield criteria are not
violated. The problem is discretized by the traditional Finite Element concept with stress-based
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elements, and in this context only plane strain problems are considered. A triangular element with
9 stress parameters first formulated by Sloan is used, see [3], with the formulation from [10]
adapted. The lower bound optimization problem can be formulated as:

maximize α

subject to Hβs = αR + R0

fj(βj) ≤ 0, j = 1, 2, . . . , p

(1)

whereH is the global flexibility matrix,βs are stress parameters for the whole system,R are
global nodal forces scalable by the load parameter,α, andR0 are constant global nodal forces
independent of the load parameter.fj are non-linear yield criteria evaluated in thejth stress point
with stress parameters,βj , of p in total.

In order to reduce the problem size and improve the numerical stability the equilibrium equations
can be eliminated a priori. The elimination is a standard Gauss elimination which reduces the
number of independent stress parameters fromβs to βf , the so-called free stress parameters. The
relation between the stress variables can be written:

βs = Bβ + c (2)

whereB is a matrix andc is a vector of constant elements relating the free stress variables,
β = [βf α]T , to the entire set of stress variables,βs, which are obtained during the Gauss
elimination process. Note that the load multiplier for the sake of convenience has been included in
the set of stress variables.

The optimization problem, can be solved by the interior-point method. A barrier function,µj , is
added to the objective function in (1), see e.g. [11]. Furthermore, non-negative Slack variables,
s, are added to transform the non-linear inequality constrains into equality constrains. The La-
grangian of the augmented optimization problem can then be formulated:

L(β, s, λ) = bTβ +
p∑

j=1

µj log sj − λT (f(β) + s) (3)

whereb = [0 1]T andf is the vector of the yield criteria, evaluated in all material points,0 is
a vector of zeros andλ is a vector of non-negative Lagrange multipliers.

The idea behind the barrier function is to prevent the gradient search process to end too close to
the boundary. A new idea in the present work is to use a barrier function which differs between the
stress points, thus hopefully increasing the convergence rate of the algorithm. The barrier functions
are chosen as either of the following:

µj = cδk , µj = c [max(sj − smax, 0.1)δ]k (4)

wherec is a scaling factor,δ is a constant controlling the speed by which the barrier is reduced,
andk is the iteration number. The constantc is chosen such that the initial barrier parameter is just
below one, in this workc = 0.95 andδ = 0.7 is chosen.smax is the largest slack variable.
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The Kuhn-Tucker conditions states that the gradient of the Lagrangian must vanish at the optimum.
By differentiation of (3), a non-linear equation system is to be solved for variablesβ, s andλ. This
can be done by Newton’s method, where increments on the variables are found iteratively. During
the iterations, the barrier function, (4), is reduced and the iterations are started from an initial
feasible point, i.e.β = 0, s = e andλ = e. Here,e is a vector of ones. Line search is conducted
in order for the increments to be feasible, i.e. non-negative values ofs andλ and the stress state,β,
must be within the yield criteria. After calculating the increments, they are multiplied by a factor
below one, in this work 0.8 is used. The iterations are stopped when the duality gab between the
slack variables,s, and the lagrange multipliers,λ, becomes sufficiently small.

Numerical example

As a test example the slotted block in plane strain, shown in Figure 1 is considered.

(a) (b)

Figure 1: Slotted block problem (a) and element discretization,N = 4 (b).

The example has been treated by Andersen and Christiansen [12] and by Krabbenhoft and Damk-
ilde [7]. The square block has two notches as shown in Figure 1.(a). The material is governed by
the von Mises yield criterion in plane strain, with a yield stressf0 =

√
3. In Figure 2 is shown

the result of the optimization process in terms of the convergence of the load multiplierα as a
function of the iteration number. Results are shown for bothN = 4, as shown in Figure 1.(b), and
for N = 12. The optimization process has been conducted with both the conventional constant
barrier function and the new spatial varying barrier function in (4). It can be observed, that the
load multiplier converges in all cases towards a value that does not differ much, suggesting that
theN = 12 discretization is adequate in the present case. However this might not be a general
conclusion for other structures. An interesting conclusion is, that the convergence is faster when
using the spatial varying barrier function, suggesting that it is favorable.

Concluding remarks

In this paper the interior-point method is used to conduct Limit State analysis with the lower
bound method for structural problems in plane strain. Focus is on improvements on the optimiza-
tion algorithm in two different aspects. First, the equality constrains are eliminated prior to the
optimization, reducing the number of optimization variables and constrains. Secondly, a spatially
varying barrier function is suggested in order to speed up the convergence of the algorithm. Both
suggestions improve the convergence of the optimization algorithm.

175



0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Iterations

α

 

 

 N=4, constant µ
 N=4, varying µ
 N=12, constant µ
 N=12, varying µ

Figure 2: Convergence of load multiplier, computed forN = 4 andN = 12 as shown in Figure 1.b. Both a
constant and a spatial varying barrier function is considered.
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Summary The main idea of the paper is to introduce advanced numerical methods for conceptual design of 
reinforcement for reinforced concrete structures. These methods will be based on optimization techniques providing an 
optimal placement of the reinforcement inside an arbitrary concrete domain. 

 
Introduction 
Typical concrete mixes have high resistance to compressive stresses. However, due to its quasi-brittle nature, 
any appreciable tension (e.g. due to bending) will cause fractures in the cementitous binding material 
resulting in cracking and separation of the concrete. Therefore concrete is typically reinforced by steel bars 
that have high strength in tension. Usually the reinforcing steel bars are located in the regions where tension 
is expected; therefore reinforced concrete (RC) can be considered a composite material. 
Modeling of concrete is based on the fact that the compression and tension failure criteria are different. 
Therefore the failure criteria usually include combinations of different yield surfaces. The criteria are usually 
based on the Mohr-Coulomb criterion or the Drucker-Prager criterion in the compression region and the 
Rankine criterion in the tension region [4, 7]. Figure 1 [7] shows the combined yield surface between the 
Drucker-Prager criterion in the compression region, and the Rankine criterion in the tension region. 
 

 

Figure 1. Combined yield surface

The classical Topology Optimization problem finds the optimal distribution of the isotropic material that 
gives the stiffest structure for a given set of boundary conditions and a given set of loads. Using certain 
interpolation schemes [3] the optimal distribution of 2 different materials can also be found. This procedure 
has been implemented for linear elastic isotropic materials. The typical result of this scheme is a composite 
“sandwich” structure with soft core and stiff facesheets (see Figure 2). Black color means stiffer material, 
white color – softer material. However, the “sandwich” structure does not fit the Reinforced Concrete 
elements requirements. 

�

Figure 2. Topology optimization – 2 different isotropic materials (not published)
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Layout of abstract 
 
Material Interpolation 
In the proposed paper, an interpolation scheme between two nonlinear materials (concrete and steel) with 
different properties and failure criteria is introduced. Concrete is introduced as an elasto-plastic material 
when the yield condition is based on the Drucker-Prager criteria (different in compression and tension 
region) described by 

     
CKJI ≤+ 21α                                                                     (1) 

And steel is introduced as an elasto-plastic material when the yield condition is based on the von Misses 
criteria described by 

                3/2 ysJ σ≤                                                                       (2) 

When 
1I is a first stress invariant and 2J is a second deviator invariant. ysσ - is a yield stress of steel and Kc – is 

a function of yield compression stress of concrete. 
Graphical introduction of von Misses criteria and Drucker-Prager criteria in principal stress space. 

(a)

 

(b) 

 

Figure 3.  (a) von Mises             (b) Drucker-Prager 

 
The final result of the optimization problem will be the optimal distribution of a steel inside a concrete 
domain. Therefore, the design variables of the optimization problem, densities x changing from 0 to1, will 
indicate which material is used including its material properties and yield surface. The interpolation scheme 
between the materials is offered as follows: 
The modulus of elasticity  

( )11 1 p

c

p

s xExEE −+=                                                               (3) 

And the yield criteria 
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For example, if x = 0 – we have a concrete with the Drucker-Prager yield surface and if x=1 – steel with the 
von Mises yield surface. The intermediate densities introduce equivalent hybrid artificial material, that 
hopefully disappears at the end of the optimal design process, when 0-1 design (or close to this) is achieved. 
For illustration, we introduce a simply supported 2D plane-stress beam under the self weight. Figure 4 shows 
effective plastic strain of the beam for 3 cases: x=0, x=1.0 and x=0.5. 
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                  (a) 

                  (b) 

                   (c) 

Figure 4. Effective plastic strain (a) x=1.0 – steel no plasticity, (b) x=0.0 and (c) x=0.5 

 

 

Optimization 

General definition of the optimization problem is: 

Nexx

Vx

ts

ee

N

e
e

ijij

,...,2,110

..

5.0min

min,

1

=≤≤<

≤

Ω∂

∑

∫

=

Ω

εσ

 

When the material behavior is according to eqs. (4) and (5). The system of nonlinear static equations is 
solved using an iterative Newton-Raphson method.

 

 

Example 1 

Given a simply supported beam and loaded by an equally distributed loading. The final design is introduced 
in Figure 5, when the volume fraction V= 0.2. Steel, described by a black colour, is located where tension 
stresses are expected. 
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Figure 5. Simply supported beam. 
 

Example 2 

Given a beam supported by 3 restrains (2 spans) and loaded by 2 concentrated loads at the middle of each 
span (see Figure 6). The final design is introduced in Figure 6, when the volume fraction V= 0.2. Steel, 
described by a black colour, is located where tension stresses are expected. 

Figure 6. Simply supported beam. 
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Summary: This paper presents a finite element analysis which is validated against laboratory 
tests of eight beams strengthened with externally bonded carbon fibre reinforced plastic 
(CFRP) plates. The commercial numerical analysis tool Abaqus was used. Cohesive elements 
were used to model traction and shear behaviour of the concrete/CFRP interface. The results 
are presented and discussed in terms of loading capacity. The results obtained from the finite 
element analysis show good agreement with the experimental results. 

1  Introduction  

The use of CFRP to repair and rehabilitate damaged steel and concrete structures 
has become increasingly attractive due to the well-known good mechanical properties 
of this material.  

Researchers have, however, observed new types of failures that can reduce the 
performance of CFRP when used in retrofitting structures [3]. These failures are often 
brittle, and include debonding of concrete layers, delamination of CFRP and shear 
collapse. Brittle debonding has particularly been observed at laminate ends, due to 
high concentration of shear stresses at discontinuities, where shear cracks in the 
concrete are likely to develop. Thus, it is necessary to study and understand the 
behaviour of CFRP strengthened reinforced concrete members, including those 
failures.

While experimental methods of investigation are extremely useful in obtaining 
information about the composite behaviour of CFRP and reinforced concrete, the use 
of numerical models helps in developing a good understanding of the behaviour at 
lower costs. In most previous FE studies the interaction between of the 
Concrete/CFRP interface was neglected by either assuming perfect bond or using 
simple solid element for the interface [2, 5, and 7]. This can affect the accuracy of the 
results obtained from the FE model.  

The subject of this work is to model the behaviour of reinforced concrete beams 
retrofitted using CFRP by the FE model, using a cohesive model for the bond 
between CFRP and concrete, and compare this with a perfect bond model.  

2  Experimental work 

Eight beams studied by Obaidat [6] were used to validate the finite element model 
in this paper. The beams were identical in geometry and tested in four point bending, 
Fig. 1. Two beams were tested as control beams and the rest were tested until cracks 
started to propagate and then the beams were retrofitted with various CFRP 
strengthening designs, see Fig. 2, and retested until debonding occurred. 
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P P

Figure 1: Geometry, arrangement of reinforcement and loading of the tested beams. 

            (a) RB1                                           (b) RB2                                          (c) RB3 

Figure 2: Length of CFRP laminates in test series RB1, RB2, and RB3. 

3  Finite element analysis 

The simply supported beam in four point bending experimentally studied by 
Obaidat [6], has been numerically analysed with nonlinear finite-element model by 
using Abaqus [4].  

A plastic damage model was used to represent the concrete in compression and in 
tension. Two different models were used to represent the interface between concrete 
and CFRP. In the first model the interface was modelled as a perfect bond, as in 
previous work by Obaidat et al. [7], while in the second it was modelled using a 
cohesive zone model. The CFRP composite was assumed to be a linear elastic 
isotropic material and the constitutive relation of steel was an elastic-plastic model. In 
addition, perfect bond between steel and concrete was assumed. The material 
properties adopted for concrete and steel were obtained from the work by Obaidat [6], 
[1] and literature.  

4-node linear tetrahedral elements were used for the reinforced concrete, 
reinforcement, steel plates at supports and under the load, and CFRP in this model. 8-
node 3-D cohesive elements were used to model the interface layer. One quarter of 
the specimen was modelled, as shown in Fig. 3(a), by taking advantage of the double 
symmetry of the beam. The FE mesh is shown in Fig. 3(b). 

(a) (b)
Figure 3: Geometry and elements used in the numerical analysis: (a) By use of symmetry, one 

quarter of the beam was modelled, (b) Finite element mesh of quarter of beam.
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4  Results 

Load-deflection curves obtained for control beam and retrofitted beams from 
experiments and FEM analysis are shown in Fig. 4. There is good agreement between 
FEM simulations and experimental results for the control beam, Fig. 4(a). The FEM 
analysis predicts the beam to be slightly stiffer and stronger, probably because of the 
assumed perfect bond between concrete and reinforcement. 

When comparing Fig. 4 (b-d) it can be seen that the length of the CFRP 
significantly influences the behaviour of the beam. The longer CFRP, the higher is the 
maximum load. 

For the retrofitted beams, the results from the two FEM models are also slightly 
stiffer than the experimental results and close to identical during the first part of the 
curve, Fig. 4 (b–d). After cracks start appearing, the perfect bond model increasingly 
overestimates the stiffness of the beam as in the previous work by Obaidat et al. [7]. 
This is due to the fact that the perfect bond does not take the shear strain between the 
concrete and CFRP into consideration.  

The perfect bond models also fail to capture the softening of the beam, a fact that 
is most obvious for RB1. Debonding failure, which occurred in the experiments, is 
not possible with the perfect bond model. Thus, it is possible to increase the load 
further until another mode of failure occurs, in this case shear flexural crack failure or 
CFRP rupture. The cohesive bond model show good agreement with the experimental 
results.

(a) Control Beam (b) RB1

(c) RB2 (d) RB3

Figure 4: Load-deflection curves of beams, obtained by experiments and finite element model. 
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5  Conclusions 

The finite element results show good agreement with the experimental results. A 
cohesive model was used to describe the interfacial behaviour between CFRP and 
concrete. The following conclusions can be drawn from this study:  

The behaviour of the retrofitted beams is significantly influenced by the length of 
CFRP. This is clear in experimental results as well as in numerical analysis. The 
ultimate load increases with the length of the CFRP. 
The perfect bond model failed to capture the softening of the beams. 
The cohesive model proved able to represent the bond behaviour between CFRP 
and concrete. The predicted ultimate loads and the debonding failure mode were in 
excellent correlation with the experimental work. 
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Summary The nanoindentation response of empty viral capsids is modelled using three dimensional finite 

element  analysis. Simulation with two different geometries, spherical and icosahedral, are performed using 

the finite element code Abaqus. The capsids are modeled as non-linear Hookean elastic and both small and 

large deformation analysis is performed. Force-indentation curves for three different viral capsids are 

directly compared to experimental data and the Young’s modulus is determined by calibrating the force-

indentation curve to data from atomic force microscopy (AFM) experiments.  Predictions are made for two 

additional viral capsids. The results from the simulation showed a good agreement with AFM data, see [1].  

Introduction 

Viruses are the simplest biological structures. They have no metabolism and their only function is 

to reproduce them self by infecting cells. Viruses consist of DNA strings inside a shell called 

capsid. The viral capsid protects the DNA inside and it is built of protein chains in an ordered 

cyclic structures. Modelling the mechanical response of viral capsids has become a very active 

research area recently. Experimental results in combination with simulations have created the 

necessary conditions for better understanding the complex behaviour of biological systems such as 

viral capsids. Almost all capsids of spherical viruses have the symmetry of an icosahedron. 

Capsids of different sizes can be assembled from varying numbers of protein subunits. The 

complex structure of the capsid leads to mechanical properties which are not clearly understood 

and described in detail. Our knowledge of the mechanical behaviour of capsids is based almost 

entirely on experimental data gathered by nanoindentation probing performed using atomic force 

microscopy (AFM). AFM nanoindentation studies of empty viral capsids reveal unique 

mechanical properties for different classes of viruses which can, in turn, be directly correlated to 

the virion’s life cycle. Besides from high resolution imaging of viral particles in liquid, as the 

nanometer size tip of the cantilever scans the specimen surface, it can apply force on single viral 

particle in order to obtain real-time force-distance curves. Probing with an AFM tip on phage 

capsids generally results in two outcomes: reversible deformations usually observed when force 

below a certain value is applied, and irreversible rupturing when the applied force is above that 

value. This enables us to obtain different parameters describing capsid mechanical properties. i) 

Information about the capsid’s mechanical limits and strength of capsomer-capsomer bonds is 

provided by the threshold force beyond which the interactions between capsid proteins collapse, 

referred to as ‘breaking force’ and also by the maximum indentation distance before the capsid 

breaks. ii) due to the nearly linear response to deformation observed for some viruses, the spring 

constant can be obtained by linear fit to the force-distance curves. However, capsid response to 

deformation is not allways linear. iii) Using more general continuum model and finite element 

simulation, Young’s modulus, E, can also be obtained. The spring constant and Young’s modulus 

are measures of the capsid’s elasticity, and while k is dependent on the material’s geometry, E is 
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an intrinsic geometry-independent material property. However, as will be shown in this work, 

calibrating the Young’s modulus value will depend strongly on the choice of the model used to 

describe the AFM data. The nanoindentation response of empty viral capsids is simulated using 

three dimensional finite element analysis. Simulation with two different geometries, spherical and 

icosahedral, are performed using the finite element code Abaqus. The capsids are modelled as non-

linear Hookean elastic and both small and large deformation analysis is performed. The Young’s 

modulus is determined by calibrating the force-indentation curve to data from AFM experiments. 

In particular, it is shown that capsids with dominantly spherical shape exhibit nearly linear 

relationship between force and indentation, which has been experimentally observed on the viral 

shell studies so far. However, we predict that capsids with significant faceting and thus more 

pronounced icosahedral shape will exhibit rather non-linear deformation behaviour. 

Model description   

The classical linear Hookean model for infinitesimal strain linear elasticity relates linearly the 

Cauchy stress T to the linearized strain tensor as (tr ) 2    T ε 1 ε , where   and   are the 

Lame constants and, ( ) / 2  Tε H H , is linearized infinitesimal or small strain tensor. The 

nonlinear Hookean model is obtained from the same relation by replacing the infinitesimal strain 

with the logarithmic strain, 
ln ln(tr ) 2    T ε 1 ε , where lnε is the logarithmic strain defined as 

ln ln TFFε  . H and F are the displacement and deformation gradient respectively. 

Experimental results have shown that the deformation of the capsids is completely recoverable for 

small indentations below capsid failure, i.e. an elastic material model can be chosen to represent 

the capsids. The simplest continuum material model is the Hookean elastic model described by 

two material parameters. In the following we choose to use the Young’s modulus, E, and the 

Poisson’s ratio, . The Young’s modulus, E is expressed in terms of   and   by 

(3 2 )/2( )E        . 

 

Figure 1: a) Force indentation curves for linear and non-linear models.  b) Sensitivity to Poisson’s ratio. 

Fig.1 shows the results obtained by using linear and non-linear Hookean models of bacteriophage 

λ viral capsid deformation. As is seen, within a small range of deformation, up to 1 nm, it could be 

acceptable to use a linear Hookean model, but the experimental results from AFM indentation test 

on phage λ show that the capsid was deformed about 6 nm in height, before capsid rupture, which 

is more than 3 times larger than the thickness of the capsid (~1.8 nm). Even more complex elastic 

models could be used, but the response obtained is similar to that using the non-linear Hookean 

model and it is more significant to use large deformation formulation i.e., non-linear analyses, 

rather than the particular elastic material chosen. Therefore in this work the non-linear Hookean 

model is chosen since it is the simplest one, while providing sufficiently accurate results. A 

parametric study is performed in order to investigate how different values affect the shape of the 
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curve. The capsid is assumed to be slightly compressible and values of 0.3 or 0.4 are reasonable to 

use. In this study all the following simulations are performed with a Poisson ratio of 0.3.  Two 

different geometries are investigated, namely, the sphere and the icosahedron. For the icosahedral 

models, two different positions of the capsid are considered, i.e., one pushing along a 5-fold 

symmetry axis and the other, pushing along a threefold symmetry axis (Fig. 2 b,c). The three 

geometrical models investigated here show different deformation characteristics. The spherical 

model is characterized by strong local deformation, (Fig. 2a). When a local deformation is present, 

the region bellow the tip is subjected to considerable deformation, whereas the rest of the capsid 

remains almost not deformed. The load transfer mechanics in this case is dominated by in plane 

stretching in the region bellow the tip and results in a nonlinear force-indentation curve. For the 

icosahedral model with pushing along a 3-fold symmetry axis, the deformation is initially local but 

transforms into a global. Initially the load transfer mechanics is dominated by in plane stretching 

and we have only local deformation, but eventually transverse bending becomes more significant 

resulting in a global deformation of the capsid. The last icosahedral model, loading along the 5-

fold symmetry axis, has a somewhat different deformation behaviour compared to the two models 

above. This geometry exhibits almost no local initial deformation. The whole capsid is deformed 

already from the beginning and the load transfer mechanics is dominated by transverse bending. 

This is also clearly seen from the force-indentation curve (Fig. 3b), which starts with a linear 

regime representing the global deformation and a sudden increase in stiffness, where the local 

deformation starts to affect the curve. This sharp transition point from global to local deformation 

is not observed in the two cases described above.   

                                    

Figure 2: Three different models. 

Results and discussion 

The experimental AFM data from (2) are used to calibrate the models. Phage λ has an icosahedral 

capsid. The mature protein shell has a wall thickness of about 1.8 nm and an outer diameter of 63 

nm. The breaking force for an empty capsid is about 0.8 nN for an indentation of ~6 nm. The 

typical curve presenting the experimental data from an AFM indentation test shows the 

deformation of the cantilever plus the deformation of the capsid (Fig.3). The deformation of the 

cantilever, however, is much larger in comparison to the indentation of the capsid. Since the 

cantilever deformation is linear while the capsid deformation is very small, and both indentation 

curves are superimposed in the standard data representation, the capsid deformation appears to be 

linear as well, while that is not necessarily the case. The results in Fig. 4 shows  capsid 

deformation data only by subtracting cantilever deformation curve from the deformation curve for 

the capsid and cantilever combined.   Fig. 4b shows the results from the spherical capsid model. 

Simulations with three different values of the Young’s modulus are directly compared to the 
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experimental data, in an attempt to match the maximum indentation point before capsid failure. 

Results from the simulation of the indentation of the capsid as an icosahedron are presented in Fig. 

4b.The simulation pushing along the fivefold symmetry axis is not very realistic since in the 

experiment, the viral capsid is attached to the tail that usually lies in a plane with the capsid on the 

glass surface (as explained above). The tail is attached to one vertex which implies that the capsid 

cannot be laying in that position on a surface. In the most stable position for the phage capsid, it is 

pushed by the cantilever tip along the 3-fold symmetry. The obtained value of the Young’s 

modulus differs considerably between the models with these spherical versus icosahedral 

geometries. The two E values of 3 GPa for the sphere model and 0.65 GPa for the icosahedron can 

be considered as upper and lower limits. 

 

                                  

                               Figure 3: Typical results obtained from AFM. 

      

                  
                                                                                  

 

                           
 

 

 

Figure 4: Nanoindentation response for  phage. Simulations and experimental results. 
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Semi-Continuum Modeling of a Graphene Lattice Based on
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Summary The present contribution deals with the modeling of the graphene lattice. The importance of the
graphene membrane modeling is to understand the lattice behavior. In this work, we use Tersoff-Brenner
(TB) potential explanation for the atomic interactions. The resulting static lattice behavior of the graphene
Representative Lattice Unit (RLU) is presented and compared with the �rst order CBN model for an RLU
subjected to tension .In addition, anisotropic behavior of the lattice is discussed with respect to the lattice
chirality.

Introduction
The graphene membranes have signi�cant electrical and mechanical properties used for nanotech-
nology. Resonators, force/mass sensors and nanoswitches are some important examples. Consider-
ing graphene membrane as a homogenized graphene monolayer on the macroscopic structure [1],
may not be accurate enough to model the molecular deformations. Because of the application for
nanotechnology, relaxation of the Carbon atoms of the RUL are playing a signi�cant role in whole
the membrane con�guration. Tersoff-Brenner (TB) atomic potential description is well stabilished
for the modeling of carbonic structures in Molecular Dynamics (MD) and bigger scale simula-
tion techniques. In the present paper, we focus on the formulation of the TB atomistic interaction
as a multiscale problem. In fact the microscale consists of the atomistic lattice dictated by the
TB potential subjected to the proper boundary conditions to allow for the angular dependencies.
The resulting behavior is studied with respect to tension-compression tests for different unit cells.
Considering the balance between computational cost, convergence of the microscopic solutions
and desired accuracy of the homogenized behavior an appropriate RUL has been selected.The re-
sulting anisotropic behavior of the lattice is completely explained as an effect due to chirality in
the lattice con�guration.

Macro-Micro homogenization
The principle of separation of scales is considered with respect to the membrane plane, meaning
that the contribution from the macroscopic placement to the microscopic placement �eld within
the underlying RUL is obtained by formulated it in terms of the total placement xj and the relative
atom-to-atom placement rij . Subindex of j refers to the nearest neighbor atoms of i, while k refers
to the next nearest neighbors of atom i. As to notation, to distinguish microscopic and macroscopic
quantities, we shall denote the macroscopic �elds by a superimposed bar, e.g.•̄.

rij =
2∑

α=1

ϕ̄,α(Ḡα · Rij) + rfij where rfij = ufj − ufi (1)

According to equation (1), rij is due to the of CBN �rst order mapping of a vector from atom i to
its nearest neighbor atom j plus the microscopic �uctuation of the vector due to TB explanation.
We also obtain the total placement of xj as

xj = f̄ · (Xi + Rij) + ufj (2)
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where f̄ = ḡα ⊗ Ḡα is the in-plane deformation gradient, xi is the initial coordinate of atom i and
Rij is the initial bond length between atoms i and j. ufi is introduced as microscopic displacement
of atom j. The �uctuation displacements describe the inter-lattice relaxation and it is involved in
the argument of the stored energy as according to the non-local TB potential [2] for the Carbon-
Carbon bonds. The potential energy E for the entire lattice is de�ned by the summation over the
bonds.

ψ =
N∑

i=1

3∑

j=1

ψij with ψij = ψRij − ψAij B̄ij (3)

where ψRijj and ψAij are terms of potential energy for pairwise interaction, B̄ij is a term of
energy due to bond angle variation. N describes the total number of atoms in the lattice.It is also
of signi�cant for �nite element method to derive the stiffness properties associated with the atomic
motions δxi.

Coupling of the micro and micro �elds
In order to assess the homogenization of the stress resultants, The area region C0i is introduced
where the microscale �uctuation as de�ned in Eq.(2) is levaluated .This area region C0i de�ned
by the cut off radius Rm as shown in Figure 1. It is also illustrates an inner and an outer region
used for the proper representation of boundary conditions for the microscopic �uctuation.

Figure 1: Representative graphene unit lattice C0 de�ned by cut off radius RM .Filled particles
corresponds to particles allowed to relaxed within the lattice whereas hollow particles follows the
CBN rule approximation.

In the example RUL in Figure 1, we have 32 number of atoms for the current cut off radius Rm.
Please note that the the hollow particles denote particles of the boundary of the lattice where the
Dirichlet boundary condition, i.e. ufi = 0, is assumed to hold for the particle �uctuation. There
is also an auxiliary outer set of particles outside the cutoff region, which are needed in order
to properly evaluate the angular interaction forces of the TB potential in conjunction with the
Dirichlet boundary condition.
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Model evaluation and results
We present results for the lattice shown in Figure 1 based on the TB potential for graphene. To
validate of our model we compute basic lattice deformation modes ( extension and compression
)numerically due to a tensile and a compressive loading. Due to the lattice structure graphene has
anisotropic behavior. This means, the deformation of the material is sensitive to the orientation
of the lattice relative to the loading direction. This well-known phenomenon is identi�ed in the
atomic interactions and their con�gurations of the lattice. Because of the sp2 periodic aromatic
structure of the graphene, the structure behaves dependently due to different angles of external
applied forces in tension/compression test. Literally, this angular dependency comes from the
B̄ij in equation 3 . Chirality in the graphene structure can be divided in Armchair and Zigzag
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Figure 2: Tension comparison of zigzag and armchair graphene con�guration for relaxed and not-
relaxed models.
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Figure 3: Compression comparison of zigzag and armchair graphene con�guration for relaxed and
not-relaxed models.

con�gurations. Each con�guration has speci�c behavior in tensile test. We have presented relaxed
and non-relaxed tension and compression tests for different sizes of RUL. The relaxed test is based
on inter-lattice �uctuation; however, in non-relaxed model [3], we have used the �rst order CBN.
In Figures 2 and 3, the comparison between these tests are illustrated. According to the �gures
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, the relaxed method shows lower level of energy and it reveals the error range of simple �rst
order CBN modeling [3]. In addition, anisotropic property of graphene is fairly explainable in two
different chiral con�guration of the graphene. Moreover based on our results, we introduce the
optimum size of the RUL.The chosen RUL is compensated by the optimum of the computation
cost and application accuracy.
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Summary First, three models of a wind turbine gearbox is presented, each model with a different number
of flexible shafts. The vibration of one bearing is analyzed,and the results are compared. It is observed
that particularly the modelling approach of the shaft wherethe bearing is located has great influence on the
vibrations.

Introduction

The numerical analysis plays a key role in the design process of wind turbine gearboxes; and the
trend is going towards system simulation, where the entire wind turbine is modelled. With today’s
computational capacity it is possible to model all aspects of wind turbines: Aerodynamics, me-
chanics, electronics and control systems in the same simulation. Depending onthe focus of the
modelling, more effort can be put into some of the aspects. In this paper the significance of mod-
elling the gearbox shafts as either flexible or rigid is investigated. For this purpose several models
of the same gearbox are developed in the multi body simulation software Adams/View; each model
with a different level of detail. In wind turbine gearboxes a major issue is bearing failure, therefore
good modelling approaches are needed to foresee the fatigue loads on thebearings.

Model of the Gearbox

The gearbox considered originates from a 750kW wind turbine. Only the intermediate and the
high speed stage of the gearbox are modelled, hence, the planetary stageis not explained in this
study. Thereby three shafts and two gear pairs are modelled. Details of thegears are listed in table
1. The components of the gearbox model are shown in figure 1 along with thenaming convention.
The housing is hidden.

Gear pair Teeth on pinion Teeth on gear ratio
Intermediate 23 82 3.5652
High speed 22 88 4.0000

Table 1: Details of the gear stages.

Bearings

The bearings are modelled by linear springs and dampers. The stiffness of each bearing is de-
termined using finite element analysis and is linearized around a working point.There are three
bearings on each shaft; one cylindrical roller bearing in the upwind end of the shafts and a pair of
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Generator

Rigid shaft
High speed shaft

Bearing HS-BC

Bearing IMS-BC
Intermediate speed pinion

Low speed shaft
Bearing LS-BC

Intermediate speed gear

High speed pinion

Bearing HS-A

Bearing IMS-A

Intermediate speed shaft

High speed gear

Bearing LS-A

Figure 1: Components of the gearbox model.

tapered roller bearings in the downwind end. In the model each pair of tapered roller bearings are
combined into one bushing. This simplifies the stiffness model because the bearing pair has equal
stiffness in axial direction independent of the sign of the displacement. A pair of tapered roller
bearings is able to take up some bending moment of the shaft which they are located on; this is
accounted for by including torsional stiffness in the bushing model.

Loads

The rotor of the generator is modelled to avoid rotational oscillations of the highspeed shaft of the
gearbox. The nominal torque from the generator is applied as a constanttorque. The mass moment
of inertia isJ = 17[kg m2] [2].

The power is transferred from the high speed shaft to the generator through a rigid shaft that
is connected in both ends by bushings. The bushings allow some flexibility anddamping to be
introduced to the connections. The generator influences the gearbox bya rotational motion.

To keep the prescribed rotational speed of the low speed shaft a PI regulator is employed that
controls the drive torque on the low speed shaft based on the deviation ofthe prescribed and actual
rotational speed.

Flexible bodies.

Different models of the gearbox have been created with either no, one orall shafts flexible. The
way flexible bodies are handled in Adams/View is by introducing shape functions, a set of eigen-
vectors that is scaled to approximate the deformation of the flexible body. Theactual implementa-
tion of flexible bodies in Adams/View relies on the Craig-Bamptom method [1]. Theflexible shafts
are modelled with FEA in order to determine the modes. The shafts are meshed withrelatively few
10 node tetrahedron elements because only the overall stiffness of the shafts is of interest.

Simulation settings

For all simulations the HHT solver in Adams is used with a maximum step size of5 · 10−5 and an
error tolerance of10−7. The HHT is a predictor-corrector solver for differential equations.

Comparation parameters

To analyze the changes in response due to implementation of flexible shafts a Campbell diagram
is created for each model. The data for the Campbell diagram comes from simulations where the
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Figure 2: Campbell plot, rigid shafts. Figure 3: Campbell plot, flexible shafts.

gearbox is ramped up from stand still to speed at rated power production during 10s. Afterwards
the speed is ramped down again during10s. During all simulations, the gearbox is loaded at the
generator by the torque corresponding to rated power production.

The signal considered in the following is the horizontal acceleration of the high speed shaft
measured at the centre of the downwind bushing. The signal is measured by a virtual sensor in
Adams/View.

The Campbell diagram of the model with rigid shafts shows narrow bands offrequencies that
are excited (figure 2). If figures 2 and 3 are compared, it is observedthat the lower frequencies
are not present in 3. To investigate the possible origin of the frequenciespresent in the Campbell
diagrams, the mesh frequencies are investigated.
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Figure 4: Harmonics of the gear meshes. Dark blue: Harmonicsof the intermediate speed stage. Light blue:
Harmonics of the high speed stage.
The mesh frequencies of the gears can be calculated if the rotational speeds of the shafts are
known. The dependency of the gear mesh frequency of the i’th gear and the i’th shaft is

fmesh,i = fshaft,iZgear,i (1)

WhereZgear,i is the number of teeth on the gear andfshaft,i is the rotational speed of the shaft
measured in hertz. Since the actual rotational speed of the shafts is knownfrom the simulation
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the mesh frequencies of the two gear pairs can be calculated and plotted on top of a Campbell
diagram to investigate if the gear mesh frequency has influence on the measured signal. In figure
4 the fundamental frequencies of the two stages are plotted along with some ofthe overtones. The
figure shows that there is a good correspondence between the mesh frequencies and the frequencies
contained in the signal. The same plot can be viewed in figure 2 without mesh harmonics plotted.
Actually most frequencies present in the signal is related to mesh harmonics.

In figure 3 it can be seen that only the harmonics of the high speed stage is clearly visible. One
explanation is that the oscillations of the intermediate stage harmonics are not transmitted through
the flexible high speed shaft. Another explanation is that oscillations of the high speed stage is less
damped than with rigid shaft and therefore dwarfs the harmonics of the intermediate speed stage.

Model RMS CMC
HS-A HS-BC IMS-A IMS-BC LS-A LS-BC

Rigid shafts 0.1319 9.7e3 72.8e3 11.3e3 135.7e3 19.5e3 178.2e3
Flexible LS shaft 0.0985 9.6e3 72.8e3 10.9e3 135.7e332.3e3 155.2e3
Flexible IMS shaft 0.0964 9.6e3 72.8e3 29.0e3 116.8e3 19.3e3 178.2e3
Flexible HS shaft 1.7822 31.4e3 46.5e3 9.8e3 135.6e3 18.7e3 178.1e3
All shafts flexible 1.7919 31.4e3 46.5e3 28.9e3 116.4e3 32.1e3 154.8e3

Table 2: RMS values of the acceleration signal and CMC valuesof the bearing forces.
To shed light on the matter the magnitude of the acceleration signal is investigated. The root mean
square (RMS) values of the signals are computed. The RMS values of all five simulations are listed
in table 2. From the table it is seen that when the flexible high speed shaft is introduced, the RMS
value increases significantly. This implies that the harmonics of the high speedstages is enhanced
rather than the harmonics of the intermediate speed stage is damped. In general, the results from
table 2 clearly show the reaction forces are only influenced if the shaft it issupporting is flexible.
The CMC-values where the supported shaft is flexible is highlighted.

Concluding remarks

Modelling of flexible shafts has great influence on the simulated vibrations ofshafts and the load-
ing of bearings. Further it is concluded that bearings are only affectedby the shaft they are sup-
porting regarding modelling of flexibility. If the loading of a bearing is to be determined, it is
sufficient to model only the shaft supported by the bearing flexible.
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Summary This paper describes an Adams/View-Matlab environment for parallel/clustered calculations 
running on ordinary workstations. The system was developed for sensitivity analysis and bi-objective 
optimization of washing machine performance by using a dynamic model built in the commercial multi-
body software MSC.Software Adams\View. Together with statistics of performance of the system, results of 
a bi-objective optimization of a selection of structural parameters are presented.  

Keywords: Bi-objective optimization, parallel computing, washing machine dynamics, vibration control 

Introduction 

Optimization of dynamical systems is often computationally demanding. Not seldom days or 
weeks of computational time have to be spent on solving an optimization problem. Several things 
influence on the CPU-time it takes to solve a specific problem. Always important are the number 
of parameters to be optimized and the complexity of the model which directly affect the time it 
takes to solve its equations. The number of conditions for which the model must be evaluated has 
also a strong influence on CPU-time. For instance, in the case of optimization of a car suspension 
it could be different road types or handling situations that the suspension needs to perform in. The 
amount of time it takes to prepare a model for simulation has also an effect on the time 
consumption. Sometimes heavy in data is needed to be loaded from disk before running. 
 The paper aims to present a developed computational environment for clustered bi-objective 
optimization of washing machine dynamics on a set of its operational conditions. 

The washing machine model 

A washing machine is an object familiar to almost everyone. Many people associate washing 
machines with noise and vibration, and locate their machine to remote parts of their house or 
apartment. With extreme cases of unbalanced load, which is the main reason to vibrations and 
noise,  together with a fail of the unbalance detection electronics a washing machine behaviour 
called “walking” can occur. Walking happens when the normal forces of the floor become too low 
in relation to the lateral forces and the foot loses its grip.   

To deal with these and other issues related to vibration analysis, control and dynamics 
optimization, a model of a modern in-production washing machine has been developed. Work has 
been performed during the last couple of years in collaboration with the washing machine 
manufacturer Asko Appliances AB [1, 2]. 

The work has resulted in a rigid multi-body model which has been implemented in the 
commercial software Adams/View. It can be seen together with relevant inner structural 
components of a physical machine in figure 1. Model parts are constructed using CAD drawings 
giving accurate inertia properties and joined with appropriate constraints. Remaining structural 
components of importance have been measured separately with dynamic measurement test-rigs 
resulting in separate sub models for dampers, springs, rubber bushings and feet. Details on the sub 
models can be found in [1, 2].  
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Figure 1: Some of the inner parts of a washing machine and the Adams\View model representation. 

The optimization problem 

In this paper two criteria of high importance in washing machine dynamics will be used. The first 
is to keep the tub free from hitting the housing during washing. The second is to limit the 
propagation of forces through the structure to minimize vibration impact on surroundings and to 
prevent the machine’s walking behaviour [2]. The first objective to be minimized is defined as 
follows:   

  ( )( )maxmax max ( ) , 1,2,3...9, [0, ]K p pp t
t p t Tℑ = Δ − Δ = ∀ ∈X X  (1) 

where pΔX  and max
pΔX are movement and movement margins in three directions at the points p of 

the tub which have been defined as critical by the manufacturer. The second objective to be 
minimized is the sum of the RMS-values of the vertical forces z

iF , (i=1,2,3,4) at the four feet of 
the machine during the simulation time T and is written as  

  ( )
4 2

1 0

1 ( )
T

z
D i

i

F t dt
T=

ℑ =∑ ∫  (2) 

 To be a feasible product to sell, a washing machine has to be able to handle different amounts 
of load and different imbalances. To reflect these different operational conditions three critical 
load cases with respective drum rotational excitation schemes are defined as follows:  

1. Constant load of 1kg placed in the front of the drum whilst spinning up to 800rpm with a 
gradient of 80rpm/s. 

2. Constant load of 0.3kg placed in the middle of the drum whilst spinning up to maximum 
spin speed. 

3. Maximal load of the machine distributed evenly in the drum with an exception of 1 kg, 
which is placed in the front of the machine. 

The bi-objective optimization problem of washing machine vibration dynamics on a given set of 
operational conditions is stated as follows. 
Problem A. It’s required to determine the vector of structural parameters  *ξ  and state vector 

*( )tx  which satisfy the variational equation [ ]{ } [ ]* *, ( )
min , , ( ) , , ( )

t
t t=

ξ x
F ξ P x F ξ P x  subject to the 

differential equations of motion ( ), , ,t=x f x ξ P  and constraints l u≤ ≤B ξ B . Here 

[ ], T
K D= ℑ ℑF , [ ]1 2 3, , T=P P P P where Pi is a vector of input parameters to the operational 

condition i, (i=1,2,3).  
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The computational environment and optimization results 

To solve Problem A a computational environment has been created. It consists of one computer 
equipped with Matlab running an optimization algorithm. To this computer an arbitrary amount of 
computational processes, on the same or on other computers, running Adams/View can be 
connected through a developed interface.  
 The dynamical system model opened in Adams\View contains a macro which when it runs 
creates a unique ID for the program instance and registers it on a network path. It then loops 
waiting for commands or simulation in data. The in data for the simulations are created in Matlab 
by the optimizing algorithm and written to files by the developed interface which marks them with 
the ID of an available node. The interface enables parallel start of simulations if the optimizing 
algorithm can take advantage of this. One optimizer which works in parallel is the used MATLAB 
function ‘gamultiobj’ from the ‘Genetic Algorithm and Direct Search’. This optimizer creates a set 
of in data (called generation) at each optimization step and makes it available for the interface 
function to start. The interface searches for available computers to start simulations on, searches 
for and processes calculated files, sends status messages to the user and restarts crashed 
simulations when the Adams/View program or a computer is the reason for the crash.   
 As an example of a solution of Problem A the following results are presented. The resulting 
Pareto front visible on the left of figure 2 was obtained by the optimization algorithm after more 
than 3500 evaluations of sets of parameters ξ .  
 

 
Figure 2: Resulting Pareto front from optimization together with a selection of resulting parameter values. 

Together with the Pareto front some of the simulations are plotted with color depending on which 
of the points p where active in equation (1), i.e. at which point the maximum movement in relation 
to the allowed occurred. On the right side of figure 2 two of the variables which values results in 
optimal performance are plotted against the respective objective. The conflicting nature of the two 
objectives can clearly be observed. 

Cluster performance 

As a performance test a special simulation case (not connected to Problem A) was created. Here all 
parameters were held constant during simulation to enable predictable calculation time. Varying 
the time of simulation T, resulted in the relation for the cluster efficiency showed in figure 3 
peaking at 96% for a T=251 s simulation. The data of each point is based on an average of 100 
simulations. A curve is fitted to the points following the function g(t) in equation (3) 

199



  ( ) 100 1 ag t ct
t b
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where a=5.45, and b=5.44 and c=0.00101 giving a goodness value R2=0.997.  

 
Figure 3: Efficiency of the cluster as a function of effective simulation time. 

So, it can be stated that the average constant delay for results file administration for each 
simulation can be estimated to 5.44 seconds. The administration includes file reading and writing 
in Adams/View and input file-generation in Matlab. Included in this is a random delay which can 
be anything between 0 and 4 seconds depending on when for example Adams searches for files in 
relation to when it is written by Matlab. The random delay can be tuned further if found necessary.  
A file reading and writing time depending on the size of the output file is reasonable and 
represented here by coefficient c.  

Concluding remarks 

An Adams/View-Matlab based interface has been developed for parallelized computation and 
constrained multi-criteria optimization of washing machine dynamics on a set of critical 
operational conditions.  
 Implementation of the developed tools on ordinary workstations has proved calculation 
efficiency of up to 96% in case of optimization of the dynamics of a modern washing machine. 
 By using the developed interface and tools a Pareto front has been found giving the domain of 
realistic structural parameters with optimal dynamic and kinematic performance. 
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Summary A new hydraulic high torque low speed motor principle is introduced. The motor is charac-
terized by a specific displacement that is at least an order ofmagnitude higher than that of commercially
available motors. The basic geometry, design variables andgoverning equations are presented. Comprehen-
sive leakage flow calculations and a detailed dynamic simulation has been used together with testing of a
prototype to predict the performance of the motor.

Introduction
Hydraulic motors have some basic advantages that may be utilized in differentapplications. First
of all, it is possible to have a high torque density. This enables hydraulic motors to deliver high
torques without occupying large amounts of space. This advantage is further developed in the
motor principle put forward in this paper. To examine the motor principle thoroughly, experiments
have been carried out both on simulation models and on a physical prototype.The main purpose of
this study is simply to highlight the motor principle and describe the derived design considerations
that will be implemented on the next generation.

Motor Principle
The motor principle is like a rolling vane motor [2] and a Rolling Abutment Motor [3] inthe gen-
eral design, but is overall more simple because any outside timing is avoided.The main difference
is that the vanes are moving in radial direction and the stops are fixed. The motor is illustrated
in figure 1 using 4 chambers, however, it can be designed with n-chambers. The rotor is rotating
because of pressure difference around the 5 (n+1) vanes. The stops form 4 chambers with either
one or two vanes inside. To maximize displacement and output torque, the number of chambers
should be maximized. The volumetric efficiency is due to internal leakage flow,why gaps between
the individual parts must be kept as low as possible without introducing actual mechanical contact
between the moving parts since this would introduce hydromechanical losses.

In figure 1 the basic design variables are shown and the motor displacementpr. rev. is:

D = 2 ⋅ � ⋅ n ⋅R ⋅ S ⋅H, (1)

wheren is number of chambers.

Performance

The performance and efficiency are influenced by various parameters. In this work leakage flow
has been investigated theoretically with a view to specify acceptable production tolerances. The 1.
dimensional leakage flowQ around the vanes and stops is given as

Q =
w ⋅ ℎ3

12 ⋅ � ⋅ L
⋅Δp [1], (2)
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Figure 1: Motor principle with characteristic, design variables, name conventions and pressure volumes. A
motor chamber is defined to consists of both the low- and the high pressure volume between 2 stops.

wherew, ℎ andL are the geometry of the leakage path and� is the dynamic viscosity of the fluid.
The leakage flow across both end planes of the rotor is 2. dimensional andthereby more complex
to estimate. Reynolds equation in polar coordinates is used. For a constant gap height it yields the
following differential equation:

∂2p

∂r2
+

1

r

∂p

∂r
+

1

r2
∂2p

∂�2
= 0, (3)

wherer is the radial coordinate and� is the angular coordinate. (3) solved forp by a numeric finite
difference method to one rotor angle is illustrated in figure 2. Clearly, the pressure distribution
varies when the rotor rotates, however, the leakage flow that is an integrated value has quite small
variations. The pressure distribution obtained by solving (3) can be usedto compute the leakage
flow across the disc, in ther- and� direction respectively, as follows:
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Figure 2: Left: Boundary conditions, coordinate system andunrefined finite difference mesh. Right: Pres-
sure across rotor. (3) solved by the numeric finite difference method.

Qr = −
1

12�
⋅ ℎ3 ⋅

∂p

∂r
⋅ rk ⋅Δ� [4] (4)

Q� = −
1

12�
⋅ ℎ3 ⋅

1

rk

∂p

∂�
⋅Δr +

1

2
ℎ ⋅ ! ⋅ rk ⋅Δr [4], (5)

To scrutinize the behaviour of the motor principle, to specify production dimensions and tolerances
and to get an overview of the coherence between different factors in the motor, the motor has
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been subjected to a time domain simulation. The input to the dynamic simulation is a flow into
the motor and the state variables comprise the pressure in the different chambers as well as the
angular position and velocity of the rotor. The leakage flows from (2), (4) and (5) are used as
lookup tables in this simulation. In figure 3 the result of the dynamic simulation is illustrated as
power in and power out from the motor. This is with all gaps atℎ = 0.02mm and without any
influence from friction, i.e., all losses are volumetric. The irregularity after≈ 6.5s is because the
rotational direction is changing at that time by reversing the input flow. The small fluctuations in
the curves are because of fluctuations in the leakage flow. The rotationalspeed in the dynamic
simulation is2 rev
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Figure 3: Power in (red) and out (blue) in the dynamic simulation. The efficiency is around 0.57.

Prototype

Figure 4: Prototype design.

The prototype is designed with a displacementD =
190 cm3

rev
. The motors outer dimensions is200mm

in diameter and100mm in height. The specific dis-
placement isD′ = D

V
= 0.06 1

rev
. Neither the size

of the chambers nor the number of chambers have
been optimized with respect to performance since
the main purpose was to investigate the principle.
Potentially, the performance, i.e., torque density, of
the prototype could be increased by an order of
magnitude simply by increasingS, H orN .

A picture of the prototype is shown in figure 4. The
vanes are forced against the stator by springs and
hydrostatic pressure and are therefore always slid-
ing along the stator. The curvature of the stops is
forcing the vanes in when passing a stop. There are
one oil inlet and one outlet to each chamber, fitted in each stop. The rotor is perforated with small
holes to ensure the same pressure at each end plane and therefore minimizemechanical friction.

Experimental Results

The Prototype is tested in a test bench, shown in figure 5. The load on the motor is added by
a powder brake through a gearbox. The resistance torque in the test bench is proportional to a
voltage signal supplied to the powder brake. To be able to calculate the motorsefficiency, the
test bench is fitted with different measurement devices; The oil flow into andreturned from the
motor are measured with flow transducers, the pressure in the oil into and returned from the motor
are measured with pressure transducers, the output torque from the motor is measured with a full
bridge strain gauge circuit mounted at the output shaft and the angular velocity of the motor is
measured by a high resolution encoder. Testing has shown, that the internal friction is quite high
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Figure 5: Test setup with all its components and their location. The parts named are just visualized by boxes,
but their location is okay.

which affects the motion of the motor, however, the main focus has been on theleakage flow. In
general, the leakage flow has increased with increased pressure level.In figure 6 the volumetric
efficiency is shown together with the theoretical values obtained by means ofsimulation. The
graphs fluctuates quite much because of irregularities in the angular velocity. The leakage flow is,
in general, higher than expected. The main reasons for that are:

∙ the rotor is not radially balanced causing the leakage paths between stops and rotor/vane to
be too high.

∙ the spring actuation of the vanes does not always function properly, i.e.,the vanes are hang-
ing.
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Figure 6: Prototype volumetric efficiencies during one rotation. Green is theoretical and blue is measured.

Concluding remarks
A hydraulic vane motor principle is presented. The motor principle is characterized by a very
high torque density. Time domain simulation is carried out with a view to examine the volumetric
efficiency as well as the general dynamic behavior of the motor during start, stop and reverse. The
time domain simulation utilizes numerical results on leakage flows as lookup tables.
A prototype has been developed and tested. The prototype has a displacement ofD = 190 cm3

rev

and a specific displacement ofD′ = 0.06 1

rev
. Simulation and measured results clearly indicate

that the volumetric losses are higher in practice than in theory. The main reason for this has been
identified as unbalanced radial force on the rotor as well as non-optimal vane behavior.
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Design and Kinematics of a 5-DOF Light-Weight Anthropomorphic
Robotic Arm

Lelai Zhou∗ and Shaoping Bai
Department of Mechanical Engineering
Aalborg University, Aalborg, Denmark

e–mail: {lzh,shb}@me.aau.dk

Michael R. Hansen
Department of Engineering

University of Agder, Norway
e–mail: michael.r.hansen@uia.no

Summary The kinematics of a 5-DOF light-weight anthropomorphic robotic arm for assisting disabled
people is described in this paper. The mechanical design of this light-weight robotic arm is outlined.
Forward and inverse kinematic equations are formulated with an aim to evaluate the dexterity of the robotic
arm.

Introduction

Industrial robots have been widely used in automobile manufacturing industry and product assem-
bly since the middle of the 20th century. They are used in well structured environments with high
performance in terms of positioning accuracy and speed. Generally, the high positioning accuracy
requires high stiffness at the cost of high weight relative to payload capacity. Contrary to indus-
trial robots, light-weight robots, which are small, compact and light, are much more suitable for
the assistance of activities of daily living (ADL).

The light-weight robots are the combination of light-weight motors, light-weight transmission and
light structures. For service purpose, positioning accuracy is not as important as in the industrial
field. FRIEND-I and FRIEND-II [1], KARES II [2], RAPTOR [3] and MANUS [4] are in the
category of rehabilitation systems. DLR’s robotics lab designed a 7-DOF torque-controlled light-
weight robotic arm with load-to-weight ratio at 1:1 [5]. Jardon et al have designed a 5-DOF self-
containing light-weight manipulator with a portable concept from wheelchair to docking stations
in the room [6].

A light-weight robotic arm to support disabled people performing daily living is presented in this
paper, as shown in Figure 1. As depicted in Figure 2, this is a 5-DOF system with two DOF at the
shoulder, one at the elbow, and two at the wrist. This robotic arm uses harmonic drive𝑇𝑀 gears to
set the motor and gears coaxially with the joint axis. The simplified construction of the arm links
reduces the weight of robotic arm significantly. The total weight of the arm is 9𝑘𝑔 with a payload
capacity of 4𝑘𝑔. The reachable distance is about 1𝑚.

Kinematics

Forward Kinematics

Following the Denavit and Hartenberg convention [7], a Cartesian coordinate system is attached
to each link of the robotic arm, as shown in Figure 3. D-H parameters are defined as listed in
Table 1. Under the established coordinate systems, the transformation matrix of two successive
links, 𝑖−1𝐴𝑖, is given by

𝑖−1𝐴𝑖 =

⎡

⎢

⎢

⎣

𝑐𝜃𝑖 −𝑐𝛼𝑖𝑠𝜃𝑖 𝑠𝛼𝑖𝑠𝜃𝑖 𝑎𝑖𝑐𝜃𝑖
𝑠𝜃𝑖 𝑐𝛼𝑖𝑐𝜃𝑖 −𝑠𝛼𝑖𝑐𝜃𝑖 𝑎𝑖𝑠𝜃𝑖
0 𝑠𝛼𝑖 𝑐𝛼𝑖 𝑑𝑖
0 0 0 1

⎤

⎥

⎥

⎦

(1)
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Figure 1: A light-weight anthropomorphic robotic
arm mounted on an electric wheelchair.

Figure 2: A 5-DOF light-weight anthropomorphic
robotic arm.

where 𝑐𝜃 stands for cos 𝜃 and 𝑠𝜃 for sin 𝜃.

Figure 3: Robotic arm coordinate system.

Joint 𝑖 𝛼𝑖 𝑎𝑖 𝑑𝑖 𝜃𝑖

1 𝜋/2 0 ℎ1 𝜃1
2 0 𝑙1 0 𝜃2
3 𝜋/2 0 0 𝜃3
4 −𝜋/2 0 𝑙2 𝜃4
5 𝜋/2 0 𝑑 𝜃5

Table 1: D-H Parameters of the robotic arm.

The transformation matrix of the arm is given by

0𝐴5 =
0𝐴1

1𝐴2
2𝐴3

3𝐴4
4𝐴5 (2)

Inverse Kinematics

For inverse kinematics, the location of the end-effector is given and the problem is to find the
joint variables necessary to bring the end effector to the desired location. In this work, the inverse
kinematics problem is solved based on the methods presented in [8].

Note that the last two joint axes intersect at the wrist center point C as shown in Figure 3. Hence
rotations of the last two joints do not affect the position of C.

To solve the inverse kinematics problem, the end effector location is given by Eq. (3).

Skipping details, a solution for 𝜃1 is found as
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0𝐴5 =

⎡

⎢

⎢

⎣

𝑢𝑥 𝑣𝑥 𝑤𝑥 𝑞𝑥
𝑢𝑦 𝑣𝑦 𝑤𝑦 𝑞𝑦
𝑢𝑧 𝑣𝑧 𝑤𝑧 𝑞𝑧
0 0 0 1

⎤

⎥

⎥

⎦

(3)

𝜃1 = arctan

(

𝑝𝑦
𝑝𝑥

)

(4)

where 𝑝𝑥 = 𝑞𝑥 − 𝑑𝑤𝑥 and 𝑝𝑦 = 𝑞𝑦 − 𝑑𝑤𝑦. Hence there are two solutions of 𝜃1. Specifically, if
𝜃1 = 𝜃∗1 is a solution, 𝜃1 = 𝜃∗1 + 𝜋 is also a solution, where 0 ≤ 𝜃∗1 ≤ 𝜋. We call 𝜃1 = 𝜃∗1 the
front-reach solution and 𝜃1 = 𝜃∗1 + 𝜋 the back-reach solution.

The solution of 𝜃3 is given as

𝜃3 = arctan

⎛

⎝± 𝜅3 − 𝜅1
√

𝜅22 − (𝜅3 − 𝜅1)
2

⎞

⎠ (5)

where 𝜅1 = 𝑙21 + 𝑙22, 𝜅2 = 2𝑙1𝑙2, and 𝜅3 = 𝑝2𝑥 + 𝑝2𝑦 + (𝑝𝑧 − ℎ1)
2.

Equation (5) yields: (1) two real solutions if 𝜅22 − (𝜅3 − 𝜅1)
2 > 0, (2) two solutions : ±𝜋

2
, if

𝜅22 − (𝜅3 − 𝜅1)
2 = 0, and (3) no real solutions if 𝜅22 − (𝜅3 − 𝜅1)

2 < 0. If Eq. (5) yields no real
solutions, the position is not reachable.

Once 𝜃1 and 𝜃3 are known, 𝜃2 can be obtained as

𝜃2 = arctan
(𝜇2𝜂1 − 𝜇1𝜂2)(𝜁2𝜇1 − 𝜁1𝜇2)

(𝜇2𝜁1 − 𝜇1𝜁2)(𝜁2𝜂1 − 𝜁1𝜂2)
(6)

where 𝜇1 = 𝑙1 + 𝑙2𝑠𝜃3, 𝜁1 = 𝑙2𝑐𝜃3, 𝜂1 = 𝑝𝑥𝑐𝜃1 + 𝑝𝑦𝑠𝜃1, 𝜇2 = −𝑙2𝑐𝜃3, 𝜁2 = 𝑙1 + 𝑙2𝑠𝜃3,
𝜂2 = 𝑝𝑧 − ℎ1.

𝜃5 takes the form of

𝜃5 = arccos (𝑤𝑥𝑐𝜃1𝑠𝜃23 + 𝑤𝑦𝑠𝜃1𝑠𝜃23 − 𝑤𝑧𝑐𝜃23) (7)

Assuming that 𝑠𝜃5 ∕= 0, we can solve for 𝜃4 as follows.

𝜃4 = 𝐴𝑡𝑎𝑛2(𝑠𝜃4, 𝑐𝜃4), 𝑐𝜃4 =
𝑤𝑥𝑐𝜃1𝑐𝜃23 + 𝑤𝑦𝑠𝜃1𝑐𝜃23 + 𝑤𝑧𝑠𝜃23

𝑠𝜃5
, 𝑠𝜃4 =

𝑤𝑥𝑠𝜃1 − 𝑤𝑦𝑐𝜃1
𝑠𝜃5

. (8)

Simulations
Based on the forward and inverse kinematics derived in last section, simulations have been con-
ducted. With the given end-effector trajectory, the five joint variables of the robotic arm are solved
as a function of time. The graphics package of MAPLE is used to draw the structure of the robotic
arm, each link and joint are defined in each frame. The trajectory of the end-effector is defined as
𝑥(𝑡) = 250− 150 cos(𝑡), 𝑦(𝑡) = 350 + 30𝑡 and 𝑧(𝑡) = −50 + 120 sin(2𝑡), x, y, z is that relative
to 𝑋0, 𝑌0, 𝑍0 in Figure 3. As shown in Figure 4, three frames are captured during the simulations.
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(a) (b) (c)

Figure 4: Kinematic simulation of the robotic arm.

Conclusions

In this paper, a 5-DOF light-weight anthropomorphic robotic arm is presented for the purpose
of assistance of activities of daily living (ADL). The mechanism structure of this robotic arm is
described. The forward and inverse kinematics problems are solved thoroughly, based on which
kinematics simulations have been conducted. In the future works, dynamics analysis of this robotic
arm will be carried out to set up the requirements needed to select appropriate motors and trans-
mission elements. Moreover, system optimization will be done to maximize the payload capacity
of the arm and to minimize the mass of the arm.
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Simulations of optimal in-plane deployment of spinning space webs
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Summary Existing control strategies for deploying large web by centrifugal forces seem to either
consume excessive energy or cause oscillations. In this study, control laws are derived from the solution
to relevant optimal control problems and existing controls. Simple on-ground experiments are being
developed as a first step to an in-space experimental verification of the spin-deployment concept.

Introduction

Larger and lighter structures are required for many space technologies, e.g. solar sails and solar
power systems. Flexible structures have the potential to keep the weight and package volume
small and be deployed to the required size in orbit. One interesting method to deploy and stiffen
flexible structures is to use the centrifugal force, which offers significant advantages compared to
rigid alternatives: low mass, small package volume, low deployment power consumption, possible
gyroscopic re-pointing, acceptable surface accuracy and presumably low cost.

Space webs, where spider-like robots are used to build large structures on a web platform in or-
bit, are considered by both the European and Japanese space agencies. With the aim to obtain a
deployment that is easy to control, recent studies investigate the possibility to use the centrifugal
force to deploy and stabilise webs in space [1, 2].

Strategies for optimal deployment control

Existing control strategies for centrifugal deployment of membranes and webs have not been ob-
tained by mathematical analysis. Contrary, extensive research have been performed on the dynam-
ics and control of deployment and retrieval of tethered satellite systems (TSS), which can be used
as inspiration for modelling the spin deployment of membranes. We observe that optimal control
of TSS models includes less variables than centrifugal deployment; the orbital angular velocity is
constant and no torque is applied.

The aim of this study is to find control strategies for the deployment of membranes and webs,
coiled on spools or coiled around a centre hub, that minimise the energy consumption and the
presence of final oscillations. Because all the significant forces, both external and rotational inertia
forces, are in the plane of rotation, it is enough to solve this problem in two dimensions, even
though additional attitude control may be required to maintain the plane of rotation for a real case.
The Legendre pseudospectral (PS) optimal control method is used to find optimal controls for
different optimality criteria.

An optimal control is only optimal with respect to its optimisation criteria. For spin deployment of
membranes the torque application is very important and elasticity of the web is less important [2].
An optimal spin deployment should: (i) cause a minimum of oscillations in the end, and (ii) require
a minimum of control efforts, which could be to minimise the maximum power or torque, or
minimise the total energy consumption or total change of angular momentum, or a combination.
A third requirement could be that it should be completed within a specified time.
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Deployment using the Melnikov–Koshelev law

The Melnikov–Koshelev (MK) law, Eq. (1), was used in [1] to control the deployment of the
quadratic space web, initially coiled around the centre hub. The problem with this control law
is that excessive torque is required to not induce oscillations. A control law that eliminates or
decreases any oscillations is a requirement to obtain a tensioned web.

M = ̂M

(

1 − ω

ω0

)

(1)

Derivation of new control laws from the optimal control results

One main advantage with the MK-law is that it is directly applicable, with appropriate parameters,
to centrifugal deployment using folding patterns and deployment sequences that are difficult to
model accurately, e.g. the one-step deployment of space webs used in [1]. The reason is that the
MK law is not directly derived for a specific model, but based on the simple idea that more torque
is required if the spin rate ω is low, thus making the torque linearly decreasing with increasing
ω. The optimal control results suggest a nonlinear control torque that is smaller than the MK law
when ω � 0 and increases more rapidly when ω → 0, Fig. 1. To resemble the optimal control
torque more, while keeping the simplicity, a power of the ω-dependent factor in the MK law was
introduced:

M = ̂M

(

1 − ω

ω0

)γ

(2)

The parameter γ should be sufficiently large to give a small ωf , yet sufficiently small to restrain the
decrease of ω in the initial deployment phase. Eq. (2) is henceforth denoted as the MK power-law.

The main disadvantage with the MK power-law is that it does not include the final angular velocity.
A different or supplementary control law is therefore required to reach the desired final spin rate.
One option is to replace ω0 with ωf and ensure that M is non-negative:

M = max

[

0, ̂M

(

1 − ω

ωf

)]

(3)

Eq. (3) is denoted the modified MK law. For this law, M = 0 if ω ≥ ωf , i.e. in the initial and final
phase of the deployment. Finite element (FE) simulations using the software LS-DYNA shows
that the modified MK law require less energy and is effective to control the final spin rate, Fig. 2.

A first step to experimental verification of the deployment

So far, the control of the web deployment has only been performed numerically, but work is un-
derway to get experimental data for the web deployment. A team of PhD and master students from
the Department of Mechanics at KTH and the Departments of Mechanical and Aerospace Engi-
neering at Glasgow University is working on the Suaineadh experiment under the ESA/SSC/DLR
REXUS-8 programme [3]. The aim of the Suaineadh experiment is to centrifugally deploy a 2× 2
m2 web by launching the spacecraft containing the web with a sounding rocket from Esrange in
Kiruna.

The KTH part of the Suaineadh team is responsible for the web manufacturing and deployment
control. To verify the concept experimentally, a 0.6 × 0.6 m2 web was manufactured from fishing
line, an air hockey table was used to minimise the effects of gravity and a simple electric drill
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was used to manually control the spin rate of the central hub, Fig. 3. The air hockey deployment
experiment showed that the concept is feasible if the web material is more flexible and knot-free.
Thus, the new web will be manufactured from a thin flexible fabric by cutting away material.
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Figure 1: Comparison of control laws for space web deployment.
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Figure 3: Experimental set-up for verification of the web spin-deployment: air hockey table, electric drill,
fishing line web and corner pucks.

Concluding remarks

The developed optimal control strategies have been tested numerically and good agreement is
found between a simple axisymmetric model and a FE model for in-plane deployment. To reach
more solid conclusions about the feasibility of the spin-deployment concept and the optimal con-
trol strategies, experimental data is required and work is underway to get these data.
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Predicting racket response during a badminton stroke 
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Summary Badminton racket designs are currently developed using mostly industrial experience, without 
any real scientific basis. Design improvement is therefore difficult and unreliable. Assuming that racket 
performance is tied to the dynamic response of the racket, a simple model was developed and used to predict 
the deflection behaviour of different rackets. Peak deflections and deflections speeds were found to increase 
with lower racket frequencies, but validation of the model remains to be done.  

Introduction 

Modern badminton racket designs have largely been developed using heuristic methods, based on 
player intuition and experience, and racket performance is subsequently assessed by player 
feedback. From a scientific perspective, however, the interaction between racket and player 
remains poorly understood. By modelling the relationship between the kinematics of the stroke 
and the dynamic response of the racket, racket design can be done more efficiently and effectively.  
 
During a stroke, the inertial forces generated from the high accelerations cause the racket to 
deform. As the racket is swung forward, the racket bends backward and then recovers forward, 
returning to its original shape as impact occurs. The velocity of this deformation contributes to the 
racket's total impact velocity. The elasticity of the racket is therefore advantageous only if the 
deformation velocity is in the same direction as the stroke motion at impact (i.e. both forward). 
The deformation behaviour of the racket can therefore play an important role in racket 
performance.  
 
Using a simple uniform beam model, the racket is characterized here by its fundamental 
frequency, which is used to calculate the dynamic response during a stroke. The model is applied 
to measured data from a badminton stroke, and the predicted deflection curves are presented and 
discussed.  

Model 

The racket is modelled as a uniform cantilever beam of length L, as shown in Figure 1, subjected 
only to inertial loads which cause the racket to bend. The deflection of a beam can be represented 
analytically by the summation of the infinitely many natural modes of the beam [1]: 
 

)()(),(
1

tqxWtxw n

n

n∑
∞

=

=
 

(1)

where Wn(x) and qn(t) represent the beam shape along x and the beam motion over time, for the nth 
mode of the beam. Assuming the first mode is dominant, such that n=1 gives: 
 )()(),( 11 tqxWtxw =  (2)
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Figure 1: Beam model of racket. 

For fixed-free boundary conditions, the beam shape function W(x) is: 
 ( )xxxxxW nnnnnn ββαββ coshcossinhsin)( −−−=  (3)
where    
 1coshcos −=⋅ LL nn ββ  (4)
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For n = 1, βnL = 1.8751. 
 
For a beam initially at rest, the dynamic response of the beam, qn(t), subjected to the forcing 
function f(x,t) is given by: 
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(9)

 
Assuming the beam is subjected to inertial loads only, the forcing function can be expressed by 
f(x,t)=ρA a(x,t), where a(x,t) represents the acceleration of a point along the beam. Focusing on the 
transverse direction only, the acceleration of a point along the beam is given by: 
 )()()(),( thxtatxa TH α++=  (10)
where  

aH (t) is the translational acceleration of point H (at the base of the handle) 
αT (t) is the rotational acceleration of the beam 
h is the handle length, the distance from point H to point O 

 
Combining the above equations, the deflection of the beam at a distance xP along the beam can be 
expressed as a convolution:  
 ( )

( ) )()(

)(sin)(2)(),(
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Similarly, the deflection velocity of the beam is expressed by the convolution:  
 ( ) )()(),( tgxWtxw PnP && ∗= εα  (14)
where  
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(15)

 
The term αε(t) can be thought of as a loading function, consisting of the rotational acceleration and 
a scaled contribution from the translational acceleration of the beam. The term g(t) represents the 
influence of the racket’s fundamental frequency on the dynamic behaviour during the stroke.  
 
By varying the value of ωn, the deflection behaviour of different rackets can be seen for a given 
player, assuming the racket does not affect how the player makes the stroke. The model therefore 
represents a one-way interaction between racket and player, i.e. the dynamic behaviour of the 
racket is affected by a change in racket properties, but the effects of the different racket properties 
on the player’s stroke are not accounted for. 

Implementation 

The model requires two inputs: the fundamental frequency of the badminton racket ωn, and the 
loading term αε(t). While the fundamental frequency ωn of a badminton racket can be measured 
relatively easily, the accelerations of the racket are less straightforward to obtain. To avoid the 
need for motion capture equipment or several accelerometers, the loading term αε(t) may be 
deduced from a deflection measurements of a stroke using a racket with a known racket frequency, 
using Eq 11.  
 
However, deflections are difficult to measure directly during a stroke, but strain measurements 
provide a nice alternative as they are directly proportional to the deflection and easier to measure. 
Strain is proportional to the second derivative of the deflection wrt x: 
 )()(),(),( tqxWtxwRtx nn′′=′′=ε  (16)
where R is the radius of the shaft where the strain gage is placed, and 
 ( )( )xxxxxW nnnnnnn ββαβββ coshcossinhsin)( 2 +−+−=′′  (17)
 
From Eq 11, the deflection can be expressed as a convolution. Similarly, the expression for strain 
is given by:  
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(18)

 
Knowing the strains ε(xsg,t) and the racket frequency ωn, the loading term αε(t) can then be solved 
for by a deconvolution of Eq. 18. 
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Results 

Strain measurements during a stroke performed by a recreational player using a racket of 
frequency 16 Hz were taken from strain gages placed at the base of the shaft. The predicted 
deflection profiles at the racket head can be seen for a range of racket frequencies from 13 to 18 
Hz in Figure 2. The calculated deflection velocities can be seen in Figure 3. Impact occurs at 
t=0.2833 s.  
 

0 0.1 0.2 0.3 0.4
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

H
ea

d 
de

fle
ct

io
n 

[m
]

Time [s]

18 Hz

13 Hz

 
Figure 2: Predicted deflection profiles for racket 
frequencies ωn = 13-18 Hz. Impact occurs at 
t=0.2833 s. 
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Figure 3: Predicted deflection velocity profiles for 
racket frequencies ωn = 13-18 Hz. Impact occurs at 
t=0.2833 s. 

Discussion 

The results show the predicted deflection behaviour for rackets of different frequencies, essentially 
extrapolated from the measured dynamic response of a single racket, assuming the stroke motion 
is independent of the racket properties. In other words, the player swings all the rackets in exactly 
the same way. Rackets with lower fundamental frequencies show higher peak deflections and 
deflection speeds.  
 
Further work includes validation of the model and increased complexity of the model. Model 
validation can be accomplished by comparing the predicted results against measured dynamic 
responses of several rackets of different frequencies. One major assumption in the model is the 
independence of the stroke motion from the racket properties. Studies in other sports such as 
baseball and tennis indicate that swing weight can greatly influence the stroke [2]. Inclusion of the 
swing weight effects on the stroke could significantly improve the accuracy of the model.  
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Finite element analysis of the mitral valve closure with active muscle
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Summary The mitral valve is an important valve of the heart preventing blood from flowing back into the
left atrium during systole. In this study, we introduce a contractile element into our transversely isotropic
hyperelastic material model [1] to investigate the role of the muscle fibres present in the mitral leaflets
during the valve closure [2].

Introduction

The mitral valve located between the left atrium and left ventricle of the heart is one of the four

valves of the heart. It prevents blood from flowing back into the atrium when the ventricle con-

tracts. The mitral apparatus consists of two leaflets (anterior and posterior) attached to the annulus

and the chordae tendinae. The chordae are further attached to the papillary muscles.

From a mechanical point of view, the mitral valve is often presented as a passive flap that opens and

closes in response to the blood pressure gradient. However, several experimental findings showed

that the mitral valve contains contractile cells such as cardiac and smooth muscle fibres.

If the mitral valve were only a passive structure, it would mean that the contractile tissue in the

valve is functionless. Supporting this finding, our previous study (Prot and Skallerud [3]) showed

that if the leaflets are modelled with a passive transversely hyperelastic material, the mitral valve

is bulging too much in the left atrium at peak systole. This result agrees with Curtis and Priola [4]

who studied the action the muscle fibres present in the anterior leaflet. They showed that when the

muscle fibres are active, the mitral valve does not bulge into the left atrium and that in the case

of passified muscle fibres the valve deflection was significantly increased at any left ventricular

pressure value.

Therefore, our working hypothesis is that the contraction of the muscle fibres present in the mitral

leaflets promotes the flat shape of the closed mitral valve during systole.

In this study, we present a transversely isotropic hyperelastic material model for solid elements

based on the model described in Prot and Skallerud [3] for the mitral leaflets in which we add

a contractile element in order to simulate the mechanical function of the muscle cells present in

the leaflets. Then, finite element analyses of a porcine mitral valve are conducted in order to in-

vestigate the influence of the contractile force of the muscle fibres on the valve response between

beginning and peak systole.

Methods

Finite element model

The geometry of the model is shown in Figure 1 and the modelling of the chordae tendinae is

described by Prot et al. [5]. The shape of the annulus was measured at early systole from 3D ultra-

sound measurements and from anatomical measurements carried out on the same pig. The annulus
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Figure 1: Initial geometry of the mitral valve at beginning of systole.

was idealized as a non-planar ellipse. The distance between the highest point of the anterior an-

nulus to the highest point of the posterior annulus was 30.9 mm. The distance between the two

commissures was 34.1 mm. The saddle height, defined as the distance between the highest point of

the anterior annulus and the plane defined by the posterior annulus, was 4.81 mm. The maximum

distance from the annulus to the free edge of the anterior and posterior leaflets were measured to

be 23 mm and 12 mm, respectively, post mortem. The thickness of the leaflets was assumed to be

constant and equal to 1 mm.

The collagen fibre orientation was set according to the mean collagen fibre direction map from

SALS data shown by Einstein et al. [6]. Additionally, the muscle fibres were located in the central

part of the anterior leaflet from the annulus to the middle of the leaflet and in the posterior leaflet

along the annulus in a strip of 4 mm. The muscle fibre orientation was set perpendicular to the

annulus.

The leaflets were meshed with eight noded brick hybrid elements (C3D8H ABAQUS type) and the

chordae with truss elements (T3D2 ABAQUS type). The blood pressure from 0 to 120 mmHg was

applied on the ventricular surface of the leaflets. The annulus and the two nodes representing the

papillary muscles were constrained with respect to the translations but free to rotate.

Material models

In order to describe the anisotropic hyperelastic response of the mitral valve leaflets, we use the

following strain energy function Ψ:

Ψ(Ī1, Ī4, Ī6, J) = c0

(

ec1(Ī1−3)2+c2(Ī4−1)2
− 1

)

︸ ︷︷ ︸

Ψ̄p: passive isochoric part

+ Ψ̄a(Ī6)
︸ ︷︷ ︸

Ψ̄a: active isochoric part

+ κ(J − 1)2
︸ ︷︷ ︸

volumetric part

, (1)

where c0, c1, c2 are material parameters, κ is a positive penalty parameter and (J − 1)2 is known

as the penalty function. The idea is to approximate the material as slightly compressible by using
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a large value of κ. Ī4 = C̄ : a0 ⊗ a0 and Ī6 = C̄ : b0 ⊗ b0 are pseudo invariants of the modified

right Cauchy Green tensor C̄ related to the collagen fibres and muscle fibres, respectively. In the

undeformed configuration, the collagen fibre and muscle fibre directions are represented by the

unit vectors a0 and b0, respectively

Herein, Ψ̄p and Ψ̄a correspond to the passive behaviour ([7], [1]) and to the active behaviour of

the leaflets due to the muscle fibres contraction in the leaflets, respectively.

Ψ̄p describes the transversely isotropic mechanical behaviour of the mitral leaflets. As a first ap-

proach, we assume that Ψ̄a is expressed as,

Ψ̄a =
1

2
σmax f(t) (Ī6 − 1), (2)

where σmax is the maximum tetanization and f(t) is a linear function of time including the muscle

fibre activation time and the amplitude of the tetanization.

The Cauchy stress tensor σ is obtained as,

σ =
2

J
F

∂Ψ

∂C
F

T
. (3)

The material model was implemented in the finite element program ABAQUS using the user sub-

routine UMAT.

The chordae were modeled as an incompressible hyperelastic material. The nonlinear stress-stretch

behaviour was implemented from experimental data published in [8].

Results
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Figure 2: Norm of the displacement of point A (see Figure 1) against the left ventricular pressure for

σmax = 0; 100; 200; 300 kPa .

Four finite element analyses were conducted with σmax = 0, 100, 200, 300 kPa. In Figure 2, the

norm of the displacement of point A (see Figure 1) is plotted against the ventricular pressure. As

can be seen, the displacement of point A decreases when the σmax increases. This means that

the deflection of the anterior leaflet decreases when the contraction force of the muscle fibres

increases.

219



Concluding Remarks

Our simple approach to model the contractile cells in the leaflets shows that their contraction

contributes to give a flat shape to the closed mitral valve. However, more data on the distribution

of the different muscle fibres present in the mitral valve are needed for both human and porcine

valves. Their activation time and their maximum tetanization warrant also further studies.
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Summary A simplified air-to-air missile simulation model is used to investigate the end-game against 

maneuvering target. The miss distances obtained against High-g Barrel flying target are compared with 

the results of [1] produced using fairly precise model. The simulation results show that even the miss 

distance can be estimated with reasonable accuracy based only on relatively simple weapon model. 

Introduction 

Missile design is a complex task and for example a very complicated aerodynamic model is 

needed to estimate the weapon dynamics at all possible flight conditions. However, this data is 

typically not available while existing missile properties are analyzed and simplified methods are 

needed to estimate the weapon performance. The objective of this paper is to study the 

capability of a simplified method to predict the end game miss distance. 

Missile model 

The missile data is listed in Table 1 and is based on the data of Ref. [1]. The missile diameter, 

engine mass flow and the aerodynamic model were not given [1] and some “typical values” are 

used instead. Also the autopilot time constant τa and missile response are estimated in this study.  

 
Table 1: Missile parameters. 

Missile mass 176 kg  Seeker head time constant, τ1 0.1 s 

Missile diameter 0.2 m  Signal processing time constant, τN 0.11 s 

Thrust 5880 N  Autopilot time constant, τa 0.15 s 

Rocket motor mass flow 2.6 kg/s  

Missile response angular velocity, ω 

18.3 rad/s ωdamped  
 

13 rad/s  

(τm ≈ 0.078 s) 

Initial velocity 720 m/s  

Flight altitude 3000 m  

Pitch max acceleration 30 g  Missile damping, ζ 0.7 

Yaw max acceleration 30 g  Axial force coefficient, AC  0.5 

Navigation gain, Ne 3  Normal force coefficient slope, 
ZC  -20 

 

The aerodynamic model is simplified as much as possible by assuming tetragonal symmetry and 

ignoring nonlinearities and control surface deflections. Also the missile speed is expected to be 

about constant and no Mach number effects are taken into account. 

 

A 5
th
 order model (5 lags) is used to describe the missile system dynamics with two time 

constants for the seeker-head and one for autopilot. The missile turning and lateral acceleration 

is modeled with a second order response according to formula 1. The 5
th
 order model was used 

since the lower order systems do not describe the missile lag well enough in the case 

maneuvering target [2]. 

221

Proceedings of the Twenty Second Nordic Seminar on Computational Mechanics
© Aalborg University 2009 | ISSN 1901-7278 DCE Technical Memorandum No. 11



 













2

2

21

1



 s
s

a

a

c

 
(1) 

 

The autopilot poles were located in the frequency domain to define the three remaining lags (the 

two given lags are used to model the seeker head). In order to do that a separate acceleration 

autopilot model was created and some representative control surface aerodynamics was 

estimated. After that the poles were located to obtain reasonable gain and surface deflection 

rates. Later it was noticed that the distribution of the three autopilot poles does not affect much 

on the miss distances obtained with the simplified model. Finally the autopilot stability was 

checked by drawing the Bode-diagram [2]. 

 

The total lumped autopilot + missile time constant value about 0.23 was chosen to obtain the 

miss distances wished. The missile systems total time constant τ is about 0.44 as a sum of the 

component time constants (0.1+0.11+0.23). The time constant is fairly large and explains the 

large miss distances obtained (see results).  

 

The pseudo 5 degree-of-freedom equations of motion were used to numerically integrate the 

trajectory of missile mass center. The word pseudo conveys the meaning of approximating the 

attitude dynamics with the linear differential equations of the transfer functions [3].   

 

The navigation gain Ne value used is 3 even though the value in the simulations [1] is stated to 

be 4. It was not found any possible combination of initial data to reproduce the results [1] using 

the gain value 4 in the proportional navigation law including the closing velocity. However, the 

results wished were easily obtained using the representative missile data and the gain value 3. 

The value of the original paper [1] is assumed in this study to be a printing error. 

Target maneuver and end game geometry 

The target flies an ideal high-g barrel roll maneuver towards the missile at the flight altitude 

3000 m. The end game geometry and the barrel pattern are depicted in Figs. 1 and 2 [1]. The 

target velocity is 290 m/s and the lateral sustained acceleration is 7 g. The effectiveness of the 

evasive maneuver is investigated also by varying the barrel roll rate. The roll rate values studied 

are 1 rad/s, 1.5 rad/s, 2 rad/s and 3 rad/s with different barrel diameters associated. 

 

 

Figure 1: The ideal high-g roll pattern [1]. 

The missile is at the sustainer stage and flies straight towards the target in head-on geometry 

(Fig. 2). 
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Figure 2: The end game geometry studied. The lateral shift Ymo is 0 m in the case [1]. 

Results 

The obtained miss distances are depicted in Fig. 3 as a function of time-to-go and the barrel roll 

rate. The time-to-go indicates the maneuver initiation time before interception. The curves were 

created by moving the initial position of the missile by about 200 meters and repeating the 

simulation run.  

 

The results are comparable with the ones depicted in Fig. 4 [1].The correspondence of the 

results is fair taking into account the model simplifications and the partly missing initial data.  

 

The results were checked by using an adjoint model [2]. The non-linear missile guidance model 

[2] resembles closely the one presented in Ref. [1]. The adjoint model is constructed by 

linearizing and reversing the original non-linear model [2]. The benefit of the adjoint model is 

capability to give all the results as a function of time-to-go in a single run. Only four runs were 

needed to get the results depicted in Fig. 5. The larger time-to-go adjoint miss distance results 

are constant and this is assumed to be caused by the model linearity. 

 

The large miss distance at the small time-to-go values is due to the unrealistic target maneuver 

at the beginning of the simulation run. The target has an initial transverse velocity and 

acceleration since the trajectory is the ideal barrel without the target maneuver lag. This 

handicap can be eliminated easily by launching the missile to the intercepting course with a 

proper lead. 
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Figure 3: The miss distances obtained in this study using the simplified method. 
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Figure 4: The miss distances obtained in Ref. [1]. 
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Figure 5: The miss distances obtained in this study using the adjoint model [2]. 

Concluding remarks 

The correspondence of the miss distance results obtained is fair taking into account the 

simplifications and the partly missing initial data. The simple method seems to be good enough 

to predict the miss distance, at least in the end-game case studied. The adjoint model [2] verifies 

the results obtained.  
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ForcePAD - A new user interface concept for design and optimisation 
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Summary ForcePAD is a 2-dimensional finite element application that started as a concept 
application for finite element modeling. Over the course of 10 years the application has been evolved 
into an application that is used extensively in both an educational setting as well as a tool for design 
and engineering. In the latest version of ForcePAD an optimization module was added to enable to take 
advantage of topology optimization in the design process.  

Introduction 

The traditional finite element modeling process is complex involving several steps and 
iterations. The complexity is often needed to support the precision needed in the modeling 
real objects. In a design or architectural setting the need for precision is replaced with the 
need for quick iterations and the ability top quickly change a design analyse the effects of the 
changes. ForcePAD [1, 2, 3] is designed to support this development process, reducing the 
number of steps in the modeling process. 

Analysis tools early in the design process 

Early in the design process sketching is often used to iterate over several design concepts. 
Software supporting sketching is image-editing applications such as Adobe Photoshop [4], 
GIMP [5] or Paint.NET [6]. The design of ForcePAD is modelled after an image editing 
application, where color is replaced with stiffness, where black represent max stiffness and 
white no stiffness. To analyse the model the image is transferred to a finite element mesh, by 
sampling the image. The modelling workflow is shown in figure 1. 

Figure 1: The sketch based modelling workflow of ForcePAD. 

Topology optimisation for finding shapes 

In the earlier versions of ForcePAD 
at the stress fields and removing unnecessary material. In the latest version of the software a 
topology optimisation algorithm was added based on work by Bendsoe and Sigmund [7] and 
Pederson et al. [8]. Using this algorithm topology optimisation can be applied to existing 
sketches aiding the designer in finding an optimal design. Figure 2 shows the algorithm 
applied to a rectangular model.  

Pixel image
Element
mesh
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Figure 2: Topology optimisation in ForcePAD. 

It is important to note that in this type of application the optimisation algorithm is used to 
provide the designer with ideas not the final solution. The user can stop the optimisation 
algorithm at any point and modify the model and restart the algorithm again. 

User interface 

To reduce the complexity of the ForcePAD user interface a task-oriented approach is used. 
This means that if the user is sketching, only tools relevant to that task are visible in the user 
interface, see Error! Unknown switch argument..

Figure 3: ForcePAD task oriented user interface. 

There are 3 main modes in ForcePAD: 

Sketch mode  In this mode the model is created by painting with stiffness. 
Physics mode  In this mode the boundary conditions, such as loads and constraints 
are applied to the model. 
Action mode  In this mode analysis results can be viewed. It is also possible to 
modify loads and have the results updated in real-time.  

Implementation 

ForcePAD is C++ application that runs on Windows, Mac OS X and Linux. To enable this 
platform independence the FLTK user interface library [9] is used. The finite element code is 
implemented using the Newmat11 matrix library [10].  

ForcePAD is an open source application [11] that can be downloaded from SourceForge. 

Original model N=3 iteration N>20 iterations

Task categories

Select
Pen

Geometry
Fill

Task properties
and functions
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Concluding remarks 

ForcePAD provides a new user interface concept for modelling and optimisation that 
integrates well with the sketch based workflow of designers and architects. The user 
interfaces reduces the complexity of conventional finite element modelling, enabling easy 
updates of the model and quick feedback. The user interface is not limited to designers and 
architects; engineers can also use it as a tool for quickly illustrating design concept.  

The reduced complexity also enables it to be effectively used in an educational setting, in 
which it also has been used for several years. 
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Summary An integrated cost optimization framework for aircraft structures is presented and
discussed by means of case studies. In particular, it is shown how the component design can be
influenced by the introduction of the manufacturing cost, the inspection cost and a component
specific fuel burn into the design process.

Introduction

Aircraft manufacturers aim to design airliners with the lowest possible direct operating
cost (DOC). Looking at the drastic rise of the jet fuel price during the last decade, one can
understand why a lot of efforts have been undertaken to lower the fuel consumption, whose
cost is a substantial part of the DOC. One possible strategy to save fuel cost is to lower
the structural weight. In order to lower the weight, manufacturers carefully introduced
high-performance composite materials to the design of secondary and primary aircraft
structures. The main advantages of carbon fiber reinforced plastics (CFRP) include the
reduction of mass and number of parts, the option for complex and integrated shapes,
improved fatigue life and generally improved corrosion resistance. The drawbacks of these
materials are the higher manufacturing, repair and inspection costs, accompanied by a
highly increased design complexity and complex damage tolerance management [1].

To some extent, the use of cost and weight data for the design optimization of aircraft
structures was proposed in the literature [2–8]. Other information, such as producibility
limits, post-production testing, or maintenance and repair issues were neglected, although
they would impact the design decisions significantly. In this work, we included the material
cost and the labor cost [8,9], cost for non-destructive testing [10] and an estimated lifetime
fuel burn cost into one objective function, a simplified form of DOC. In addition, we
examined the producibility of a design by simulating the draping of the prepreg material
[11]. The overall framework is then exemplified by means of case studies.

Method

The problem was given as

min DOC of a aircraft component
subject to structural requirements (1)

xi < xi < xi, i = 1 . . . n.

where DOC was the share of direct operating cost, xi were design variables, and xi and
xi were their lower and upper limits, respectively. The DOC were formulated as

DOC = α1Cman + α2Cndt,prod +Nα3Cndt,serv + pW (2)

where Cman is the manufacturing cost of the component, and Cndt,prod and Cndt,serv are the
cost for non-destructive testing in in-production and in-service inspection, p is a specific
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fuel burn (in EUR/kg) and W the structural weight (in kg). The parameters αi incorporate
calibration factors due to depreciation, overhead cost and other adjustments, and N is the
number of regular inspections during the lifetime of the component.

weight

FE

DOC

solver

+

design

constraints

objective 
function

S1,α S2,α

C1

C2composite 
modeler

best ply

dkNDT

cost

Figure 1: Proposed optimization framework

The proposed framework is shown in Fig. 1. As can be seen, it comprehends separate
modules for the estimation of weight (ABAQUS/CAE), manufacturing cost (SEER-MFG)
and structural performance (ABAQUS standard). The sequence of these estimations and
the variables were handled by the solver (Xopt). In addition, the draping of the prepreg
layers was modeled using a kinematic draping simulation (Composite Modeler, see Fig. 2).
A set of best plies according to minimum material consumption or minimum fiber an-
gle deviation rules was chosen from a previously generated draping knowledge database.
The plies generated by Composite Modeler impacted then both the cost model (material
consumption, ultrasonic cutting, number of plies needed) and the structural model (fiber
angle after draping, number of plies).

Figure 2: Simulated fiber angles in Composite Modeler

Another novel aspect was the implemented non-destructive testing model. This model
affected again both the cost and the structural model, as the scan pitch of the ultrasonic
scanner was varied throughout the optimization. On the cost side, the variable scan pitch
influenced the scan cost, as less scan runs were anticipated during the post-processing of
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the manufactured components. On the structural side, the scan pitch had an impact on
the confidence of the testing in terms of quality assurance. For instance, a wider scan pitch
lowered the confidence to find a defect of a certain size. This in turn lowered the strength
of the material, as bigger flaws had to be taken into account for the design. Thus, the
structural allowables were adjusted accordingly.

Results of the Case Studies

The optimization routine was implemented by means of the above mentioned tools and
the scripting language Python. Using material data provided by Saab Aerostructures and
Airbus, a series of case studies was performed.

Variable Weight Penalty

It could be shown that the design solution was dependent on the anticipated fuel cost
during the lifetime of the aircraft. Stiffened panels, for example, underwent a change
from a ”coarsely stiffened skin with bulky stiffeners” to a ”densely stiffened skin with fine
stiffeners” configuration when the fuel cost was increased, see Fig. 3.

a) low-cost solution
    (high weight, low Cman, Cndt)

b) low-weight solution
    (high Cman, Cndt)

Figure 3: Change in stiffener configuration

Variable Laminate Quality

The implementation of non-destructive testing cost in the optimization framework allowed
not only the cost/weight optimization of the panel, but also the optimization for an op-
timal quality level of the same. In particular, it was concluded that an optimized quality
level tended towards much bigger flaws than commonly accepted today. Thus, the weight
penalty of thicker structures was outweighed by the reduced testing cost (as a consequence
of the lower quality level).

Sub-Optimization of Draping Parameters

Further, a draping knowledge database was generated for a double-curved C-spar as seen
in Fig. 4. The C-spar was modeled and optimized using a M21/T800 prepreg material.
For that prepreg material, one could again see the dependency of the solution on the
fuel price. In particular, the ”set of best plies” chosen would change from a solution with
minimum material consumption to a solution with minimum fiber angle deviations (i.e.
better structural performance) when the impact of the fuel price was increased during the
design of the component

Concluding Remarks

We propose an optimization routine which includes various disciplines in the design of air-
craft structures. These disciplines strongly interact with each other; the general objective
of the framework, however, is to optimize for the lowest possible direct operating cost. The
framework is promising and includes novel aspects not seen earlier in literature. In partic-
ular, the coupling between NDT and the structural model provides an interesting way to
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include quality assurance already in the design process. Further, the implementation of a
draping knowledge database enables the designer to optimize the layup with fiber angles
closer to reality; it further influences the design with producibility constraints in an early
design phase. The component

cabin
pressure

max displacement

Simply
supported

Figure 4: C-Spar modeled in ABAQUS/CAE
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Summary The study focuses on the optimization of steel portal frames, and on the proper use of different
analytical  methods  including  stability  calculations.  Our  goal  is  to  develop  an  effective  tool  which  can
produce optimal frame geometry and help designers to keep up with growing demands on price. Frames are
analyzed  in Abaqus/Standard or MS Excel  and a real­coded genetic algorithm  is used  for  finding optimal
configurations satisfying Eurocode requirements.

Introduction

Low­rise commercial and industrial structures, utilizing portal frames (Figure 1), represent a very
significant part of the steel construction market. As a consequence, portal frames are subjected to
attempts  of  reducing  their  cost  and  increasing  their  efficiency  [1].  Within  the  RFCS­
PRECASTEEL project we use the  latest improvements in computational resources, both in terms
of hardware and FEA software, in order to make a step further in portal­frame optimization.

H

Figure 1: Basic frame types: hot­rolled sections (left) and welded (right)

Procedures used for the analysis of frames

One  prerequisite  of  an  optimization  attempt  is  the  existence  of  an  analysis  procedure,  which
produces  results  at  a  level  of  accuracy  comparable  to  what  is  expected  to  be  saved  by  the
optimization.  If  the  analysis  procedure  is  too  conservative,  over­simplifying  or  not  reliable,  the
optimization  procedure  can  not  be  expected  to  compensate  for  the  inadequacies  of  analysis
produced.  While,  at  first  look,  portal­frames  appear  simple  they  often  conceal  particular  design
difficulties.  Therefore,  in  this  study,  special  care  has  been  placed  on  using  adequate  analysis
procedures, even at a higher computational cost.

The analysis methods are divided into three levels according their accuracy, complexity and speed
(Table 1). We  developed automated  scripts  for  Excel  and  Abaqus  where  the user  can choose  to
load the models with vertical dead load, snow, wind and seismic actions. Results are expressed as
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vertical  load­carrying­capacity for ultimate  limit state (ULS) and serviceability  limit state (SLS),
and they are passed to the optimization procedure which generates a new set of frames. Optimized
frame geometry can usually be reached after several repetitions (Figure 2).

Method 1 Method 2 Method 3
Software used MS Excel Abaqus/Standard Abaqus/Standard
Geometry 2D wire model 2D wire model,

3D shell for buckling
3D shell model

Tapering stepped – 4 divisions  stepped – 10 divisions
and continuous shell

continuous shell

Global stability sway imperfections sway imperfections sway imperfections
In­plane stability reduction factors deformed shape deformed shape
Out­of­plane stability reduction factors global reduction factor deformed shape
Material plasticity plastic sect. resistances  elastic­plastic material elastic­plastic mat.
Geometric
non­linearity

linear calculation with
2nd order amplifier

non­linear calculation
(when needed)

non­linear calculation

Calculation steps 1 step: LA 3 steps: LBA­y,
LBA­z  and GMNIA

2 steps: LBA and
GMNIA

Calculation time approx. 1 sec. approx. 30 sec. approx. 100 sec.
Table 1: Design methods

Method 1: Local member checks using interaction formulae (EN 1993­1­1, 6.3.3. [2])
The standard method often used by designers is based on individual checks of columns and rafters
using internal forces from linear elastic analysis (LA). Load­carrying capacity can be predicted by
design codes  (e.g.  EN 1993­1­1  [2])  in  case  of  interaction  of  axial compression and  major  axis
bending.  However,  the  application  of  stability  rules  is  difficult,  especially  when  members  have
variable cross­sections, and/or  the support conditions  are non­conventional  (e.g.  not  in  the shear
centre).  If  lateral  torsional  buckling  (LTB)  dominates,  the  critical  load  calculation  becomes
challenging.  In  practice,  the  factors  corresponding  to  weak  axis  flexural  buckling  and  LTB are
doubtful when the member has eccentric supports, while the interaction factors and the meaning of
axial and bending capacity are open to interpretation when the member has variable cross­section.
Method 2: General method (GM) for lateral buckling and LTB (EN 1993­1­1, 6.3.4. [2])
The general method is using the results of global (i.e. structure level) buckling and yield analyses
to predict the capacity of the structure. The multipliers of loads corresponding to global buckling

CR) and yielding without buckling ( ult) are the basis of calculating the load bearing capacity.
Method 3: Global nonlinear analysis
Global  non­linear  analysis  (GMNIA)  is  used  on  the  3D  shell  model  of  the  frame  with
imperfections obtained from the previous shell buckling analysis (LBA). The calculation is slower,
but it provides complete load­deflection relationship including local and global stability.
Calculation performance
In order to reduce the run­time of the procedure, if multiple frames are submitted, the script is able
to  analyze  several  frames  at  the  same  time  by  redistributing  computer  memory  and  effectively
using  available  processor  cores.  The  procedure  is  also  automatically  maintaining  a  database  of
results,  to  avoid  repeating calculations. Certain  model  simplifications are automatically  selected
when appropriate, and the script constantly monitors  results of non­linear calculation  in order  to
terminate the step when the data are enough to extract design values.
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Figure 2: Analysis and optimization diagram

Optimization procedures using genetic algorithm (GA)
The optimization is using GAs, a procedure which tries to mimic natural evolution process. First,
an  initial  population  is  created  and  analyzed  and  the  fitness  of  each  individual  is  evaluated.
Second, a new population  is created by favouring the  fittest  individuals and by applying genetic
operators,  such  as  crossover  and  mutation.  The  GA  proceeds  iteratively  towards  the  optimal
solution by creating a new population from the previous one. Elitism ensures that the best solution
is kept during all of the genetic operations, and while no proof of convergence in finite time exists,
good results are found in reasonable time.
Use of GAs for portal frame optimization
The  portal­frame  optimization  is  a  mixed­integer  non­linear  problem.  Classical  direct  and
gradient­based  methods  have  difficulties  with  these  kinds of  problems. On  the  other hand, GAs
have  been  extensively  used  in  structural  optimization,  having  several  advantages:  multiple
variables can be handled, parallel computing is possible, and coding procedure is straightforward.

A real­coded genetic algorithm (RCGA) can handle discrete and real variable types easily and has
been chosen for this problem. With RCGA, the coding­decoding characterizing binary­coded GAs
is  also  avoided.  The  obvious  choices  for  optimization are  the profiles  of  the  column and beam,
when  the  frames are made of  hot­rolled sections (Figure 1.a). Cross­sectional dimensions can be
selected as variables when the frames are made of welded sections (Figure 1.b). Other variables
could be: the steel grade, the haunch ratio and the roof angle of the frame.

Optimization  literature provides  a  large catalogue  of  different  selection,  crossover  and  mutation
operators  that can be combined  to create a GA suited for  the problem at hand.  In this study,  the
well  known  simulated  binary  crossover  (SBX)  [3]  and  parameter  based  polynomial  mutation
operator [4] are compared with a new algorithm combining Laplace crossover and power mutation
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[5]. Both crossover operators have a self­adapting behaviour, which favours creating children near
to parents, when the parents are near to each other in the variable space.

The algorithm can be used with all of the analytical methods (Table 1). The objective function is
quickly  evaluated  with  the  MS  Excel  tool,  which  enables  a  fast  optimization  of  the  desired
configuration. The Abaqus based methods (Table 1) are considerably slower, even when reusing
previously  saved  results  from  the  database  file,  in  order  to  avoid  recalculating  some  objective
functions.  In  both  cases,  the  GA  runs  for  predetermined  number  of  generations,  and  the  best
configuration is given as an output.

Concluding remarks
In order to exemplify possible results, selected data gathered in the database file of a GA run using
Method  3,  is  presented  in  Figure  3.  The  frame  had  the  following  parameters:  S=20m,  H=6m,
T=6m, LHaunch=3.6m,  =15%, Gk=380N/m2, Qk=750N/m2, 3 + 5 purlins. Positive feasibility means
that  the  frame  fulfils  both  ULS  and  SLS  criteria.  In  this  case  the  mass/weight  of  the  frame  is
accepted  as  measure of  the performance,  and  it  can be  observed  that  the  lightest  feasible  frame
uses IPE500A column and IPE330 beam, and weights about 2.1 tons.

­500

0

500

1000

1500

IP
E

3
6

0
A

 ,
H

E
4

0
0

A
A

H
E

2
4

0
A

 ,
H

E
6

0
0

A
A

IP
E

3
6

0
A

 ,
IP

E
4

5
0

IP
E

3
3

0
 ,
IP

E
5
0

0

H
E

2
6

0
A

A
 ,
H

E
6

0
0

A
A

H
E

2
6

0
A

 ,
IP

E
5

0
0

A

H
E

2
4

0
A

A
 ,
H

E
7

0
0

A

H
E

2
8

0
A

A
 ,
IP

E
5

0
0

A

IP
E

3
6

0
 ,
H

E
3

2
0

A

H
E

2
8

0
A

A
 ,
H

E
4

0
0

A

IP
E

3
3

0
 ,
IP

E
5

0
0

A

IP
E

3
3

0
 ,
H

E
4

0
0

A
A

H
E

2
6

0
A

A
 ,
IP

E
6

0
0

A

H
E

2
6

0
A

 ,
H

E
4

0
0

A

H
E

2
4

0
A

 ,
H

E
5

0
0

A
A

H
E

2
6

0
A

A
 ,
H

E
5

0
0

A
A

H
E

2
4

0
A

 ,
IP

E
5

0
0

IP
E

4
0

0
A

 ,
H

E
3

0
0

A

IP
E

3
6

0
 ,
H

E
3

6
0

A
A

H
E

2
4

0
A

 ,
IP

E
5

0
0

A

H
E

2
6

0
A

A
 ,
H

E
4

5
0

A
A

IP
E

3
6

0
A

 ,
H

E
3

4
0

A

H
E

3
4

0
A

 ,
H

E
3

6
0

A
A

IP
E

3
3

0
 ,
H

E
5

5
0

A
A

IP
E

6
0

0
 ,
H

E
2

4
0

A

H
E

2
6

0
A

A
 ,
IP

E
5

5
0

H
E

2
6

0
A

A
 ,
IP

E
5

5
0

A

H
E

2
8

0
A

A
 ,
IP

E
5

0
0

A

IP
E

3
3

0
 ,
H

E
5

0
0

A
A

IP
E

3
6

0
 ,
IP

E
4

5
0

A

IP
E

3
3

0
 ,
IP

E
4
5

0

H
E

2
8

0
A

A
 ,
H

E
5

5
0

A

H
E

2
8

0
A

A
 ,
H

E
6

0
0

A
A

F
e
a
s
a

b
ili

ty

0

1

2

3

4

5

M
a
s
s
 o

f 
fr

a
m

e
 (

t)

Feasability

Weight

B
e
a
m

, 
C

o
lu

m
n

Figure 3: Possible configurations for a 20m span, 6m high, fixed base frame
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Summary Some new developments of the MATLAB based finite element software CALFEM are discussed. 
Functions making it possible to generate arbitrary triangular and quadrilateral meshes are currently being 
developed. Moreover, a stand-alone version of CALFEM is also in progress that makes use of the open source 
PYTHON environment. This version of the program is shortly discussed with an example of the syntax, to show 
the similarities. Finally a web site connection to improve the development work of CALFEM is discussed.  

Introduction

The name of the finite element software CALFEM is an abbreviation of ‘Computer Aided Learning of 
the Finite Element Method’. CALFEM has been used for several years in research and education at 
Lund University and in many other places worldwide. The down-loads of this open-source software 
are counted in thousands. CALFEM was originally developed at the division of structural mechanics 
and the first versions were written in FORTRAN.  But since 1993 it has been adapted to MATLAB by 
a development work conducted at the division of Structural Mechanics and the division of Solid 
Mechanics at the department of Construction Science, Lund University.  

Although CALFEM is now very much used in research, it was at the beginning developed to be used 
in education, for the purpose of giving a deeper understanding of the finite element method, without 
requiring too much programming efforts from the students. This was accomplished by FORTRAN 
subroutines, and is now accomplished by MATLAB-functions for the basic steps needed in solving 
problems by finite elements. For example, there are functions for creating element matrices, 
assembling them to a system of equations, and solving the global system for nodal quantities etc. 

CALFEM is integrated in the education in several courses, given by Structural mechanics and Solid 
mechanics departments on under-graduate as well as post-graduate level. This means that students do 
exercises, projects and also master thesis works using CALFEM as the major tool. Moreover, post 
graduate students also use it as a tool in their thesis work.  

This presentation concerns the recent development of the software. The major new features concerns 
mesh generation, a transcript of the code to PYTHON environment, and the use of the web-site 
SourceForge to take advantage of development work done in other places. 

Mesh generation 

When students use CALFEM in education and in master thesis or PhD-works they look at idealized 
model problems with simple geometry, but often also on more realistic problems with complex 
geometry. Until recently the support for mesh generation in CALFEM has been very limited. 
However, in a new development, one now has the option in CALFEM to generate two-dimensional 
triangular or quadrilateral meshes, based upon a triangular or quadrilateral surface topology.  

The basic geometry in the mesh generation consists of vertices and segments, defined from an oriented 
polygon, i.e. the vertices are supposed to be oriented consecutively in clockwise direction on an 
arbitrary polygon. Two consecutive vertices define a segment. 
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Figure 1. Example of unstructured quad mesh generation on an L-shaped consol.

From this basic geometry definition (left hand side in Figure 1) a structured or unstructured triangular 
mesh can be generated. The triangular mesh can then be further converted to a quadrilateral mesh. 
This is shown on the right hand side of the figure above, in the case of an unstructured triangular mesh 
as a base.

Tools to validate, extract degrees of freedom, smooth and correct the mesh provides the user with tools 
to refine and handle the generated mesh.  

Example of new functions for mesh generation, in the L-shaped beam case (figure above), is as 
follows (preliminary syntax). The CALFEM code given here generates the geometry and the un-
deformed mesh shown in Figure 1: 

% basic geometry definition

l = 0.2; w = 0.05; h = 0.1;

vertices = [0.0 h; l h; l 0.0; l w 0.0; l w h w; 0.0 h w];

segments = [1 2 1; 2 3 1; 3 4 1; 4 5 1; 5 6 1; 6 0 1];

nen=3; dofsPerNode=2; maxArea=1e 4;

mp=[maxArea dofsPerNode nen];

geomdraw2(vertices,segments,mp)

% generation of unstructured triangular elements

dbtri=unstri2d(vertices,segments,mp);

% generation of quads from triangular elements

dbquad=tri2quad(dbtri);

% extraction of mesh quantities

[coord edof dof nen]=extractdb(dbquad);
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A more complex example of two-dimensional meshing is shown in Figure 2. Several triangular 
surfaces are seamlessly meshed with quadrilateral elements.  

Figure 2. Several surfaces connected and meshed seamlessly along the edges.

CALFEM and Python: 

To be dependent and connected to a big technical software like MATLAB, has advantages but also 
some apparent disadvantages.  Although there are student versions of MATLAB for free use, it is a 
quite costly program for non students and say small companies that want to use it mainly for finite 
element analysis trough the use of CALFEM.  

In order to circumvent this problem a special version of CALFEM, pyCALFEM, is under 
development. This version will implement all the CALFEM commands using the NumPy-library a 
Python module providing the necessary matrix support.  

The following code illustrates the pyCALFEM use for a two-dimensional truss of 12 dofs: 

#
# PURPOSE: Analysis of a plane 2D truss structure
#

from numpy import *
from pycalfem import *

# Topology, coordinate, and element properties

K=zeros([12,12])

f=zeros([12,1]); f[10]=1e6

A=25.0e 4; E=2.1e11; ep=[E,A]

ex = array([
[0., 2.],
...
[0., 2.],
[2., 4.]])

ey = array([
[2., 2.],
...
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[2., 0.],
[2., 0.]])

Edof = array([
[1, 2, 5, 6],
...
[1, 2, 7, 8],
[5, 6, 11, 12]])

# Assemble and solve the system of equations

for elx, ely, eltopo in zip(ex, ey, Edof):
Ke = bar2e(elx, ely,ep)
assem(eltopo,K,Ke)

bc = array([1,2,3,4])
a, r = solveq(K,f,bc)

# Evaluate the element forces

ed=extract(Edof,a);
N=zeros([Edof.shape[0]])

i = 0
for elx, ely, eld in zip(ex, ey, ed):

N[i] = bar2s(elx,ely,ep,eld);
i=i+1

CALFEM as a collaborative effort 

To enable users to provide code as well as take advantage of new features which are not in the stable 
releases, CALFEM is now available on SourceForge. This web-site provides services for open source 
project such as: 

File release system for distributing stable packages. 
Source version management service providing source code control using subversion, enabling 
multiple developers to work on the code simultaneously. 
Detailed statistics on the number of downloads and code commits in the version management 
system. 
Forum for users of the package. 

By using the SourceForge environment the development of CALFEM can be encouraged by third 
party developers by providing them access to development code as well as stable releases. 
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Summary A computer-based methodology based on the Latin Hypercube Sampling technique is presented 
that is aimed at locating sensitive areas within the building industry where the tolerances need to be kept 
small. This methodology could also be a helpful tool for architects to find new designs and to find the 
influence the choice of material, form etc in the initial phase of the design process. 

Introduction 

Josephson and Saukkoriipi [1] found that 30-35% of the production cost for a building project in 
Sweden is wastage. Approximately 10% of this wastage could be related to production errors and 
controls and another 10% could be related to misuse of resources i.e. material wastage, downtime 
etc. These problems, specified above, could be related to one common denominator; 
imperfections. 
Imperfections are defined as something - not perfect, defective or inadequate1. In this context 
imperfection is related to the probabilistic nature of reality i.e. it is not possible, or at least, very 
difficult and therefore very expensive to produce building components or structures that are perfect 
regarding dimensions, material properties etc. These imperfections may, or may not have a great 
influence on the functionality of the component or structure. 
 
Imperfections can be either definable or indefinable; 
Definable imperfections a.k.a. “Tolerances” are expected deviations within a pre-defined interval 
based upon experience e.g. manufacturing tolerances for building components or specification 
regarding the functionality. These intervals are regulated in Sweden by the Swedish building code, 
HusAMA. 
Indefinable imperfections a.k.a. “Errors” are deviations outside any pre-defined tolerance interval. 
 
In the building industry the concept of tolerances is widely known. The understanding of how 
tolerances, used locally, affect the global behaviour and in the end the functionality of the 
component or structure is, however, often vague. 
 
It seems to be a general opinion within the building industry that there is nothing, or very little, to 
gain in optimization since, in the end, the methods used in the production phase and the 
environment at the construction sites are so rough that the delicate refinement is lost in the safety-
margins needed.  
However, there is a great demand from the building industry for techniques securing the esthetical 
and functionality (ex load-bearing capacity) directives specified for a building i.e. that the 
tolerances are observed. 

                                                      
1 wordnet.princeton.edu/perl/webwn 
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Physical Uncertainties 

The three components; material, structure (geometry and boundaries) and load can, to a certain 
degree, be seen as physical variables with semi-random characteristic. When looking at techniques 
for securing that the esthetical and functionality (ex load-bearing capacity) directives specified for 
a building are observed, focus is set on the semi-random characteristic of the structure solely. 
 
To illustrate the role of the uncertainties, a frame with three columns and two beams is considered. 
A “block” is placed on respective beam with a specified distance, dinit, between them. See Figure 1. 
Due to imperfections at the foot of the column the location and inclination of respective column is 
decided from the three stochastic variables u, v and w. 
Due to imperfections in the production the length of the columns and beams are not exact. 
In Table 1 the input data as nominal value and the tolerance interval for each structural member is 
presented. 

 
Figure 1: Geometry of the structure. 

ID u1 v1 w1 u2 v2 w2 u3 v3 w3 
Nominal 0 0 0 0 0 0 0 0 0 

± 5 5 5/1000 5 5 5/1000 5 5 5/1000 
          

ID l1 l2 l3 l4 l5 h dinit   
Nominal 3000 3000 3000 4000 4000 3000 10   

± 2 2 2 2 2 0 0   

Table 1: Input data as nominal values and tolerance intervals given in millimetres. 

If one assumes a discrete variation within each interval in even millimetres the number of possible 
combinations (samples) would be 119×55 ≈ 7369×109. By adopting the Latin Hypercube Sampling 
technique described in [2] it is possible to get a good representation of the stochastic field with 
considerably less number of samples. 
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From the different sets of input the distance between the two “blocks”, d1 and d2, can be 
calculated as the output variables. Since the two “blocks” can not overlap each other the output 
variables d1 and d2 are adjusted so that the minimum distance is set to zero. 
 
With 1×105 samples (approximately 5 minutes run-time on a Dell Precision M60) the following 
histogram, showing the distribution of the gap size at the bottom, is presented. See Figure 2. 
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Figure 2: Distribution of the gap size at the bottom, d2. 

The mean- and median value is approximately 17.4 mm and 16.8 mm respectively. The 95th 
percentile is approximately 36.0 mm meaning that the probability of getting a distance greater than 
36.0 mm is 0.05 or less. 
Most likely this magnitude of deviation from the prescribed value of dinit = 10 mm is unacceptable 
but with this computer-based methodology it is a simple task to perform a sensitivity analysis to 
identify where the tolerance should be more strict. 
E.g. by setting the tolerance interval of the stochastic variable w to ±2.5/1000 instead of ±5/1000 
the mean- and median value is approximately 13.2 mm and 12.8 mm respectively. The 95th 
percentile is approximately 18.4 mm which is considerably better. 
 
In reality there are a lot more stochastic variables involved e.g. uncertainties in the loading and in 
the stiffness of the different members. By applying more sophisticated computational methods 
such as e.g. FEM it is possible to get a more complete picture of the structural behaviour due to the 
different uncertainties. 

Architectural freedom 

Another area in which this computer-based methodology comes in handy is when the prerequisites 
are vague. In this case it is also possible to add the material and the load as stochastic variables so 
that the architect/engineer has the possibility to “play around” with different materials, shapes etc. 

N
um

be
r 

of
 s

am
pl

es 

Gap at bottom, d2 [mm] 

243



Concluding remarks 

By applying a computer-based methodology based on the Latin Hypercube Sampling technique it 
is possible to analyze where, in the structure, it is profitable and/or necessary to increase the 
tolerances. This methodology also gives the architect the artistic freedom to explore many 
different visions in the initial phase. 
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Summary This paper presents an uncertainty analysis of the passive behaviour of the left ventricle of
the heart. By utilising a recently developed stochastic method, the probabilistic collocation method, we
conducted several test cases for equations governing the passive filling phase of the cardiac cycle. We
conclude that this stochastic method is well suited to be employed for the problem of consideration. In
addition, it is more efficient than the Monte Carlo simulation method.

Introduction

In this paper, we add to a more than two decades of heart-mechanics research by solving for the
uncertainty in the passive filling phase of the cardiac cycle. Such research includes advanced finite
element solvers accounting for the relatively complex three-dimensional geometry of the ventri-
cles, the anisotropic behaviour caused by the fibrous-sheetstructure of the myocardium, and the
geometric nonlinear effects due to the large deformation ofthe cardiac tissue [1, 2]. Furthermore,
various nonlinear constitutive laws or stress-strain relations containing a set of material parameters
have also been introduced. Due to the fact that the material coefficients govern the behaviour of
the medium, the choice of parameter values is of great importance. Attempts on determining ma-
terial parameters through biaxial tests of thin rectangular slices cut from the ventricular wall have
been performed. However, it is known that such tests do not capture the entire three-dimensional
in vivo behaviour of the myocardium [2]. Thus, the material properties are subjected to a consid-
erable amount of uncertainty, which means that the problem is most consistently dealt with in a
stochastic framework [3].

The most common way of solving stochastic differential equations numerically, is to apply the
Monte Carlo simulation (MCS) method. However, due to the large number of realizations required,
the method can be computationally intensive. In the presentpaper we investigate a recently devel-
oped technique, denoted the probabilistic collocation method (PCM). In the context of stochastic
differential equations it has been applied in areas as for example computational fluid dynamics
[4], porous media flow [3] and sedimentary basin modelling [5].

Mechanics of the heart

For simplicity, we consider only the equations governing the passive behaviour of the left ventricle
of the heart. Thus, the analysis is restricted to the filling phase of the cardiac cycle. The governing
partial differential equation reads

∇ · (F S) = 0, x ∈ H, (1)

whereF is the deformation gradient,S is the second Piola-Kirchhoff stress tensor, andH is the
computational geometry. Following Vetter and McCulloch [1], Thorvaldsen et al. [6] and Osnes et
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al. [7] we employ a transversely isotropic version of the exponential strain energy function

Ψ =
1

2
C(eW − 1) + K(J ln J − J + 1),

W = bffE2
ff + bxx(E

2
ss + E2

nn + E2
sn + E2

ns) (2)

+ bfx(E2
fn + E2

nf + E2
fs + E2

sf ).

HereC, bff , bxx, bfx andK are the uncertain material parameters,Eij are components of the
Green-Lagrange strain tensor, andJ is the determinant of the deformation gradientF . In the
following we investigate the influence of the uncertainty inthe material parameters upon several
output quantities of the model.

Probabilistic collocation method

By considering the response variable as a polynomial expansion of the input parameters, uncer-
tainty in the response function can be determined from the probability density functions of the
input variables. Letξ = (ξ1, ξ2, . . . , ξN )T be a vector ofN independent random input variables.
Then the stochastic output quantityy, for example the longitudinal displacement at apex or the
end-diastolic cavity volume, may be expressed as an infinitepolynomial chaos expansion [3]. In
practical applications, the chaos expansion is usually truncated by finite terms. It can then be ex-
pressed as

y(ξ) =

P
∑

j=1

bjΦ(ξ), (3)

wherebj areP deterministic coefficients to be determined, andΦ(ξ) are functions derived from
the chaos expansion. Applying an expansion of degreed means that the number of termsP in (3)
is given by

P =
(N + d)!

N !d!
, (4)

whereN still is the random dimension. Then we establish an equationsystem for the coefficients
bj in (3). In order to calculate the response parameter(s) of interest, the governing equation (1)
must be solved. However, due to the random nature of the material parameters in (2), the partial
differential equation is stochastic. The idea of the PCM andsimilar stochastic methods is to mul-
tiply the governing equation by a set of weighting functionswj(ξ) and taking the expectation. In
the PCM, the weighting functions are defined by

wj(ξ) = δ(ξ − ξj), j = 1, . . . , P, (5)

whereδ is the Dirac delta function andξj is a particular set of sampling points, typically deter-
mined as the most probable combinations of the roots of the function of orderd+1 from the chaos
expansion [3]. This means that in the PCM the governing equation has to be solvedP times, and in
most problemsP is several orders of magnitude smaller than the number of realizations required
in the MCS method. Finally, the stochastic properties of theresponse quantity or quantities can
be obtained through some simple analytical manipulations of (3) or by MCS of the same explicit
algebraic formula, which is a very fast process.
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Results and discussion

In this section we present some preliminary simulation results for the uncertainty analysis of the
passive filling phase of the left ventricle. In agreement with Thorvaldsen et al. [6] and Usyk et al.
[8] the ventricle is modeled as a truncated ellipsoid. A realistic fiber field is adopted; the angle
between the fibers and the unit vector in the circumferentialdirection varies from−45o at the
epicardium to+45o at the endocardium. The boundary conditions applied are as follows: At the
basal (or equatorial) plane none of the nodes are allowed to move in the longitudinal direction.
Furthermore, a limited set of base nodes is also restricted from displacement in one of the trans-
verse directions. Finally, at the endocardium we apply a cavity pressure increasing from0 to 2 kPa
during the passive filling phase, while the normal stress at the epicardium is assumed to be zero.

Before running the simulations, the statistical properties of the uncertain material parameters in (2)
must be determined. SinceC andK are positive-valued multiplicative factors, they are assumed to
be Log-Normally distributed, while Normal distributions are adopted for the rest of the parameters.
The expectation values of the parameters are picked from [7]. As pointed out in the introduction,
the uncertainty of the input parameters is considerable. Thus, the coefficient of variation (which
is defined as the standard deviation divided by the expectation value) is set to 0.15 for all the
variables. It should also be mentioned that we apply a polynomial chaos expansion of degree
d = 2, which means that the number of termsP in the expansion (3) equals21. This number also
defines the number of realizations required. The stochasticresults, along with the assumptions
for the input parameters, are listed in Table 1, see the column denoted Case 1. It is seen that the
uncertainty of the material parameters plays a crucial roleon the longitudinal displacement at apex

Table 1: Statistical properties of the input and response (longitudinal displacement at the apex,uapex, in-
crease in cavity diameter near the base,∆d, and increase in cavity volume,∆Vcav, during the filling phase)
parameters. The expectation (E) and standard deviation (SD) are listed for the input parameters. For the
response quantities the coefficient of variation (COV=SD/E) is also included.

Parameter Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

C (Pa)
LogNormal

E=80.0
SD=12.0

E=80.0
SD=12.0

E=80.0
SD=0.0

E=80.0
SD=0.0

E=80.0
SD=0.0

E=80.0
SD=0.0

bff Normal E=20.0
SD=3.0

E=20.0
SD=0.0

E=20.0
SD=3.0

E=20.0
SD=0.0

E=20.0
SD=0.0

E=20.0
SD=0.0

bxx Normal E=12.0
SD=1.8

E=12.0
SD=0.0

E=12.0
SD=0.0

E=12.0
SD=1.8

E=12.0
SD=0.0

E=12.0
SD=0.0

bfx Normal E=8.0
SD=1.2

E=8.0
SD=0.0

E=8.0
SD=0.0

E=8.0
SD=0.0

E=8.0
SD=1.2

E=8.0
SD=0.0

K (kPa)
LogNormal

E=100.0
SD=15.0

E=100.0
SD=0.0

E=100.0
SD=0.0

E=100.0
SD=0.0

E=100.0
SD=0.0

E=100.0
SD=15.0

uapex (mm) E=4.07
SD=0.63
COV=0.15

E=4.00
SD=0.22
COV=0.055

E=4.01
SD=0.098
COV=0.024

E=4.04
SD=0.58
COV=0.14

E=4.02
SD=0.048
COV=0.012

E=4.00
SD=0.016
COV=0.0040

∆d (mm) E=6.9
SD=0.24
COV=0.035

E=6.89
SD=0.11
COV=0.016

E=6.89
SD=0.090
COV=0.013

E=6.90
SD=0.12
COV=0.017

E=6.91
SD=0.15
COV=0.022

E=6.89
SD=0.0048
COV=0.0007

∆Vcav

(mm3)
E=6244.6
SD=414.6
COV=0.066

E=6204.0
SD=183.3
COV=0.030

E=6211.6
SD=122.9
COV=0.020

E=6228.2
SD=314.0
COV=0.050

E=6225.1
SD=156.0
COV=0.025

E=6208.1
SD=2.62
COV=0.0004
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(uapex), while the increase in diameter of the cavity near the base (∆d) and cavity volume (∆Vcav)
are less influenced. Furthermore, in order to study the effect of each of the material parameters on
the response quantities, a number of additional test cases has been run, see Case 2 to Case 6 in the
table. In each of these test cases, only one of the material parameters is assumed to be stochastic,
while the rest are considered deterministic. Now it is seen that the uncertainty inK only plays
a minor role on the response, while the displacement at apex and the increase in cavity volume
are mostly influenced by the parameterbxx, which governs the elastic properties in the plane
orthogonal to the local fiber direction.

Concluding remarks

Applying the probabilistic collocation method to a mathematical model describing the passive fill-
ing phase of the left ventricle has allowed us to calculate the uncertainty in the cavity volume, the
longitudinal displacement at the apex (or the elongation ofthe ventricle) and the cavity diameter.
By changing the number of uncertain input variables, we havebeen able to show the strength of
relationships between input and response uncertainty. In general, the apex displacement is most
strongly affected by uncertainty. The method has been implemented without a need to adjust the
complicated partial differential equation to allow for input parameter stochasticity, leading to sim-
pler implementation than for other stochastic methods, while not being as computationally expen-
sive as the Monte Carlo simulation method, an alternative black box method.
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Summary The paper considers vibration response of footbridges to pedestrian loading. Employing 
Newmark and Monte Carlo simulation methods, a statistical distribution of bridge vibration levels is 
calculated modelling walking parameters such as step frequency and stride length as random variables. The 
importance of modelling stride length and walking speed as random variables is evaluated, and results 
suggest that it is not necessary to model all parameters stochastically to produce fair response estimates. 

Introduction 

Vertical vibrations in footbridges generated by pedestrians are of concern as they may reach levels 
rendering bridges unfit for their intended use [1]. Basically vibrations may be perceived as 
unacceptable by bridge users. For evaluating the vibration serviceability limit state it is useful to 
employ numerical methods as, hereby, vibration levels may be predicted already at the design 
stage. As an add-on to this it is considered sensible to adapt a stochastic approach to modelling 
some of the walking parameters (parameters of the walking load model). Basically parameters 
such as step frequency and stride length (step length) may change from one pedestrian to the next 
and since there are proposals in the literature on the stochastic nature of these walking parameters 
[2], [3], they may be incorporated into numerical calculations predicting bridge vibrations to 
pedestrian loading. With this randomness implemented, the results of such calculations provide a 
statistical distribution of bridge vibration levels, and the paper provides an example of such result. 
As will be discussed in the paper this is a more refined and useful approach than the approach 
suggested in some current codes (for the British Standard [4]) addressing the serviceability limit 
state related to actions of walking. 
 
Generally it might not be necessary to model the stochastic nature of all walking parameters for 
obtaining a fair estimate of the statistical distribution of bridge vibration levels. As an example 
illustrating this point, various approaches to modelling walking speed is considered in the paper. 
The walking speed depends on both step frequency and stride length, which are random variables. 
However, a deterministic model for walking speed is introduced, and the statistical distribution of 
bridge vibration levels calculated on this assumption is compared with that obtained by modelling 
step frequency and stride length as random variables.   
 
In order to examine and illustrate the points outlined above, it is considered sufficient to employ a 
quite simple bridge model (SDOF model representing the first vertical bending mode of a pin-
supported bridge) and to study only the response to single-person pedestrian loading.  
 

Assumptions for the studies and study approaches 

Bridge model 
 
The modal characteristics of the bridge considered for the present studies are shown in Table 1. 
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f M ζ 
2.00 Hz 39.500 kg 0.3% 

Table 1: Dynamic characteristics. 
 
The frequency of the bridge (f) is chosen such that it represents a bridge prone to react lively to 
actions of walking. The bridge damping ratio (ζ) is quite low, but yet realistic for bridges with low 
damping. The modal mass (M) is also believed to be quite realistic considering the frequency of 
the bridge, as is the length of the bridge, L, which is assumed to be 43 m (distance between the two 
pin supports). 
 
Walking load 
 
For the paper (and as often done for modelling the vertical excitation generated by a pedestrian 
[5]), the dynamic load acting on the bridge, f(t), is modelled as shown in equation (1). 
 

)2cos()( tfWtf sπα=                                                           (1) 
 
It is a harmonic load with a frequency, fs, representing the step frequency of walking. The step 
frequency is assumed constant during the locomotion of the pedestrian whilst crossing the bridge. 
The amplitude of the load is αW, where α is the dynamic load factor where W is the static weight 
of the pedestrian.  
 
Assuming that the mode space function of the first vertical bending mode of the bridge 
corresponds to a half-sine, it can be shown that the modal load on the bridge (first vertical bending 
mode) may be computed using either equation (2) or equation (3):  
 

                                         )sin()2cos()( t
L
lftfWtq ss

s ππα=                                               (2) 

)sin()2cos()( t
L
vtfWtq s ππα=                                                  (3) 

 
In equation (2), ls is the stride length (or step length) of the pedestrian. For a given pedestrian 
(bridge crossing) ls is assumed to be a constant as is the step frequency, fs. Hereby the walking 
velocity, v, is also a constant, and it can be computed from the equation v = fs ls. This relationship 
is used when setting up equation (2). Equation (3) represents a simplification of the load in which 
it is assumed that any pedestrian traverses the bridge using a constant and the same walking speed 
v. Such restricting assumption is not made in the load model in equation (2).  
 
Approaches to predicting bridge response 
 
For simulating load action two different approaches are considered: 
 
Approach 1: In this approach it is assumed that the value of fs will change from one pedestrian to 
the next and that also the value of ls will change from one pedestrian to the next. The two 
parameters are modelled as independent random variables employing Gaussian distributions. 
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Proposals as for the mean value, μ, and standard deviation, σ, are available in literature. In this 
approach walking speed is a random variable. When simulating loads, equation (2) is employed. 
How α and W are modelled are explained later. 
 
Approach 2: In this approach only fs is modelled as a random variable (in the same way as in 
approach 1). For any pedestrian the walking speed, v, is set to 1.413 m/s. This is value in close 
proximity of 1.5 m/s, which is a figure often referred to as the walking speed associated with 
normal walk. The value 1.413 m/s is obtained using the equation v = fs ls employing mean values 
of the random variables fs and ls. When simulating loads, equation (3) is employed. The parameters 
α and W are modelled in the same way as in approach 1. 
 
Employing Monte Carlo simulation methods and a Newmark time integration scheme, bridge 
acceleration time-histories for a large amount of simulations (bridge crossings) are calculated; 
specifically, the vertical bridge acceleration at midspan. For every bridge crossing, the peak 
acceleration level, a, encountered at this position is extracted and this procedure provides a basis 
for calculating the probability distribution function for peak accelerations.  
 
Inputs for calculations 
 
Table 2 outlines the mean values (μ) and standard deviations (σ) employed for calculations.  
 

Variable Unit μ σ Reference 
fs Hz 1.99 0.173 [2] 
ls m 0.71 0.071 [3]  

Table 2: Assumptions for walking parameters. 
 
The static weight of the pedestrian, W, is set to 750 N. The dynamic load factor, α, is modelled to 
be conditioned on fs, as results of measurements reported in [6] clearly reveal a relationship with fs. 
The modelled relationship is:  

dcfbfaf sss +++= 23α                                                              (4) 
where 

 .7613.07597.13208.12649.0 =−==−= dcba                                       (5) 

In equation (4), the unit Hz is to be used for fs. 

 
Results 
 
Calculated statistical distributions of peak midspan accelerations are presented in Fig. 1.  
 
From such distribution it may for instance be identified that there is a 5 % probability of reaching 
vibration levels above 0.54 m/s2 (using approach 1 for this particular bridge). Hence for 1 out of 20 
crossings an acceleration level above 0.54 m/s2 is expected to occur. If employing the British 
Standard [4] for computing vertical bridge vibrations generated by a pedestrian, you would by 
default assume resonant action, and would not be provided with information on the probability of 
encountering the acceleration level calculated. The strength of modelling the stochastic nature of 
walking parameters (which is not done in [4]) in thus that it gives a more refined understanding of 
the likelihood of encountering various bridge vibration levels. 
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Figure 1: Statistical distributions of bridge vibration levels. 

However, it might not be necessary to mode each and every parameter of the load model 
stochastically for obtaining a fair estimate of the statistical distribution of bridge response. The 
results in Fig. 1 suggest that the estimate obtained assuming the same walking velocity for every 
pedestrian provides a result which is in fair agreement with the result obtained when modelling 
walking speed as a random variable. In some way this suggests that it is not that important to 
model the stochastic nature of stride length. This conclusion is drawn based on examining only a 
single bridge (and using a quite simple bridge model). Additionally, multi-person pedestrian 
loading is a matter of concern, and it is not addressed or considered in this paper. Hence, care 
should be taken to generalise the conclusion.    

Concluding remarks 

The paper has illustrated the usefulness of employing a walking load model in which parameters 
are treated as random variables. Furthermore is has been shown that it is quite likely that not every 
single parameter of the load model need be modelled stochastically for obtaining a far estimate of 
the statistical distribution of bridge vibration levels.  
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Summary In the present paper stochastic models for fatigue damage accumulation for composite materials 
are presented based on public available constant and variable amplitude fatigue tests. The methods used for 
estimating the SN-curve and accumulated fatigue damage are presented. 

Introduction 
Damage accumulation models for composite materials exposed to fatigue loading have been 
widely considered in the literature, see e.g. [1] for a review. However, even though new empirical 
and physical models for the accumulation of damage are proposed, these models do not seem to 
perform much better than the linear damage accumulation proposed by Miner [2]. For this reason 
the accumulated damage is normally determined by Miners rule as recommended in [3] for wind 
turbine blades. 
 
The uncertainties in damage accumulation based on Miners rule can in general be divided into 
three parts: 

• Physical uncertainty on the SN-curves 
• Statistical uncertainty on the SN-curves due to a limited number of tests 
• Model uncertainty on Miners rule 

 
The physical uncertainty on the SN-curves is due to the natural inherent uncertainty in the material 
and can not be reduced. The statistical uncertainty can be reduced by performing additional fatigue 
tests and the model uncertainty can in principle be reduced by adopting a better model. 
 
In the present paper is the physical and statistical uncertainty on SN-curves for composite material 
determined based on a number of constant amplitude fatigue tests performed with different mean 
stresses. Based on variable amplitude fatigue tests for the same material using a standard load 
spectrum and the estimated SN-curves based on constant amplitude fatigue tests is the model 
uncertainty on Miners rule determined. 
 
In most standards and regulations including [3] are fatigue design performed by using a 
deterministic design approach. However, calculation of the accumulated fatigue damage includes 
significant uncertainties for which reason a probabilistic design approach should be adopted in 
order to take the individual uncertainties into account in a rational manner. The stochastic models 
determined in the present paper forms the basis for a probabilistic modeling of the considered class 
of composite materials in fatigue loading. 

Constant amplitude fatigue tests 
The constant amplitude and variable amplitude fatigue tests used in the present paper are given in 
the OptiDAT database [4] for geometry R04 MD (MultiDirectional laminate). This geometry has 
been selected due to the many fatigue tests performed with this geometry. For composite materials 
the mean stress can have a significant influence on the fatigue properties which can be taken into 
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account by calculation of an SN-curve for different R-ratios and arranging these in a constant life 
diagram. The R-ratio is defined by: 

 min

max

R σ
σ

=  (1) 

 
where minσ  and maxσ  are the minimum and maximum stress in a stress cycle respectively. 
Different types of SN-curves have been used for composite material, but no specific SN-curve 
have been recommended in [3]. In the present study is a log-log SN-curve used: 
 
 log log logN K m σ ε= − Δ +  (2) 
 
where N  is the number of cycles to failure, σΔ  is the stress range and ε  is parameter which 
model the lack of fit and is assumed normal distributed with mean value zero and standard 
deviation εσ . The constants K  and m  are material parameters. By assuming that the residuals are 
normal distributed on a log-log scale the likelihood function in case of n  constant amplitude tests 
and 0n  run-outs is given by: 

 ( ) ( ) ( )0
2

1 1

log log log log log log1 1log , exp
22

n nn
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i i n
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L K ε

ε εε

σ σ
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σ σπσ
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= = +

⎛ ⎞⎛ ⎞ ⎛ ⎞− − Δ − − Δ
⎜ ⎟= − ⋅ Φ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∏ ∏ (3) 

 
where iN  and iσΔ  is the number of cycles to failure and stress range for test specimen number i  
respectively. The parameter m  is determined by least square method and the parameters log K  
and εσ  are estimated using the Maximum-Likelihood Method where the optimization problem 

( )
log ,
max log ,

K
L K

ε
εσ

σ is solved using a standard nonlinear optimizer, e.g. the NLPQL algorithm [5]. 

In this paper is m  assumed fixed determined by the least square method, but this parameter could 
also be included in the optimization. Since the parameters log K  and εσ  are estimated by the 
Maximum-Likelihood technique they become asymptotically Normal distributed stochastic 
variables with expected values equal to the Maximum-Likelihood estimators and covariance equal 
to, see e.g. [6]: 

 
2

1 log log , log
log , log , 2

log , log

K K K
K K

K K

C H ε ε

ε ε

ε ε ε

σ σ
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σ σ σ

σ ρ σ σ
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− ⎡ ⎤
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 (4) 

 
where log ,KH

εσ
 is the Hessian matrix with second order derivatives of the log-Likelihood function. 

log Kσ  and 
εσ

σ  denote the standard deviation on log K  and εσ  respectively. log ,K εσ
ρ  is the 

correlation coefficient between log K  and εσ . The Hessian matrix is estimated by numerical 
differentiation. 
 
In table 1 are the estimated parameters shown and the SN-curves are fitted using all valid constant 
amplitude fatigue tests for the particular R-ratio and runouts are taken into account. The 
parameters log K  and εσ  can be assumed uncorrelated. It is noted that εσ  represents the physical 
uncertainty and that log Kσ  and 

εσ
σ  represents the statistical uncertainty. In table 2 are the static 
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tension and compression strength given. In figure 1 (left) is the constant life diagram containing 
the SN-curves and static strengths shown. 

Table 1: SN-curves for different R-ratios for geometry R04 MD. 
R-ratio Tests n Runouts n0 m log K σε σlogK σσε 

0.5 15 0 10.541 27.768 0.358 0.092 0.065 
0.1 45 2 9.508 27.191 0.259 0.039 0.027 
-0.4 28 0 7.582 23.398 0.435 0.082 0.058 
-1.0 84 3 6.719 21.359 0.878 0.094 0.068 
-2.5 10 2 11.983 35.231 0.633 0.197 0.143 
10.0 34 0 22.211 58.664 0.644 0.110 0.078 
2.0 6 3 29.686 73.780 0.354 0.143 0.103 

Table 2: Static tension strength (STT) and static compression strength (STC) for geometry R04 MD. 
Test-type Tests n Mean [MPa] Std. [MPa] 

STT 66 556.5 64.2 
STC 55 -458.6 33.2 
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Figure 1. Left: Constant life diagram for geometry R04 MD. Right: Linear interpolation. 

Variable amplitude fatigue tests 
Variable amplitude fatigue tests are also performed with geometry R04 MD. The load spectrum 
used is the wisper and wisperx spectra developed for representing the flap bending moment of a 
wind turbine blade. In order to calculate the accumulated damage D  Miners rule for linear 
damage accumulation is used: 

 
( )1

1n

i i

D
N σ=

=
Δ∑  (5) 

 
In order to calculate the accumulated damage at failure the number of cycles to failure N  has to 
be determined for an arbitrary R-ratio. This is in the present paper done by linear interpolation in 
the constant life diagram using the procedure given in the following, see also figure 1 (right). 
 

• The stress cycle P  is located in the constant life diagram 
• Draw a line a  from the origin through and beyond the point P  
• Identify the constant life lines closest to P , denoted 1n  and 2n  
• Calculate the length 1a  on line a  between the two constant life lines 1n  and 2n  
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• Calculate the length 2a  on line a  between point P  and the constant life line 2n  
• Find the R-ratio closest to P  and calculate the length 1b  between 1n  and 2n  

• Calculate 1 2
2

1

b ab
a

=  

• Determine the stress amplitude CLDσ  corresponding to point Q  
• Determine the expected number of cycles to failure N  using the SN-curve for the R-ratio 

 
In table 3 are the conducted variable fatigue tests listed together with the mean and standard 
deviation on the accumulated damage at failure using the material parameters given in table 1 and 
2. It is noted that COVD represents the model uncertainty. 

Table 3: Mean and standard deviation for estimated damage at failure for variable amplitude tests. 
Spectrum Tests N Mean  Std. COVD 
Wisper 10 0.9000 0.5355 0.595 
Wisperx 13 0.2763 0.1982 0.717 
Reverse Wisper 2 0.2020 - - 
Reverse Wisperx 10 0.3179 0.1576 0.496 
Wisper, Wisperx 23 0.5474 0.4886 0.893 
All 35 0.4621 0.4196 0.908 

 
From table 3 it is seen that except for the wisper spectrum the estimated accumulated damage at 
failure is significantly below one. The uncertainty for fatigue damage accumulation are often 
modelled by a lognormal distribution in order two avoid negative values of Miners rule which are 
physical impossible. The mean and standard deviations given in table 3 can be used in a lognormal 
distribution. 

Concluding remarks 
In the present paper are stochastic models for the uncertainty related to fatigue damage 
accumulation for composite materials presented. The stochastic models are based on public 
available constant and variable amplitude fatigue tests and the procedure used for estimating the 
stochastic models are presented. 
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Summary This study treats the subject fluid-structure interaction (FSI) for incompressible flow
with small vibrations. The open source packages DEAL.II and OpenFOAM have been used to create
a coupling between a finite element formulation for the structure and finite volume formulation
for the fluid. A staggered solution algorithm have been implemented in C++ and verified against
empirical data of Vortex-Induced Vibration (VIV) frequencies.

Introduction

A cantilever is placed in a domain of a velocity driven fluid. The traction differential
acting upon the structure induce a deformation and the movement of the structure affects
the fluid as well. This mutual influence referred to as fluid-structure interaction (FSI), is
known to cause several interesting phenomena. Among such is vortex-induced vibration1

(VIV), where the forced movement of a fluid around the structure gives upon point of
release from the structure, an angular momentum manifested as a vortex in the fluid with
an oscillating transversal force component.

Mathematical and Numerical Description

A physical domain consisting of fluid and structure is described by velocity field (U,v) and
pressure p, displacement field (q) and pressure in a continuum model. The equations gov-
erning the motion of an incompressible Newtonian fluid and an elastic structure (Dijklεkl)
with damping (Cilvl) then takes the following form in reduced variables (∗) in the fluid
domain and state space formalism for the structure with small strain operator (ε(q)),

∇∗ · U∗ = 0, (1)

DU∗

i

Dt∗
= −∂ip

∗ +
1

Re
∇∗2U∗

i + b∗i , (2)

q̇i − vi = 0, (3)

∂tvi + Cilvl − ∂jDijklεkl(q) = fi. (4)

The coupling boundary between fluid and structure is a traction term, i.e. the sum of
the pressure force and the viscous force. Both PDE sets have the same character and
therefore a monolithic approach is feasible [2]. However, the problem can become too
large to handle or unstable, therefore a staggered algorithm is preferred where even the
individually domains can further, by divide and conquer, be partitioned [4, 5]. In solving
Eqn (2) and (4) it is assumed that the problem can be formulated in two steps, the solution
of the physical domain in a steady state formalism, followed by semi-discretization in time.

1
For an excellent review, C.H.K. Williamson and R. Govardhan, Vortex-induced vibrations. Ann.

Rev.Fluid.Mech 36 (2004) 443-455.
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Further, by assumption of fixed point solution the fluid domain is solved separately from
the structure domain, using FVM respectively FEM.

Time Loop

Staggered Loop

Solve Fluid State

Transfer Traction to Solid State Solver

Solve Solid State

Exit Staggered Loop if change of deformation < tolerance

Transfer Deformation to Fluid State Solver

End Staggered Loop

End Time Loop

The norm for convergence is with respect to the displacement field. However, while com-
bining two solvers the time must be adaptive with respect to the CFL condition in order
to meet the convergence criteria. The open source packages used in this study are Open-
FOAM2. and DEAL.II3. The staggered algorithm allows the FSI solver to be run on
separate machines/threads. The test case and the staggered algorithm originates from a
study using OpenFOAM [5]. The fix-point iteration to locate the quasi-static equilibrium
point between the solvers use the Aitkens relaxation method[4] to accelerate the sub cycle
loop, the staggered loop.

The Case Study

A cantilever of thickness D = 0.2 m and height of 10D is placed 5D from the inlet, 2.5D
from the walls and 20D from the outlet. The wire frame of the rectangular domain is thus
(26×6×12.5) ·D. The flow is velocity driven with uniform Dirichlet condition at the inlet
(mag(U)) and Neumann conditions at the outlet. For the pressure a Neumann condition
is used at the inlet and a Dirichlet condition at the outlet. At the walls, no-slip conditions
are used. The unstructured grid in the fluid domain is created using scaled tetrahedral
elements with a structured boundary mesh with size 0.02 m , growth rate 1.1 and 0.1 m
as upper limit on cell size, while the structured grid for the structure domain 8 × 8 × 64
cell partition.

Application to VIV

The following empirical expression for the Strouhal number (St) can be used to estimate
the frequency of the VIV for a cantilever in an infinite domain,

St =
fl

U
= 0.198(1 −

19.7

Re
). (5)

The result in table 1 presents the frequency of probes placed in respective domain, showing
the synchronization between the frequency of the fluid motion (f) and the structure (fs).

2
http://www.opencfd.co.uk/openfoam/

3
http://www.dealii.org.
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It scales within the margin of error with Eqn (5). However, wall effects should also be
accounted for. Table 2 gives the observed VIV in the nodamped cases with no fluid probes,
note that for U = 1 two frequencies appear, where the higher is the first harmonic of the
lower and it appears due to discretization error of a sinusoidal function. The VIV is masked

U (ms−1) fs(Hz) f(Hz) fi(Hz)

1 0.7 1-1.3 1.7

10 8 7-14 11

25 15 17-25 11

Table 1: VIV frequency with damping from section 6.3 in [1].

U (ms−1) fs(Hz)

1 0.79, 0.74, 1.47, 1.53, 1.53, 1.53

10 6.3, 6.6, 5.2

25 17.07, 17.2

Table 2: VIV frequency without damping from table 6.1 in [1].

by the in-line frequency due to release of cantilever and for this reason a Rayleight damping
was added with 0.1%. The in-line frequency fi well match reported elsewhere [3]. Figure
1-2 is the FFT spectra for U=1 in table 1.

Conclusion

This study presents a method to resolve the fluid-structure interaction (FSI) using a fixed-
point iterative scheme with a partitioned Gauss-Seidel technique accelerated with Aitkens
relaxation method. The validation of the solver involves among others,

• reproduced frequency shift in in-line movement.

• matched frequency in VIV with probes of fluid and structure.

• reproduced VIV frequency with regard to Eqn (5).

The study implicates the need for damping in this model where frequency is obtained in
a real time numerical experiment.
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Summary In the current study the focus is on the flow and particle interaction effects in the chaotic
regime. The influence on the forces (i.e drag and lift), wake structures and flow patterns from different
inflow boundary conditions and varying separation distances of a particle pair in tandem is discussed at a
particle Reynolds number of 600.

Introduction

Flow past a single sphere experiences different transitions with the increase in Reynolds number
[1]. The first transition occurs at Re = 20 in which a steady attached vortex ring separates behind
the sphere. The flow undergoes a second transition at Re = 210 − 212 where the flow changes to
an asymmetric flow containing a plane of symmetry. During the third transition i.e. in the range of
270 ≥ Re ≤ 280, the flow becomes unsteady however periodic. The vortices start to shed with a
single dominant shedding frequency. The fourth transition occurs in the range of Re = 375− 420
[2] [3] [4]. The flow becomes chaotic and a statistically axisymmetric wake is observed.

The introduction of second spherical particle in the wake of first one can substantially change the
drag, wake structures and flow patterns. Numerical simulations for two spheres placed at different
angular positions and separation distances were performed by Yoon and Yang [9]. The effect on
drag, lift and pressure coefficients are discussed in detail. The change in wake structures and flow
patterns for two spheres placed in tandem is reported by Zou et al. [8]. The above studies are
reported for Reynolds number of 300. Previous studies by Prahl et al. [10] and by Jadoon et al.
[11] suggest that the separation distance between particles is of major importance for the force
loading on the respective particles as well as for the development of the wake structures.

The aim of the present study is to investigate particle pair in tandem, the influence on particle inter
distance and flow structures in the chaotic wake region.

Numerical Method

The numerical technique used to represent the spherical object is the volume of solid (V OS)
method [6] which is similar to the volume of fluid V OF method. In V OS the shear stress is
assumed to be constant close to the solid surface. This assumption together with the linear rela-
tionship between the viscosity in a cell and the volume fraction of each phase, one may write the
viscosity as a harmonic mean of the values of the two phases as:

μ =
1

α
μ1

+ 1−α
μ2

(1)
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The assumption of infinite viscosity in the solid (the second fluid) leads to a simple relation be-
tween the phase variable α and the viscosity. The phase variable representing the amount of fluid
in each cell, 0 < α < 1. Complete details of the technique can be found in [6].

δν =
ν

ν1

=
μ

μ1

=
1

α
(2)

With the definition of viscosity term as stated in equation (2), the governing equations for an
incompressible flow can be written as;

∂ui
∂xi

= 0 (3)

∂ui
∂t

+ uj
∂ui
∂xj

= −
∂p

∂xi
+

1

Re

∂

∂xj
(δν(

∂ui
∂xj

+
∂uj
∂xi

)) (4)

where δν is viscosity ratio.

The governing equations are spatially discretised using first and second order basic finite-difference
schemes on a staggered Cartesian grid. A single step defect correction method [7] is used to im-
prove the accuracy to third order for convective terms and fourth order for remaining terms. A
second order fully implicit scheme is used for temporally discretisation of the transient terms.
Multi grid method is used to accelerate the computational efficiency

Problem Setup

In this study, two equally sized spheres with a diameter D are held fixed in a rectangular domain
while changing the relative position in tandem between the spheres. In all simulations, the first
(reference) sphere is placed fixed at 10D downstream of the inlet and in the middle in X and
Y dimensions, whereas the second (secondary) sphere is moved to separation distances D0 of
1.5, 2, 3, 4.5, 6 and 9D. The Reynolds number is 600. At the inlet, a uniform velocity profile i.e.
stationary as well as pulsating with a strouhal number (Stin = fD/Uin) of 0.1 is applied (Uin is
the mean inlet velocity).

In order to validate the accuracy, different domain sizes and grid resolutions were investigated.
Regarding domain sizes, tests are performed both in stream-wise and lateral directions and grid
of [32, 32, 64]D corresponding to [X,Y,Z] is selected (Z being the flow direction). The grid
resolutions of D/16, D/32 and D/64 are examined and grid resolution of D/64 is chosen.

Results & Conclusions

The value of drag coefficient for reference sphere has a maximum reduction (about 10%) compared
to the drag of single sphere at D0 = 3D, Fig.1 (a). This is due to the change in wake structure
and behaviour, as the chaotic flow is changed to a periodic flow at this separation distance. The
secondary sphere shows a maximum reduction (negative value of drag) at D0 = 1.5D where after
the drag increases as the gap is increased but it remains below the value for a single sphere even
at D0 = 9D Fig.1 (a). The negative value of the drag is due to a low pressure region developed
in front of the secondary sphere which in turn depends on the prolongation of the wake which, to
a greater extent, enclose the secondary sphere in the wake of the reference sphere. For pulsating
inflow, the drag of the secondary sphere follows the same trend except it remains a bit higher
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Figure 1: Drag coefficient CD (a), Drag coefficient fluctuations (b), Lift coefficient CL (c) and Lift coeffi-
cient fluctuations (d) at different separation distances. All the plots are normalized by the respective values
for a single sphere except for (c) as Clsingle = 0. (ref and sec stands for reference sphere and secondary
sphere respectively whereas St.Dev corresponds to standard deviation).

for all separation distances Fig.1 (a). The drag coefficient fluctuations have a maximum for the
secondary sphere at D0 = 2D where it is 8 and 4 times greater compared to single sphere for
uniform and pulsating inflow, respectively Fig.1 (b). The fluctuations are minimum at D0 = 1.5D
for both cases.

The maximum lift experienced by both spheres is at D0 = 2D in both inflow conditions Fig.1
(c). The lift coefficient fluctuations are 2-3.5 times larger compared to a single sphere for the
secondary sphere in the range of D0 ≥ 2D Fig.1 (d).

In order to characterize the dynamics of the wake, different regimes have been defined based on
the instantaneous lift coefficients: unidirectional for which the lift varies only in magnitude but
direction is always along a line; cyclic for which magnitude and direction both varies periodically;
semi-chaotic for which the lift has preferred direction with random fluctuations around that direc-
tion; cyclic for which there is no preferred direction and lift variation is randomly. The behaviour
of the wake for both spheres based on above four definitions at different separation distances is
tabulated in Table 1.
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Uniform− inflow

D0 Wake(ref) Wake(sec) Flow − behaviour

1.5D plane-symmetric plane-symmetric Steady, Uni-directional
2D plane-symmetric plane-symmetric Un-steady, Semi-Chaotic
3D axi-symmetric axi-symmetric Un-steady, Uni-directional
4.5D plane-symmetric plane-symmetric Un-steady, Chaotic
6D axi-symmetric axi-symmetric Un-steady, Chaotic
9D plane-symmetric plane-symmetric Un-steady, Chaotic

Pulsating − inflow

1.5D plane-symmetric plane-symmetric Un-steady, Uni-directional
2D plane-symmetric plane-symmetric Un-steady, Semi-Chaotic
3D axi-symmetric axi-symmetric Un-steady, Uni-directional
4.5D plane-symmetric axi-symmetric Un-steady, Chaotic
6D plane-symmetric axi-symmetric Un-steady, Chaotic
9D plane-symmetric axi-symmetric Un-steady, Chaotic

Table 1: Different wake structures and flow behaviours for both uniform and pulsating inflow conditions for
different separation distances at Re= 600. (ref and sec stands for reference sphere and secondary sphere
respectively).
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Summary This study is focused on the interaction among a group of fourcylinders elastically mounted
in a quadratical formation in a channel atRe = 400. The results show that the influence from variations
in elasticity have a stronger effect on the amplitude of the downstream cylinders, whereas the staggering
effect has the opposite effect in the synchronization range. Also, the amplitude of the downstream cylinders
increase as the separation distance is decreased.

Introduction

Vortex induced vibrations (VIV) are of vital importance in many engineering problems, such as
flow across the tube bank of a heat exchanger, offshore platforms and the flow around chimneys.
According to Khalak and Williamson [1], at low mass and damping, the response of an elastically
mounted single cylinder consist of three response branches, namely the initial, upper and lower
branch. Govardhan & Williamson [2] and Morse & Williamson [3] have extended the work and
further investigated the relationship between the existence of a critical mass and the resonance
regime, and the effect of Reynolds number on the critical mass in VIV, respectively. Lazarkov and
Revstedt [4] have also investigated the effect of a short cylinder confined in a channel flow, where
no clear upper branch was found, which was probably due to confinement effects.
The wake instabilities, which characterize the vortex wakestreet, are affected in a different manner
when a cylinder pair is exposed to VIV. Revstedt [5] has foundthat a pair of cylinders in tandem
show similar vibrational response, but with enhanced oscillation amplitudes for the downstream
cylinders, compared to the single cylinder case. Brika & Laneville [6] have shown that increasing
spacing ratio,L/D, for a tandem arrangement, with fixed upstream cylinder and free downstream
cylinder, has a reducing effect on the synchronization regime and the amplitude of oscillations.
The aim of the present study is to investigate how the vortex-induced vibrations are affected by
the interaction of elastically mounted multiple cylindersconfined in a rectangular channel. The
effects of elasticity and separation distance are studied for equidistantly placed cylinders and also,
the effect of staggering is examined. The single cylinder has served as a reference for the elasticity
calculations.

Numerical method

The fluid under consideration is isothermal, incompressible and of Newtonian character. The flow
is governed by the time-dependent, three-dimensional conservation equations of mass and mo-
mentum, which, in a nondimensional form, read as:

∂ui

∂xi

= 0, (1)

∂ui

∂t
+ uj

∂ui

∂xj
= −

∂p

∂xi
+

1

Re

∂

∂xj

∂ui

∂xj
+ ϕi. (2)
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The equation of motion of the cylinder is at each time step solved in addition to the governing
equations of the fluid motion, (1) and (2), which in a nondimensional form can be written as:

mẍ + bẋ + kx = Cx(t). (3)

The system of governing equations (1) and (2) are discretized using finite difference approach on
a staggered Cartesian grid. The level of accuracy for the convective and and remaining terms are
improved to third and fourth-order, respectively, by introducing a single step defect correction [7].
A Multi-grid solver is used to enhance the computational efficiency.
The boundary conditions on the solid boundaries have been applied by replacing the boundary with
momentum sources in (2),ϕi, such that the flow satisfy the required boundary condition.These
source terms are then calculated based on the deviation of the fluid velocity from the boundary
velocity on the surface. This method is called virtual boundary (VB) method and more detailed
description can be found in [8].

Problem Setup

The computations, in this paper, have been performed for thecase of flow past a confined cylinder
in a rectangular channel at Reynolds number of400, based on bulk velocity and cylinder diameter.
The dimensions of the computational domain are 12D x 4D x 30D,in the x-, y- and z-directions,
respectively. The flow direction is in the z-direction and the cylinders are only permitted to move
in the transversal direction, i.e in the x-direction. Four cylinders are placed quadratically with the
upstream cylinders placed 7.5D from the inlet. Two separation distances were studied,L/D = 4
andL/D = 5, maintaining the quadratical relationship between the cylinders. Finally, for stag-
gered arrangement, the upstream cylinders were kept fixed ata position of 8D from the inlet while
the downstream cylinders were positioned at several positions in the x-direction, maintaining the
distance in the z-direction.
At the inlet, a uniform velocity profile is set, at the outlet aNeuman boundary conditions are used
and the no-slip conditions are set for the walls. The computational grid consists of three global
and two locally refined grids, yielding a grid resolution of h=D/32, close to the cylinder surfaces.
The group of four cylinders are placed in the domain according to:cylinder11 andcylinder12 are
positioned side by side upstream withcylinder12 positioned at a higher x-coordinate.Cylinder21

andcylinder22 are the downstream cylinders, wherecylinder21 is in tandem withcylinder11 and
cylinder22 is in tandem withcylinder12, respectively.

Results and Conclusions

In this paper, the normalized data has been plotted against the reduced velocity,U⋆ = U/(fND) =
1/f⋆

N , wheref⋆
N is the in vacuo natural frequency of the system, and the staggering angleβ. The

effects of multiple cylinder-interaction on the vortex-induced vibrations is shown in Figure 1. The
influence of the vortex shedding of the upstream cylinders upon the downstream cylinder motion
is strong. An amplitude of (at most) 80% larger than the upstream and single cylinder is observed.
Investigating Figure 1(a) closer, aroundU⋆ ≈ 6, one can see a dip in the oscillation amplitude.
This is probably caused due to the complex interaction amongthe cylinders, however further in-
vestigation is needed to fully understand this phenomenon.This effect can also be seen in the
upstream cylinder, however, the dip in this case is much moreless pronounced, indicating that this
might be a feedback from the downstream cylinders.
The character of Figure 1(a) reveals that only two response branches exist, which is the initial
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Figure 1: Amplitude (a) and frequency (b) of the cylinder motion for multiple and single cylinder configu-
ration in the range ofU⋆ = 1.761 - U⋆ = 15.750.

and the lower branches, also reported by Revstedt [5]. Additional effect of the multiple cylinder
configuration, compared to the single cylinder case, is the range of synchronization velocities. As
can be seen, both the upstream and downstream cylinders havea wider synchronization range than
what is observed for a single cylinder.

Detailed investigation of the frequency response of the cylinders (Figure 1(b)) reveals that when
decreasing the reduced velocity belowU⋆ ≈ 3, the frequency of motion of the cylinders includes
both the shedding frequency of a stationary cylinder and thenatural frequency in a still fluid, i.e.
also accounting for the hydrodynamic mass. The latter is according to Revstedt and Lazarkov [4]
estimated to0.87f⋆

N . This is a typical low branch response which is enhanced by the influence
of the surrounding cylinders. ForU⋆ > 3, the commutative control of the frequency of motion
disappears and now the cylinders are only locked into the in vacuo natural frequency. For values
U⋆ > 8 the cylinders are again commutatively locked into the shedding frequency of a stationary
cylinder and the in vacuo natural frequency. The solid and dashed lines in Figure 1(b) represent
the in vacuo natural frequency and the frequency of a stationary cylinder, respectively.

The behavior of the oscillations of multiple cylinder configuration as a function of the separation
distance is tabulated in Table 1. The trend here is that the downstream cylinders achieve larger am-
plitudes forL/D = 4, going from the initial branch towards the lower branch. This trend might
be expected since the cylinders are closer to each other giving rise to a stronger wake interference
effects. However, no clear statement can be done for the upstream cylinders.

L/D = 4

U⋆ = 7.044 U⋆ = 4.547 U⋆ = 3.937 U⋆ = 3.215 U⋆ = 2.273

Cyl12 A⋆ = 0.542 A⋆ = 0.572 A⋆ = 0.535 A⋆ = 0.135 A⋆ = 0.085
Cyl22 A⋆ = 1.188 A⋆ = 0.862 A⋆ = 0.755 A⋆ = 0.433 A⋆ = 0.075

L/D = 5

Cyl12 A⋆ = 0.559 A⋆ = 0.554 A⋆ = 0.546 A⋆ = 0.298 A⋆ = 0.011
Cyl22 A⋆ = 0.957 A⋆ = 0.829 A⋆ = 0.719 A⋆ = 0.305 A⋆ = 0.063

Table 1: Vibration amplitudesA⋆ at two different separation distances,L/D = 4 andL/D = 5 for the
upstream and downstream cylinders.

Figure 2 shows the effect of staggering for two different reduced velocities,U⋆ = 3.937 and
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Figure 2: Effect of the staggering angleβ on the response the multiple cylinder configuration for two
different reduced velocities,U⋆ = 2.876 (a) andU⋆ = 3.937 (b).

U⋆ = 2.876, one at the synchronized region and one nearly outside. For the latter case (Figure
2(a)), the results indicate that an increase in the staggering angle (β) increases the amplitude
of oscillation gradually for all cylinders. The effect in the synchronization region (Figure 2(b)),
on the other hand, has the opposite effect for the downstreamcylinders, whereas the upstream
cylinders maintain the same amplitude in average. However,there is an interesting behavior of
the amplitudes of the downstream cylinders going from staggering angleβ = 20◦ to β = 25◦.
This phenomenon is probably related to that the lower downstream cylinder experiences the effect
of both upstream cylinder wakes and will in turn enhance the motion of the upper downstream
cylinder.
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Summary Flow around two cylinders is considered, where closed form solutions are compared to
numerical results in order to justify the practical use of the theoretical solutions when the flow in front
of the cylinders is analysed. For a relatively highly mutualdistance between the cylinders the numerical
and analytical results are comparable. Opposite, when the cylinders are closely placed the potential flow
solutions become inadequate compared to the numerical findings.

Introduction

Modelling of flow around cylinders is of paramount importance in many engineering applications.
Wind flow around wind turbine towers is one example. The presence of a wind turbine influences
the wind flow locally which may develop into a turbulent flow. The turbulence in the wake be-
hind the turbine is significantly different from the turbulence in front of the wind turbine. The
wake effects behind the turbine is in particular important for the design of off-shore wind turbine
farms [1] (annex D). The wind velocities at the blades dependon the position of the rotor plane i.e.
if it is placed upwind or downwind. Tower shadow is another aerodynamic disturbance of the wind
flow due to the presence of the tower [2]. During tower passagethe blades hit a zone of stagnating
and deflected mean wind velocities. The characteristics of the shadow zone is different in case of a
downwind and upwind wind turbine. The complexity of these aerodynamic phenomena is further
increased if the mono tower is thought replaced by a tripod configuration. Firstly, the question is
if the disturbance from the interaction of the three cylinders is significant for the wind velocities.
A second question is to what extent the analytical solutionsproperly estimate the wind velocities
when compared to numerical results, where turbulence and wake effects are included. Therefore,
in this paper we explore a closed form solution of the wind velocities around two aligned cylinders
and compare the results to the wind velocities obtained froma computational fluid dynamic (CFD)
model.

Closed form solution

The wind velocity components upstream in the vicinity of a single cylinder are determined from
classical potential flow theory [5]. The wind velocity components for flow around multiple cylin-
ders can be found from [3], where conformal mapping techniques are adopted. Here, we determine
the velocity components based on the work by Alassar [4], where the problem is formulated in a
bipolar coordinate system (ξ, η). The stream function for two cylinders reads

ψ = 2bU0 (ψx cos γ + ψy sin γ) , (1)

whereU0 is the mean wind velocity,b is the mutual distance between the cylinders in the bipolar
coordinate system andγ sets the direction of the incoming wind with respect to the cylinders, see
Figure 1. The individual stream functions in equation 1 are
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ψx = −
sinh(ξ)

2(cosh ξ − cos η)
+

∞
∑

n=1

cos(nη) exp(−nξ2) sinhn(ξ − ξ1)

sinhn(ξ2 − ξ1)
+

∞
∑

n=1

cos(nη) exp(+nξ1) sinhn(ξ − ξ2)

sinhn(ξ2 − ξ1)
+

∞
∑

n=1

sinhn(ξ2 + ξ1)

sinhn(ξ2 − ξ1)
,

ψy =
sin(η)

2(cosh ξ − cos η)
−

∞
∑

n=1

sin(nη) exp(−nξ2) sinhn(ξ − ξ1)

sinhn(ξ2 − ξ1)
+

∞
∑

n=1

sin(nη) exp(+nξ1) sinhn(ξ − ξ2)

sinhn(ξ2 − ξ1)
,

where indicesx andy indicate flow parallel and perpendicular to the tripod legs,respectively, see
Figure 1(left). In the following equations the radiiR of the cylinders are identical. The distance

U0

h

ξ2ξ1

y

z

γ

R

x

Figure 1: Orientation of free mean windU0 is controlled by the angleγ and the center of the cylinders
is expressed in the bipolar coordinatesξ, whereas the physical distance between the cylinders is denoted
h in Cartesian coordinates andb in the bipolar domain and the stream functionψ from equation (1) with
γ = π/6.

between the cylinders in the bipolar coordinate system is defined asb = R sinh(ξ2). The coor-
dinateξ2 express the center of the second cylinder and is determined from ξ2 = arccosh h

2R
. in

whichh is the physical distance between the cylinders andξ1 = −ξ2 is the coordinate to the first
cylinder. The stream function is illustrated in Figure 1(right), whereγ = π/6 rad andR = 1 m.
The relations between the bipolar and Cartesian coordinates are defined as [6]

x =
b sinh ξ

cosh ξ − cos η
, y =

b sin η

cosh ξ − cos η
, (2)

and after mathematically manipulations the inverse relations can be derived as

ξ = arccoth

(

b2 + x2 + y2

2bx

)

, η = arccot

(

−b2 + x2 + y2

2by

)

. (3)

The wind velocities are determined from
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Numerical solution

The flow field is modelled with the incompressible Reynolds Averaged Navier-Stokes (RANS)
equations with thek − ǫ turbulence model in a transient solution in ANSYS Flotran. ACourant
number lower than one is ensured with a time step size∆t = 0.05 s, minimum element size 0.12 m
and a maximum wind velocity2 m/s.

Example with flow perpendicular to the cylinders (γ = 0)

The control domain is(x, y) = [−15, 15] m and the centers of the two cylinders with radiiR =
1 m are placed at the liney = 0 with a mutual distanceh = [3 6 9] m. The free mean wind
velocity is U0 = 1 m/s. The Reynolds number is Re≈ 1.3 · 106 with a kinematic viscosity
ν = 15.0 · 10−6 m2/s, which means the separation at the boundary layer remainslaminar with
a vortex shedding behind the cylinders. The theoretical andnumerical wind velocity component

h=3m h=6m h=9m

2

-1

Figure 2: Contour plot of velocity componentUy [m/s] obtained from CFD computations (top) and analyt-
ical solution (bottom) withγ = 0 and different distancesh between the cylinders.

Uy(x, y) for y = [−2, 2] m are presented in Figure 3, whereas Figure 2 shows the contour plots of
Uy. We observe that the shadow zone (decreased velocity) is increased as the mutual distance of
the cylinders is decreased. The potential flow theory underestimates the wind velocity in between
the cylinders when compared to the numerical findings. Locally in front of the cylinders and at
the exterior sides the velocity profiles are fairly comparable. However, behind the cylinders the
potential flow theory is invalid as expected and negative velocities are found due to wake effects
in the numerical simulations.

Concluding remarks

Wind flow around two aligned cylinders with arbitrary distance is considered. The purpose is to
justify the use of potential flow theory to determine the windvelocities in front of the cylinders
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Figure 3: Wind velocityUy(x, y) (y = [−2, 2] m) for γ = 0 coordinate and the distanceh between the
cylinders.

when compared to more realistic CFD computations.

The potential flow theory predicts the velocities well in front of the cylinders when compared
to CFD simulations with turbulence included. However, in between the cylinders the theoretical
velocities become inadequate when the mutual distance is lower than 6 m. Clearly, behind the
cylinders the potential flow theory is invalid. Therefore, in case of a down wind turbine with a tri-
pod tower configuration [2], the idea is to tabulate the wind velocities obtained from various CFD
computations with flow passing multiple cylinders from different directions. With this database,
more realistic wind velocities are imposed to the wind turbine blade and an accurate estimate of
the fatigue life is possible.
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Summary One of the greatest challenges in the numerical analysis of quasi-brittle materials is the
modelling the failure itself the continuous failure process due to material disintegration. Using advanced
methods, analysis can be continued after complete material failure and failed sections can be retained in
the model without violating the mass conservation. In this paper a new approach for the modelling of
disintegration is proposed. In the approach the failure of material is modelled with anisotropic continuum
damage mechanics (CDM) model. The CDM model is used to predict direction of a crack evolution while
the proposed model update technique is applied to propagate the crack in FE geometry. The proposed
approach has been applied in the simulation of tensile test and interaction of conical structure and level ice.

Introduction

The modeling of material disintegration is a fundamental issue in the modeling of continuous
failure processes; e.g. ice structure interaction process cannot be simulated unless the material
transition from continuous to discontinuous is taken into account because during the interaction
process ice first fails and finally due to fracturing becomes discontinuous as shown in figure 1.

Models based on continuum damage mechanics (CDM) have been successfully applied in the
modelling of anisotropic stiffness degradation due to damaging. The approach used in this pa-
per enables phenomenological modelling of directional damaging as tensile cracking and axial
splitting under uniaxial loading [2]. In the approach directional damage is modeled using damage
vector based approach.

Most materials also exhibit rate-dependent inelastic behaviour. Increasing strain-rate usually in-
creases the yield stress thus enlarging the elastic range. However, the ductility is gradually lost,
and for some materials there exist a rather sharp transition strain-rate after which the material
behaviour is completely brittle. A simple phenomenological approach to model ductile-to-brittle
transition of rate-dependent solids is presented. The model is based on a consistent thermodynamic
formulation using proper expressions for the Helmholtz free energy and the dissipation potential,
which is additively split into damage and visco-plastic parts, and the transition behaviour is ob-
tained through a stress dependent damage potential [1].

Modelling of disintegration

The CDM model provides data about the magnitude and orientation of damage in each element.
Phenomenally the damage represents an actual crack inside the element. Using this information
the finite element analysis is paused and mesh is updated so that the crack predicted by the CDM
model is explicitly created in the mesh. After the update the analysis is continued with the updated
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Figure 1: Material transition from continuous to discontinuous; a) crushing b) bending.

mesh. This technique is implemented into commercial finite element code Abaqus/Explicit using
Python scripting.

The intersection points for the damage plane and each element edge is calculated separately, see
figure 2. If the element is rectangular, this approach yields to four intersection points on opposite
edges and element splitting can be done as specified by the damage vector. If the element is irreg-
ular but still 8 node, the intersection points can lay outside the element edges and splitting is not
possible in the given direction. In this case splitting is done in a direction closest to the original
vector that yields to two 8 node elements. A tolerance for the node proximity to the nearest original
node is specified so that the side ratios in the created elements are allowable.

Figure 2: Element splitting based on the direction of the damage vector D.

Examples

Tensile test simulation

The example illustrates the effectiveness of the proposed model update technique in the simulation
of tensile failure. The loading was velocity controlled with the velocity of 3 mm/s. The commer-
cial FE-software Abaqus/Explicit was used in the simulation. The specimen was modelled with
C3D8R elements. Two elements were used in the thickness direction and the total number of ele-
ments was initially 612, see figure 3.

Bending failure

Interaction of inclined structure with 30 cm thick level ice was analysed using the proposed model
update technique. The number of C3D8R elements used was initially 792. Due to cracking new
elements are created, therefore the number of elements is increased during the analysis, figure 4.
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Figure 3: Axial force, damage evolution and crack propagation near the right end of the specimen.

Figure 4: Evolution of particles due to disintegration during interaction, ice floe velocity is 10 cm/s.
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Summary This paper deals with the propagation of a single crack under RCF loading conditions. Two
methods for propagating the crack are studied, both based on the concept of material forces for linear
elastic material behavior. For these methods, the influence of surface friction conditions as well as that of
initial crack inclination on the final crack path are investigated.

Introduction

Rolling Contact Fatigue (RCF) of rails is a major problem worldwide. Common RCF defects that
can be observed in rails are tounge lipping, head checks and squats. However, only the develop-
ment of head checks will be investigated in this paper. Head checks are typically closely spaced
cracks which start out almost parallel. The cracks are initiated at the rail surface and are more
common near the gauge corner in curves. Also the friction conditions affect the initiation of head
checks. Cracks are more easily initiated under dry conditions (i.e. high friction coefficient) than in
wet (i.e. low friction coefficient).

To properly simulate the propagation of a crack, we need to model how fast and in what direction it
grows. A generalized crack driving force, abbrevated GCDF, will be derived from energy consid-
erations in the material domain, giving rise to so called material forces. Based on the GCDF two
different methods for propagating an existing crack will be presented. Furthermore, the proposed
methods will be applied to the problem of simulating the development of a single head check crack
under rolling contact fatigue (RCF) conditions.

Crack Driving Force

In order to establish the crack driving force, we study the change os rate of mechanical dissipation
D(δẊ) due to a variation of the domain BX, e.g. the extension of a crack. Following [1], this
sensitivity can for a linear elastic body be expressed as

D(δẊ) =

∫

ΩX

−Σ : [Ẋ ⊗ ∇X ] dVX (1)

where the Eshelby stress tensor Σ is defined as

Σ = ΨXI − F TP (2)

Here, ΨX is the volume specific strain energy, I is the identity tensor, F is the deformation gradi-
ent and P is the 1st Piola-Kirchhoff stress tensor.

Based on the rate of mechanical dissipation, the GCDF can be expressed as

G =

∫

ΩX

−Σ · (ϕ∇X) dVX (3)

where ϕ is a suitably chosen weight function of unit value at the crack tip. In this manner, the
GCDF is the change of rate of mechanical dissipation due to an advancement of the crack tip.
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Crack Propagation Modeling

In the following simulations, a viscous propagation law has been adopted, whereby the rate of
crack propagation is assumed proportional to the crack driving force. For sufficiently small time
steps, this integration can be carried out in an explicit fashion.

Crack Extension Method I: Proportional Extension Method

Based on the GCDF for the existing crack, we may formulate a propagation law as

ȧ = γ < Φ >
∂Φ

∂G
(4)

with the constitutive parameter γ and the crack-driving potential Φ. The expression for the poten-
tial Φ is assumed as follows:

Φ = |G| − Gcr (5)

where Gcr is a parameter that describes the fracture toughness. By integrating eq. (4) in time,
the propagation of the crack can be predicted. By the particular choice of Φ in (5), the crack tip
velocity is proportional (in magnitude and direction) to the GCDF, see Fig. 1a. This simply means
that the crack tip is incrementally extended in the direction of the GCDF. It is by far the fastest of
the methods considered.

Crack Extension Method II: Virtual Crack Extension Method

Following of [2], a possible approach is to compute the energy release rate caused by a number
of virtual extensions of the crack tip. The crack tip is extended a small increment in one of the
predefined virtual directions, and the energy release in the corresponding direction is computed,
cf. Fig. 1b. The direction with the largest energy release parallel to the virtual crack, Gvc

‖
, is taken

as the propagation direction.

G

G‖ G⊥

(a)

GVC

GVC

‖

virtual cracks

(b)

Figure 1: Crack Extension Methods: a) Proportional Extension Method. b) Virtual Crack Exten-
sion Method.

Problem description

To get an understanding of the characteristics of the propagation of a single surface crack in a piece
of rail material subjected to a moving load, a simplified example is investigated. The material is

278



assumed to be linear elastic and in a state of plane strain. The normal load PN(x, t) is assumed to
be given by an elastic Hertzian contact pressure, see e.g. [3]. Moreover, the traction stress PT(x, t)
is obtained from the normal pressure PN(x, t) and the coefficient of friction μ by assuming full
slip, i.e PT(x, t) = μPN(x, t). The traction stress PT is assumed to act in the direction opposite
to the velocity of the wheel. Furthermore, the crack surfaces are assumed smooth (i.e. no friction).
In Figure 2, the problem together with the resulting crack path for a crack of initial length 1 mm
and with an initial inclination of 45◦, is shown.

ϕ

a

400 mm

10
0

m
m

Dcont

x

v

PT(x, t)

PN(x, t)

Figure 2: 2D model of a rail subjected to a moving contact load together with a example of simu-
lated crack path.

Concluding remarks and outlook

From the simulations it is concluded that the proportional extension method results in strongly
mesh-dependent predictions and is, therefore, deemed as a less suitable method for crack prop-
agation under RCF loading conditions. Preliminary parametric studies show that the prominent
propagation direction is independent of the initial crack direction and surface friction condition.
Furthermore, after reaching a critical length, the cracks changed direction and started to grow
downward at a angle into the rail material.
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Summary Micromechanical modeling and finite element simulation are used to study strength of 

honeycomb material. The effects of geometrical irregularity and scale are discussed by comparing the 

statistics of failure initiation for some different populations of specimen.  

Introduction 

Strength of wood originates from cellulose and hemi-cellulose matrix bound together with lignin    

[1]. This composite structure forms thin-walled, long cells, called tracheids, having roughly 

hexagonal cross sections (Figure 1). Early- and latewood (growth ring materials) have differences 

in density, cell wall thickness, cell wall configuration, and cell number per unit volume. In 

practice, wood is heterogeneous on scales of engineering interest, and, therefore statistical 

description is needed e.g. in strength predictions.  

 

 
 

Figure 1: Tracheids forming early- and latewood [2]. 

 

The aim is to discuss the effect of geometrical features of cellular material and size of the 

specimen on statistics of failure initiation load by using micromechanical modeling. A square 

sample of wood-like honeycomb material with thin walls, is considered. In the simple model used, 

the walls are taken as slender beams, the material inside the cells is soft compared to the walls, and 

the walls are almost inextensible. Bending moment on a wall is chosen to be critical for failure. 

Also, as the length-to-thickness ratio of cells tends to be large (Figure 1), only the plane 

perpendicular to the long direction of cells is considered. 
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Micromechanical model 

A square sample of the honeycomb material consisting of hexagonal cells is illustrated in Figure 2. 

In the micromechanical model, the walls of the cells are modelled by using Timoshenko beams 

with quadratic interpolation in order to provide applicability in a wider range, i.e., from slender to 

thick beams [3] and the material inside the cells is taken to be soft compared to the walls. 

Thickness to length ratio of the beams is assumed to be small. 

 

 

Figure 2: Rectangular specimen composed of irregular hexagonal cells. 

 

The geometrical irregularity of the honeycomb is defined through construction in which the 

hexagons consist of six triangles. Triangles are grouped into four to form larger triangles whose 

vertices coincide with those of the small triangle. Then, the regular positions of the remaining 

three vertices of the small triangles are defined to be at the midpoints of the edges of the large 

triangle, and irregularity is measured as difference between the actual and regular positions. It is 

followed by grouping the larger triangles again to end up with a set of relative regularity measures. 

In mesh generation, reverse process with a given statistics of irregularity gives the geometry.  
 
In micromechanical simulation of strength, first, a sample of specimen consisting of hexagonal 

cells is generated. Thereafter, finite element method is used to find the value of the external force 

acting on a specimen making at least one beam to fail. This is repeated for all specimens. Finally, 

obtained data is represented with a cumulative distribution function describing the probability of 

specimens to fail under chosen loading condition. Repetition of all the steps for different selections 

of geometrical parameters depicts the effect of scale and irregularity on failure initiation. 

Case study: Effect of scale and irregularity on failure initiation 

In the case study, H H  square specimens of honeycomb material having fixed cell size h were 

used. The geometrical irregularity of the honeycomb structure was generated by random sampling 

from the uniform distribution in range [ , ]h h  (  is a parameter). The external force was chosen 

to be compressive distributed load f acting on opposite sides of the specimen. Finally, the bending 

moment with the limit value M was chosen to be decisive for failure initiation.  

 

According to the weakest link theory [4], the cumulative density function of 
2

/fh M  satisfies 
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 2
( )

cdf ( , ) 1 (1 cdf ( ))

H

HH

H
. (1) 

in which the underscore for H  denotes reference size of the specimen and cdf ( )  is the 

corresponding cumulative density function of failure initiation. The results obtained through 

micromechanical simulations related with (1) and the effect of irregularity parameter, i.e. cdf ( ) , 

will be given in the presentation. 

Concluding remarks 

Statistical failure initiation model for wood-like cellular materials has been generated. Due to 

difficulties in physical experiments and setup, numerical experiments have been carried out on 

microcomputer by means of micromechanical model at this stage. As following steps, statistical 

model on failure will be developed and more precise physics, i.e. inclusion of layers of cell wall, 

mimicking natural formation, etc., will be considered.    
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Summary Wood can be taken to be composed of honeycomb material containing geometrical features
of various scales. A simple way to quantify the geometrical irregularity of a material sample is presented.
Effects of sample size and scale are discussed by using an example with known statistics of irregularity.

Introduction

Wood can be taken to be composed of thin-walled, long cells having roughly hexagonal cross sec-
tions (Figure 1). Cells form growth rings with differences in e.g. density, cell wall thickness, cell
wall configuration and cell number per unit volume. In addition, the cell structure contains geo-
metrical features of various scales. As the mechanical properties of wood, such as strength depend
on e.g. on the microstructure and scale, a material model should somehow include information
on those. Although direct experimentation on the effect of cell structure regularity is not a real-
istic option, simulation by a micromechanical cell-scale model may be used to obtain qualitative
understanding.

Figure 1: Softwood cell structure showing also the growth ring [1].

According to review [2] most micromechanical models of wood are based ona honeycomb, where
a hexagonal cell is repeated in a more or less regular manner [3, 4]. Someof the models take into
account the variation of the growth ring [5]. A few references consider the irregularity of wood by
tracing the scanned image cell by cell [6, 7, 8]. However, to our knowledge, modelling the statistics
of regularity to be used in generation of cellular material samples for finite element analysis has
not been considered.

The aim is to discuss a simple way to quantify the geometrical irregularity of a given sample
of honeycomb material so that modelled material has similar geometrical characteristics. Then
one may generate a sample of specimen, use a micromechanical model, finite element method,
and statistical analysis of results to improve the understanding on the effectof irregularity on
macroscopic level.

285

Proceedings of the Twenty Second Nordic Seminar on Computational Mechanics
© Aalborg University 2009 | ISSN 1901-7278 DCE Technical Memorandum No. 11



Irregularity

Wood can have many different type of irregularities which need to be identified and modelled
correctly by the analysis. As seen in Figure 2 the same type of irregularity forms completely
different looking samples if applied to different scales. Morphing of the whole sample, for example
continual cell growth of the growt ring in wood, cannot be analysed correctly. These type of
irregularities need to be separately modelled.

Figure 2: On the left, regular specimen. In the middle, specimen taken from a population having irregular-
ities on various scales defined by the uniform distribution.On the right, specimen taken from a population
having irregularities on one scale defined by the uniform distribution.

Method

A topologically regular honeycomb is assumed so that the actual geometry canbe obtained by
point mapping. In the analysis hexagons are taken to consist of six triangles. The reference ge-
ometries are formed by grouping four triangles into larger triangles and moving vertices following
a certain rule. Quantification of irregularity is based on comparison of the actual and reference
geometries. To be precise, deviations∆~xi (Figure 3) are used to form the experimental cumulative
density function

cdf(a) = |{ai ∈ Σ : ai < a}| / |Σ| (1)

in whicha stands for∆xi or ∆yi and|a| denotes the size of seta. This is repeated as many times
as needed to get information on irregularity on different scales.

Example

A sample, generated using known statistics of irregularity, is used to discussthe effect of sample
size and scale of irregularity on the outcome of the analysis. The analysis ofthe sample can be
used as a base to generate a population(Figure 4). The analysis also gives information on what
type of irregularity has caused a certain geometry.

Concluding remarks

Finding the statistics on geometrical irregularities of the sample has been discussed. This proce-
dure can be repeated multiple times to see if all features are analysed correctly. In the future also
morphing will be included in the analysis. The ultimate goal is to automatically analysea scanned
image and use the result for strenght modelling.
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Figure 3: Element level coordinate mapping. Reference geometry in broken line. Actual geometry in solid
line and shading.
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Figure 4: On the left a sample where a uniform distribution has been introduced in one scale. In the middle
the cdf of the sample. On the right a sample generated using the statistics.
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Summary An introduction to isogeometric analysis is given. Both its role as an enabling tool for 
integration of computer aided design and analysis and its numerical performance will be addressed.  

1BIntegration of computer aided design and analysis 

The engineering process starts with designers encapsulating their perception using Computer 
Aided Design (CAD) tools. Thus, the geometry described in CAD systems is to be considered 
exact in the sense that it represents the projection from the designers perception of the desired 
object onto an electronic description. Today most CAD systems use spline basis function and often 
Non-Uniform Rational B-Splines (NURBS) of different polynomial order. 
 
During and after the design stages different levels of numerical solid and fluid simulations are 
performed on the object. Very often this involves using the Finite Element Method (FEM) where 
the geometry is represented by piecewise low order polynomials. This practise introduce either 
significant approximation errors or fine FEM models with a large number of finite elements that 
make the numerical simulation computational costly. Furthermore, a huge amount of man-hours 
(in some applications about 80% of total time is spent on mesh generation, see Hughes et al. 
2005) have to be spent in order to remodel the object into a suitable finite element mesh. This 
information transfer between models suitable for design (CAD) and analysis (FEM) is considered 
being a severe bottleneck in industry today. 
 
To address this issue Hughes et al. (2005) introduced a analysis framework which is based on 
NURBS (Non-Uniform Rational B-Splines), which is standard technology employed in CAD 
systems. They propose to match the exact CAD geometry by NURBS surfaces, then construct a 
coarse mesh of Spline Elements. Throughout, the isoparametric philosophy is invoked, that is, the 
solution space for dependent variables is represented in terms of the same functions which 
represent the geometry. For this reason, they denote it isogeometric analysis. 

2BNumerical performance 

Recent studies have shown that finite elements based on the isogeometric concept have superior 
numerical performance compared to classical Lagrange finite elements.  First of all we will 
mention that isogeometric finite elements result in lower approximation error than classical finite 
elements. The convergence order is the same for same order elements, but the actually error may 
be of one magnitude lower (i.e. the error is shifted downwards in a log-log plot). Furthermore, the 
conditioning of the resulting system matrix is also typically on order of magnitude lower, and this 
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is of importance when using iterative solvers. Finally, for eigenvalue problem the isogeometric 
elements performs significantly better both qualitatively (no divergence of the higher modes) and 
quantitatively (lower error in the lower modes). 

3BConcluding remarks 

In a project co-funded by the Research Council of Norway, Ceetron, Det Norske Veritas and 
StatoilHydro, SINTEF ICT and NTNU will make spline based elements (both NURBS and T-
spline) available for integrated computer aided design and analysis (ICADA) of industrial relevant 
problems in civil, mechanical and naval engineering. In particular we will focus on stiffened thin 
walled structures and offshore pipelines. We will herein present results obtained by a prototype 
spline FE solver applied to cases relevant for ship engineering.  
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Figure 1. Examples on isogeometric representation and spline finite element meshes. Upper left: The 
control net for a toroidal surface. Upper right: The corresponding spline element net for the toroidal surface 
(notice that the geometry for the toroidal is exactly represented). Lower left: Coarse spline element mesh for 
a beam element. Lower right: Fine spline mesh for the same beam element (notice that the geometry is 
exactly the same for the two different spline meshes). (Courtesy Professor T. J. R. Hughes, UT-Austin, TX) 
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Summary We present an adaptive T-spline finite element solver in an isogeomtric setting. Traditional
NURBS basis functions are tensor-product, while T-splines allow for true local refinement. This is proving
superior to problems containing singularities. Moreover, T-splines is having a positive effect on smooth
problems as well, since it will make the solver less prone to the choice parametrization.

Introduction

Hughes et al. [2] introduced the concept of isogeometric finite element method (FEM) solvers
by using non-uniform rational B-splines (NURBS) as a basis. One of the main arguments is that
modern computer aided engineering (CAE) is seeing a severe bottleneck in the construction of
analysis suitable geometries. Hughes reports that as much as 20 percent of the time used in a CAE
pipeline is used for creating a geometric model which for analysis is possible, while as much as 60
percent of the time is used creating a model which is good for analysis purposes. This totals a 80/20
factor of geometry construction versus actual analysis. Needless to say, it is a strong desire in the
community to reverse this factor. NURBS basis functions itself might reduce the first 20 percent
by allowing geometry construction to take place in existing computer-aided design (CAD) tools
which have perfected this process for decades. T-splines along with adaptive refinement through a
posteriori error estimates is what is making the last step superfluous by completely automating this
process, allowing the designer to ultimately focus on the task at hand, which is making a model in
which analysis is possible.

T-splines

For our solutions, we will be using T-splines as introduced by Sederberg et al. [5]. T-splines allow
for local refinement as they are not restricted to tensor product configurations. While you will have
to add an entire new row or column to your mesh when refining NURBS, the T-spline technology
allows for T-joints and contains refining algorithms which exactly preserve the geometry [4].

Problems containing singularities

We will here present how the T-splines along with a posteriori error estimators perform on prob-
lems containing singularities.

Model problem

For our model problem containing a singularity, we are going to solve the stationary heat equation,
or Laplace equation

∇2u = f in Ω
u = 0 on ∂ΩD (1)

∂u

∂n
= g on ∂ΩN

on an L-shape geometry with appropriate boundary conditions.

291

Proceedings of the Twenty Second Nordic Seminar on Computational Mechanics
© Aalborg University 2009 | ISSN 1901-7278 DCE Technical Memorandum No. 11



A posteriori error estimator and adaptivity

For the adaptivity we will need an estimate on what parts of the grid is contributing the most to
the global error. For this purpose, we will devise a residual-based a posteriori error estimator. If
we rewrite our original problem, we get

a(u, v) = l(v)
a(u− uh, v) = l(v)− a(uh, v)

a(e, v) =
∑
K∈P

∫
K
rvdA+

∫
∂K∩∂ΩN

(g − ∂uh
∂n

)vdA−
∫
∂K\∂Ω

∂uh
∂n

dS (2)

where in the last line we have partitioned the integral over the entire domain Ω into integrals
over every element K, where P is the set containing every element such that ∪K = Ω. Here
r = f −∇2u is the interior residual and g − ∂uh

∂n is the residual at the exterior edge. The last part
of (2) is coming from the jump discontinuity in the flux of the solution due to interelement edges
where the FE solution is C0-continuous. By continued used of the Cauchy-Schwartz inequality
and by replacing the test function v with the true error e we arrive at the result

|||e|||2 ≤ C

 ∑
K∈P

h2
K‖r‖2L2(K) +

∑
γ∈Γ

hK‖R‖2L2(γ)

 , (3)

where we have introduced the more compact notation for the edge residual

R =


g − ∂uh

∂n , on ∂ΩN[
∂uh
∂n

]
K
−

[
∂uh
∂n

]
L
, on ∂K ∩ ∂L ∀ K,L ∈ P

0, else

(4)

For full details on the derivation of this result, see Ainsworth [1]. This allows us to quantify an
error estimate for each element to be

η2
K = h2

K‖r‖2L2(K) + hK‖R‖2L2(∂K) (5)

For comparison purposes, we provide four adaptivity strategies for refining the mesh.
a) Uniform refinement using NURBS.
b) Rule of thumb refinement, where we recursively refine the element closest to the singularity
using NURBS.
c) Adaptive NURBS where we use the error estimator ηK to refine the x percent elements with the
highest contribution to the error.
d) Adaptive T-splines where we use the error estimator ηK to refine the x percent elements with
the highest contribution to the error.

Results

Due to the singularity the convergence rates of the uniform refinement is completely ruined. How-
ever the rule-of-thumb refinement keeps an optimal slope up until the point where the error from
other parts of the grid than the singularity becomes dominant. The T-splines however gains an opti-
mal convergence (using cubic basis functions). The most competitive NURBS refinement strategy,
and most comparable, is of course the one where we are using the same a posteriori error estimator
for refinement purposes. It is eventually beaten due to the fact that it is limited to tensor product
refinements which generates many unwanted degrees of freedom.
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(a) T-spline grid with adaptive solver (b) Convergence rates for the four
proposed refinement strategies

Figure 1: Results obtained from the singularity problem

(a) The parametrization control mesh (b) The physical mapping

Figure 2: Parametrization of the hole problem

Smooth problems

In this section we take a look at a smooth problem, namely the static elasticity problem on an
infinite plate with a circular hole. For full details on the problem see [3].

Parametrization

What is interesting here is the choice of parametrization. We will chose a particular parametriza-
tion which is depicted in figure 2. The traditional way of creating sharp corners using NURBS
is by making the knot vector be interpolating by creating a knot with multiplicity p where p is
the degree of the NURBS. However we have created the upper right corner by stacking p control
points on top of each other. Multiple control points is making the derivatives vanish, much in the
same manner as multiple knots and is thus allowing us to create the sharp corner. However the
solution using this parametrization will not be well-behaved and the error estimator presented in
the previous section is not applied. Instead we will use the exact error for adaptation purposes and
argue that given an appropriate error estimator, then T-splines will demonstrate some remarkable
properties, even for smooth problems without singularities.

The downside with our particular choice of parametrization for the hole-problem is that it is not
uniform. That is a uniform refinement in the parametric domain, will result in a biased refinement
in the physical space which is illustrated in figure 2b. We clearly see that the refinements are
completely biased towards the upper right corner, leaving the lower left and upper right corners
with unnaturally large elements. It is possible to bypass this by weighting the refinement in the
parametric space, but this requires hand-tailoring by the implementer, which we want to keep to a
bare minimum.

Refinement using T-splines

When using an adaptive T-spline refinement strategy, this will detect the large elements in the
upper left and lower right corners and refine those as appropriate. This is a true local refinement
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(a) Refined T-spline grid in the
physical space

(b) Refined T-spline grid in the
parametric space

(c) Convergence rates of T-splines
versus uniform NURBS

Figure 3: Results from solving a smooth problem

and will not spread out to the rest of the domain, resulting in a better refinement. T-splines is as
such, negating the effect of the bad parametrization by enforcing a true uniform refinement in the
physical space. This is shown in figure 3a where the physical T-mesh is illustrated. The parametric
mesh corresponding to this is depicted in figure 3b. Note that there is three areas in the parametric
space where the refinement is cluttered. The first two is the top left and right which are mapping
to respectively the physical top left and bottom right corner. The third is the bottom row which
is mapping to the inner circle, where the exact solution is most varying. The adaptive T-spline
refinement strategy is biasing the parametric mesh, to allow for a more uniform physical mesh.

Results

Since this problem has a smooth solution, we expect the uniform NURBS refinement to be close
to optimal. As was seen, however, the (parametric) uniform refinement scheme was not uniform
at all when viewed in the physical space. This is then resulting in a non-optimal refining. The
adaptive T-splines countered this, and is thus providing a better convergence rate. These are shown
in figure 3c.

Concluding remarks

T-splines shows great promise as a basis for adaptive FEM. Not only do they display superior
properties when it comes to true local refinement around singularities, but they also have the
remarkable property of negating the effect of badly parameterized models.
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Summary Isogeometric Analysis is a novel technique in Finite Element Analysis and its success
depends on the performance in bridging the gap in modeling and analysis. The paper compares
two options for doing analysis of thin-walled structures, namely, 3D solid modeling and reduced
order models using the Mindlin-Reissner shell theory.

Introduction

Recently Isogemetric analysis was introduced by Hughes and coworkers [3]. This repre-
sents an interesting alternative to the ordinary finite element methods and it offers new
opportunities related to the analysis of thin walled structures. Especially, the issues of
C1 continuity, shear locking in C0 formulations including solids and the possibilities of
avoiding large three dimensional rotations in large displacement analysis of shells are of
interest.

Classically, reduced models have been used to analyze shells structures. However, the need
to include physical effects generally outside the range of classical shell theory, like nonlinear
material behavior including fracture, damage and failure, complex structures with stiffen-
ers and intersection, connecting thin and thick regions, has resulted in higher order shell
models and also the use of general three-dimensional theory to analyze shell structures.
In later years, Bischoff and Ramm [1], there has been a vitalization of the question: Can
we play the game over again? The question rises the issue of how to analysis thin walled
structures within the new possibilities offered by the increase in computational capabili-
ties and the gained knowledge on numerical methods, shell behavior and approximation
theory.

The purpose of the paper is to compare the performance of solid elements and shell
elements within the Isogeometric Analsysis approximation of linearized shell problem.
The results are also compared with classical elements found in commercial packages like
SESTRA[4].

Governing equations

The discrete problem consists in; find u ∈ U∫
Ω
E : "(u) : "(v) =

∫
Ω
b ⋅ v +

∫
∂Ωt

t ⋅ v ∀v ∈ U0 (1)
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where E denotes the elasticity tensor, "(⋅) is the symmetric part of the displacement
gradient, b and t denotes the applied body force and surface traction field, respectively.
In the one patch configuration the space U is constructed using tensor product B -splines.
The space U0 is the subset of U of functions vanishing on ∂Ω ∖ ∂Ωt. This result in an
approximation similar to the one used in a classical finite element method

u(x, y, x) = Na(x, y, z)da (2)

where Na denotes the B -spline shape functions and da is the (generalized) displacement
vector at control point a, thus u ⊂ C0(Ω̄). Einsteins summation convention is used. The
two-dimensional counterpart of Na are shown in Figure 1 (left). The basis functions in
higher dimensions are defined by tensor products of one dimensional basis functions.

Classical shell models are based on kinematic constraints. In order to simplify the pre-
sentation we assume a plate model, i.e. the midplane is the x–y plane and the transverse
direction are in the z direction. The kinematic constraints are then

u(x, y, z) = u0(x, y) + z (�y(x, y)ex − �x(x, y)ey) (3)

Here u0 is the displacement field of the midplane, ex and ey are unit vectors in the x and
y direction, while �1 and �2 are the components of the rotation vector

� = �xex + �yey (4)

The approximations of u0 and � are expressed in the form of Equation 2.

The geometric stiffness matrix may be generated through the expression∫
Ω0

� : Δ�" dV = �dTkKgΔdk = �dTk

∫
Ω0

(∇N)T ⋅ � ⋅∇N dVΔdk (5)

where dk are the control point values in translational direction k. Only the in-plane mem-
brane forces are currently included in the geometric stiffness for the shell model.

Numerical example

The 3D continuum formulation and the Mindlin-Reissner formulation have been imple-
mented in Mathematica [6] for easy verification and comparison. Two problems are solved
for a simply supported plate; the static response of a uniform transverse load and the lin-
earized buckling problem. The plate is depicted in Figure 1. The low order approximation
of the plate is determined by the knot and control point vectors

Ξ = H = {0, 0, 5, 5} and control points

p = {{0, 0, 0}, {10., 0, 0}, {0, 10., 0}, {10., 10., 0}} (6)

Soft boundary conditions are used for the numerical simulation, see Cook et al [2]. Table 1
shows the convergence properties of the continuum model, the Mindlin-Reissner plate
model for different order of field approximations. The second order thick shell formulation
used in SESTRA is also included for comparison. The problem was also solved in Skeie
and Rusten [5] using different Isogeometric approximations.

The results for linearized buckling problem using second order spline functions with
(18, 18, 5) control ponts and the loading (Nx, Ny) = (1, 0) yield the eigenvalues shown
in Table 2 where also the thin plate solution is taken as the reference solution.
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Figure 1: The simply supported plate.

w/wex in % (Number of control points)

Shell

Linear 0.3(9) 1.1(25) 4.3(81) 15.1(289) 41.6(1089)
Quadratic 87.5(9) 87.5(16) 88.7(36) 96.8(100) 100.1(324)
Cubic 87.5(16) 89.7(25) 99.5(49) 100.3(121) 100.5(361)
Quartic 101.0(25) 101.0(36) 100.5(64) 100.4(144) 100.6(400)

Continuum

Linear 0.0 (12) 0.2 (27) 0.9 (75) 3.6 (243) 12.8 (867)
Quadratic 87.5 (45) 87.5 (80) 88.5 (180) 96.3 (500) 100.0 (1620)
Cubic 87.5 (112) 89.3 (175) 99.2 (343) 100.3 (847)
Quartic 101.0 (225) 101.0 (324) 100.5 (576) 100.3 (1296)

Exact wex = 40624 100

Table 1: Vertical midpoint displacement compared with exact solution as a function of
control points. t = 0.1.

Concluding remarks

Initial calculations using both solid and shell formulations in thin walled structures show
promising results. It is noted that the effect of shear locking seems to be pronounced only
for the low order models.

Isogeometric analysis is a novel techniques still in its infancy and its use in the analysis of
thin walled structures has to be investigated further.
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Mode number
Model �1 �2 �3 �4 �5
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Summary In this paper we look at eigenvalue analysis of thin-walled structures, based on
isogeometric finite element analysis with splines and NURBS as basic functions. We test the
methodology on linearized buckling analysis of a simply supported square plate.

Introduction

Currently, a lot of effort is being carried out in research communities using splines and non-
uniform rational B-splines (NURBS) as basis functions in finite element analyses (FEA).
The foundation for these kind of analyses was laid out by Hughes et al. [1]. In the current
work we use spline-based continuum finite elements in eigenvalue analysis of thin-walled
structures. We consider both free vibration and linearized buckling applications.

Isogeometric analysis was originally introduced in order to achieve efficient integration of
computer-aided design (CAD) and FEA by introducing accurate geometry representations.
However, as the method has been used and analyzed in more detail, it has become more
and more evident that spline-based elements have several numerical advantages compared
to classical finite elements.

Both B-splines and NURBS are composed by non-negative basis functions that inherit the
so-called total variation diminishing (TVD) property. Finite elements based on the classical
Lagrange polynomial basis functions do not inherit the TVD property and are prone to
spurious oscillations (Gibbs phenomenon) nearby sharp fronts in dynamic problems.

Furthermore, Cottrell et al. have demonstrated in [2] that NURBS elements outperform
classical finite elements when it comes to represent the spectrum of eigenvalues for dynam-
ical problems. In fact, for higher order Lagrange elements the upper half of the spectrum
is highly inaccurately represented whereas this is not the case for NURBS elements. Their
results show that NURBS elements are more accurate than Lagrange elements throughout
the entire spectrum.

Eigenvalue analysis

Free vibration

The weak form of the dynamic equation of motions for an elastic structure with neither
body forces nor surface tractions is given by

∫

Ω

ρ δuTü dV +

∫

Ω

δεTσ dV = 0 (1)
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where ρ denotes the mass density, u is the displacement field, and ε and σ strains and
stresses, respectively. Assuming simple harmonic motion in time and spatial discretization
through a finite set of splines basis functions, N, the displacement field can be written

u(x, t) = sinωt N
T(x)v (2)

Inserting (2) into (1) and using the constitutive and kinematic relations between the
stresses, strains and displacement, we obtain the matrix equation

δvT(K − ω2
M)v = 0 (3)

where K and M are the usual material stiffness- and mass matrices, respectively. Equa-
tion (3) may now be solved by standard eigenvalue solvers for eigenpairs (ω,v).

Linearized buckling

The equation governing the buckling phenomenon is derived by neglecting the first term
of (1) and considering the second term to be non-linear. By linearizing this term we get

∆

∫

Ω

δεTσ dV =

∫

Ω

δεT∆σ dV +

∫

Ω

∆δεTσ dV = 0 (4)

We notice that the second term of (4) contains the current stress state, σ. In the linearized
buckling analysis, we assume that these stresses equals some reference state times a load
factor, λ, i.e., σ = λσ0. Inserting this into the second term of (4), while carrying out the
linearization of ∆σ and ∆δε retaining first order terms only, and introducing a spatial
discretization u(x) = N

T(x)v, we obtain the matrix equation

δvT(K + λKg)v = 0 (5)

where Kg is the geometric stiffness matrix. Equation (5) may now be solved by standard
eigenvalue solvers for eigenpairs (λ,v). This is a similar kind of eigenvalue problem as (3).
However, in contrast to the mass matrix M, the geometric stiffness matrix is not necessarily
positive definite, so the eigenvalue solver needs to account for that in the solution process.

Linearized buckling of a square plate

The spline-based isogeometric formulation has been tested on the plate problem depicted
in Figure 1. It shows a rectangular plate subjected to constant in-plane loadings Nx and
Ny in the x and y-directions, respectively. The plate is assumed to be simply supported
around the boundary. This is achieved by constraining the out-of-plane deflection w to
zero along the center line around the boundary. In addition, we add constraints in two of
the corners in order to suppress the rigid body motions in the xy-plane of the plate.

Thin-plate solution

Based on Kirchhoff-Love thin plate theory, we find the buckling load for this plate problem
as given by

Nx

(

mπ

a

)2

+ Ny

(

nπ

b

)2

= D

(

(

mπ

a

)2

+

(

nπ

b

)2
)2

(6)

where m and n are integer values giving the number of half waves in the x and y directions
of the plate, respectively, and D is the plate stiffness (see Figure 1). It should be noted
that this solution does not account for transverse shear deformation, so when we are using
volume elements we should expect convergence towards a somewhat more soft solution.
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E = 10.92 ν = 0.3 t = 0.1

D = Et3

12(1−ν2)
= 0.001857

Figure 1: Simply supported plate subjected to in-plane loading.
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Figure 2: Normalized eigenvalues for the square plate.
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Numerical results

In Figure 2 the convergence of the seven lowest eigenvalues (i.e., the buckling load Nx)
are shown for the condition Ny = 0.0 and a = b = 10.0. The eigenvalues have here
been normalized with the corresponding thin-plate solution. The results are obtained with
quadratic spline elements (p = 2) and the number of control points (FE nodes) in x and
y direction varying from 5 to 65. In the thickness direction 3 control points are used for
each grid. In Figure 3, the four first mode shapes are depicted for the 33 × 33 grid.

The eigenvalue analysis is performed using the ARPACK library [3] (Buckling mode).

Figure 3: Mode shapes for the lowest four eigenvalues.

Concluding remarks

The results obtained so far look promising. We get good correlation with the thin-plate
solution even for quite coarse meshes. We will also compare the performance with standard
Lagrange finite elements to see whether spline basis is better for the same number of DOFs.
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Summary In optimal design the primary focus today is on mathematical programming in combination
with finite element analysis. Here we put focus on the fact that the generality and versatility of optimality
criteria methods are valuable from several point of views, and show recent solutions published on the basis
of simple and few recursive redesigns.

Preface
This presentation is dedicated to Professor Niels Olhoff, appreciating his many years of work at
DTU in Copenhagen, at AAU in Aalborg and in international societies.
Forty years ago Niels and I as Ph.D. students shared an office in Copenhagen. Niels used opti-
mality criteria, expressed in differential equations, to optimize plates, while I used mathematical
programming to optimize trusses; both believing strongly in our methods. Later we learned to use
alternative methods and to put emphasis on sensitivity analysis.
Although practical problems call for finite element analysis and mathematical programming, the
importance of optimality criteria methods should be kept in mind; here we focus on criteria in
energy terms and with FE for analysis.
This is not a review paper and only few references are given. A list of the many papers by Niels
Olhoff until 2003 is included in [1].

Introduction
In size optimization for minimum compliance with only active volume constraint, the necessary
optimality criterion is uniform energy density, see [2]. This criterion also holds for non-linear
power-law, anisotropic elasticity, see [3] and [4]. For eigenfrequency optimization with size pa-
rameters a similar criterion specifies constant difference between amplitudes of elastic energy
density and kinetic energy density, see [5].
In shape optimization with prescribed size, say the thickness of a plate, we cannot expect con-
stant energy density everywhere. For compliance minimization with only a single constraint on
given volume the necessary optimality criterion is constant energy density at the boundary to be
designed; see [2] and for extensions to non-linear power-law, anisotropic elasticity, and for the rela-
tions to strength optimization (stress constraints) see [6]. In shape optimization for eigenfrequency
maximization a necessary optimality criterion, which expresses constant difference between am-
plitudes of elastic energy density and kinetic energy density at the designed boundary, is proofed
in [7]. The boundary may be internal (holes) as well as external.
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Optimality criteria are valuable from several points of view:
• Criteria give basic understanding
• Verify results by mathematical programming
• Analytical solutions
• Background for recursive design procedures
• Optimality criterion solution to initiate mathematical programming
• Criteria expressed in energy terms hold for 1D, 2D, 3D, for different models, for analytical

as well as numerical treatment, for materials as well as for structures.
• Sensitivity analysis is a most important part

Table 1 presents an overview of the mentioned optimality criteria

PSfrag replacements

Problems

Design
variables SIZE (thickness/density) SHAPE (boundary)

Extremum

COMPLIANCE

Extremum

EIGENFREQUENCY

Specific elastic energy

constant in design domains

Weighted elastic energy density

minus kinetic energy density

constant in design domains

Specific elastic energy

constant on design boundary

Elastic energy density minus

kinetic energy density

constant on design boundary

Table 1: Optimality criteria for static single load cases and cases of non-multiple eigenfrequencies with size
and/or shape design variables, and an active mass (volume) constraint.

Setting up the optimality criteria
A rather general optimization problem may be stated as

Minimize Φ subjected to g = 0 (1)

with te as design parameters, say element thicknesses. The necessary condition for optimizing a
design is proportionality between the gradients of the objective Φ and the gradients of the con-
straint g

dΦ

dte
= λ

dg

dte
(2)

with same λ for all domains (elements) e. In the case that Φ is energy and g is volume, then λ is
interpreted in terms of the constant energy density.
The objective may be combined from multiple load cases, from eigenfrequencies, and from dis-
placements.

Φ =
K

∑

k=1

γkΦ
r
k ⇒

dΦ

dte
=

K
∑

k=1

γkrΦ
r−1
k

dΦk

dte
(3)
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with user control parameters γk, r and gradients from design variation dte. Three examples ex-
pressed in elastic energy are compliance

Φ1 = Ul = {Dl}
T [S]{Dl} for load case l (4)

and eigenfrequency by Rayleigh quotient

Φ2 = ω2
i =

Ui

Ti

=
{Di}

T [S]{Di}

{Di}T [M ]{Di}
for eigenfrequency i (5)

and displacements by cost combinations

Φ3 = {C̃j}
T {Dj} = Ũj = {D̃j}

T [S]{Dj} ,i.e., mutual energy for case j (6)

where the artificial displacement vector {D̃j} results when treating the vector of combination
factors {C̃j} as a load case.

Finding solutions to an optimality criterion
The applied recursive formula which is in agreement with the optimality criterion is an update of
element densities by

(te)new = (te)current

(

(λe)current

λ̄current

)0.8 (

V̄

V

)

(7)

assuming all λe > 0. With proper adjustment to limits tmin ≤ te ≤ tmax, and in an inner loop
without FE analysis, iteratively updating the current active volume V and V̄ (its corresponding
part of the constraint), so that the total volume constraint is satisfied in each redesign.
An alternative version often applied by Niels Olhoff, includes move limits described by ξ, which
introduce limits depending on the current design, i.e., α ≤ te ≤ β with

α = max[(1 − ξ)(te)current, tmin] (8)
β = min[(1 + ξ)(te)current, tmax] (9)

The volume constraint is then determined in an inner iteration loop by means of e.g. bisection or a
Newton-Raphson method.

Static 2D examples
A number of continua, designed to obtain uniform (or almost uniform) energy density, are pre-
sented. These designs, subjected to only one load case, are optimal with respect to stiffness as well
as with respect to strength, assuming that the total volume V̄ is not changed.
In addition to graphical illustrations of energy density fields and optimal thickness fields, a few
relative numbers are needed to clarify the obtained results. The starting analysis with a uniform
thickness design gives an initial total elastic energy U0, from which an initial mean energy den-
sity umean0 = U0/V̄ is given. Also this analysis for uniform thickness gives a maximum energy
density umax0, and an energy concentration factor, defined as umax0/umean0. The total elastic en-
ergy of the optimized design is U and the goal of optimization is to obtain uniform energy density
umax = umean = U/V̄ , from which follows that a gain factor for improvement in stiffness can be
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defined as umean0/umean = U0/U , and a gain factor for improvement in strength can be defined
as umax0/umax. Especially the upper bound tmax should also be seen in relation to the reliability
of the finite element analysis. When the gradients of the thickness field get extended, the accuracy
in modeling may be violated. The effect of the upper bound is that in most cases umax/umean > 1
results even for the optimized continuum that gives almost uniform energy density. A good mea-
sure for the influence from the upper bound tmax is given by this ratio umax/umean.
Figure 1 illustrates nine problems, for which we show thickness fields, that return almost uniform
energy density. The pure beam problems and the pure bar problems might be solved with only half
the models due to symmetry and skew-symmetry, but due to the bar-beam problems full models are
used. The actual finite element models have 11042 degrees of freedom and 10800 design variables
(thicknesses of 10800 triangular elements).

Figure 1: The basic models for optimization of bars, beams, and beam-bars in three different lengths, i.e.
in combination 9 cases. Isolines for energy densities are shown for the uniform thickness design with the
loads shown at the free ends. The color scale is red for low thickness values, green for medium thickness
values and blue/violet for large thickness values.

Immediately, a suggested design for the bar problem would be a uniform bar only of the width
corresponding to the area of uniform external load. However, such a design is questionable at the
support where stress concentration can result. The isolines in Figure 1 for this case illustrate the
complexity. Also the Saint-Venant principle is nicely illustrated in Figure 1, and in the solutions
to follow.
Figure 2 shows some of the optimal designs and values are given in Table 2.

Static 3D example
An example of a 3D bridge model with moving loads is shown in Figure 3, that also shows opti-
mized versions for the non symmetric four load case.
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Figure 2: Optimal designs for 3 × 9 rectangular design domain. Top: a bar problem. Mid : a beam problem.
Bottom: a combined bar/beam load. Isolines for thicknesses and five cross-sectional ”cuts” that more clearly
show the thickness distribution. The resulting energy densities are almost uniform as seen in Table 2

BAR DESIGNS Uniform thickness Optimized design
Resulting ratios U0/U umax0/umean0 umax0/umax umax/umean

Design domain 9 × 3 1.18 11.8 13.8 1.006
Design domain 6 × 3 1.27 11.1 14.0 1.006
Design domain 3 × 3 1.54 9.8 14.9 1.006

BEAM DESIGNS Uniform thickness Optimized design
Resulting ratios U0/U umax0/umean0 umax0/umax umax/umean

Design domain 9 × 3 2.12 10.1 6.9 3.1
Design domain 6 × 3 1.80 10.5 5.5 3.4
Design domain 3 × 3 1.40 9.9 3.8 3.6
COMB. DESIGNS Uniform thickness Optimized design

Resulting ratios U0/U umax0/umean0 umax0/umax umax/umean

Design domain 9 × 3 2.15 10.8 7.1 3.3
Design domain 6 × 3 1.87 11.2 5.9 3.6
Design domain 3 × 3 1.60 10.4 3.5 4.8

Table 2: Resulting ratios for energy and energy density, corresponding to nine different cases of bar and
beam models. Uniform thickness design and optimized thickness design.
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left: The graded (non-penalized) design, right: The almost solid (penalized) design.

308



Analytical described beam designs
Analytically described solutions for beam design are available for statically determinate cases,
even based on Timoshenko beam. In a recent paper [8], which included valuable improvements
suggested by Niels Olhoff, a large number of optimal designs are presented.
The primary step is to get the optimality criterion for the problem:

Minimize compliance Φ for a given volume V =

∫ L

0
A(x)dx where

Φ =

∫ L

0
φ(x)dx with φ(x) = β

T 2(x)

GA(x)
+

M2(x)

EI(x)
(10)

all in traditional notation. The relation between cross sectional moment of inertia I(x) and area
A(x) is presented in the form

I(x) = γb2(2−n)An(x) for n = 1, 2,or 3 with b as a cross sectional length (11)

and the optimality criterion for the optimal area A∗(x) is derived to

λ = α
(T (x)/Q)2

(A∗(x)/b2)2
+ n

(M(x)/(Qb))2
(A∗(x)/b2)n+1

(12)

The next step is to obtain analytical solutions to the optimality criterion 12, which in [8] is derived
Bernoulli-Euler beams

[A∗(x)]BE ∝ n+1

√

(
M(x)

Qb
)2 (13)

Timoshenko beams for n = 1

[A∗(x)]T,n=1 ∝

√

α(
T (x)

Q
)2 + (

M(x)

Qb
)2 (14)

Timoshenko beams for n = 2
[

A∗(x)

b2

]

T,n=2

=
3

√

√

√

√

1

λ
(
M(x)

Qb
)2 +

√

(

1

λ
(
M(x)

Qb
)2)

)2

+

(

−α

3λ
(
T (x)

Q
)2

)3

+

3

√

√

√

√

1

λ
(
M(x)

Qb
)2 −

√

(

1

λ
(
M(x)

Qb
)2)

)2

+

(

−α

3λ
(
T (x)

Q
)2

)3

(15)

Timoshenko beams for n = 3
[

A∗(x)

b2

]

T,n=3

=

√

√

√

√

α

2λ
(
T (x)

Q
)2 +

√

(

α

2λ
(
T (x)

Q
)2

)2

+
3

λ
(
M(x)

Qb
)2 (16)

Graphical displays of these solutions for specific distributions of shear force T (x), moment M(x),
and cross sectional type b, n, α are presented in [8].
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Eigenfrequency example
In the project [7] on shape optimization for maximum eigenfrequency we found great use of the
information contained in the distributions of energy density over the structure/continuum. Three
kinds of distributions are involved, the distribution of amplitude of elastic strain energy density, the
distribution of amplitude of kinetic energy density, and finally and most important the distribution
of difference between amplitude of elastic strain energy density and amplitude of kinetic energy
density. The focus on the distribution of differences is due to the available optimality criteria for
optimizing an eigenfrequency.
We exemplify primarily in relation to the model of a ”knee” continuum shown in Figure 4 which
also shows distributions of the specific energy difference ze (Lagrange energy density) defined by

ze = (Ue − Te)/(Ve) (17)

in the element e, where we have the elastic energy amplitude Ue, the kinetic energy amplitude Te,
and the volume Ve. Different ze for the different elements in the model indicate that the eigenfre-
quency ω can be improved by thickness design. The objective is to maximize an eigenfrequency ω
for given total mass M or volume V . The optimality criterion for this problem is a factor (problem
depending) times the amplitude of elastic energy minus the amplitude of kinetic energy, corre-
sponding to the mode of vibration. From [5] we cite ”The optimality criterion states that, for the
fundamental mode, the difference between amplitude of the specific strain energy per unit stiffness
and the amplitude of the specific kinetic energy of the structure (exclusive of the point masses) per
unit stiffness is constant over the structure”.

Conclusion
Thanks to Niels Olhoff for many years of cooperation on optimal design.
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Shape optimization of asymmetric gears
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Summary Bending stress plays a significant role in gear design wherein its magnitude is controlled by
the nominal bending stress and the stress concentration due to the geometrical shape. The bending stress is
indirectly related to shape changes made to the cutting tool. This work shows that the bending stress can
be reduced significantly by using asymmetric gear teeth and by shape optimizing the gear through changes
made to the tool geometry. To obtain the largest possible stress reduction a custom tool must be designed
depending on the number of teeth, but the stress reductions found are not very sensitive to small design
changes. This observation could suggest the use of standard cutting tools.

Introduction
Gear strength is influenced by geometry as well as by material selection and production processes.
Two primary fatigue related failure modes determine gear strength; failure due to bending stress
and failure due to contact pressure. The focus of this work is on reducing bending stress levels
whereby improving gear strength.
Gear design is in most cases conservative and specified by different standards. Almost all gears
exhibit involute shape because the contact forces act along a straight line and a center distance
variation due to, e.g. manufacturing tolerances or loadings, does not influence this fact. A center
variation will neither influence the gear ratio. The only design variable that controls the involute
shape is the pressure angle α; it is typically assigned the value α = π/9. Only the gear region that
is in contact with the other gear in the mesh is described by the involute shape. The root geometry
or bottom land region, that connects two neighboring teeth, can be designed rather freely. The task
of this paper, also done in [1], is to improve the gear strength by changing the gear geometry in a
way that retains the involute shape.
Design changes of the gears are achieved indirectly by redesigning the cutting tool. Cutting tool
parameterization includes the possibility of an asymmetric tooth; it is simple as it only requires
four design parameters. Resulting optimized designs show that a significant reduction in the bend-
ing stress is possible. Furthermore, the cutting tool shape is described analytically and hence so is
the cut teeth shape Thus, as discussed in [1], the maximum stress calculations can be trusted.

General aspects of gear design and analysis
Almost all gears are symmetric and defined according to the standard cutting tool. The cutting tool
definition used in the present paper is based on the ISO profile and seen in Figure 1.
The shown profile has, as the ISO profile, an added top with the height of M/4, where M is
the gear module which controls the gear teeth size and subsequent also the gear size (the pitch
diameter dp is given by dp = Mz where z is the number of teeth on the gear). Top radius ρ is
chosen such that there is no jump in the slope. The bottom of the true cutting tooth profile is not
identical to the bottom of the shown cutting profile based on the ISO profile. For the real cutting
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Figure 1: Cutting profile geometric definition and the basic profile based on the ISO profile, M is the gear
module that defines the teeth size in the gear. The two sides of the tool are termed drive and coast side
respectively. Pressure angles αd and αc are here shown with the same value. The coordinate system used is
shown.

profile, the top of the cut teeth is assumed given by the initial steel blank diameter, which is equal
to the addendum diameter. The shown profile has as envelope the full cut tooth, i.e., the envelope
of the bottom part of the profile is the finished cut tooth top. Teeth cut with the ISO profile and
teeth cut with the profile shown in Figure 1 are therefore identical.
Gears become symmetric when the cutting tool tooth is symmetric with respect to the y-axis as
shown in Figure 1. Symmetry of the two involutes of a tooth follows a choice of identical pressure
angles, αd = αc. Subscript d is used for drive side and subscript c is used for coast side. Two
identical pressures angles imply that the two straight lines have opposite gradient, and that they go
through the points (−πM/4, 0) and (πM/4, 0) respectively (the envelope of the straight side are
the tooth involute).
If the object of gear design is to minimize the stresses the pressure angle should be as large as
possible. The limiting factor is a needed minimum tooth top thickness.
The parameterization that remains is the tool top, the number of possible tool top design param-
eterizations is infinite. Here a variation of the parameterization used in [1] is applied, the central
part is to use a variation of the super ellipse. Focus is on simplicity, although the optimization re-
sult should still be near to the optimal design. That a given parameterization is sufficiently flexible,
i.e. that it can return optimal designs, can only be checked or verified after an actual optimization
procedure. If the stress is constant along major parts of the surface then the shape is assumed
optimal, see e.g. [2].
The parameterization presented fulfills the following constraints:

• The added tool tip height is fixed at M/4.

• The involute part of the tooth must not be penetrated on the drive side.

314



That the tool tip height is kept fixed is applied in order to allow for the same clearance in the
optimized gears as is the case for the ISO gears. The involute part should be kept unchanged to
allow the optimized gears to have the same functional qualities as the original involute gears.
A distinction is made between the tool top part that cuts the tooth root of the drive side (drive top)
and the other part that cuts the tooth root of the coast side (coast top). As indicated in Figure 2 the
coast side top is a simple circle (part of a full circle).

� � �� � �
� � �� � � � � �� � �

PSfrag replacements
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ρc = κM

αd

µM (µ < 0)µM

Figure 2: The design domain for the optimization shown as the hatched part. The coast side pressure angle
and drive side pressure angle is shown together with the circle radius on the cutting tool coast side.

The radius of the circle is given as

ρc = κM =
4µ + π − 5 tan(αc)

4(cos(αc) − (sin(αc) − 1) tan(αc))
M (1)

and might be greater than or smaller than the ISO standard ρ ≈ 0.38M (see Figure 1). This also
means that the involute on the costs side might not be as long as it would have been using the ISO
cutting tooth, but this is ignored due to of the unidirectional loading assumption.
Final part to be parameterized is the drive top, this is done by a modified super elliptic shape. The
design domain is shown as the hatched part in Figure 2 and enlarged in Figure 3. As seen in Figure
2 the design domain size is variable and controlled through the parameter µ, with the restrictions
from the boundaries this parameter must fulfill.

µmin = −
π

4
+

5

4
tan(αc) 5 µ 5

π

4
−

5

4
tan(αd) = µmax (2)

From the optimization presented in [1] it was found that in order to minimize the stress concentra-
tion it is important that the parameterization includes a straight part before entering the elliptical
shape, but in that paper the teeth were symmetric. The idea used in the present paper is instead
that the design domain can change size through the design parameter µ
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Figure 3: The tooth top parameterization that cuts the drive side tooth root, here shown for a positive value
of µ. a) the parameterization of including a super ellipse is shown to be also outside the design domain. b)
the super elliptical shape is forced back into the design domain by a distortion.

The remaining top part is as indicated in Figure 3a parameterized by a super elliptical shape, only
the first quarter of the super ellipse is used. Parametric form of the super ellipse is

x = (a0 + a1 cos(t)(2/η))M, t ∈ [0 :
π

2
] (3)

y = (b0 + b1 sin(t)(2/η))M, t ∈ [0 :
π

2
] (4)

where the constants are given by

a0 = µ , a1 = (
π

4
− tan(αd) − µ) , b0 = 1 , b1 =

1

4

As indicated in Figure 3a the super ellipse might potentially come outside the design domain,
which is not wanted since this has an influence on the length of the involute of the cut tooth.
To move the super ellipse back a distortion is added to the x position parameterization. The dis-
tortion is indicated in Figure 3b by rotating the dashed line. The quarter distorted super ellipse
parameterization is given by

x =

(

a0 + a1 cos(t)(2/η)(1 −
b1

a1
tan(αd) sin(t)(2/η))

)

M, t ∈ [0 :
π

2
] (5)

y =

(

b0 + b1 sin(t)
(2/η)

)

M, t ∈ [0 :
π

2
] (6)
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Using the parameterization given by (5) and (6) it is possible both to achieve the design space
upper limit by letting η → ∞ or the lower boundary by letting η → 0. The given parameterization
fulfills that the gradient/slope is continuous, i.e., no jumps in the slope if η = 1.
The presented total cutting tool tooth parameterization is in principle controlled by four parame-
ters; the two pressure angles αd and αc, the length parameter µ and the super elliptic power η. As
preciously stated one of the pressure angles are assumed given so the optimizations presented are
parameter studies with only three parameters, µ, η and either αd or αc. It is shown that this simple
parameterization is sufficiently flexible to achieve constant stress along a major part of the root.

Analytical description of the teeth shape
In shape optimization it is important to have a detailed or preferably analytical shape description.
Analytical description also makes verification and comparison possible for other designs. Another
reason is that it is known from shape optimization (see e.g. [3] and references therein) that we
cannot use the nodes of the FE model as design parameters. In the present paper, we have made
an analytical cutting tool parameterization and it is possible to find analytical descriptions for the
envelope of the parameterizations in case of a gear with a finite number of teeth. This might not
be as easy when using e.g. splines to parameterize the tool tip.
In [1] it is shown how the envelope can be found. In Figure 4 an example of a asymmetric tooth is
given.

�
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
�

�
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
��
�
�
�
�

Figure 4: An asymmetric tooth.

Optimization of general spur gear
As discussed in [1] the design that minimizes the maximum bending stress in the tooth will depend
on the position of the external loading on the tooth. Therefore in order to compare different designs
the load must be applied in the same position. For consistency and for easy reference the choice
made here is that the tooth is loaded at the pitch point where we have rolling contact. The load is
not put at a single node but applied as a constant line load symmetrically around the pitch point.
In the examples the starting point is the ISO tooth with αd = αc = π/9, the load size is scaled
so that the maximum of the largest principal stress is unity. To compare the bending stress of the
optimized asymmetric teeth to the ISO tooth the transferred torque is kept constant, i.e., the load
size on the optimized tooth is scaled relative to the ISO tooth load.
The example is with 17 teeth, i.e., z = 17, and we are at the limit of under-cutting. In Figure 5
a plot with iso-lines and gray scale of the largest principal stress is shown. The plot only shows
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the stress at points where the numerical largest principal stress is positive, i.e., where there is pre-
dominating tension. If the numerical largest principal stress is negative, i.e., there is predominating
compression, the color is white. In Figure 5 the external loading on the tooth is also shown together
with the reaction forces at the clamped boundaries.

Figure 5: The ISO profile (symmetric) of a tooth for a gear with 17 teeth. Iso-lines and gray scale of the
largest principal stress. In the plot the gray scale shows tension only while compressive larger principal
stresses are white.

Figure 6 shows a close-up of the stress concentration zone of the ISO tooth. Figure 6b shows
the iso-lines of the largest positive principal stress as in Figure 5 but now without the gray scale.
Figure 6a shows the size of the largest principal stress along the part of the boundary where the
stress concentration is present. The stress size is indicated by the gray area, the perpendicular
thickness of the gray area corresponds to the stress level. A tensile stress is plotted under the
boundary for illustrative purposes.

a) b)

Figure 6: Close-up of the stress concentration zone for the ISO gear.

From the stress plot in Figure 6a it can be seen that there is a potential for improving the stress.
However, the ISO tooth does have a rather nice stress distribution along the boundary, so the room
for improvement through only shape optimization is limited. This was done in [1] where the best
design for a symmetric gear with 17 teeth gave a stress reduction of 12.2% compared to the ISO
tooth. With the asymmetric design we can also improve the stress by increasing the tooth root
thickness.
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Design of asymmetric tooth
Figure 7 is similar to Figure 5 but now with a asymmetric tooth. The design is optimized through
a parameter study. Fixed value of this optimization is the coast pressure angle αc = π/9.

Figure 7: Full view of optimized tooth. The designed tooth is for a gear with 17 teeth, the optimized design
variables are αc = π/9, αd = 7π/36, η = 1.87 and µ = µmin. The stress is reduced with 39.2% as
compared to the ISO profile.

The optimized design in Figure 7 have the following design parameters αc = π/9, αd = 7π/36,
η = 1.87 and µ = µmin. Stress is reduced with 39.2% as compared to the ISO profile. A close-
up of the interesting tooth part is given in Figure 8. Since this optimization is a parameter study
with only three design parameters there might be room for improvement with a more complicated
boundary parameterization. From Figure 8a it is, however seen that the stress is constant over a
long part of the boundary so any optimization relative to this design must give minor changes.
The stress scale in Figure 6 and Figure 8 is the same so the reduction in the stress level is directly
visualized.

a) b)

Figure 8: Close-up of the stress concentration zone for the optimized gear (αc = π/9, αd = 7π/36,
η = 1.87 and µ = µmin). The stress is reduced with 39.2% as compared to the ISO profile.

The prize we pay in this design relative to the original ISO tooth is a smaller contact ratio but
this can be fixed through a possible longer tooth since the tooth top thickness is not near the limit.
Alternatively to this we fix the drive side pressure angle at αd = π/9 and optimize the coast side
pressure angle αc instead, doing this will result in the same contact ratio as the ISO gear. Result
of this optimization is presented in Figure 9.
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a) b)

Figure 9: Close-up of the stress concentration zone for the optimized gear (αc = 17π/90, αd = π/9,
η = 1.57 and µ = 0.07). The stress is reduced with 23.2% as compared to the ISO profile.

Overall the improvements in the bending stresses are large. The largest stress improvement is
possible with αd > αc, here we find almost twice the improvement found when αd < αc. The
improvement of 39.2% and 23.2% should be compared to the result in [1] where the best design
gave a stress reduction of 12.2%, so the influence from the enlarged tooth root thickness is clear.
The choice of αd > αc is similar to what is found in e.g. [4] while αd < αc corresponds to the
choice in e.g. [5]. With the latter choice the contact ratio is constant but some articles report that
the teeth becomes too stiff while with the first choice the contact ratio goes down.

Concluding remarks
The results show that large improvements in the bending stress for gears can be found by the use of
asymmetric gears. Bending stress reduction is achieved by two contributions, a thicker tooth root
and a root shape change where we have the stress concentration. The factor that has the largest
influence is here the enlargement of the root thickness.
The cutting tool is designed so the root shape optimization of the gear tooth is achieved in an indi-
rect way. However the changes made to the cutting tool are directly related to the actual gear tooth.
The design parameter choice of the optimization have been, that either the coast side pressure an-
gle αc or the drive side pressure angle αd are fixed at π/9. For 17 teeth the maximum reported
reduction in the bending stress is 39.2%, in this case we have a custom cutting tool specifically for
a gear with 17 teeth.
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Summary We present a technique to determine upper and lower bounds on the objective function value
for stress constrained structural topology optimization problems. The technique is based on concepts
from global optimization, in particular relaxations and restrictions. The bounds are obtained by solving
well-de�ned nonlinear programs on standard form which are suitable for modern mathematical program-
ming methods such as sequential quadratic programming and interior point methods. The bounds can be
used to determine how far away, in the worst case, a feasible point to the stress constrained problem is
from global optimality. The technique is illustrated on a two-dimensional variable thickness sheet example.

Introduction
One of the many challenges with stress constrained structural topology optimization problems is
that they are not stated on standard nonlinear programming form. If an element vanishes, i.e. if a
design variable becomes zero, then the corresponding stress constraint should be removed from
the problem formulation. The problems can be reformulated on standard form by multiplying the
stress constraints with the corresponding design variable. Alternatively, they can be reformulated
as mathematical programs with complementarity constraints [3]. In both cases, standard constraint
quali�cations such as linear independence constraint quali�cations and Mangasarian-Fromovitz
constraint quali�cations [4] will not be satis�ed. Constraint quali�cations are always stated as
assumptions in convergence theorems for nonlinear programming methods. Hence, with the lack
of regularity it is unlikely that classical methods will be able to routinely solve large-scale stress
constrained topology optimization problems. Stress constrained problems are dif�cult to solve,
however, we can gain much information about them by solving other related problems.
The main objective of this article is to determine upper and lower bounds on the objective function
value for stress constrained structural topology optimization problems. The objective is achieved
by using concepts from global optimization, in particular relaxations and restrictions. The bounds
are obtained by solving well-de�ned nonlinear programs on standard form which are suitable for
modern mathematical programming methods such as sequential quadratic programming (SQP) [4]
and interior point methods [10]. The bounds can be used to determine how far away, in the worst
case, a feasible point to the stress constrained problem is from global optimality. Furthermore, the
bounds can help to assess how much the stress constraints will in�uence the optimal design, i.e. to
determine if the design is driven by stiffness or strength considerations.

Problem formulation and basic assumptions
We consider the following minimum volume (or weight) structural topology design problem with
compliance constraints and design-dependent local stress constraints. The design variables t ∈ Rn,
where n denotes the number of design variables, can for example represent element thicknesses
in the two-dimensional case and densities in the three dimensional situation. The state variables
uk ∈ Rd, where d is the number of degrees of freedom, represent the displacements for the k-th
load condition. Throughout, we will state and solve the considered problems using the approach
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of simultaneous analysis and design. Problems stated in nested form are only used for establishing
theoretical results.

v∗ = minimize
t∈Rn,u1,...,um∈Rd

n∑

j=1

tjwj

(P) subject to K(t)uk = fk k = 1, . . . ,m

fT
k uk ≤ γk k = 1, . . . ,m

1
2
uT

k Wjuk ≤ σ̄ k = 1, . . . ,m and j : tj > 0

tj ∈ [0, 1] j = 1, . . . , n

In (P), K(t) ∈ Rd×d denotes the stiffness matrix in global coordinates, fk ∈ Rd is the k-th given
external force, γk is the upper bound on the k-th compliance, and σ̄ is an upper bound on the stress
measure. Finally, Wj ∈ Rd×d for j = 1, . . . , n are given symmetric positive semi-de�nite matrices
which are used to compute the stress measure, for example the (square of the) von Mises stress.
Notice that the problem formulation (P) is not on standard mathematical programming form due
to the stress constraints. Hence, modern standard numerical optimization methods for nonlinear
programming can not immediately be applied to the formulation (P).
Let F denote the feasible set of the problem (P), i.e.,

F = {(t, u1, . . . , um) | K(t)uk = fk, f
T
k uk ≤ γk, ∀ k, t ∈ [0, 1]n,

1
2
uT

k Wjuk ≤ σ̄, ∀ k and j : tj > 0}.

Throughout, we make the following basic assumptions which are variations of the assumptions
stated in [1] and [5] for continuous minimum compliance problems with an upper bound on the
volume of the structure.

(A-1) The external loads fk 6= 0 for k = 1, . . . , m.

(A-2) The stiffness matrix is linear in the design variables t ∈ Rn, i.e.

K(t) =
n∑

j=1

tjKj

where Kj = KT
j º 0 are the given scaled element stiffness matrices.

(A-3) The given constants wj are non-negative for j = 1, . . . , n.

(A-4) The stiffness matrix K(e) Â 0, where e ∈ Rn is a vector of all ones.

(A-5) The compliance bounds γk satis�es, for some 0 < α < 1, the inequalities

fT
k K−1(αe)fk < γk < +∞ for k = 1, . . . ,m.

Notice that due to assumptions (A-1) and (A-4) this implies that γk > 0.
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The �rst assumption (A-1) is stated to avoid the situation that some of the external loads are zero
and thus can be removed. The fourth assumption (A-4) guarantees that the ground structure is rich
enough in the sense that if material is distributed in all elements the structure can carry any applied
load. Notice that the assumption (A-2) allows for the introduction of linear density �lters, see e.g.
[8] and [12], in the formulation (P). The assumptions stated above, do however, not guarantee that
the feasible set of (P) is non-empty.
We consider optimization problems on the form minx∈F f(x) where f(x) is the objective func-
tion and F denotes the feasible set. A relaxation to this problem is de�ned as another optimization
problem on the form minx∈FR

f(x) for which F ⊆ FR. Similarly, we de�ne a restriction to the
problem as another optimization problem minx∈FC

f(x) for which FC ⊆ F . The de�nition of the
relaxation is slightly less general than normally seen in the global optimization literature [11], but
it suf�ces for our purposes.

The relaxation
A natural approximation of the stress constrained problem (P) is obtained by removing the com-
plicating stress constraints.

v∗R = minimize
t∈Rn,u1,...,um∈Rd

n∑

j=1

tjwj

(R) subject to K(t)uk = fk k = 1, . . . , m

fT
k uk ≤ γk k = 1, . . . , m

tj ∈ [0, 1] j = 1, . . . , n

Let FR denote the feasible set of the problem (R), i.e.,

FR = {(t, u1, . . . , um) | K(t)uk = fk, f
T
k uk ≤ γk, ∀ k, t ∈ [0, 1]n}.

Due to assumptions (A-4) and (A-5) the feasible set of (R) is non-empty, i.e. FR 6= ∅. From
the construction of the problem (R), it immediately follows that it is a relaxation of the stress
constrained problem (P) and that the objective function in (R) underestimates the objective in (P).

Lemma 1 The problem (R) is a relaxation of the problem (P), i.e. F ⊆ FR, and hence v∗R ≤ v∗.

An immediate consequence of this is the following.

Corollary 1 If (t∗, u∗1, . . . , u
∗
m) is an optimal solution to the relaxation (R) and at the same time

feasible to problem (P) then it is also optimal to (P).

This situation is perhaps unlikely in practice since it shows that the stress constraints are not
stringent enough to in�uence the optimal design (but notice that they may still very well be active).
The relaxation (R) is indeed a problem on standard form, but it is not certain that some classical
constraint quali�cations are satis�ed.
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Reformulations of the relaxation
The relaxation, as stated in (R), is non-convex due to the equilibrium equations. There are however
several equivalent and convex reformulations of this problem. We reformulate the relaxation (R)
as a linear semide�nite program (SDP) in the design variables t only. The reformulation is based
on the ideas for (SDP) reformulations of minimum compliance problems presented in [6, 7].

minimize
t∈Rn

n∑

j=1

tjwj

(R− SDP) subject to K(t) º 1
γk

fkf
T
k k = 1, . . . , m

tj ∈ [0, 1] j = 1, . . . , n

As a by-product of this reformulation, and the stated assumptions, we can show existence of solu-
tions to (R) using strong SDP duality [14]. The dual of (R− SDP) is given by the linear semidef-
inite program [14]

maximize
U1,...,Um,σ∈Rn

m∑

k=1

1
γk

Tr(fkf
T
k Uk)− eT σ

(D− SDP) subject to
m∑

k=1

Tr(KjUk)− σj ≤ wj j = 1, . . . , n

Uk º 0, k = 1, . . . , m
σj ≥ 0 j = 1, . . . , n

Notice that due to the stated assumptions the feasible set of (R− SDP) is non-empty and in fact
has interior points due to assumption (A-5), i.e. it satis�es the strong Slater constraint quali�-
cations. Furthermore, the objective function in (R− SDP) is bounded from below by zero. The
feasible set of the dual (D− SDP) is also non-empty and also has interior points. These regularity
conditions are enough to guarantee that both the primal (R− SDP) and the dual (D− SDP) has
optimal solutions and the optimal objective function values are equal [15]. A consequence of this
is that also the relaxation (R) possesses an optimal solution.

The dual (D− SDP) can be reformulated as a non-convex all-quadratic program [13]. This refor-
mulation is indeed useful for practical computations. In the numerical experiments we however
instead treat directly the problem (R) even though it is non-convex and it is uncertain if some con-
straint quali�cations are satis�ed. The objective is to �nd a KKT point and, if necessary, attempt
to modify this point to satisfy the optimality conditions to the primal-dual pair (R− SDP) and
(D− SDP). Due to the regularity conditions, which are satis�ed for these problems, the optimal-
ity conditions are given by

K(t)− (1/γk)fkf
T
k º 0 k = 1, . . . , m (Primal feasibility)

tj ∈ [0, 1] j = 1, . . . , n (Primal feasibility)
m∑

k=1

Tr(KjUk)− σj ≤ wj j = 1, . . . , n (Dual feasibility)

Uk º 0, k = 1, . . . , m (Dual feasibility)
σj ≥ 0 j = 1, . . . , n (Dual feasibility)
Uk(K(t)− (1/γk)fkf

T
k ) = 0 k = 1, . . . , m (Complementarity)

σj(tj − 1) = 0 j = 1, . . . , n (Complementarity)

(1)
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Let ηk ∈ Rd denote the Lagrange multipliers for the k-th equilibrium equations, ξk ∈ R the
Lagrange multipliers for the k-th compliance constraint, and σ ∈ Rn the multipliers for the upper
box constraints. The KKT conditions for the relaxation (R) can be stated as

K(t)uk = fk k = 1, . . . , m (Primal feasibility)
fT

k uk ≤ γk k = 1, . . . , m (Primal feasibility)
tj ∈ [0, 1] j = 1, . . . , n (Primal feasibility)
K(t)ηk = −ξkfk k = 1, . . . , m (Stationarity)

−
m∑

k=1

ηT
k Kjuk − σj ≤ wj j = 1, . . . , n (Stationarity)

ξk(fT
k uk − γk) = 0 k = 1, . . . , m (Complementarity)

σj(tj − 1) = 0 j = 1, . . . , n (Complementarity)
σj ≥ 0 j = 1, . . . , n (Dual feasibility)
ξk ≥ 0 k = 1, . . . , m (Dual feasibility)

(2)

Let (t, uk, ηk, ξk, σ) be a KKT point to the relaxation (R). Since (t, u1, . . . , um) is feasible to
(R), the design variables t is feasible to the SDP formulation (R− SDP). The KKT conditions (2)
imply that the point (U1, . . . , Um, σ) with Uk = ξkuku

T
k is feasible to the dual (D− SDP). Notice

that this choice of Uk makes it both symmetric and positive semi de�nite. Hence, if we also have
no duality gap at this point, i.e. if

∑
j wjtj =

∑
k

1
γk

Tr(fkf
T
k Uk) − eT σ, then the found KKT

point is indeed a global minimizer to the relaxation (R). If on the other hand there is a duality
gap, then we have numerically found a KKT point to (R) which is not a global minimizer. In this
case we can use the objective function value from the dual (D− SDP) to �nd a lower bound (this
follows from weak duality).

The restriction
Another natural approximation of the stress constrained problem (P) is obtained by enforcing the
stress constraints in all elements, regardless of the values of the design variables. We arrive at the
problem

v∗C = minimize
t∈Rn,u1,...,um∈Rd

n∑

j=1

tjwj

(C) subject to K(t)uk = fk k = 1, . . . , m

fT
k uk ≤ γk k = 1, . . . , m

1
2
uT

k Wjuk ≤ σ̄ k = 1, . . . , m and j = 1, . . . , n

tj ∈ [0, 1] j = 1, . . . , n

Notice that the problem (C) is stated on standard form for nonlinear programming. Let FC denote
the feasible set of the problem (C), i.e.

FC = {(t, u1, . . . , um) | K(t)uk = fk, f
T
k uk ≤ γk, ∀ k, t ∈ [0, 1]n

1
2
uT

k Wjuk ≤ σ̄, ∀ k and j}.

From the construction of the problem (C), it immediately follows that it is a restriction of the stress
constrained problem (P) and that the objective function value in (C) overestimates the objective
function value in (P).
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Lemma 2 The problem (C) is a restriction of the problem (P), i.e. FC ⊆ F , and hence v∗C ≥ v∗.

An immediate consequence of this is the following.

Corollary 2 If (t∗, u∗1, . . . , u
∗
m) is a feasible point to the restriction (C) then it is also a feasible

point to (P).

Notice that the restriction (C) can be infeasible while the original problem (P) has a non-empty
feasible set.
It is not known if the problem formulation (C) satis�es some constraint quali�cations. It is however
possible to perturb the lower bounds on the design variables in (C) by a δ > 0 while maintaining
the property that the problem is a restriction of (P). The perturbation guarantees that the stiffness
matrix is positive de�nite for all t satisfying the box constraints. Hence the Jacobian of the equality
constraints is full rank and at least part of the linear independence constraint quali�cations [4] are
satis�ed. With this perturbation we expect to see a more robust behavior of standard optimization
methods such as SQP and interior point methods when applied to instances of (C).

Measure of closeness to optimality
From the (global) optimal solution to the relaxation (R) a lower bound v∗R on v∗ is found. This
lower bound will be strictly bigger than zero because otherwise the equilibrium equations cannot
be satis�ed. If a feasible point to the restriction (C) is found, then also an upper bound v∗C on v∗ is
available. An optimal solution to the restriction (C) is of course desirable, since this gives the best
bound. In summary, after attacking both (R) and (C) we can bound v∗ by v∗R ≤ v∗ ≤ v∗C without
actually treating the problem (P). If (C) is feasible and v∗C < +∞ then we can de�ne the relative
gap ν as

ν =
v∗C − v∗R

v∗R
.

If the relative gap ν is small then one can argue that the optimal design problem (P) is driven by
stiffness rather than strength considerations. If the relative gap ν is large then either the design is
driven by strength considerations, or a poor feasible point to the restriction (C) has been found.
Given a point (t, u1, . . . , um) with objective function value v which is feasible to the stress con-
strained problem (P), one can improve on the relative gap and obtain a worst case measure how
far away from a global minimum the point is. If v > v∗C then this point is clearly not optimal. If
v is close to v∗R, one can again argue that stiffness is more important than strength in the given
design situation.

Method and implementation
The relaxation (R) and the restriction (C) are treated by a primal-dual interior point method [10].
Convergence is enforced by performing a backtracking line-search on an l1-penalty function. The
interior point method and all �nite element routines including the sensitivity analysis are imple-
mented in MATLAB. The majority of the computation effort resides in solving a saddle-point
system at each iteration of the interior-point method. This is done by the LDL-factorization rou-
tine MA57 [9].
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Numerical experiments
We consider a two-dimensional rectangular design domain with width 8 and height 5. The entire
left hand side is �xed to a rigid wall. A single vertical uniform external load distributed over a
distance of 0.2 is centered around the middle of the right hand side. The �nite elements used in the
numerical experiments are 4-node bilinear elements in plane stress and the stresses are computed
in the Gauss points. The design domain is discretized into 80× 50 elements with 8160 degrees of
freedom. The modulus of elasticity is set to one and Poisson's ratio is set to 0.3. The compliance
bound γ is determined as follows: First every element is assigned a thickness of 1/2 and the dis-
placements and compliance are computed. The maximum allowed compliance is then set to 0.75
times the computed compliance. Then a KKT point to the relaxation (R) is computed using the
interior-point method and we attempt to verify optimality through the optimality conditions (1)
and by computing the duality gap. In this particular example all conditions were satis�ed and the
optimality gap was (numerically) zero. The optimal design to the relaxation is presented in Figure
1. The number of interior point iterations to solve the relaxation (R) is 38. The optimal volume is
47.9% of the total possible volume After solving the relaxation (R) the von Mises stress is com-

Figure 1: The optimal thickness distribution obtained by solving the relaxation (R).

puted. The upper bound on the von Mises stress σ̄ is then set as 0.5 times the maximum stress from
the optimal solution to (R) after excluding the elements to which the load is applied. The design
found after treating the restriction (C) with this stress bound and the same compliance bound as
above is presented in Figure 2. The number of interior point iterations to solve the restriction (C) is
63. The found volume for this design is 50.1% of the total possible volume. The relative optimality
gap ν for this particular example is approximately 4.6%. For the presented example the relaxation
(R) gives a fairly tight lower bound to the objective function of the stress constrained problem (P).
However, there are clearly visible differences in the obtained designs.
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Figure 2: The thickness distribution obtained by solving the restriction (C).
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Summary This paper outlines some of the optimization-related issues in simulation of musculoskeletal 
systems, more precisely handling of over-determinate motion specifications, statically indeterminate muscle 
equilibrium and modeling of the body’s ability to adapt to different loading conditions. It is concluded that 
optimality principles seem to guide many aspects of living organisms and that an understanding of 
optimization processes is the key to understanding basic life processes. 

Introduction 

The idea that optimization principles guide the development and function of living organisms has 
been around at least since the time of Darwin. However, closer investigation reveals that 
optimization processes do not only guide genetic development of the species but can also explain 
adaptations of the individual organism to its environment in different time scales, i.e. from one 
moment to the next or over weeks or months. In this paper, we shall use musculoskeletal modeling 
techniques to predict the behavior of the human body in response to different living conditions and 
also as a means to impose experimentally measured movements on computer models and to 
identify unknown model parameters. 

The AnyBody Modeling System 

Development of “well-made” musculoskeletal models is challenging. The human musculoskeletal 
system is a very complex machine with literally thousands of components, each of which is 
described by many parameters that vary in a complex fashion between individuals and across 
populations. The AnyBody Modeling System [1] and the AnyScript model repository is an attempt 
to bring musculoskeletal modeling to a wider audience, to capture the similarity of body 
morphology between individuals, and to equip it with scaling laws that allow for reasonable 
scaling between individuals of different sizes. The model library was initiated by the AnyBody 
Research Group at Aalborg University in 1997 and has since received contributions in the form of 
anatomical data, model development or validation from a multitude of scientists in different 
countries with special expertise on different body parts. The library today contains the entire body 
with more than 1000 individually activated muscles as illustrated in Figure 1. 
The model is developed in a high-level, object-oriented scripting language, AnyScript, particularly 
developed for the purpose. The need to describe such a model in terms of a programming language 
rather than as a database becomes evident when we consider that the model is not merely static 
data but must also encapsulate variations, scaling laws, and complex dependencies between its 
elements. The modeling language also has the advantage of not separating the basic information of 
the model from what the user sees. This means that the model is entirely open for scrutiny, 
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modification and validation by independent scientists and this has become the fundamental 
strategy for obtaining credibility of this novel technology with potentially critical applications. The 
contributions are numerous, for instance from Dubowsky et al [2], de Zee et al [3] [4], Nolte et al 
[5], Wu et al [6], Manders et al [7] and Wehner et al [8]. 
 

 
Figure 1: The current version of the AnyBody full body model comprising more than 1000 muscles. 

The fact that the technology takes the form of a modeling system allows the user to connect the 
human model from the model repository to user-defined mechanisms such as bicycles, sports 
equipment, tools, workplaces, furniture, car driver environments and other situations of interest to 
occupational safety, ergonomics or performance. Figure 2 illustrates a number of such 
applications. The simulation method is based on inverse dynamic in which the motion, loads and 
external boundary conditions are specified and the system subsequently computes the detailed 
movement of all degrees-of-freedom (DoF) and the internal joint and muscle forces. 
 

    
Figure 2: Typical applications of the musculoskeletal model. 

Over-determinate kinematical systems 

Motion input to inverse dynamics musculoskeletal analysis is usually provided through motion 
capture technology, in which a set of synchronized video cameras record optical markers attached 
to the body and the three-dimensional trajectories of these markers are subsequently reconstructed 
by photogrammetric techniques. This leaves the model with a number of kinematic constraints, 
requiring the skeletal points, corresponding to the marker positions, to follow the trajectories.  
 
A mechanical system that is subject to holonomic constraints can be formulated as a set of m 
equations of the qn -dimensional time-dependent system coordinates, )(tq , dn -dimensional model 
constants, d , and time, t  [16], [17]. 

0),),(( =Γ tdtq      (1) 
Depending on the number of coordinates and the number of equations, these equations can either 
be under-determinate ( qnm < ), determinate ( qnm = ) or over-determinate ( qnm > ). Due to the 
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setup of motion capture experiments and the nature of multibody systems, the number of measured 
trajectory coordinates will always exceed the number of DoFs in the system, i.e. the system will be 
kinematically over-determinate. Since over-determinacy means that there generally does not exist 
a solution to equation (1), some re-arrangement of the equations is required in order to define what 
constitutes a solution.  Andersen et al. [17] introduced the concept of having the equations split 
into two sets: 1) ),),(( tdtqΨ  a set of equations that only has to be solved “as well as possible” in 
some sense, and 2) ),),(( tdtqΦ  a set of equations that has to be solved exactly: 









Φ
Ψ

=Γ
),),((
),),((

),),((
tdtq
tdtq

tdtq    (2) 

This split of the equations into these two sets can be done in any way as long as the solution set of 
0),),(( =Φ tdtq  is non-empty. Typically, ),),(( tdtqΨ  consist of the marker constraints, i.e., 

equations that specify that the marker position in the model must be equal to the measured 
position, whereas ),),(( tdtqΦ  contain the joint constraints of the musculoskeletal system. 
 
We shall start off by assuming that the constant model parameters are known and denote them by
d̂ . If it is desired to solve equation (2) at N discrete time steps, 

)(,),(),( 2211 NN tqqtqqtqq ===    (3) 
the solution can be found by solving the following nonlinear and non-convex optimization 
problem   [17]: 

0),ˆ,(s.t.

)),ˆ,((min arg*

=Φ

Ψ=
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i

iii

tdq
q

tdqGq
           (4) 

for Ni ,2,1= . The scalar objective function, )),ˆ,(( ii tdqG Ψ , has been introduced to express how 

violations of the ),ˆ,( ii tdqΨ  equations are allowed. Andersen et al. [17] and Ausejo et al [18]. 
(2006) demonstrated the use of a weighted least-square objective function: 

),ˆ,()(),ˆ,(
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1)),ˆ,(( iii

T
iiii tdqtWtdqtdqG ΨΨ=Ψ    (5) 

The KKT conditions for the optimization problem in equation (4) at time step i are (refer, for 
instance, to [19]): 

0
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T
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When a Newton-based method is used to find a local minimizer, the linearized KKT conditions are 
required: 
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where iq∆  and iλ∆  denote the search direction at step i , which is found by solving the linear set 
of equations in equation (7). For well-conditioned systems, the matrix on the left hand side will be 
invertible, and the method can be shown to generally lead to improved transfer of the recorded 
motion to the model compared to manual method of reduction of the constraint set to a determinate 
system. However, the redundancy of information from the motion capture experiment can be used 
to further enhance the accuracy of the model. A musculoskeletal model contains many constant 
parameters that may not match the test subject of the experiment completely and which are very 
difficult to measure directly. It is therefore obvious to attempt the use of the redundant information 
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to determine these parameters. In principle, any constant parameter of the model may be subject to 
identification, but the relevant parameters for musculoskeletal models are in particular: segment 
lengths, joint axis orientations and local placement of markers on the segments. Inclusion of the 
constant parameters in the problem requires a split of the design variables into two groups. One 
group is the comprised of the time-dependent variables, i.e. the state variables of the kinematical 
system. The other group is the time-invariant parameters such as segment lengths etc. It turns out 
that this leads to a large-scale, non-convex and generally difficult optimization problem. It turns 
out, however, that it is possible to exploit a special structure in the problem and obtain a partial 
decoupling, which allows the problem to be solved very efficiently. Please refer to Andersen et al 
[20] for details.  
 

 
Figure 3: Measured (red) and realized (blue) marker 

trajectories before model parameter optimization.  

 
Figure 4: Measured (red) and realized (blue) marker 

trajectories after parameter optimization. 

The implications of this finding are significant and very direct. It will now be possible, in a clinical 
setting, to conduct a relatively simple and non-invasive experiment on a patient and obtain 
valuable information about internal parameters that are very difficult to measure accurately. 
Furthermore, the method leads to much improved accuracy of musculoskeletal analysis because it 
provides better agreement between the test subject and the model parameters. 

Muscle recruitment 
Inverse dynamics presumes that a kinematic analysis has been performed to provide the motion, 
i.e., the acceleration of all segments in the system. If, furthermore, the masses are known,  
Newton’s second law can be solved for the forces in the system, i.e. the muscle and joint forces. 
Inverse dynamics was first used in gait analysis, where measured ground reaction forces are 
applied to the end of open kinematic chains, i.e. the lower extremities, and simple equilibrium can 
then determine the necessary joint moments. 
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Muscle systems generally have more muscles than DoFs and the resulting equations are therefore 
indeterminate and must be solved by an optimization technique. Let us briefly review the 
formulation of the muscle recruitment problem: 

Minimize 
    (8) 

Subject to 
     (9) 

    (10) 
where f = [f(m), f(R)] is a vector of internal muscle (M) and joint reaction (R) forces respectively, 
and r is a vector of external forces. The two constraints express that the system must be in 
equilibrium and that the muscle part of the f vector is restricted in sign because muscles can only 
pull. The fact that the system has more muscles than degrees of freedom means that the coefficient 
matrix C is rectangular, and the equilibrium equations therefore have infinitely many solutions. 
The objective function, G(f(M), is used to select the single optimal solution, and muscle recruitment 
therefore involves a discussion of which objective function, G, expresses the true physiology of 
the problem. 
 
Several choices of objective function G (for a review, please refer to Rasmussen et al [21]) lead to 
realistic muscle forces and numerically benevolent problems, which can be solved for large 
systems with hundreds of muscles in a few seconds on an ordinary desktop computer. The 
disadvantage of this approach is that it presumes optimal activation of the muscles and therefore 
only works for voluntary movements. It is also difficult in inverse dynamics to take the rise and 
decay times of muscle forces into account, so the method has a limitation for fast movements. 
However, for most activities of daily living such as gait, good estimates can be expected from 
inverse dynamics as demonstrated by Anderson and Pandy [9], if the models are well-made and 
the motions are accurately recorded and imposed on the model. 
 
One particular interesting choice of objective function is the maximum relative muscle load, i.e. 
maximum muscle activity: 

 

where Ni is a normalization factor expressing the strength of the ith muscle. As observed by An et 
al. [10], this is equivalent to minimization of fatigue in the muscle system in the sense that it 
postpones fatigue in the highest loaded muscle as far as possible. The structure of the resulting 
optimization problem is remarkably similar to a class of problems in structural optimization 
described by Olhoff and Taylor [11]. These problems of maximization of multiple 
eigenfrequencies or minimization of maximum stress in a structure can be solved by observing that 
a simple reformulation can change the optimization problem from a nonlinear and non-
differentiable form to a linear form with the same solution: 

Minimize 
     (11) 

Subject to 

    (12) 
     (13) 

    (14) 
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where β is an artificial design variable. The linear nature of this problem makes it possible to solve 
it for very large musculoskeletal systems in a few seconds per time step on an ordinary desktop or 
laptop computer. This computational efficiency enables more advanced applications of 
optimization as we shall see in the following section. 

Adaptation of joint surfaces to changes in loading conditions 
The human mandible with its two temporomandibular joints (TMJ) is a complex biomechanical 
system. The mandible can move with six DoFs due to the special construction of the TMJ, and it 
does so for a variety of functions like chewing, clenching, speech and swallowing, tasks are often 
a combination of high forces and precision. De Zee et al. [12]  validated a generic mandible model 
built in the AnyBody Modeling System, and we shall now show a patient-specific version of the 
model applied to a load adaptation problem, which was described in more detail by De Zee et al. 
[22]. 
 
Trainor et al. [13] and Iwasaki et al. [14] were able to show that the mandible’s articular eminence 
morphology is consistent with minimisation of joint loads for the normal population. This 
principle has also the potential to be used in prediction of the eminence shape in clinical cases 
before and after surgery where there is a major change of the geometry of the mandible like 
mandibular distraction osteogenesis (DO). The model used here represents the patient previously 
analyzed by Cattaneo et al. [15]. The model represents the patient before and after DO at shown in 
Figure 5, and the angles of the two articular eminences are subsequently varied and the joint forces 
are computed for each combination. 
 

 
Figure 5: Patient-specific musculoskeletal model of the mandible before and after distraction 
osteogenesis. 
 
Figure 6 shows the results of the parameter study before DO, i.e. the mean TMJ reaction force as a 
function of the two articular eminence angles. A minimum is located at 0 degree angle on the right 
hand side and 11 degrees on the left hand side, corresponding to an average TMJ load of 94 N. 
The measured eminence angles before distraction were 5 degrees on the right hand side and 15 
degrees on the left hand side. In the model, the measured angle values of 5 and 15 degrees will 
lead to an average TMJ force of 96 N. Figure 7 shows the results of the parameter study after DO. 
The surface exhibits a rather large, flat area around 20 degree angles on both sides, corresponding 
to an average TMJ load of 82 N. The measured eminence angles after distraction were 15 degrees 
on the right hand side and 20 degrees on the left hand side. In the model, the measured angle 
values of 15 and 20 degrees will lead to an average TMJ force of 83 N, i.e. almost the same as the 
mathematical minimum. 
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Figure 6: Average joint force as a function of 
the two articular eminence angles before OD. 

 
Figure 7: Average joint force as a function of 
the two articular eminence angles after OD. 

Conclusions 

Optimization principles seem to guide the development and behavior of the human body on 
several temporal scales, i.e. in terms of muscle recruitment from one instant to another, in the form 
of bony adaptation to loads in the time scale of months or years, and in the form of adaptation of 
the species to different conditions of living over millenniums. A basic understanding of optimality 
principles is therefore essential to our understanding of many aspects of life sciences, and an 
operational skill in formulation and implementation of efficient optimization algorithms is 
necessary to obtain effective and reliable tools to simulate human behavior. The current state-of-
the-art in musculoskeletal simulation to a large extent builds on results of pioneers within 
structural and multidisciplinary optimization. 
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Topology optimization, dynamical systems, thermodynamics and
growth
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Summary This note continues an investigation of the dynamical systems approach to the SIMP formu-
lation of topology optimization. Three different views on the classical optimality criteria updating formula
are given. It is also indicate how a Lyapunov property of the dynamical system relates to thermodynamics,
which in turn leads to a topology design strategy that involves inflow of “biochemical” energy, or
“nutrients”, and which is closely related to growth or remodeling processes.

Introduction

Recently, in [1] and [2], we investigated the use of a dynamical systems approach to the SIMP
formulation of topology optimization. Simply put, this approach to optimization means that we
solve

min
x

f(x) (1)

by defining a dynamical system that delivers x = x(t), t being a time-like variable, such that

d

dt
f(x(t)) ≤ 0, (2)

for all evolutions of the system. The property (2) holds if f(x) is a Lyapunov function of the
dynamical system. Many dynamical systems of this type, like

dx(t)
dt

= −∇f(x),

will have the property that their equilibrium points coincide with the stationary points of (1), and
in a region of space where f(x) is convex the dynamical system will arrive at these points when
integrated.

A first theoretical result of this approach was that the classical optimality criteria formula of struc-
tural optimization, see [3] or [4], could be seen as resulting from an explicit time discretization of
a certain dynamical system. The derivation leading up to this conclusion is presented here together
with two previous views on this formula: fixed point iterations and sequential convex approxima-
tions.

Furthermore, an interesting analogy connected with (2) is studied in this note: inequalities of this
type (albeit, usually having a right hand side) appear also in thermodynamics under the name
dissipation inequality. Gurtin [5] states the following interpretation of a general dissipation in-
equality: “the rate at which the free energy increases cannot exceed the sum of working and the
energy inflow due to mass transport”. This means that dynamical systems with the property (2),
or generalizations of it, could be constructed following well established techniques developed in
non-smooth thermodynamics, see [6]. This is exemplified in the following. The observation also
produces the idea that structural design strategies can be developed from the property (2), instead
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of using the pure optimization view based on (1). In fact, such an idea may have a close connection
to traditional engineering thinking, where improvement and not necessarily the actual optimum is
central. In the last section of this note, a dynamical system that represents a design strategy is mod-
eled on the basis of a dissipation inequality, without stating an optimization problem. It concerns
topology design where the design changes are effected by the available “biochemical” energy. It
is inspired by the fact that the SIMP formulation is very close to a model for bone remodeling (or
growth), see [1] and [2].

The SIMP model for stiffness optimization

The quasi-static equilibrium equation for linear discrete structures, where the stiffness depends on
design variables, reads

F = K(ρ)u. (3)

Here u is the vector of nodal displacements and F is the corresponding force vector. The symmet-
ric positive semi-definite stiffness matrix K(ρ) depends on a vector ρ = (ρ1, . . . , ρE)T of design
variables in the following way:

K(ρ) =
E∑

i=1

ρq
i K̃i (4)

where E is the number of elements in the structure and K̃i is an element stiffness matrix for a
unit value of the design variable ρi. In topology optimization we seek methods that returns values
(close to) 0 or 1 for ρi, and these values are interpreted as presence of material or holes in the
structure. In the SIMP method this is achieved by letting the design variables be restricted to the
set

K = {ρ | ε ≤ ρi ≤ 1, i = 1, . . . , E}
and by letting the penalty parameter q > 1 (in practise, say, q = 3). Here, ε > 0 is a small value
that, by being non-zero, has the effect of making K(ρ) non-singular for all ρ ∈ K.

The efficiency or goal function f generally depends on both displacements and design variables,
i.e., f = f(u,ρ). We can base an optimization problem on the objective function

fµ = fµ(u, ρ) = f(u, ρ) + µ
E∑

i=1

aiρi

where the second term represents the total mass or volume of the material, or possibly, depending
on the nature of the ai:s, a more general cost. The positive parameter µ regulates the relative
importance of the two terms in fµ. For a general function f we consider the following nested
optimization problem:

min
ρ∈K

f̃µ(ρ), (5)

where f̃µ(ρ) = fµ(u(ρ),ρ) and u = u(ρ) = K(ρ)−1F . When f is chosen as the compliance,
problem (5) becomes

(C) min
ρ∈K

fC(ρ) where fC(ρ) =
1
2
F T u(ρ) + µ

E∑

i=1

aiρi.
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In the following we will need sensitivities of the objective function of (C). Using (3) and (4) we
find that

∂fC(ρ)
∂ρi

= µai − ei(ρ), (6)

where
ei(ρ) = qρ

(q−1)
i

1
2
uT K̃iu and u = u(ρ) = K(ρ)−1F .

Three views on the optimality criteria (OC) formula
The traditional view of the optimality criteria (OC) formula (or method) is that it is an iteration rule
for satisfying the optimality conditions of a structural optimization problem, see, e.g., [3]. How-
ever, another, lesser known, view is possible: it can be seen as a sequential convex approximation
method where the approximation is obtained by linearizing in a certain intervening variable, in
the same manner as in the CONLIN and MMA algorithms. This was explained for stiffness op-
timization in lecture notes by Joakim Petersson in 2000 and presented in the text book [4]. The
equivalence is also shown in a more general setting in [7]. Recently a third view on the OC method
was presented in [1] and [2]. It was shown that the OC method can be seen as resulting from an
explicit time discretization of a certain dynamical system or ordinary differential equation. The
objective function of the optimization problem is a Lyaponov function of this ODE. These three
views on the OC formula will be shortly presented in the following.

Fixed point iteration

The optimality conditions for problem (C) can be written as

0 ∈ µai − ei(ρ) + ∂IKi(ρi). (7)

The last term in this expression is a subdifferential of an indicator function of the set Ki = {ρi |
ε ≤ ρi ≤ 1}. A fixed point iteration that should converge to a value of ρ that satisfies (7) is to first
calculate

ρ̂i =
(

ei(ρn)
µai

)η

ρn
i , (8)

and then to put ρn+1
i = ρ̂i if ε ≤ ρi ≤ 1 and otherwise letting ρn+1

i be ε or 1 depending on which
inequality is violated. The constant η is known as a damping coefficient.

Sequential convex approximation

We formulate an approximation of (C) by linearizing the first term of fC in the intervening vari-
ables ρ−α

i , α > 0. If the linearization is made at the point ρn we obtain

fC(ρ) ≈ const. +
E∑

i=1

[
ei(ρn)α−1(ρn

i )1+αρ−α
i + µaiρi

]
. (9)

This approximation is separable and minimization can be performed one variable at a time. As-
suming that the minimum is taken strictly inside the interval ε ≤ ρi ≤ 1, we find a stationary point
at

ρi =
(

ei(ρn)
µai

) 1
1+α

ρn
i . (10)

If this value is outside the interval, the minimization of the approximate optimization problem
is taken at the boundary of the interval. Thus, letting η = 1/(1 + α) we have regained the OC
formula (8).
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Dynamical systems approach

The dynamical systems approach to (C) consists in viewing the design ρ as evolving with a time-
like variable t, i.e., ρ = ρ(t), and defining a dynamical system such that

d

dt
fC(ρ(t)) ≤ 0. (11)

Thus, we construct a system that has the objective function as Lyapunov function. There are many
systems that meet the inequality (11), but the following one turns out to be related to the OC
formula: ρ̇i = 0 if ρi = 1 and ∂fC/∂ρi < 0 or ρi = ε and ∂fC/∂ρi > 0, and otherwise

µaiρ̇i = −λρi
∂fC(ρ)

∂ρi
= λρi(ei(ρ)− µai), (12)

where a superposed dot indicates a time derivative and λ is a positive constant that has a physical
dimension and also represents different time scales. By making a time discretization of (12) the
relation to (8) or (10) becomes evident: We first rewrite (12) as

d

dt
ln ρi = λ

(
ei(ρ)
µai

− 1
)

. (13)

Given a solution ρ(t) at time t, we like to calculate an approximation of the solution at time t+∆t.
By an explicit time discretization of the left hand side of equation (13) we calculate test values
ρ̂i(t + ∆t) from

ln ρ̂i(t + ∆t)− ln ρi(t)
∆t

= λ

(
ei(ρ(t))

µai
− 1

)
,

which we rewrite, using standard formulas for logarithms, as

(
ρ̂i(t + ∆t)

ρi(t)

) 1
λ∆t

= exp
(

ei(ρ(t))
µai

− 1
)
≈ ei(ρ(t))

µai
,

and where the approximation comes from using the first two terms in the Taylor expansion for the
exponential. By letting η = 1/(1 + α) = λ∆t and by doing other appropriate identifications we
obtain the OC formula (8) (or (10)).

Thermodynamic analogy

The inequality (11) is a condition that should be satisfied by all evolutions of a dynamical system.
Thus, it has exactly the same role as the dissipation inequality of thermodynamics, where fC

would be a free energy. This observation implies that one could construct a dynamical system for
topology optimization following the same procedure as when constructing governing equations of
(non-smooth) dissipative mechanical systems, see, e.g., Frémond [6]. We develop this idea in the
following and first observe that

d

dt
fC(ρ(t)) =

E∑

i=1

∂fC

∂ρi
ρ̇i = −

E∑

i=1

riρ̇i, (14)

where the “thermodynamic forces” ri satisfy

−ri ∈ ∂fC(ρi)
∂ρi

+ ∂IKi(ρi). (15)
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The last term in this expression is a subdifferential of an indicator function of the set Ki = {ρi |
ε ≤ ρi ≤ 1}. This means that (15) is equivalent to

−ri =
∂fC(ρi)

∂ρi
+ λi + λi, λi ≥ 0, ε ≤ ρi, λi(ε− ρi) = 0, λi ≥ 0, ρi ≤ 1, λi(ρi − 1) = 0.

It is easily shown, by taking the time derivative of λi(ε − ρi) = 0, that λiρ̇i = 0, and, similarly,
that λiρ̇i = 0. This proves the last equality of (14). What now remains, in order to have equations
that define evolutions satisfying (11), is a relation between ri and ρ̇i such that

E∑

i=1

riρ̇i ≥ 0.

This inequality is satisfied for all evolutions if ri = kiρ̇i for some positive function ki that could
depend on ρ, c and their time derivatives. Taking ki = µai/λρi we are back to equation (12), but
other choices may also be investigated, e.g., one could think of a plasticity-type evolution of the
design instead of the viscous behavior that is represented by (12).

Time dependent loads

When deciding to view optimization as a time evolution it becomes natural to consider time de-
pendent loads. For such loads, i.e., F = F (t), equation (3) implies that the displacement becomes
an explicit function of both ρ and t, which has the implication that the first equality of (14) is
replaced by

d

dt
fC(ρ(t), t) = Ḟ

T
u +

E∑

i=1

∂fC

∂ρi
ρ̇i.

This means that if we define the same dynamic system as above, the inequality that it satisfies is

d

dt
fC(ρ(t), t) ≤ Ḟ

T
u.

Numerical result

Structural optimization involving several load cases is traditionally treated by using one state prob-
lem for each load case and by summing the contributions in the objective function, see [3]. How-
ever, in the present view this situation could also be treated by having a time varying load where
the load cases act one at a time in an oscillating manner. In the left hand picture of Figure 1 two
corner loads are shown. In the middle picture we show the design after having changed which load
is active ten times back and forth, and in the right hand picture the traditional solution is shown.
The oscillation of the load has to be fast compared to the evolution of the design in order to achieve
what could be regarded as a converged state. It is also likely that a very quick change of load will
result in a design that coincide with a traditional solution where both loads are simultaneously
present.

Optimization and inflow of nutrients

In the previous sections evolutions towards optimally stiff structures are driven by a balance be-
tween the mechanical state of the structure and the cost of material. However, there is no consid-
eration regarding how energy needed for “building” is transported to the structure. In a biological
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Figure 1: The left hand picture shows the definition of the problem. The middle picture is when the load is
oscillating and the right hand picture is a traditional solution with two load cases. The SIMP exponent is set
to one (q = 1) in order to avoid having a not well-posed continuum problem.

structure such energy is in the form of “biochemical” energy, or “nutrients” and we take inspira-
tion from theories for biological growth, see [8], to extend our previous thermodynamic view of
topology optimization in this direction. Part of the motivation for this section also comes from the
fact that the SIMP model is very close to what has been used in bone remodeling theories, see [1]
and [2].

Continuing along the lines of a discrete (or discretized) setting we introduce a vector c = (c1, . . . , cN )T ,
representing nodal values of nutrient concentration. The number of nodes in the structure is N .
Next, we assume that the “free energy”, i.e., the objective function, depends on this concentration
in an additative manner, so the extended objective function is

fe
C(ρ, c) = fC(ρ) + ψ(c).

The flow of nutrients satisfies the balance equation

ċ + BT h = m− βNρ̇ ⇐⇒ ċk + BT
k h = mk − β

E∑

i=1

Nkiρ̇i, (16)

where B and N are constructed from the FE shape functions, and the transpose of the former is
the discrete divergence operator; m = (m1, . . . , mN )T is the nodal inflow of nutrients and h is
the nutrient flow vector; Bk is row k of B and Nki is an element of N . The constant β represents
the relation between nutrient and material.

The evolution equations (dynamical system) should now satisfy the following dissipation inequal-
ity:

d

dt
fe

C(ρ, c) ≤
N∑

k=1

µ̃kmk, (17)

where µ̃k is a chemical potential that is such that the right hand side of the inequality represents
the inflow of energy.

Eliminating mk between (16) and (17) we find

E∑

i=1

(
∂fC(ρ)

∂ρi
− β

N∑

k=1

µ̃kNki

)
ρ̇i +

N∑

k=1

(
∂ψ(c)
∂ck

− µ̃k

)
ċk − (Bµ̃)T h ≤ 0, (18)
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where µ̃ is a vector of chemical potentials. This inequality should hold for all evolutions of the
system. If one assumes that µ̃k depends on ck only, it is therefore necessary that

µ̃k =
∂ψ(c)
∂ck

, (19)

implying that the second term of (18) vanishes. Once this is established one also concludes that it
is necessary for satisfaction of (18) that

β
N∑

k=1

µ̃kNki − ∂fC(ρ)
∂ρi

− ∂IKi(ρi) = k̃iρ̇i (20)

where k̃i is a positive function of ρ, c and their time derivatives. Finally, (18) implies

(Bµ̃)T h ≥ 0.

This inequality can be satisfied by assuming Fick’s law for diffusion of nutrients. That is, there
exists a positive definite matrix E(ρ) such that

h = E(ρ)Bµ̃. (21)

In the isotropic case E(ρ) =
∑E

i=1 κ(ρi)Ii, where κ(ρi) is the diffusivity and Ii are identity-like
matrices, the size of which depends on the number of integration point of finite elements. In order
to suggest a simple dependence on ρi for the diffusivity, one could think of ρi as being a porosity-
like variable, such that the diffusivity is close to zero when ρi = 1 (solid material) and having a
fixed value κ0 when ρi is small. Using then the small value ε we could write

κ(ρi) = (1− ρi + ε)κ0. (22)

To summarize, the dynamical system for stiffness optimization including flow of nutrients is de-
fined by (16), (19), (20), (21) and (22). If, for simplicity, we take ψ(c) to be a quadratic function
defined by a constant γ, so that (19) becomes c = γµ̃, a simple OC-like iteration loop for finding
an equilibrium point of this system would be

For ρn solve and update as follows:

1. solve F = K(ρn)u for u and calculate ei(ρn);

2. solve m = Kc(ρn)c, where Kc(ρ) = γBT E(ρ)B, for c;

3. calculate ρ̂n+1
i =

(
ei(ρn) + βγ

∑N
k=1 ckNki

µai

)η

ρn
i , do a projection onto Ki, set ρn =

ρn+1 and go to Step 1.
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Summary The paper focuses on gradient based multi-material topology optimization of laminated com-
posite structures with the objective of maximizing the lowest eigenfrequency or the buckling load factor.
Details about efficient adjoint design sensitivity analysis of buckling load problems are emphasized.

Preface

This paper is dedicated to Professor Niels Olhoff who has been our inspiring friend and mentor in
the field of structural optimization. The paper deals with some of the topics where Niels has been
a leading researcher in the international community of structural optimization, that is, topology
optimization and optimization of eigenvalue problems.

Introduction

The use of laminated composite structures with Glass and Carbon Fiber Reinforced Polymers
(GFRP and CFRP) is popular for lightweight constructions due to their superior strength and
stiffness characteristics. In order to fully exploit the weight saving potential of these multilayered
structures, it is necessary to tailor the laminate layup and behavior to the given structural needs. In
some design situations it is most cost effective to combine several different materials, such that a
multi-material design problem is considered. An example of such a design problem is wind turbine
blades where sandwich structures are used in many parts of the structure, and where many different
materials are combined, for example GFRP, CFRP, birch wood, wood-carbon/epoxy, balsa wood,
and different foam materials. In order to obtain a cost effective design, it is desirable to have a
general computer aided tool that can generate a high performance topology in the initial design
phase, and in this paper focus is on structural eigenvalue design optimization.

The design problem investigated in this work consists of optimal distribution of different materials
in multi-layered composite shell structures, and the criteria functions considered are the lowest
eigenfrequency of the structure or the lowest buckling load factor of thecompressively loaded
composite structure.

The finite element method is used for determining the structural response of the laminated com-
posite. The laminated composite is typically composed of multiple materials and multiple layers,
and the laminated shell structures may, in general, be curved or doubly-curved. The materials used
in this work may be fiber reinforced polymers oriented at a given angleθk for layerk or it may
be softer isotropic core materials. All materials are assumed to behave linearlyelastic and the
structural behavior of the laminate is described using an equivalent singlelayer theory.

The discrete material optimization approach

The design parametrization method applied is denoted Discrete Material Optimization (DMO), see
[1], [2] and [3]. The basic idea in the DMO approach is to formulate an optimization problem using
a parametrization that allows for efficient gradient based optimization on real-life problems while
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reducing the risk of obtaining a local optimum solution when solving the discretematerial dis-
tribution problem. The approach is related to the mixed materials strategy suggested by Sigmund
and co-workers [4, 5] for multi-phase topology optimization, where the totalmaterial stiffness is
computed as a weighted sum of candidate materials. By introducing differentiable weighting func-
tions for the material interpolation, the topology optimization problem is convertedto a continuous
problem that can be solved using standard gradient based optimization techniques.

As in topology optimization the parametrization of the DMO formulation is invoked at the finite
element level. The element constitutive matrix,C

e, for a single layered laminate structure may in
general be expressed as a sum over the element number of candidate material configurations,ne:

C
e =

ne

∑

i=1

wiCi = w1C1 + w2C2 + · · · + wneCne , 0 ≤ wi ≤ 1 (1)

where each candidate material is characterized by a constitutive matrixCi. The interpolation of
mass densityρ is done in a similar way. The weight functionswi must all have values between 0
and 1 in order to be physically allowable. Furthermore, in case of solving eigenvalue problems or
having a mass constraint as in the optimization problems studied here, it is necessary that the sum
of the weight functions is 1.0, i.e.,

∑ne

i=1
wi = 1.0. If this demand is not fulfilled, incorrect mass

densities will be obtained. Several new parametrization schemes have beendeveloped, see details
in [6, 1], and we give here a short outline of the most effective implementation. We apply for each
element (or design domain in terms of a patch of finite elements) a number of design variablesxe

i ,
i = 1, . . . , ne, and write

wi =
ŵi

∑ne

k=1
ŵk

, i = 1, . . . , ne, where ŵi = (xe
i )

p
ne

∏

j=1; j 6=i

(

1 − (xe
j)

p
)

(2)

To push the design variablesxe
i towards0 and1 the SIMP method known from topology opti-

mization has been adopted by introducing the power,p, as a penalization of intermediate values
of xe

i . The powerp is typically set to 1 or 2 in the beginning of the optimization process and then
increased by 1 for every 10 design iterations untilp is 3 or 4.

Maximum lowest eigenfrequency / buckling load factor

The objective of the design problem considered is to maximize the lowest eigenfrequency or to
maximize the linearized buckling load factor of the laminated composite structure. The free vibra-
tion analysis problem can be written as

(K − λjM)Φj = 0, λj = ω2
j , j = 1, 2, . . . (3)

whereK is the global stiffness matrix,M the global mass matrix,λj the eigenvalue,ωj the eigen-
frequency, andΦj the corresponding eigenvector. The eigenvalues are assumed ordered by mag-
nitude, such thatλ1 is the lowest eigenvalue.

In case of buckling load optimization, the starting point is to solve the static equilibrium equation

Ku = p or written in residual form r(u,x) = Ku − p = 0 (4)

whereu is the global displacement vector,p the global load vector, andr is the residual vector.
Based on the displacement field the stress stiffening effects due to the mechanical loading can be
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evaluated by computing the initial global stress stiffness matrixKσ (also termed the geometric
stiffness matrix), and the linearized buckling problem can be established as

(K + λjKσ)Φj = 0, j = 1, 2, . . . (5)

where the eigenvalues are assumed ordered by magnitude, such thatλ1 is the lowest eigenvalue,
i.e., buckling load factor, andΦ1 is the corresponding eigenvector.

It is a well known fact that the design sensitivity analysis of eigenvalues isproblematic in the case
of multiple eigenvalues, i.e., the case where two or more eigenvalues attain exactly the same value.
In this case, the eigenvalues are no longer differentiable functions of thedesign in the normal
Fréchet sense. In the following it is described how expressions for design sensitivity analysis
(DSA) of both simple (distinct) and multiple (repeated) eigenvalues can be obtained.

Design sensitivity analysis of simple eigenvalues

The direct approach to obtain the eigenfrequency sensitivity is to differentiate (3) with respect to
a design variablexi, premultiply byΦT

j , make use of (3), and noting that the system matrices are
symmetric, then the following expression is obtained for the eigenvalue sensitivity in case of a
simple, i.e. distinct, eigenvalueλj , see, e.g., [7] and [8]

dλj

dxi
= Φ

T
j

(

dK

dxi
− λj

dM

dxi

)

Φj (6)

where it is assumed that the eigenvectors have beenM-orthonormalized, such thatΦT
j MΦj = 1.

For the DMO parametrization proposed in this work the geometry is fixed and only the material
is changed. Therefore the derivativesdK(xi)

dxi
and dM(xi)

dxi
only involve the derivative of the element

constitute matrixCe and the mass densityρ with respect toxi. Thus, the derivative of the weight
functions defined in (2) must be computed which is done analytically. Note thatin a finite element
implementation, all of these computations are performed on the element level, such that derivatives
are only computed for elements depending on the given design variablexi.

In a similar way the design sensitivity of a distinct buckling load factor is givenas

dλj

dxi
= Φ

T
j

(

dK

dxi
+ λj

dKσ

dxi

)

Φj (7)

where the eigenvectors have beenKσ-orthonormalized, such thatΦT
j (−Kσ)Φj = 1.

The first of the derivativesdK(xi)

dxi
is computed in the same way as when performing eigenfre-

quency sensitivity analysis. The second termdKσ(xi)

dxi
in (7) is a little more complicated because

of the implicit dependence of the state variablesu, i.e. Kσ(xi,u(xi)). In case of using modern
stabilized shell finite elements this analytical derivative is not straightforward to derive. Instead a
direct numerical approach can be used to evaluate the term using finite differences, such that we
approximate the derivative using, for example, a forward difference expression

dKσ(xi,u(xi))

dxi
≈

Kσ(xi + ∆xi,u(xi) + du
dxi

∆xi) − Kσ(xi,u(xi))

∆xi
(8)

Note that the termdu
dxi

is the sensitivity of the state variables w.r.t. the design variablexi. Thus,
the displacement sensitivitiesdu/dxi must be computed which is done efficiently using the direct
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differentiation approach, i.e., the static equilibrium equation, (4), is differentiated with respect to
a design variablexi

K
du

dxi
=

∂p

∂xi
−

∂K

∂xi
u or written in residual form

∂r

∂u

du

dxi
= −

∂r

∂xi
(9)

where the load sensitivity∂p/∂xi is zero for the DMO material design variables used, unless
volume forces are considered. Here it is worth noting that the sensitivity ofthe state variables is
easily obtained analytically with the described design parametrization.

This direct approach is computationally demanding for the DMO approach asthis parametrization
yields many design variables. First it is necessary with a sensitivity solve for the state variables for
each design variable, see (9). The time consumption for this is reasonable,since the pseudo load
vector is sparse and thus the most time consuming part of the procedure is theback substitution
into the already factored stiffness matrix. Notice, however, that the state variable sensitivity is a
vector described over all the elements, so in order to get the buckling load sensitivity using the
numerical approach, see (8), it is necessary to loop all the elements in the model for each of the
design variablesxi. The time complexity of this task isO(ne · ndv) wherene is the number of
elements andndv is the total number of design variables.

In order to obtain a computationally more efficient approach in case of many design variables
an adjoint approach is used. The approach is similar to the work presentedin [9] and [10] but is
nevertheless described here for completeness.

Applying the chain rule we have

dKσ(xi,u(xi))

dxi
=

∂Kσ(xi,u)

∂xi
+

∂Kσ(xi,u)

∂u

du

dxi
(10)

Again, the first term is the partial derivative ofKσ and this term is computed on the element
level in the same way as described in eigenfrequency sensitivity analysis for the termdK(xi)

dxi
.

For reasons of computational efficiency the computation of these two terms are joined in our FE
implementation.

The second term of (10) involving∂Kσ/∂u is the difficult and costly part to compute and still
requires evaluation of state variable sensitivities for all design variables.To make further progress,
note that we are notreally interested in computing the term, but instead it is to be pre- and post-
multiplied with some eigenvectors in (7), i.e,

Φ
T
s

∂Kσ(xi,u)

∂u

du

dxi
Φk = −Φ

T
s

∂Kσ(xi,u)

∂u
Φk

∂r

∂u

−1 ∂r

∂xi
(11)

where the right hand side is arrived at by inserting the expression for state sensitivitiesdu/dxi

from (9) and regrouping terms exploiting symmetries. Note that the indicess andk for the eigen-
vectors are introduced as we later on in design sensitivity analysis of multiple eigenvalues will
have different eigenvectors involved in the sensitivity expression.

It is now notational convenient to introduce the adjoint vectorsvsk given as

v
T
sk = Φ

T
s

∂Kσ(xi,u)

∂u
Φk

∂r

∂u

−1

(12)
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Notice thatvsk is the same for all design variables, and thus only need to be computed once for
each iteration in the optimization. When solving the linear systems of equations in (12) for the
adjoint vectorsvsk, the factored stiffness matrix∂r/∂u can be reused. The term∂Kσ/∂u is still a
difficult (and costly) matrix to compute for stabilized shell finite elements, but wenote thatKσ is
a linear function ofu. Thus a forward difference approximation to the matrix will be numerically
exact. In our implementation we compute the forward difference approximationby perturbing one
element degrees of freedom (DOF) at a time and then computeΦ

T
s (∂Kσ/∂um)Φk at the element

level. The element contributions are then summed.

By using (12) and (10) in (7) and regrouping terms, the buckling load factor sensitivity can be
computed as

dλj

dxi
= Φ

T
j

dK

dxi
Φj + λj

(

Φ
T
j

∂Kσ(xi,u(xi))

∂xi
Φj − v

T
jj

∂r

∂xi

)

(13)

Notice that in comparison to the direct numerical approach described by (8) it is now only neces-
sary to touch each element one time per associated design variable aftervsk has been computed,
and that all computations are done on the element level.

Design sensitivity analysis of multiple eigenvalues

In case of multiple eigenvalues the corresponding eigenvectors are not unique, which complicates
the sensitivity analysis and optimization due to the non-differentiability of the eigenvalues. In such
situations the sensitivity analysis described in [11] and [12] is used. The result is outlined here.

When the solution of the generalized eigenvalue problem in (3) yields aN -fold multiple eigen-
value

λ̃ = λj , j = 1, . . . , N (14)

where, for convenience, the repeated eigenvalues have been numbered from 1 to N , then the
computation of the sensitivities of this eigenvalue is not straight-forward. This is due to the fact
that the eigenvectorsΦj , j = 1, . . . , N , of the repeated eigenvalues are not unique. Thus, any
linear combination of the eigenvectors will satisfy the original eigenvalue problem (3).

In the sensitivity analysis we shall use such eigenvectorsΦ̃j which remain continuous with design
changes, see [7] and [11]. The result of the sensitivity analysis w.r.t. asingle design variablexi in
case of buckling problems is the following sub-eigenvalue problem

det

∣

∣

∣

∣

Φ
T
s

(

dK

dxi
+ λ̃

dKσ

dxi

)

Φk − µδsk

∣

∣

∣

∣

= 0, s, k = 1, . . . , N (15)

This is the main equation for determining the sensitivitiesµj , j = 1, . . . , N of the multiple eigen-
valueλ̃ with respect to changes∆xi of a single design parameterxi.

If we consider the general case when all the design variablesxi, i = 1, . . . , ndv, are changed
simultaneously, then we need to determine the increments∆λj , j = 1, . . . , N , of the N -fold
eigenvalueλ̃ subject to a given vector∆x = (∆x1, . . . ,∆xndv

) of actual increments of the
design variablesxi, i = 1, . . . , ndv. If the generalized gradient vectors fsk of dimensionndv are
introduced

fsk =

(

Φ
T
s

(

dK

dx1

+ λ̃
dKσ

dx1

)

Φk, . . . , Φ
T
s

(

dK

dxndv

+ λ̃
dKσ

dxndv

)

Φk

)

(16)
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then the resulting sensitivity expression becomes

det
∣

∣ f
T
sk∆x − δsk∆λ

∣

∣ = 0, s, k = 1, . . . , N (17)

If we solve thisN -th order algebraic equation for∆λ, we obtain the increments∆λ = ∆λj , j =
1, . . . , N , of theN -fold eigenvalue corresponding to the vector∆x of actual increments of the
design variables.

The efficient adjoint approach described above for a distinct eigenvalue can be applied in a similar
fashion for multiple eigenvalues. In case of anN -fold multiple eigenvalue we need to determine
the adjoint vectorsvsk, s, k = 1, . . . , N given by (12), and then the terms in (16) can be deter-
mined.

It should be noted that the adjoint approach described can also be usedfor design sensitivity
analysis of nonlinear buckling problems where the buckling load is approximated at a precritical
load by an eigenvalue analysis on the deformed configuration determined using geometrically
nonlinear analysis. In such cases the stiffness matrixK is replaced byK + KL whereKL is the
displacement stiffness matrix.

The mathematical programming problem

The optimization problem of maximizing the lowest eigenfrequencyω1 or buckling load factorλ1

can be formulated using a bound formulation, see [13], as

Objective: max
x, β

β

Subject to: λj ≥ β, j = 1, . . . , Nλ

(state equations)
M ≤ M
xi ≤ xi ≤ xi, i = 1, . . . , I

(18)

whereM is the upper limit on the massM of the structure. By introducing the bound parameter
β the lowestNλ eigenvalues are considered when solving the max-min problem of maximizing
the lowest eigenvalue, and the possibility of crossing eigenvalues (mode switching) and creation
of multiple eigenvalues is taken into account during the optimization process. This optimization
formulation can be solved directly using a gradient based algorithm in case of distinct eigenvalues,
and in this work the Method of Moving Asymptotes by Svanberg [14] is used.

In case of multiple eigenvalues specialized optimization procedures like the onedescribed in [12]
and [15], see also [16] for another computational procedure, can beused.

Example: Eigenfrequency design of 16-layer clamped plate

The first example illustrate the potential of the DMO method for solving the combinatorial problem
of proper choice of material, stacking sequence and fiber orientation simultaneously for maximum
lowest eigenfrequency design of a clamped plate. The plate has dimension 0.1× 0.1 m and consists
of 16 layers of equal thickness 0.0003 m, yielding a total thickness of 0.0048 m. One candidate
material is unidirectional glass/epoxy, i.e. an orthotropic material withEx = 5.4 · 1010 Pa,
Ey = Ez = 1.8 · 1010 Pa, νxy = νxz = 0.25, νyz = 0.29, Gxy = Gxz = 9.0 · 109 Pa,
Gyz = 3.4 ·109 Pa, andρ = 1900 kg/m3. The other candidate material is an isotropic polymer
foam material and hasEx = 1.25 · 108 Pa, ν = 0.3, andρ = 100 kg/m3.
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Layer 1) Layer 2) Layer 3) Layer 4)

Layer 5) Layer 6) Layer 7) Layer 8)

Layer 9) Layer 10) Layer 11) Layer 12)

Layer 13) Layer 14) Layer 15) Layer 16)

Figure 1: Optimized material directions (fiber angles) for maximum lowest eigenfrequency design of 16-
layer clamped plate when 5 DMO variables per element are used(soft material together with orthotropic
material oriented at0◦, ±45◦, and90◦). White means that the isotropic soft material has been selected.

The upper and lower layers have 4 DMO design variables per element associated with the or-
thotropic material oriented at0◦, ±45◦, and90◦, respectively, and the remaining 14 interior layers
have 5 DMO variables, allowing the optimizer also to choose the soft isotropic material. The mass
constraint is set such that2/3 of the total volume should be filled with soft material. A 20 by 20
mesh of 4-node shell elements is used, and the result of the optimization can beseen in Fig. 1.

The fiber directions for the orthotropic material in the upper and lower layers are quite similar
to results published by other people for single layer plates made of unidirectional composites
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using continuous fiber angles, see e.g. [17]. For the remaining 14 interiorlayers the DMO method
suggests to put soft material in the middle of the plate as expected. Furthermore, the orthotropic
material available should be put at the middle of the clamped edges, oriented perpendicular to the
boundary.

Example: buckling design of trailing edge panel of wind turbine blade

The next example is related to buckling load maximization of a trailing edge panel of a generic
wind turbine blade, and it is described in detail in [18]. A brief outline is given here.

Fixed all d.o.f.

Anti-symmetry enforced
at symmetry plane x-z

Distributed compression load

Stiff material

Design area (trailing edge panel)

Fixed layup

x

y

z

Simplified model of the NACA 634 - 421 airfoil test section.

Figure 2: Simplified model of the NACA 634 - 421 airfoil test section. The design domain is the trailing
edge panel. Antisymmetric boundary conditions are assumed.

The simplified analysis model shown in Fig. 2 is used for the example. The sparcap consists of
wood-carbon/epoxy and 4 layers of±45◦ E-glass/epoxy (GFRP). The design area is the trailing
edge panel which is divided into 14 patches, each having 12 layers, forDMO optimization. The
candidate materials are unidirectional GFRP at0◦ or 90◦ together with GFRP±45◦ angle-ply, and
foam material. 2/3 of the design domain must be filled with foam material.

The analysis model consists of 1648 layered 9 node shell elements with up to 12 layers, and
the time consumption for the analysis phase on a standard pc is as follows: the assembly of[K]
takes 4.5 s, the factorization of[K] takes 0.6 s, a forward backward substitution takes 0.2 s, and
the assembly of all matrices for the linearized buckling problem takes 23 s. The problem has
648 design variables and if the direct method, see (7), is used for buckling DSA of the three
lowest buckling load factors, then the time consumption is 34260 s. In case ofusing the adjoint
approach the computation of three adjoint vectorsvsk, see (12) takes 1219 s and the sensitivities
are computed using (13) in 1008 s, such that the total time for DSA becomes 2227 s, which is
more than 15 times faster than the direct approach. In case of having a larger number of design
variables, which is usually the case for DMO optimization models, the advantages of the adjoint
formulation becomes even more pronounced.

The result of the optimization can be seen on Fig. 4.
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Patch 5

Patch 4

Patch 3

Patch 2
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Zoomed area

Figure 3: Left: The design area (the trailing edge sandwich panel) is divided into 14 patches. Results of the
topology optimization will be presented for the zoomed area. Right: Typical lowest buckling mode.

Layer 1) Layer 2) Layer 3) Layer 4) Layer 5) Layer 6)

Layer 7) Layer 8) Layer 9) Layer 10) Layer 11) Layer 12)

Figure 4: Case 2: Optimized material directions (fiber angles) for maximum buckling load factor design of
12-layer trailing edge panel of the test section when 4 DMO variables per patch are used (foam material
together with GFRP unidirectional material oriented at0◦ and 90◦ and GFRP±45◦ angle-ply). White
means that the isotropic foam material has been selected. Layer 1 is the lower layer and layer 12 is the top
(outer) layer. The results are shown for the zoomed area defined in Figure 3.

Conclusions

The Discrete Material Optimization (DMO) method for structural topology optimization of multi-
material laminated composite shell structures has been presented with focus on eigenfrequency
and buckling load optimization. The method makes it possible to solve the discrete problem of
choosing the right material together with the fiber orientation and thickness distribution problem
by introducing weighting functions, such that the total material stiffness (ordensity) is computed
as a weighted sum of candidate materials. In this way the discrete problem is converted to a con-
tinuous problem that can be solved using gradient based optimization techniques. Efficient design
sensitivity analysis of linear eigenvalue problem in the form of eigenfrequency and buckling load
problems has been presented with focus on an adjoint approach for buckling load sensitivities, and
two examples have illustrated the potential of the DMO approach.
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Summary This paper presents a brief overview of applications of the methodology of topology 
optimization to passive design of elastic continuum structures against vibration and noise. The design 
objectives include maximization of specific eigenfrequencies and distances (gaps) between two consecutive 
eigenfrequencies of free structural vibrations, as well as maximization of the dynamic stiffness and 
minimization of the sound emission of structures subjected to forced harmonic vibrations. Results show that 
these design objectives enable us, in a very cost-efficient way, to move structural resonance frequencies far 
away from external excitation frequencies, such that high vibration and noise levels are avoided.  

Introduction 

The method of topology optimization of continuum structures was introduced in the literature in 
1988 by the landmark paper [1] that addressed the problem of determining the distribution of an 
elastic material within an admissible design domain that yields the stiffest possible structure for a 
given static loading and prescribed volume of material. Since usual sizing and shape optimization 
methods generally cannot change the structural topology, the development of this method was a 
break-through in the field of engineering design, as the choice of the best topology generally has the 
most decisive impact on the gain that can be achieved by optimization. Topology optimization is 
therefore an important preprocessing tool for sizing and shape optimization [2]. 

During the last decade, the method has been extended to handle several other design 
objectives and constraints. Thus, topology optimization has become a standard tool for synthesis 
of parts or whole structures in the automotive and aerospace industries, and it is rapidly spreading 
into other engineering design disciplines. The reader is referred to the exhaustive textbook [3], the 
review article [4] and the proceedings [5] for recent developments and publications. A survey of 
topological design with vibration and noise emission objectives is available in [6]. 

1.  Eigenfrequency optimization problems 

Topology optimization with respect to structural eigenfrequencies of free vibrations of structures 
of given material volume and boundary conditions is, a.o., undertaken in [7-14] and has the 
following significance. By optimizing with respect to the fundamental frequency [7-12,14], a 
minimum cost design against vibration resonance is obtained subject to all external excitation 
frequencies within the large range from zero and up to the particular fundamental frequency. 
Optimization with respect to a specific higher order eigenfrequency [7,12,14] is generally found to 
produce a considerable gap between this eigenfrequency and the adjacent lower eigenfrequency, 
and thereby offers a very competitive design for avoidance of resonance in problems where 
external excitation frequencies are confined within a large interval with finite lower and upper 
limits. However, for a band of external excitation frequencies of this type, the most efficient 
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design is, of course, obtained if the design objective is directly formulated as maximization of the 
difference (gap) between two consecutive eigenfrequencies of the structure, and this is done in the 
papers [7,13]. 

It is worth noting that the three kinds of problems just discussed in general require careful 
attention since the eigenfrequencies subject to optimization often become multiple 
eigenfrequencies which are not differentiable in the usual (Gateau) sense, but only directionally 
differentiable, a complexity that is taken into account in the analyses in [7,12,13]. 
1.1 Maximization of the fundamental eigenfrequency 
Problems of topology design for maximization of fundamental eigenfrequencies of vibrating 
elastic structures without damping can be formulated as a max-min problem as follows, see e.g. [7] 
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Here, j is the j-th eigenfrequency and j the corresponding eigenvector, and K and M are the 
symmetric and positive definite stiffness and mass matrices of the finite element based, 
generalized structural eigenvalue problem in the constraint (1b). The J candidate eigenfrequencies 
considered will all be real and can be numbered such that 

.0 21 J    (2)

It is assumed that the corresponding eigenvectors are M-orthonormalized, cf. (1c) where jk is 
Kronecker’s delta. In problem (1), the symbol NE denotes the total number of finite elements in the 
admissible design domain. The design variables e, e = 1,…,NE, represent the volumetric material 
densities of the finite elements, and (1e) specifies lower and upper limits   and 1 for e. To avoid 
singularity of the stiffness matrix,   is not zero, but assigned a small positive value like   = 10-3. 

For single-material design problems, the symbol  in (1d) defines the volume fraction , 
where V

0
* /VV

0 is the volume of the admissible design domain, and V * the given available volume of 
solid material. For a bi-material design problem,  defines the volume fraction of the available 
stiffer solid material *1, and the rest of the admissible design domain will be filled by the weaker 
solid material *2. 
1.2 Bound formulations for maximization of the n-th eigenfrequency and the gap between two 
consecutive eigenfrequencies 

Consider now the more general problem of maximizing the n-th eigenfrequency of given order 
of a vibrating structure, i.e., the fundamental eigenfrequency (n=1) or a higher order 
eigenfrequency (n>1). Employing a bound formulation (see [15,16]) involving a scalar variable  
which plays both the role of an objective function to be maximized and at the same time a variable 
lower bound for the n-th and higher order eigenfrequencies (counted with possible multiplicity), 
the problem can be formulated as 

n
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Here, as well as in problem (4) below, J is assumed to be larger than the highest order of an 
eigenfrequency to be considered a candidate to exchange its order with the n-th eigenfrequency or 
to coalesce with this eigenfrequency during the design process. 

The problem of maximizing the gap (difference) between two consecutive eigenfrequencies 
of given orders n and n–1 (where n>1) may be written in the following extended bound 
formulation, where two bound parameters are used,   
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                         Constraints: (1b-e).                                                               (4d) 

Note that if here we remove the bound variable 1 and the corresponding set of constraints (4c) 
from the formulation, then the eigenfrequency gap maximization problem (4) reduces to the n-th 
eigenfrequency maximization problem (3), and in particular, for n=1, to the problem (1) of 
maximizing the fundamental eigenfrequency. 

In problem (3) the eigenfrequency n , and in problem (4) both the eigenfrequencies n  and 
1n  of the optimum solution may very well be multiple, and the bound formulations in (3) and (4) 

are tailored to facilitate handling of this difficulty. 
1.3 Design sensitivities of simple and multiple eigenfrequencies 
If the j-th eigenfrequency j is simple (also called unimodal or distinct), i.e., 11   jjj  , then 
the corresponding eigenvector  will be unique (up to a sign) and differentiable with respect to 
the design variables 

jφ

e, e = 1,…,NE. The sensitivity (derivative)  
ej  )(   of the eigenvalue  

with respect to a particular design variable 

2
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e is then given by, cf. [17,18],  
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where the derivatives of the matrices K and M can be calculated numerically. If all the design 
variables are changed simultaneously, the linear increment j  of  is given by the scalar 
product 

2
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where  is the vector of small changes of the design variables, and   TΔρ
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11     (7)

is the vector of  sensitivities (or gradients) of the eigenvalue j  with respect to the design 
variables e, e = 1, …, NE. 
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Multiple eigenfrequencies may manifest themselves in different ways in structural 
optimization problems. Thus, an eigenfrequency subject to optimization may be multiple from the 
beginning of the design process, e.g., due to structural symmetry, but an originally unimodal 
(simple) eigenfrequency may also become multiple during the optimization process due to 
coalescence with one or more of its adjacent eigenfrequencies. In such cases, sensitivities of the 
multiple eigenfrequency cannot be calculated straightforwardly from (5) or (6), (7) due to lack of 
usual differentiability properties of the sub-space spanned by the eigenvectors associated with the 
multiple eigenfrequency. Sensitivity analysis of multiple eigenvalues (like eigenfrequencies or 
buckling loads) is dealt with in a number of papers, see e.g., [19] and papers cited therein. 
Following [19], the sensitivity analysis leads to the result that the increments j  of an N-fold 
multiple eigenvalue ~ , 
                                               1,,,~ 2  Nnnjjj                          (8)
associated with the N (N > 1) lowest eigenfrequencies j  appearing in the bound constraints (3b) 
and (4b)*1 are eigenvalues of an N-dimensional algebraic sub-eigenvalue problem of the form 

 0Δdet   skskΔρf T  ,   s, k = n, …, n+N-1.                                                   (9) 
The N eigenvalues of this sub-eigenvalue problem, i.e., the increments ,1,,,  Nnnjj   
represent the directional derivatives of the multiple eigenvalue ~  in (17) with respect to small 
simultaneous changes e (assembled in the vector ) of the design variables Δρ Ee Ne ,,1,  . 
Moreover, in (9), sk is Kronecker’s delta and fsk denote generalized gradient vectors of the form 
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According to the definition in (10), each fsk is an NE-dimensional vector, which means that 
 in (9) is a scalar product. The label ‘generalized gradient vector’ for fΔρf T

sk sk becomes apparent 
when comparing (10) with the expression for the gradient vector j  of a simple eigenvalue j  in 
(7). Note also that fsk = fks due to the symmetry of the matrices K and M, and that the two 
subscripts s and k refer to the orthonormalized eigenmodes from which fsk is calculated. 

An efficient iterative computational procedure for solution of problems (1), (3) and (4) with 
simple and multiple eigenfrequencies is presented in [7]. Particular topics pertaining to the 
topology optimization like penalization models, filtering, and elimination of spurious eigenmodes, 
are also discussed in [7]. 

2. Examples of eigenfrequency optimization problems 

As a first example [7], we consider the topology optimization of a single-material plate-like 
structure modeled by 8-node 3D brick elements with Wilson incompatible displacement models to 
improve precision. The admissible design domain is specified, and three different cases (a), (b) and 
(c) of boundary conditions and attached concentrated, nonstructural masses as shown and defined 
in Fig. 1 and its caption, are considered. The design objective is to maximize the fundamental 
eigenfrequency for a prescribed material volume fraction  = 50%. The material is isotropic with 
Young’s modulus E = 1011, Poisson’s ratio  = 0.3 and mass density m = 7800 (SI units are used 
throughout this paper). The fundamental eigenfrequencies of the initial designs with the three 

                                                      
*1  Multiplicity of the largest eigenfrequency in (4c) can be treated similarly. 
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                           (a)                                                (b)                                             (c) 
Figure 1: Plate-like 3D structure (a=0.020, b= 0.020 and t=0.001) with three different cases of  boundary 
conditions and attachment of a concentrated nonstructural mass. (a) Simple supports at four corners and 
concentrated mass mc at the center of the structure 3/( 0mmc  , m0 the total structural mass of the plate). 
(b) Four edges clamped and concentrated mass mc at the center ( 10/0mmc  ). (c) One edge clamped, other 
edges free, and concentrated mass mc attached at the mid-point of the edge opposite to the clamped one 
( ). The fundamental eigenfrequencies for the 3 initial designs (uniform distribution of material 

with density  = 0.5) are ,  and  . 

10/0mmc 

13.80
1 a 07.310

1 b 46.30
1 c

 
                               (a)                                            (b)                                         (c) 
Figure 2: Optimized single-material topologies (50% volume fraction) with solid material shown in black 
and void in white for the three cases of boundary conditions and mass attachment in Figs.1(a-c). The 
optimum fundamental eigenfrequencies are found to be (a) , (b) , and (c) 

, i.e., they are increased by (a) 101%, (b) 111%  and (c) 179%  relative to the initial designs. 

38.161 opt
a 42.651 opt

b

66.91 opt
c

cases (a), (b) and (c) of boundary and mass conditions are given in the caption of Fig. 1. The 
optimized plate topologies are shown in Figs. 2(a-c), and the corresponding optimum fundamental 
eigenfrequencies are all unimodal with values given in the caption of Fig. 2. 

In the next example [7], we apply topology optimization to maximize the difference (gap) 
between the 2nd and 3rd eigenfrequencies of two bi-material structures with the cases (a) and (c) 
of boundary conditions and concentrated mass attachment as shown in Fig. 1. Both of the two 
elastic materials used for each of the structures are isotropic. The stiffer material *1 is shown in 
black in Fig. 3, and has the Young’s modulus , Poisson’s ratio  = 0.3 and specific mass *1 1110E 

*1
m  = 7800, while the weaker material *2 is shown in grey in Fig. 3 and has the properties 

, *2 *10.1E  E *2
m  = 0.1 *1

m  and  = 0.3. We take the volume fraction of material *1 to be up to 
50% of the admissible design domain and impose the condition that the remaining part of the 
admissible design domain is filled with material *2. The resulting optimum solutions are presented 
in Fig. 3. 
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Figure 3: (a) Optimized topology of the plate-like structure with simple supports at four corners and a 
concentrated mass at the center, cf. Fig. 1(a). The gap between the 2nd and the 3rd eigenfrequencies is 
maximized. (b) Iteration histories for the first five eigenfrequencies associated with the process leading to 
the design (a). It shows that the second and the third eigenfrequencies form a double eigenfrequency for the 
initial design, but that they split as the design process proceeds, and the 3rd and the 4th eigenfrequencies end 
up being a double eigenfrequency of the final design. (c) Optimized topology of the plate-like structure with 
the upper horizontal  edge clamped, other edges free, and a concentrated mass attached at the mid-point of 
the lower horizontal edge, cf. Fig. 1(c). The gap between the 2nd and the 3rd eigenfrequencies is maximized. 

3. Minimization of the dynamic compliance of structures subjected to forced harmonic 
vibration 

Optimization of the topology of an elastic continuum structure for minimum dynamic structural 
compliance has, a.o., been undertaken in [20-23]. Following [23], where damping is neglected and 
a single external excitation frequency is assumed, the problem may be formulated as    
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(11)

The symbol Cd stands for the dynamic compliance defined as , where P denotes the 
vector of amplitudes of a given external time-harmonic mechanical surface loading vector 

|dC  TP U |

( ) pi tt e p P with the prescribed excitation frequency p , and U represents the vector of 

magnitudes of the corresponding structural displacement response vector ( ) pi tt e a U . Thus, U 
and P satisfy the dynamic equilibrium equation included in (11) for the steady-state vibration at 
the prescribed frequency p . The two last constraint equations in (11) are the same as (1d,e). We 
note that the above expression for the dynamic compliance Cd represents the numerical mean 
value of the magnitudes of the surface displacement amplitudes weighted by the values of the 
amplitudes of the corresponding time-harmonic surface loading. For the case of static loading 
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( p = 0), the expression directly reduces to the traditional definition of static compliance, i.e., the 
work done by the external forces against corresponding displacements at equilibrium. 

s   is obtained in [23] by usage of the adjoint meth

3.1 Sensitivity analysis 
The following convenient expression for the sensitivity of the objective function F in problem (11) 
with respect to the design variable od  [24]. e

 .)(2)(2 2 UMKUPUUP TTT  pF                             (12)

3.2 Example 
We consider topology design for minimum dynamic compliance of a quadratic bi-material plate-
like structure (side length 0.020, thickness 0.001) with clamped edges [23]. A time-harmonic, 
uniformly distributed, transverse external load p(t) = Pcospt with P = 1 and prescribed loading 
frequency p is applied to the upper surface of the plate. The two materials available for the 
structure are the same as in the preceding example, and again the volume fraction of the stiffer 
material 1* is taken to be up to 50%. The plate is modeled by 3D 8-node isoparametric elements in 
a 40401 mesh to ensure sufficient accuracy of the computational results. Six prescribed 
different loading frequencies, p = 10, 100, 200, 300, 500 and 1000 are considered, which cover 
the designs from lower frequency level to high frequency level. (The fundamental eigenfrequency 
of the initial design with a uniform mixing of the materials is 1 = 95.) The results are shown in 
Fig. 4 with the stiffer and the weaker material indicated in black and grey, respectively. 

For each of the optimized designs shown in Fig. 4 it is characteristic that the resonance 
frequencies are far from the prescribed excitation frequency p , which implies efficient avoidance 
of resonance phenomena with large displacement amplitudes and low dynamic stiffness. 

                         
                                 (a) p = 10                         (b) p = 100                        (c) p = 200 

                         
                                 (d)   = 300                        (e)   = 500                       (f)   = 1000 p p p

Figure 4: Topological designs of clamped, quadratic bi-material plate-like structures obtained by minimizing 
the dynamic compliance for six different values of the prescribed external excitation frequency  . p 

4. Minimization of the sound radiation from a vibrating structure into an acoustic medium 

In this section, we consider topological design optimization of a vibrating bi-material elastic 
structure with the objective of minimizing the total sound power (energy flux)  radiated from the 
structural surface S into a surrounding acoustic medium. As in Section 3, the structural vibrations 
are assumed to be excited by an external, time-harmonic mechanical surface loading vector 
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( ) pi tt e p P  with prescribed excitation frequency p and amplitude vector P on S or part thereof. 
Assuming that damping can be neglected, the corresponding structural displacement response 
vector can be stated as pi te U , and the problem of minimizing  can be formulated as, cf.  [25], 
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The symbols pf and  in the expression for the total sound power  represent the acoustic 
pressure and the complex conjugate of the normal velocity of the structural surface. The first two 
constraint equations in (13) represent the structural-acoustic coupling equations (without incoming 
waves). Here, P

*
nv

f denotes the vector of amplitudes of the acoustic pressure on S, L represents the 
fluid-structural coupling matrix, and the matrices G, H and C can be generated by the discretized 
Helmholtz integral and calculation of the spatial angle along the structural surface (see e.g., [26]). 
These equations imply quite lengthy computations which must be carried out in each iterative step 
of the solution procedure. For simplification, one may consider the Rayleigh integral 
approximation if the vibration frequency has a sufficiently high value. Then the pressure and 
normal velocity on the structural surface approximately satisfy the linear relationship a a np cv , 
where c is the sound speed and a is the specific mass of the acoustic medium [27]. Considering 
air to be the acoustic medium, we may further ignore the acoustic pressure in the structural 
equation (i.e., assume weak coupling). This way, problem (13) can be simplified to a great extent, 

in the 
exam

 
materials 1* and 2* are uniformly mixed in the initial design, the fundamental eigenfrequency of  

 

see [25]. 
4.1 Example 
Consider now topological design for minimum sound radiation into air from a bi-material pipe-like 
structure with clamped ends and an external time-harmonic loading condition as shown in Fig. 5. 
The properties of the two materials and the volume fraction of material 1* are taken to be as 

ple in Section 3. The specific mass of the air is   f  = 1.2 and the sound speed c = 343.4. 
The pipe is modeled by 3D 8-node isoparametric elements in a 40201 mesh. The two

 
Figure 5: Clamped-clamped pipe-like structure (L=0.4, r=0.025, t=0.005) subjected to a concentrated 
harmonic load p(t) = Pcos p t  at the middle of its external surface. 
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(a) p = 5000                     (b) p = 15000              (c) p = 30000                (d) p = 50000 

Figure 6: Optimum topologies of bi-material pipe-like structures for four different excitation frequencies p 
 .

00, from 1.2510  to 2.3210  for p = 30000, 
and from 2.3910-6 to 7.8710-8 for p = 50000. 

and 
confirmed that considerable reduction can be achieved of structural vibration and noise levels. 

 in structural design using a 

grated structural topology and design 

, O. (2003): Topology Optimization: Theory, Methods and Applications,   

. (2001): Topology optimization of continuum structures: A review, Appl. 

erspectives. Copenhagen, 

dberg and R. 

ltidisc. Optim., 34, 91-
110. See also Publisher’s Erratum in Struct. Multidisc. Optim. (2007), 34, 545. 

which is found to be bimodal with 1 = 2 = 10985. The optimum topologies of the pipe for four 
different prescribed loading frequencies are illustrated in Figures 6 (a-d), where the stiffer material 
*1 is shown in black and the weaker material *2 in grey. In comparison with the initial design, the 
total sound power radiated from the optimum design is reduced from 8.1410-7 to 4.1110-8 for p 
= 5000, from 2.2810-6 to 4.5610-8 for p = 150 -4 -7

Concluding remarks 

A brief overview of the potential of applying topology optimization to passive design of structures 
against vibration and noise is presented in this paper. The design objectives include maximization 
of specific eigenfrequencies and distances between two consecutive eigenfrequencies of free 
vibrations, as well as maximization of the dynamic stiffness and minimization of the sound 
emission from structures subjected to forced harmonic vibrations. Numerical examples of topology 
optimization of some simple structures were carried out with these design objectives 
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