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Summary

Wind turbines operate in inflow turbulence whether it originates from the
shear in the atmospheric boundary layer or from the wake of other wind
turbines. Consequently, the airfoils of the wings experience turbulence in
the inflow. The main topic of this thesis is to investigate the effect of
resolved inflow turbulence on airfoil simulations in CFD.

The detached-eddy simulation technique is used because it can resolve
the inflow turbulence without becoming too computationally expensive due
to its limited requirements for mesh resolution in the boundary layer. It
cannot resolve the turbulence that is formed in attached boundary layers,
but the freestream turbulence can penetrate the boundary layer. The idea
is that the resolved turbulence from the freestream should mix high momen-
tum flow into the boundary layer and thereby increase the resistance against
separation and increase the maximum lift. However, it turns out that the
velocities in the inner part of the boundary layer only increase slightly, and
there is no effect on the obtained surface pressures or lift coefficients. It
appears that the resolved turbulence has a too large length scale to cause
the effect as seen in experiments. This indicates that it might be necessary
to run large-eddy simulations or direct numerical simulations to capture the
effect of inflow turbulence.

A method for imposing resolved turbulence inside the domain in a CFD
simulation is also presented. The idea is that by imposing the resolved
turbulence immediately upstream of the airfoil the total number of compu-
tational cells can be reduced, which in turn reduces the total computational
cost of the simulations. The method can be used in any simulation where
inflow turbulence is included and is therefore not limited to the applica-
tion investigated in this thesis. It is shown that synthetic turbulence can
be imposed successfully since the obtained turbulence accurately resembles
the synthetic field. The synthetic turbulence should be run through a very
short precursor simulation and it is best imposed by adding a term to the
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source terms of the discrete Navier-Stokes equations.
Finally, two methods for generating synthetic turbulence with different

characteristics are given. One is a semi-analytical solution to the cross-
spectral densities for turbulence in the atmospheric shear. The method
is based on the same theory as the Mann method. The second method
generates synthetic turbulence in arbitrary domains. The purpose is to
generate a synthetic turbulence field corresponding to the field encountered
by a rotating blade.



Dansk Resumé (Danish
Summary)

Vindmøller er placeret i det atmosfæriske grænselag, hvor de er udsat for
turbulens. Det gælder især møller i vindmølleparker, som rammes af køl-
vandet fra andre møller. Derfor opererer vingeprofilerne p̊a vingerne i en
turbulent strømning. I denne afhandling undersøges effekten af at opløse
indløbsturbulensen i profilberegninger med CFD.

Simuleringerne er udført som detached-eddy simuleringer (DES), fordi
det dermed er muligt at opløse fristrømsturbulensen uden at simuleringerne
bliver for tunge at køre, da kravet til netopløsningen i grænselaget ikke
er s̊a strengt. I DES opløses turbulensen der dannes i grænselaget ikke,
men turbulensen fra den fri strømning trænger ind i grænselaget. Idéen
er, at denne turbulens skal blande momentum fra den fri strømning ind
til bunden af grænselaget, hvilket vil øge modstandsevnen mod trykgra-
dienten, som ellers kan f̊a strømningen til at separere. Dermed øges det
maximale løft. Det viser sig dog, at hastigheden i den indre del af grænse-
laget kun p̊avirkes svagt af den opløste turbulens. Der er en lille stigning i
hastighed tæt p̊a forkanten, men længere nedstrøms er der ingen ændring.
P̊avirkningerne p̊a det beregnede løft og p̊a trykfordelingerne er ogs̊a meget
små. De opløste skalaer af turbulensen er forholdsvis store sammenlignet
med grænselagstykkelsen. Det vurderes, at det er nødvendigt at opløse de
små skalaer af turbulensen i grænselaget, og at det er dem, som samvirker
med fristrømsturbulensen i eksperimenter, hvor der observeres en effekt.
Det betyder, at det sikkert er nødvendigt at køre large-eddy simuleringer
eller direkte løse Navier-Stokes ligningerne uden brug af turbulensmodel for
at kunne forudsige effekten af fristrømsturbulens.

Der er udviklet en metode til at p̊atvinge opløst turbulens i et ønsket
omr̊ade inde i domænet i CFD simuleringer. Metoden kan anvendes iste-
det for den traditionelle fremgangsmåde, hvor turbulensen p̊atvinges p̊a
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indløbsranden. Metoden blev udviklet til at p̊atvinge opløst turbulens i
profilsimuleringerne, hvorved det totale antal celler kan reduceres til godt
det halve, hvilket reducerer beregningsbyrden betydeligt. Den kan dog ogs̊a
anvendes til andre typer simuleringer, hvor der p̊aføres opløst turbulens.
F.eks. kan den anvendes til studier af kølvandet fra rotorer, der opererer i en
turbulent strømning. Den opløste turbulens p̊atvinges bedst ved at addere
et led til kildeleddet i den diskrete udgave af Navier-Stokes ligningerne.
Den dannede turbulens viser meget god overensstemmelse med det p̊atrykte
felt. Det anbefales, at køre syntetisk turbulens gennem en kort precursor
simulering inden det p̊aføres, for at lade flowløseren tilpasse turbulensen til
nettet og den numeriske metode.

Endeligt er der udviklet to metoder til at generere syntetisk turbulens
med samme karakteristika som atmosfærisk turbulens og turbulensen som
den opleves af en roterende vinge. Den første metode giver en semi-analytisk
løsning til kryds-spektraltætheden af turbulensen i et forskydningslag. Den
er baseret p̊a samme teori som Manns metode, som ogs̊a anvendes i normen
for lastberegninger p̊a vindmøller. Den anden metode genererer syntetisk
turbulens i domæner med vilk̊arlig form. Den kan anvendes til at generere
et turbulensfelt, som svarer til det en roterende vinge vil møde. Rotationen
ændrer fordelingen af energi p̊a de forskellige frekvenser, og denne effekt kan
modelleres med den foresl̊aede metode.
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Chapter 1
Introduction

Wind turbines operate in the atmospheric boundary layer and are therefore
subjected to inflow turbulence. Especially, the turbines in wind farms can
experience high turbulence intensities when they are located in the wakes
of other turbines. The performance of the airfoil sections of the blades are
affected by the inflow turbulence. McKeough [6] and Hoffmann [7] both in-
vestigated the influence of turbulence on the NACA 0015 profile at Reynolds
number around 250, 000. They found that the inflow turbulence extended
the linear region of the lift curve and thereby increased the maximum lift.

While the effect is fairly easy to investigate in a wind tunnel it has not
received much attention from the CFD society. One might speculate that
this is due to the reason that the main applications of airfoils have been in
aeronautics and astronautics, and here the inflow is largely laminar.

The inflow turbulence has two effects on the boundary layer on the air-
foil. The first is to trigger the transition from laminar to turbulent boundary
layer. This effect can be predicted by transition models (e.g. the γ − Reθ

model [8, 9]) and the effect of increased turbulence is to move the tran-
sition point upstream which gives a lower lift of the airfoil. The second
effect of inflow turbulence is to increase the transport of momentum from
the free flow to the inner region of the boundary layer. This will increase
the resistance against adverse pressure gradients and thereby reduce the
separation at high incidences. The result is that the linear range of the lift
curve is extended and that the maximum lift is increased. This principle is
employed by vortex generators. From the experimental data from studies of
inflow turbulence it is clear that at least for the NACA 0015 the latter effect
dominates the first, since the observed effect is an increase in maximum lift.

The position of the transition point can be predicted by transition mod-
els on the basis of the modeled kinetic energy in the inflow. On the other
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hand, the transport of momentum to the inner region of the boundary layer
is caused by the eddies from the free flow entering and mixing the flow in
the boundary layer, and these eddies must be resolved to give the desired
mixing. Therefore, a turbulence resolving technique must be used to predict
both effects.

As will be discussed in Chapter 2, the large-eddy simulation (LES) and
direct numerical simulation (DNS) techniques have a prohibitively high com-
putational cost for them to be applied. Further, in simulations with the un-
steady Reynolds-averaged Navier-Stokes equations (URANS) the resolved
turbulence is suppressed by the high eddy viscosity. This leaves detached-
eddy simulation (DES) in which the turbulence outside the boundary layer
can be resolved and the boundary layer is treated by a URANS model.

Since the boundary layer in a DES is treated by an URANS model the
mesh resolution does not have to be fine enough to resolve the small tur-
bulence structures that forms in the boundary layer. However, the mesh
is fine enough to resolve the comparably large scales from the freestream
turbulence. The idea is to use DES with resolved inflow turbulence and let
the unsteady forcing from the LES region make the flow in the boundary
layer very unsteady, and thereby transport some of the freestream momen-
tum into the inner region of the boundary layer. This should give at least
some of the effect of freestream turbulence on the airfoil flow.

The development of DES was motivated by the flow over an wing [10].
Since then, it has frequently been applied to airfoil flows [11–16] where the
inflow turbulence was modeled by the turbulence model. DES has also been
applied to flows with multiple structures, where the wake from one structure
impinges on other structures. Some examples are the multi-element airfoil
in [15], the landing gear in [17], the tail of the fighter aircraft in [18], the
rod-airfoil configuration in [19], and the two wall-mounted cubes in tandem
[20]. These applications rely on the DES model to capture the effect of
inflow turbulence.

A measurement campaign in the LM Wind Tunnel was carried out by
LM Glasfiber in corporation with Risø-DTU [21–24]. They studied different
airfoils with and without a turbulence grid placed upstream of the airfoil.
The measured lift, drag and surface pressure will be used for comparison
with the simulated results. At high angles of attack where the airfoil is
stalled the flow is dependent on the geometry of the wind tunnel. This
dependency is typically minimized by applying wall corrections to the ob-
tained results, but in the present study it is decided to model the airfoil
in the tunnel. Thereby, the influence of the tunnel walls should be similar
in the experiment and in the simulations and the measured data can be
compared directly to the simulated results.

In the simulations the resolved turbulence is imposed at the inlet. This
gives a high computational cost compared to standard DES without resolved
inflow turbulence. To minimize this computational overhead some methods
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are developed to impose the resolved turbulence immediately upstream of
the airfoil. Further, two different techniques are developed for generating
synthetic turbulence with different characteristics.

Thesis Outline

The present thesis is a collection of papers. It consist of a technical report,
three journal papers and a conference paper, from which the main results
are presented and discussed over the first 49 pages of the thesis.

The main topic is the study of the effect of resolved inflow turbulence.
The methods applied in this study are described in Chapter 2. To validate
the method the spatial decay of homogenous, isotropic turbulence is inves-
tigated in Chapter 3. The main findings in the study are given in Chapter 4
where the main results from Paper I are given. It is concluded that the
effect of resolved inflow turbulence cannot be captured by the simulations.
Next, follows a description of the results obtained in the remaining papers.
Common for Paper II–IV are that the methods were intended to be used
with the airfoil flow, but they can be used in other situations as well. Fi-
nally, Chapter 6 presents the main conclusions from the study. The papers
are appended after the list of references.
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Chapter 2
Choice of Methods

For the simulation of the airfoil flow with resolved inflow turbulence a num-
ber of methods have been applied. Paper I describes and analyses the
outcome of the applied methods, but it only contains a short description of
the choice of methods. This chapter serves to give the full discussion of the
most appropriate methods for the problems encountered.

Prior to describing the different methods used, the computational setup
will be briefly presented. A sketch of the domain for the airfoil simulation
is shown in Figure 2.1. The domain models an airfoil in a wind tunnel. The
Reynolds number is 1.6 million. Symmetry boundary conditions are used on
the top and bottom boundaries to limit the flow without having to resolve
the boundary layer of a no-slip wall. For the same reason the boundaries in
the spanwise directions are periodic.

Inlet Outlet

Boundary layer

WakeConvection
regionregion

Buffer

Figure 2.1: Sketch of computational domain used in airfoil flow.

The sketch shows four different regions in the flow field. The turbulence
field is imposed at the inlet. The region between the inlet and the leading
edge of the airfoil is marked convection region and it has two purposes.
One is to determine the induced velocity field upstream of the airfoil and
therefore it must not be too short. The other is to transport the resolved
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turbulence from the inlet to the leading edge of the airfoil. This requires
a fine resolution of the domain to prevent a too high un-physical decay of
the resolved turbulence. The mesh in this region consists of cubic cells to
minimize numerical dissipation. Close to the walls of the airfoil the mean
velocity profile in the boundary layer is resolved by an ”O-mesh”. The wake
behind the airfoil is resolved with the same resolution as in the convection
region. Finally, in the region prior to the outlet the cells are stretched in the
streamwise direction to dampen the fluctuations and prevent recirculating
flow passing through the outlet.

2.1 Computational Tools

The Navier-Stokes equations are solved with the in-house CFD code Ellip-
Sys3D by Michelsen [25, 26] and Sørensen [27]. The code uses a structured
multi-block mesh with co-located variables and it is parallelized with MPI.

The HypGrid-code by Sørensen [28] is used for generating the two-
dimensional body-fitted ”O-mesh” used in the simulations of the airfoil.

The synthetic turbulence field used for the inflow is generated with Tu-
Gen, which is my implementation of Mann’s method [29] of generating syn-
thetic turbulence. It is described below and in [1].

2.2 Method for Generating Inflow Turbulence

The inlet boundary condition should contain a constant mean velocity field
superposed by a fluctuating turbulence field. The turbulence field is ob-
tained from synthetic turbulence which is then imposed on a precursor sim-
ulation. From the precursor simulation the turbulence is sampled and this
sampled field is used for the airfoil simulation.

To reduce the required length of the precursor simulation the synthetic
field should be a close approximation to the governing Navier-Stokes equa-
tions. Further, it should match the geometry and boundary conditions of
the computational domain. Therefore, the synthetic turbulence field should
satisfy these demands

• It should contain a time history of a two-dimensional field correspond-
ing to the inlet plane.

• Vector field should consist of three-dimensional velocity vectors.

• The three components of the velocities must be correlated to yield a
divergence free field.

• The turbulence field should be homogenous and isotropic.

• The velocity field should possess the correct correlation with a desired
integral length scale.

• The field should be periodic in the spanwise direction.
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The method of Mann [29, 30] satisfies all these demands and is therefore
chosen for generating the synthetic turbulence. The method is based on
the Fourier simulation technique by Shinozuka and Jan [31] and the rapid
distortion theory by Townsend [32]. The method has been implemented in
Fortran as described in the technical report [1], which contains a manual
and user’s guide for the program. The source code can be downloaded freely.

The method of Mann generates a three-dimensional frozen field of tur-
bulence. The discrete field consists of Nx × Ny × Nz points arranged in a
three-dimensional Cartesian grid. Due to the applied FFT algorithm the
field is periodic in all three directions. The field represents a realization
of a three-dimensional velocity field at a given instant vj(x, y, z, t = 0).
By application of Taylor’s hypothesis the frozen three-dimensional velocity
field can be considered as a time series of a two-dimensional velocity field
vj(x = 0, y, z, t). This time series of the two-dimensional velocity field is
exactly what is needed for the inlet boundary condition.

The synthetic turbulence fields generated by the method of Mann are
divergence free when isotropic turbulence fields are generated (see further
details in the technical report [1]). Further, the auto- and cross-correlation
agree with the theoretic correlation functions by von Karman [33].

The synthetic turbulence is run through a precursor simulation to let the
flow solver adapt the turbulence to the computational method and to the
mesh. In a plane orthogonal to the mean velocity the turbulent velocity field
is sampled in the precursor. The sampled turbulence field has an integral
length scale about 0.25c where c is the chord of the airfoil.

The sampled velocity field is scaled in intensity to vary the turbulence
intensity without changing the integral length scale. To obtain a desired
turbulence intensity all three velocity components are multiplied by a com-
mon factor a. As described in Chapter 3 the subgrid parameters (k and
ω) are determined from the precursor simulation. They are scaled with
the same factor a as used for the scaling of the three velocity components.
Since ksgs ∝ u2 the subgrid kinetic energy is scaled by a2. ω ∝

√
k/Lsgs

and thereby ω should be scaled by a since the subgrid integral length scale
is constant.

2.3 Simulation Technique

The argumentation for the choice of the DES technique is given in the
present section. First, the most common approaches for transient flows are
described followed by the choice of technique. Finally, the employed k − ω
SST subgrid model by Menter [34] is compared to the Smagorinsky model.



8 Chapter 2. Choice of Methods

2.3.1 Description of the methods

The candidates for the choice of method are the following unsteady tech-
niques. They are ordered after the level of detail contained in the solution
starting with the lowest level. Further, the computational burden is related
to the obtained detail. Therefore, the first listed methods are the cheapest
to run while the last has the highest computational burden.

URANS: Turbulence is modeled by the turbulence model. Only the
largest and slowest variations in the flow field are resolved. Small
scale turbulence is suppressed by the high eddy viscosity from the
turbulence model.

DES: Hybrid of LES and URANS where the switch between the two
branches is given by the mesh (and by the flow for the DDES technique
[15]). The original intent was to run URANS in the wall boundary
layers and in regions with laminar flow. In the regions of separation
and in the wake the flow is modeled by a LES model that resolves the
largest scales of the turbulence.

LES: The largest energy carrying scales of the turbulence are resolved and
the small scale turbulence is modeled by a subgrid turbulence model.

DNS: All fluctuations are resolved and hence no model for the turbulence
is used.

In Figure 2.2 a generalized sketch of an energy spectrum is shown. Three
ranges of wave numbers are marked. The wave number k = 2π/L is defined
from the dimension L of the eddies. (I) The largest energy carrying eddies.
The turbulence field receives energy from the mean flow and this energy is
pumped into the turbulence field at the largest scales. The largest eddies are

k

E(k)
I II III

Figure 2.2: Log-log sketch of energy spectrum divided into three domains: (I)
The largest energy carrying eddies where energy is added from the mean flow.
(II) Inertial subrange with isotropic eddies. (III) Smallest eddies dominated by
the molecular viscosity which extracts energy from the turbulence.
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therefore heavily influenced by the geometry of the flow. (II) In the inertial
subrange the eddies are isotropic. They dissipate energy from the largest
eddies and loose energy to the smallest eddies. The spectrum is linear in
this range in a double log representation and it has a slope of −5/3. (III)
The smallest scales are given by the molecular viscosity. In this range the
energy is dissipated into heat by the molecular viscosity.

The techniques URANS, LES and DNS can schematically be character-
ized by the range of wave numbers they resolve. In Figure 2.3 the three
methods are compared. In reality the boundary between the resolved and
modeled kinetic energy is not sharp as shown in the figure.

URANS: LES: DNS:

kkk

E(k)E(k)E(k)

Modeled

Modeled

Resolved

ResolvedResolved

Figure 2.3: Modeled and resolved scales for different turbulence modeling strate-
gies.

DES is based on the fact that LES is often too computational expensive
at industrial Reynolds numbers and that most of the cost originates from
the treatment of the boundary layer close to walls. In this region URANS
is quite successful with the fine tuned turbulence models, but URANS fails
to give the correct turbulence content in the separated regions. By creat-
ing a hybrid of the two techniques their advantages can be gathered in a
single method. The fine tuned turbulence model of URANS is used in the
boundary layer and the raw power of LES is used in the separated regions.

A single turbulence model is used in DES. In the URANS regions it
works like a standard turbulence model while in the LES regions it works as
a subgrid-scale (SGS) model. When using the Spalart-Allmaras turbulence
model the switch between the two branches of DES is obtained exclusively
through the grid spacing in the original formulation [10]. In the newer
DDES [15] also information from the computed flow field is used. Since
the switch in the original formulation is only dependent on the mesh it is
very dependent on competent users as it easily can be misused and run
on too coarse or too fine meshes. In these cases DES will yield unreliable
results. For the DES formulation based on the k−ω SST subgrid model the
conceptual difference between the original formulation [13] and the shielded
formulation [14] is less obvious, but still severe problems are encountered
if the mesh resolution is not adequate. This issue is further discussed in
Section 2.4.
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2.3.2 Choice of method

The choice of computational technique is simply to rule out the infeasible
approaches.

The method employed for the analysis in the present work should resolve
(some) turbulence. Hence, the URANS technique cannot be used as only
the very largest scales are resolved and the turbulence is suppressed by the
high eddy viscosity from the turbulence model.

In the original DES paper [10] a cost estimate is given for a full LES of
an airliner wing without separation. Inclusion of separation would increase
the cost. At Re = 6.5 × 106 the required number of cells is in the order of
1011 and the number of time steps is about 106. Thereby, this simulation
is estimated to be possible to run in a ”Grand Challenge” around year
2030. The span used in the computation was 8 chords, and the Reynolds
number is higher than in the simulations in Paper I. Still, correcting for
these differences the required number of cells in a LES of a section of the
airfoil spanning 1.5 chords at Re = 1.6× 106 would be about 2 × 1010. For
comparison 21 million cells were used in the DES presented in Paper I and
the wall time used for each simulation was several days. Therefore, it is
clearly infeasible to run full LES which have more than 103 times higher
computational cost.

The required cost also rules out the DNS technique. This leaves DES
which can resolve the largest scales of the turbulence except in the boundary
layer of walls where a URANS model is used.

2.3.3 Subgrid model

The k − ω SST subgrid model of Menter [34] is used in all computations.
It is chosen for its performance in predicting separation which is the most
important flow feature for the analyzed airfoil flow.

In the LES regions the k − ω SST model works as Smagorinsky-like
subgrid model, where the eddy viscosity approximately is proportional to
the absolute value of the strain rate tensor. In the Smagorinsky subgrid
model [35] the eddy viscosity is determined by

νsmag = (CS∆)
2 |S| (2.1)

where CS is the Smagorinsky constant, ∆ is the grid spacing and |S| is
the absolute value of the shear strain tensor. In [35] Smagorinsky suggests
a value of the constant in the range 0.1 − 1.0, but since then it has been
found to vary between 0.065 [36] and 0.25 [37]. In [38] Davidson derives the
constant to be 0.17.

To compare the applied k − ω SST model with the Smagorinsky model
the value of the Smagorinsky constant that should have been used to give
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the obtained eddy viscosity is determined. The equivalent Smagorinsky
”constant” is

CS =
1

∆

√

νsgs

|S| (2.2)

where νsgs is the eddy viscosity obtained from the k − ω SST model. In
Figure 2.4 the obtained values of the Smagorinsky constant are shown in the
airfoil simulation. For the applied k−ω SST model to work as a Smagorinsky
subgrid model the obtained eddy viscosity should be proportional to the
magnitude of the strain tensor and to the square of the grid spacing. This
in turn implies that the equivalent Smagorinsky ”constant” should in fact
be constant. As seen on the figure this is not the case, but in the free stream
it is not far from true. In the free stream far from the airfoil the average
value of the equivalent ”constant” is 0.21 with a variation coefficient in the
order of 15%. In conclusion the k − ω SST model works approximately like
the Smagorinsky model in the free stream.

0.1

0.2

0.3

Figure 2.4: Plot of instantaneous equivalent Smagorinsky ”constant”.

In the free stream far from the airfoil the cells are close to cubic, and here
obtained values agree quite well with the analytical value and the findings
of [36, 37]. Close to the airfoil an O-mesh is used, and at the corners of the
O-mesh the cells have high aspect ratios and stretching rates. Therefore,
the O-mesh is visible in the plot with values deviating from the values in
the cubic cells. Further, there is a difference in the definition of ∆ between
the Smagorinsky model where ∆ ≡ 3

√
∆x∆y∆z and the DES model where

∆ ≡ max(∆x, ∆y, ∆z).

2.4 DES Flavor

The original formulation of DES by Spalart et al. [10] used the Spalart-
Almaras turbulence model [39]. It was motivated by airfoil flows at high
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Reynolds numbers where LES is infeasible due to the required mesh reso-
lution in the boundary layer as discussed in Section 2.3.2. The intention
of the model is to activate the RANS branch of the model in boundary
layers and activate the LES branch in the separated regions. Thereby, the
detached eddies are resolved while the small eddies in the boundary layers
are modeled by the RANS model.

The original formulation will be denoted DES97 from this point as pro-
posed by [15]. In DES97 the choice of the LES or RANS branch is entirely
based on the mesh and the distance from the nearest wall though the switch

d̃ = min(d, CDES∆) (2.3)

which replaces the wall distance d in the destruction term of the original
Spalart-Allmaras turbulence model. ∆ is here defined as the maximum side
length of the cell instead of the typical definition in LES of 3

√
∆x∆y∆z. The

idea is that outside the boundary layer the destruction of eddy viscosity is
increased, which in turn reduces the eddy viscosity and allows LES content
to form in the solution. In the boundary layer the mesh is too coarse to
resolve the LES content so in this region the modeled stresses should prevail.

A concern of the DES97 formulation is the ”grey area” between the
RANS and the LES regions. If the mesh is fine enough to make the model
switch to the LES branch but too coarse to resolve the flow structures
and thereby generate resolved stresses there will be a lack of stresses. The
problem was clearest criticized by Menter and Kuntz [14] who showed that
excessive grid refinement leads to premature separation. To circumvent the
problem of grid induced separation (GIS) it was proposed to shield the
RANS layer by the F2 function of the k −ω SST model. The change might
seem small, but it is a qualitative change of the model. Now, the choice
of LES or RANS branch is not only governed by the mesh but also by the
computed flow. Spalart et al. [15] adopted the idea and used it with the
Spalart-Allmaras turbulence model and called the resulting model delayed
DES (DDES). The lack of modeled stresses is called modeled stress depletion
(MSD).

In Paper I the DDES formulation is used with the F2 shielding function
to prevent MSD. As will be shown in the following it is necessary for the
flow case of interest and with the applied mesh resolution.

In [40, 41] we used the DES97 formulation for the airfoil flow with tur-
bulent inflow. We believed the grid to be too coarse close to the wall to
cause any problems with MSD. We found the flow to be very dependent on
the intensity of the resolved inflow turbulence. An increase in the resolved
turbulence intensity decreased the maximum lift, which is contradicted by
experiments. There were two problems with results supporting that conclu-
sion, and these are stretched in the following.

First, we have found that it is not the resolved stresses that change
the solution but rather the modeled stresses. This is further outlined in
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Section 2.5 and Chapter 4. When the intensity of the resolved turbulence
field is increased the subgrid stresses also increase. It does not make sense
to scale the resolved turbulence without scaling the subgrid parameters as
well, so an effect of variations in subgrid parameters will appear as an effect
of the resolved stresses in a parametric study of the intensity of resolved
stresses.

Second, the simulations were carried out with the DES97 formulation
and they suffered from massive MSD and thereby GIS. We believed that the
grids used were too coarse to cause problems with MSD. After publication of
the papers we discovered upon a closer investigation that it was an erroneous
assumption. Simulations of airfoils with separations are especially prone
to MSD as the boundary layer thickens prior to separation. Thereby, the
boundary layer can grow to thicknesses of several percent of the airfoil chord
and still the entire boundary layer should be covered by the RANS region.

The MSD problem was further worsened by the high levels of the mod-
eled kinetic energy for the cases with high resolved kinetic energy. The
turbulence intensity corresponding to the subgrid kinetic energy is about
one quarter of the resolved turbulence intensity. With a resolved turbu-
lence intensity of 2% the modeled turbulence intensity is then 0.5%, which
is higher than the traditional range around 0.01%− 0.1%. The SST model
has a limit on the production of k intended to be active around the stag-
nation point. For the high eddy viscosity in this type of simulation the
limiter is also activated in a large region upstream of the leading edge. This
decreases the magnitude of k, which in turn lowers the modeled length scale
Lt = k1/2/(β∗ω) and thereby advances the switch to the LES branch.

The resulting RANS region in the DES97 of the airfoil flow is shown in
Figure 2.5. It is very thin and close to the separation point it only covers
the bottom of the boundary layer. Outside the RANS region the cells

Figure 2.5: RANS region and boundary layer in the DES97 formulation. The
RANS region is shown by the gray shading.
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are still considerable longer in the wall parallel direction than the distance
from the wall. Thereby, they are far too coarse to resolve even the largest
turbulence scales in this part of the boundary layer and consequently the
resolved stresses are low. Since the subgrid model has switched to the LES
branch the modeled stresses are also low, and the result is a general lack of
stresses.

Figure 2.6 shows the RANS region in a DDES where the RANS region
is shielded by the F2 function of the k − ω SST model. In this case the
RANS region covers the entire boundary layer and MSD is avoided.

Figure 2.6: RANS region and boundary layer in the DDES formulation where
the boundary layer is shielded by the F2 function of the k − ω SST model. The
RANS region is shown by the gray shading.

The differences in the computed airfoil characteristics are very large as
shown in the Figures 2.7 and 2.8. Figure 2.7 shows the computed lift curves
with a turbulence intensity of the resolved turbulence of 2%. The experi-
mental data is from the LM Wind Tunnel and they are further described in
Paper I. The simulations with the DES97 formulation give too low maximum
lift and a very short linear region which only extends up to angles of attack
about 8o. At higher incidences a trailing edge separation bubble starts to
form on the suction side. The DDES with the RANS region shielded by the
F2 function gives much higher lift and a longer linear region. Although the
shape of the lift curve is in better agreement with the experimental data,
the maximum lift is overpredicted.

The surface pressure and the skin friction for the flow at 16o angle of
attack are shown in Figure 2.8. It is clearly seen that the DES97 simulation
predicts the flow to separate much closer to the leading edge and thereby to
give a much lower suction peak the the DDES. The premature separation
is caused by MSD.
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Figure 2.7: Lift coefficient with and without shielding of the RANS layer. Mea-
surements are from the LM measurements described in [2, 21–24]. All simulations
are with 2% resolved turbulence intensity. No model for the laminar-turbulent
transition of the boundary layer is employed.
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Figure 2.8: Average surface pressure and skin friction at 16o incidence and with
2% resolved turbulence intensity. No model for the laminar-turbulent transition
of the boundary layer is employed.

2.5 Laminar-Turbulent Transition Model

In Paper I the local correlation-based transition model (LCTM or γ − Reθ

model) by Menter and co-workers [8, 9] is used to model the laminar-
turbulent transition of the boundary layer. In the recent review of tran-
sition models by Cheng et al. [42] the LCTM was found to be one of the
most promising transition models.

Although all presented results in Paper I are based on simulations with
the transition model several simulations have been run without a model for
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the laminar-turbulent transition. With no transition model the boundary
layer is assumed to be turbulent everywhere.

Figure 2.9 shows the viscosity profiles at three chordwise positions in
simulations of the airfoil flow with an angle of attack of 16o. It shows the
differences between the simulations with and without a transition model.
In both cases the freestream values of the eddy viscosity is 0.7νmol with
Tu = 0.1% and 14νmol with Tu = 2%. The largest difference between
the transition and fully turbulent simulations is at the chordwise position
x/c = 0.1. As shown in Chapter 4 and Paper I the transition model gives the
same viscosity profile at this location independent on the freestream eddy
viscosity for turbulence intensities up to 0.5%. Simulations with turbulence
intensities of 2% and 4% give an extra bump on the profiles at n+ ≈ 700,
which also can be seen in Figure 2.9. The overall picture is that there
is a moderate influence in the outer part of the boundary layer from the
freestream values but only for the highest freestream values of the eddy
viscosity. For the fully turbulent simulations the values in the outer part
of the boundary layer depend directly on the freestream eddy viscosity for
all turbulence intensities. As seen in the figure there is a large build up of
eddy viscosity with the high turbulence intensity.
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Figure 2.9: Average profiles of eddy viscosity at three chordwise positions. FT
denotes simulations without a model for the laminar-turbulent transition of the
boundary layer and TR denotes simulations with the local correlation-based tran-
sition model of Menter and co-workers [8, 9]. n+ is the distance from the wall
measured in viscous units.

At the position x/c = 0.5 the fully turbulent simulations have both
started to separate and this gives high eddy viscosities. Finally, at x/c = 0.9
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all four simulations have separated and they all show high levels of eddy
viscosity in the separation bubble.

In an effort to analyze the effect of the resolved inflow turbulence we
found that the velocities in the inner part of the boundary layer increased
with increasing turbulence intensity in fully turbulent simulations. The
effect was, however, found to depend only on the freestream values of the
eddy viscosity and not the resolved turbulence itself. The cause of the
higher velocity is the large values of eddy viscosity in the outer part of
the boundary layer causing a higher shear. Since the eddy viscosity is not
increased in the bottom of the boundary layer the result is a higher velocity
close to the wall.

When changing the resolved turbulence intensity also the parameters
of the turbulence model should change. Therefore, the effect of the re-
solved turbulence cannot be investigated independently from the effect of
freestream eddy viscosity in fully turbulent simulations.

By applying the transition model, the influence of the freestream eddy
viscosity on the boundary layer values is minimized. This allows an investi-
gation of the effect of the resolved turbulence itself with only low influence
of the subgrid model parameters at least for turbulence intensities up to
0.5%. Therefore, only results from simulations with the transition model
are presented in Paper I and Chapter 4.
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Chapter 3
Spatial Decay of Homogenous
Turbulence

One of the classic approaches for testing turbulence resolving codes or meth-
ods is to simulate decay of homogenous, isotropic turbulence. Excellent
experimental data was reported by Comte-Bellot and Corrsin [43, 44] who
measured the spectra at three positions in a wind tunnel. Thereby, the
evolution in the spectral characteristics was observed. By use of Taylor’s
hypothesis of a frozen turbulence field being convected with the mean flow
velocity the evolution in space can be thought of as an evolution in time.

This is the reasoning behind the typical approach of modeling decaying
turbulence employed in [13, 45]. The decay is modeled as a decay in time
rather than in space. A computational domain is initialized to a turbulence
field without a mean convective velocity. During the transient computation
the turbulence decays and the data are sampled to be compared to the
experiment.

In the airfoil simulation presented in Chapter 4 and Paper I the turbu-
lence is imposed at the inlet and then convected with the mean velocity to
the airfoil. For this application it is more relevant to study the spatial decay.
The main difference between the two approaches is the computational cost
for the two types of simulations. For the same resolution, the spatial decay
is more expensive to study than the temporal decay.

Below, the reasons for the difference in cost of simulating temporal vs.
spatial decay are given. Next, some results from the study of spatial decay
in Paper I are presented.
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3.1 Cost of Simulating Spatial vs. Temporal Decay

There are three reasons for the higher cost of simulating the temporal decay
then for simulating spatial decay.

First and most important, the size of the computational domain must be
larger for the study of spatial decay. When the temporal decay is studied the
computational domain is typically cubic with periodic boundary conditions
on all six sides. For the spatial decay the computational domain is typically
much longer in the streamwise direction than in the transverse directions.
For the same transverse dimensions the number of computational cells is
much higher in a simulation of spatial decay.

Second, the initialization time is longer. With the temporal simulation
the domain is initialized to some known turbulence field and then the sim-
ulation is run for a short time to let the turbulence field adapt to the mesh
and the numerical method. With the spatial decay the turbulence is im-
posed at the inlet and then convected with the convection velocity to fill
the domain. The statistics of the turbulence have not converged until the
entire domain is filled with turbulence.

Finally, since the turbulence field is convected through the computa-
tional cells in the domain, the fine structures are smeared out more than
in a simulation without a mean convective velocity. Spalart [15] argues
that eddies spanning less than five cells cannot be resolved. In Paper II
it is shown that eddies spanning up to about 10 cells undergo a high loss
of energy as they are being convected. Thereby, the obtained resolution is
coarser in a simulation of spatial decay than in temporal decay for the same
mesh resolution. In turn, it is required to use a finer spatial resolution in
a simulation of the spatial decay to obtain the same resolved scales as in a
simulation of the temporal decay.

3.2 Results

To validate the computational method it will be demonstrated that the
spatial decay of turbulence can be simulated. Two characteristics of the
turbulence will shown to agree with experiments. One is that the turbulence
decays with the correct rate as measured in the experiment by Comte-Bellot
and Corrsin [43]. The other is that the slope of the spectra at the highest
resolvable frequencies is −5/3 in a double log representation.

The computational domain consists of 1280 × 64 × 64 cubic cells. At
the inlet a turbulence field is imposed by prescribing the velocities to a
constant mean velocity superposed by the turbulence field. When synthetic
turbulence is imposed the corresponding fields of the subgrid parameters,
i.e. k and ω, are not known. In this case constant fields of k and ω are
prescribed.
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The simulation technique is DES with the k−ω SST subgrid model, but
since there are no walls, the DES model is run in LES mode throughout
the domain. The simulated rate of decay is shown in Figure 3.1 with the
thin full line. By comparison to the empirical slope it is seen that the decay
is too slow for just over the first half of a second. This is due to a poor
choice of subgrid parameters imposed at the inlet. The eddy viscosity is
too low which causes the rate of decay to be too low. However, it is seen
that after about 0.7 s the simulated rate of decay matches the empirical
rate, which gives the correct slope of the curve. The cause for this is that
over the first third of the domain the subgrid parameters have settled to
balance the resolved turbulence. This is quite encouraging, but the stretch
needed for the subgrid parameters to adjust to the resolved stresses makes it
worth the effort to run a precursor simulation to achieve the correct subgrid
parameters.

Next, it is verified that a turbulence field from a precursor simulation
will need a shorter initialization stretch. Velocities and subgrid parameters
are sampled from the simulation with the synthetic inflow turbulence and
guessed inlet values of the subgrid parameters. The sample plane is orthog-
onal to the mean flow direction and it is located in the midpoint between
the inlet and the outlet. In each time step the velocities and subgrid pa-
rameters are sampled in all cells crossing the sample plane. This gives a
time series which is imposed at the inlet of a new domain.

The results are plotted in Figure 3.1 with the thick full line. The inlet
velocities and subgrid parameters are sampled a distance x0 from the inlet
in the simulation with synthetic turbulence, and therefore the curve for the
simulation with precursor turbulence has been moved x0/U to the right. It
is seen that with the velocities and subgrid parameters from the precursor
simulation the turbulence shows the correct rate of decay from the inlet.
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Figure 3.1: Decay of resolved turbulent kinetic energy.
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Figure 3.2 shows the one-dimensional power spectra obtained from time
series sampled at some position in the two simulations with synthetic and
precursor inflow turbulence, respectively. For comparison the spectrum for
the synthetic turbulence field is included in the figure.

5 10 20 30 40 50

10−3

10−4

10−5

f [Hz]

S
1
1
[m

3
s−

2
]

Synthetic inflow

Synthetic, x/U = 1.1 s

Precursor, x/U = 2.1 s

−5/3 slope

Figure 3.2: Power spectra of turbulence sampled at two positions in the stream-
wise direction in the simulations using synthetic and precursor turbulence. For
comparison the power spectrum of the synthetic field is shown with the dashed
line.

Only the resolvable range of frequencies is shown. It is observed that at
the highest resolvable frequencies the slope is −5/3 as it should be in the
inertial subrange. This leads to the conclusion that the cut-off frequency is
in the inertial subrange as desired in LES. The range of resolvable frequen-
cies is quite narrow since the turbulence is isotropic and only 64 cells are
used in the transverse directions.

In conclusion the numerical method and the subgrid model give the
correct behavior of the spatially decaying turbulence. By running the tur-
bulence through a precursor simulation it is adopted to the mesh and the
computational method and appropriate values of the subgrid values are de-
termined.



Chapter 4
Detached-Eddy Simulation of
the Airfoil in Resolved Inflow
Turbulence

The main issue in the present thesis is the effect of resolved inflow turbu-
lence in detached-eddy simulations of an airfoil. It has been investigated in
Paper I and here the main conclusions are summarized. The details of the
numerical methods and the computational setup is given in the paper along
with a full discussion of the results.

The numerical setup is sketched in Figure 2.1. The airfoil is the sym-
metric NACA 0015 airfoil, which is chosen because of availability of exper-
imental data. The Reynolds number in the simulations is 1.6 million which
is in the lower end of practical Reynolds numbers for modern wind turbines.
The mesh is structured and consists of about 21 million cells.

4.1 Results

The main results from the simulations are presented below. In the Fig-
ures 4.1 and 4.2 the obtained lift and drag coefficients are plotted and
compared to two sets of experimental data. With no turbulence grid in
the LM Wind Tunnel the turbulence intensity is 0.4% [23]. With the two
grids the turbulence intensities have been measured to 1.2% and 1.5%. In
the experiment by Mish [46, 47] the turbulence intensity is 3.9%. The tur-
bulence length scales in the experiments and simulations are described and
discussed in Paper I.

The computed lift agrees quite well with the data by Mish. It falls
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somewhere in between the data from the LM tunnel without turbulence
grid and the data with turbulence grids. In the experiment by Mish the
drag was not measured. The computed drag compares well with the LM
data with grid 2 for incidences up to 18o. At higher angles of attack the
drag is overpredicted.
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Figure 4.1: Lift coefficient from simulations and measurements. The experimen-
tal data from the LM Wind Tunnel is described in [2, 21–24]. The data by Mish
is described in [46, 47].
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Figure 4.2: Drag coefficient from simulations and measurements. The experi-
mental data from the LM Wind Tunnel is described in [2, 21–24].

At angles of attack up to stall the differences in computed lift and drag
are small. At 18o the simulation with Tu = 2% gives spuriously low lift
compared to the simulations with Tu = 0.5% and Tu = 4%. At 20o the
simulations with Tu = 0.5% − 4% agree quite well again. In general the
differences are low up to 20o. Compared to the difference in lift curves from
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the LM experiments the simulated effect of resolved inflow turbulence is
discouraging.

Next, it is shown that the resolved turbulence does penetrate the RANS
region. In Paper I the velocity is sampled in four points close to the leading
edge of the airfoil. The positions of the four points are shown in Figure 4.3
which also shows the power spectra of the sampled time series. The in-
dicated cut-off frequency is based on the mesh resolution in the Cartesian
grid upstream of the airfoil, and marks the highest frequencies that can be
convected through the upstream convection region (c.f. Figure 2.1).
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Figure 4.3: Power spectra of velocity time series sampled in and near the bound-
ary layer. The RANS region is grey shaded.

The shown spectra are quite noisy because only relative short time series
have been sampled and they have not been averaged in the spanwise direc-
tion. Nevertheless, several tendencies can be identified. Most importantly,
the spectra are seen to contain energy on all resolvable scales for all four
points. Closest to the wall there is a build-up of energy, especially on the
large scales. The energy drops quite fast at higher frequencies than shown
in the plot. Due to the limited resolution in the convection region upstream
of the airfoil only eddies larger than about 5% of the chord impinge on the
airfoil.

Figure 4.4 shows the averaged profiles of velocity and viscosity. The
largest differences between the various simulations are in the outer part of
the boundary layer. Here the eddy viscosity is increased by the freestream
values as discussed in Section 2.5. In the inner part the velocity is increased
with up to 6%. The increase is not systematic, however, since the two
simulations with the highest turbulence intensities do not give the highest
increase in velocity. In these two simulations the freestream values of the
eddy viscosity cause the eddy viscosity profiles to differ strongly from the
simulation without resolved inflow turbulence.
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Figure 4.4: Averaged profiles of velocity and viscosity sampled on the suction
side at x/c = 0.1 and 16o incidence.

At positions further downstream the velocity increases do not persist.
Thereby, the resistance against separation is not increased as in the exper-
iments.

4.2 Discussion and Conclusions

From the results presented above it is concluded that the effect of freestream
turbulence was not captured by the presented DES. Contrary to the exper-
imental data a small decrease in maximum lift was found when increasing
the intensity of the resolved turbulence. The decrease in maximum lift can
be explained by the location of the transition point, which moves forward
as the subgrid kinetic energy is increased.

In nature the eddies from the freestream turbulence are convected into
the boundary layer where they help to mix high velocity fluid into the lower
part of the boundary layer. The increased momentum gives a higher resis-
tance against the adverse pressure gradient and thereby against separation.
In the simulations all resolvable scales of eddies are present in the boundary
layer, but due to the limited grid resolution the diameter of the smallest ed-
dies are comparable to the boundary layer thickness. Nevertheless, slightly
higher velocities have been observed in the lower part of boundary layer
close to the leading edge. The velocity increase does not persist, however,
and the effect on the maximum lift is absent.

To capture the effect of inflow turbulence it might be necessary to re-
solve the turbulence in the boundary layer in LES or even DNS of the
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airfoil. Sadly, these techniques are not applicable for wind turbine blades
at industrial Reynolds numbers.
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Chapter 5
Related Work

The results and conclusions from Paper I were discovered late in the PhD-
project period. We had expected that the DES could capture (some of)
the effect of the inflow turbulence, so we had already started to prepare for
a study of the influence of the turbulence characteristics. The work was
carried out on two fronts. First, we have created a method for imposing
the resolved turbulence inside the domain of CFD simulations, which can
be used to reduce the computational cost of the simulations. It is presented
in Paper II. Second, two methods for generating the synthetic turbulence
have been developed. They are presented in Paper III and IV.

Although, the methods will not be applied in this study of the effect of
inflow turbulence the effort is not wasted. They can be applied to a number
of other applications which will be highlighted below. The three methods
are described and summarized in each of the following sections.

5.1 Imposing Resolved Turbulence Inside Domains

The computational cost of the DES presented in Chapter 4 is very high. To
reduce this cost a method for imposing the resolved turbulence immediately
upstream of the airfoil is developed. The method is described below along
with results to verify the approach. Finally, two examples of applications
are given.

5.1.1 The Basic Idea

A sketch of the computational domain used in the DES of the airfoil is
shown in Figure 2.1. The computational cost for the presented DES with
resolved inflow turbulence is far higher than for a standard DES without
inflow turbulence. The reason is that when the turbulence field is imposed



30 Chapter 5. Related Work

on the inlet boundary the mesh resolution in the convection region must
be fine enough to resolve the turbulence as it is convected from the inlet
to the airfoil. 6.3 million cells are used in the convection region of the
computational mesh in the DES of the airfoil flow, which corresponds to
one third of the total number of cells.

The basic idea motivating the presented methods is to impose the re-
solved turbulence immediately upstream of the leading edge of the airfoil as
indicated in Figure 5.1. Now, the inflow turbulence should only be resolved
while it is convected the short distance from the actuator plane to the lead-
ing edge of the airfoil. A coarse mesh resolution can be used upstream of the
actuator plane because now only the steady mean flow has to be resolved.

Inlet Outlet

Boundary
layer

WakeInduction
region

Buffer
region

Actuator
plane

Figure 5.1: Sketch of computational domain used in airfoil flow.

Then, the problem is to impose resolved turbulence inside the computa-
tional domain in a CFD simulation.

5.1.2 Two Approaches

Two different approaches for imposing the resolved turbulence are inves-
tigated. Both are aiming to impose a given turbulence field and not just
some realization of a turbulence field with specified statistics.

The first approach is to modify the source term of the discrete Navier-
Stokes equations. By specifying a given change in the source term it is
possible to prescribe a desired change of the velocity vector in each com-
putational cell crossed by the actuator plane. The second approach is to
use the actuator disc model derived and implemented by Réthoré [48] to
subject the flow field in each cell to some resulting force. By choosing the
appropriate force vector, a desired velocity can be obtained some distance
downstream of the actuator.

Both approaches are described in detail in Paper II where the modifica-
tion to the source term and the required forces are derived.

5.1.3 Results

The computational domain used to verify the approaches are shown in Fig-
ure 5.2. As seen from the figure the flow is steady and laminar upstream of
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the actuator plane where the turbulence is imposed.

Inlet Outlet

Source terms modified here

Figure 5.2: Instantaneous iso-vorticity contours. Precursor turbulence is im-
posed by modifying the source terms.

Figures 5.3 and 5.4 compare the resolved turbulence sampled some dis-
tance downstream of the actuator to the target field. The imposed turbu-
lence field has been sampled from a precursor simulation. The averaged
power spectra plotted in the figures show that both methods can recreate
precursor turbulence with good accuracy. The indicated cut-off frequency
is based on the mesh resolution. The method of the actuator disc gives too
low energy on the highest resolvable frequencies especially for the stream-
wise component. Also, the energy on the largest scales is slightly too low.
In contrast, when the turbulence is imposed by the method of modifying
the source terms the sampled field compares perfectly with the target for
all resolvable frequencies.
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Figure 5.3: Precursor turbulence imposed by modifying the source terms. Com-
parison of power spectra of imposed and sampled time series. The u and w
components have been moved two decades up and down, respectively.

The good results described above were obtained from imposing precursor
turbulence. In this case the imposed turbulence field satisfies both the
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Figure 5.4: Precursor turbulence imposed by an actuator. Comparison of power
spectra of imposed and sampled time series. The u and w components have been
moved two decades up and down, respectively.

continuity condition and the discrete Navier-Stokes equations. Further, it
contains only low energy on frequencies higher than what can be resolved by
the mesh and the numerical method. These characteristics have been found
to be important for the ability of both methods to recreate the imposed
turbulence field.

In Figure 5.5 the power spectra are shown for an attempt to impose
synthetic turbulence. The turbulence has been generated by the method of
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Figure 5.5: Synthetic turbulence imposed by modification of source terms. Com-
parison of power spectra of imposed and sampled time series. The u and w com-
ponents have been moved two decades up and down, respectively.
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Mann [29] as described in Section 2.2 and the technical report [1]. As seen
from the figure there is a significant loss of energy for the largest decade
of resolvable frequencies for the streamwise component. For the two other
directions the loss is quite low. Turbulence imposed by the actuator disc
shows the same tendencies, but the results are even worse.

In many applications of a precursor simulation the purpose is to deter-
mine the inlet velocity profile and let the turbulence form from the basis of
small disturbances. This type of precursor simulation is very computation-
ally expensive because a long stretch is needed or the simulated time should
be long. This type of precursor was e.g. employed by Bechmann [45]. In
contrast, the precursor needed to prepare the synthetic turbulence field for
being imposed by the methods applied here can be very short.

In Figure 5.6 the required length of the precursor simulation is investi-
gated. A precursor simulation is run where the synthetic turbulence field
is imposed at the inlet. In the five first layers of cells after the inlet the
turbulence field is sampled and these five fields are then imposed by the
method of the modified source terms. The turbulence fields obtained from
imposing these five fields are compared to the original synthetic field in the
figure. Only the streamwise component is plotted, as this was found to be
the troublesome one. It can be observed that perfect results are obtained by
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Figure 5.6: Precursor turbulence imposed by a modification of the source
terms. Power spectra from simulations with turbulence from precursors of dif-
ferent lengths are compared to the same synthetic field. The spectra have been
separated vertically by two decades for clarity.
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running the synthetic turbulence through a precursor where the turbulence
is sampled again after five cells in the streamwise direction. This allows a
very cheap precursor to be used, as the total number of cells needed in the
streamwise direction is around 20 − 50.

Because the results with the method of the actuator disc are not as good
as the method with the modified source terms, the latter is recommended.
Further, it is recommended to run the synthetic turbulence field through a
short precursor simulation before it is imposed.

To give an impression of the accuracy of the methods, the streamwise
component of a sampled field is compared to the target time series in Fig-
ure 5.7. The sampled velocities compare very well to the target. The error
in obtained standard deviation is less than 1% and the average correlation
coefficient is about 0.97.
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Figure 5.7: Time series of target and sampled streamwise velocity. Precursor
turbulence is imposed by the modification of the source terms.

5.1.4 Possible Applications

In general the proposed method can be applied to all simulations where
resolved turbulence is imposed upstream of a region or structure of interest.
A few examples are given below.

The intended application of the method described above was to reduce
the computational cost of the airfoil simulations by reducing the required
number of cells upstream of the airfoil. Figure 5.8 shows the instantaneous
magnitude of the vorticity vector in an airfoil simulation with the turbulence
imposed by the actuator.

The number of cells has been reduced by 45% as a direct consequence of
that it is not necessary to resolve the turbulence upstream of the actuator.
This reduction has been obtained without decreasing the mesh resolution
close to the airfoil.
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Stretched

cells

Actuator

Figure 5.8: Vorticity plot from a DES of an airfoil. From [49].

The results from Paper I showed that the performed DES could not
capture the effect of the resolved inflow turbulence. However, if the effect
is studied with LES at lower Reynolds numbers the presented method of
imposing the resolved inflow turbulence would severely reduce the compu-
tational cost.

Another application is the study of wakes of rotors in turbulent flow as
performed by Troldborg [50] and Mikkelsen [51].

5.2 Three Dimensional Turbulence Modeling in Shear

Flow

Paper III gives a semi-analytical model for the auto- and cross-spectra of
turbulence in shear flow. The method is based on the rapid distortion theory
by Townsend [32]. Below, the background for the model is given along with
a description of the findings. Finally, some examples of applications are
presented.

5.2.1 Background

A method for determining extreme loads on wind turbines is prescribed
by the design requirements IEC61400-1 Ed. 3 and its first amendment.
The method includes to run six or 15 aeroelastic simulations of 10 minutes
duration for each wind velocity and then to extrapolate the obtained loads
to characteristic loads with a 50 year return period. The ratio of simulated
time to the desired return period is therefore very high, and the tails of the
probability density functions are poorly represented.
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Alternatively, the Russian roulette and splitting technique described by
Pradtlwarter and Schüeller [52] can be used to predict the low probabilities
of failure. Here, a better determination of the tails of the probability dis-
tributions can be obtained, and consequently, the characteristic loads can
be estimated with better accuracy. With this technique, the synthetic tur-
bulence should be determined ”on-the-fly” in the aeroelastic simulations.
With the Mann [29] or Sandia methods [53] the entire turbulence field is
generated prior to the simulating the response. In contrast, ARMA or state
space modeling by Sictani et al. [54] can be used to generate turbulence
”on-the-fly” in load calculations.

The auto- and cross-spectral densities are needed as input to the ARMA
or state space model, and in Paper III a semi-analytical model for the auto-
and cross-spectra of turbulence is derived.

5.2.2 Description of the model

The work is based on the rapid distortion theory by Townsend [32], which
is also the foundation for the method of Mann. The cross-spectral density
function can be written as a double integral of the shear spectral tensor. In
Paper III an approximation of the integrand is introduced in the form of a
truncated Fourier series expansion of second order. From this approximation
it is possible to evaluate the inner integral analytically, which leaves a single
integral for numerical integration. Thereby, the calculation time can be
reduced severely, as about 85 % of the function evaluations of parameters
entering the integrand can be omitted.

5.2.3 Applications

Besides the application highlighted in Section 5.2.1 above, the presented
method can be used to generate the auto- and cross-spectra for the Sandia
method [53] of generating synthetic turbulence. By this approach the gen-
erated turbulence would match the properties of the turbulence generated
by Mann’s method [29] which by Saranyasoontorn et al. [55] was found to
give a more realistic coherence of the turbulence.

With the Sandia model the turbulence field consists of time series of tur-
bulence from a number of points, and these points can be placed freely. With
the Mann method these points must be placed in a Cartesian grid due to
the application of three-dimensional FFT algorithm. For load calculations
on structures with low solidity (e.g. suspension or cable-stayed bridges) it
is an advantage that the points can be placed only where the turbulence is
needed and not in the free air between the structural elements.

Further, the semi-analytical model for the auto- and cross-spectra pre-
sented here can be used with the method for generating synthetic turbulence
described in Section 5.3 and Paper IV. The semi-analytical model gives the
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auto- and cross-spectral densities which in turn can be transformed to the
auto- and cross-correlation functions by application of the Wiener-Khinchin
relation. Now, a model for the correlation in a sheared turbulence field
is available. In the method described below the physics of the generated
turbulence is defined by the auto- and cross-correlation. Hence, by using
the semi-analytical model for sheared turbulence it is possible to generate
anisotropic turbulence with the method described below.

5.3 Synthetic Turbulence in Arbitrary Domains

The present section describes a method for generating synthetic turbulence
in arbitrary domains. At first the intended application is described. It is
well known that turbulence sampled by an anemometer mounted on the
tip of a rotating wind turbine blade will show different characteristics than
turbulence sampled by a stationary anemometer. The effect was studied
by Connell [56]. Figure 5.9 shows the difference in power spectra obtained
depending on whether the sampling point is stationary or if it rotates as on
a rotor.
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Figure 5.9: Power spectral densities for turbulence sampled by two different
anemometers. One is stationary, while the other is mounted on a rotating blade
of a wind turbine.

At integer multiples of the rotational frequency there is a peak in the
spectrum, and at high frequencies there is a general increase in the energy.
The intensity of the peaks and the amplification at high frequencies depend
on the radius of motion, the turbulence length scale and on the mean wind
velocity.

A section of a rotating blade of a wind turbine encounters turbulence
with the spectral characteristics as shown in the figure. Therefore, it was
decided to investigate the influence of this turbulence on the flow over an
airfoil by CFD simulations. Below, a description is given of the effort to
generate a synthetic turbulence field that could be used as inflow turbu-
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lence for such a simulation. The generated method is described in detail in
Paper IV.

5.3.1 Motivation

Figure 5.10 shows the turbulence encountered by a rotating section of a
wind turbine blade. This turbulence field should be generated synthetically
and a very high resolution is desired in the covered three-dimensional spiral.
In turn, the turbulence in points not covered by the spiral is irrelevant.

U

t, x1

x2

x3

Figure 5.10: Realization of turbulence field generated by the proposed method.
The shown domain contains only 4 × 4 discrete points that move in time.

The two most common techniques for load calculations of wind turbines
are the method of Mann [29, 30] and the Sandia method by Veers [53].
They can both generate turbulence fields covering the entire rotor, and in
principle it would be possible to obtain the shown spiral by interpolating
in a full field determined by one of these methods. The problem, however,
is that in order to get a fine resolution in the desired region the required
number of points becomes prohibitively high. The limitation is in a very
high demand for computer memory as shown in Example 2 in Section 5.3.3.

The Mann method is the more efficient of the two, but it is based on
three-dimensional FFT. Thereby, the points in the discrete domain must be
placed in a equidistant Cartesian grid. Consequently, the same resolution



5.3. Synthetic Turbulence in Arbitrary Domains 39

must be used everywhere in the rotor plane. For the present application a
very high resolution is needed in the spiral shown in Figure 5.10, while the
rest of the rotor plane is not needed. Thereby, a very large percentage of
the generated turbulence is dispensable and a pure waste of computational
effort.

To overcome this problem the domain is resolved into a number of points
that are allowed to move in time. Thereby, the domain in Figure 5.10
contains only 4× 4 points that move with the rotor. This gives a very large
saving in computational effort for the present application as only the desired
part of the turbulence field is generated.

5.3.2 Description of the Method

In essence the proposed method is similar to the Sandia method by Veers [53]
but with one important difference. In the Sandia method the spectral ma-
trix is determined analytically based on an auto-spectral density and a co-
herence function. Next, the spectral matrix is factored and multiplied by
complex random numbers. Finally, the result is Fourier transformed to give
a realization of the turbulence field. The method proposed here determines
the spectral matrix based on correlations, but the rest of the algorithm is
the same as in the Sandia method.

The spectral matrix is determined from the following steps. First, the
domain is resolved into a number of discrete points in each time step. The
second step is to compute the correlation between two velocity vectors sep-
arated by the distance traveled by each point since the initial state. Finally,
the spectral matrix is determined from the correlations by use of the Wiener-
Khinchin relation. By following this approach the auto- and cross-spectral
densities are determined for the target turbulence field sampled in the dis-
crete points. The method is derived and described in detail in Paper IV.

The correlation functions employed in the paper are valid only for iso-
tropic turbulence. However, atmospheric turbulence is not isotropic and to
generate anisotropic turbulence with the presented method the auto- and
cross-correlation functions for sheared turbulence are needed. From the
method of Paper III and Section 5.2 the auto- and cross-spectral densities
of sheared turbulence can obtained, and by use of the Wiener-Khinchin
relation these can be transformed to correlation functions. Thereby, it is
possible to generate synthetic turbulence which matches the statistics of
turbulence as prescribed by the IEC61400-1 code for load calculations of
wind turbines.

5.3.3 Examples

Two examples are given below. The first serves to validate the method
while the second should demonstrate the large difference in required memory



40 Chapter 5. Related Work

compared to the Mann method.
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Figure 5.11: Correlation of streamwise velocity along the rotating blade of Ex-
ample 1. The radial position on the blade is denoted r and L is the turbulence
length scale.

Example 1: Turbulence is generated along a single rotating wind tur-
bine blade. The length of the blade is 50 m and the turbulence length scale
is 42 m. To validate the method the correlation along the blade is computed
and compared to the theoretical function by von Karman [33]. The result-
ing curves are shown in Figure 5.11 and the agreement is seen to be very
good. Further, the power spectral density is computed for the time series
of streamwise velocity sampled at the tip of the blade. In Figure 5.12 it is
compared to the theoretic spectrum by Connell [56]. The computed spec-
trum has been averaged over 100 realizations and it compares well with the
target spectrum. For comparison the target power spectrum of velocities
sampled in a stationary point by von Karman [33] is included in the plot.
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Figure 5.12: Auto-spectral density of turbulence sampled at the tip of the ro-
tating blade.

Example 2: Turbulence is generated in a domain like the one shown
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in Figure 5.10 to demonstrate the large difference in required computer
memory for the present approach and the method of Mann. The domain
contains 8 × 8 moving points and 512 time steps are simulated in a single
revolution of the rotor. The domain covers an area of 1 × 1 m2 in each
time step and the radius of the covered spiral is 40 m. To generate this
field a system matrix of 72 MB should be allocated. To generate a synthetic
turbulence field with the method of Mann with the same spatial resolution
it would be necessary to allocate 4.3 GB. This large number arises from the
need to use the same fine spatial resolution over the entire rotor area.
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Chapter 6
Conclusions

The effect of resolving inflow turbulence in detached-eddy simulations of
an airfoil is investigated. The method of Mann is implemented and used
for generation of synthetic turbulence. The synthetic field is run through a
precursor simulation, which adapts the field to the mesh and the numerical
method. In a study of the spatial decay of precursor turbulence it is shown
to decay with the correct rate, and the cut-off frequency is shown to be in
the inertial subrange.

The flow past an airfoil in a wind tunnel is simulated using the DES
technique with the k −ω SST subgrid model. The resolved turbulence field
is imposed at the inlet and convected with the mean wind velocity to the
leading edge of the airfoil. The LES-branch of the DES model is active in
the freestream region and here the SST subgrid model is shown to work
similar to the Smagorinsky model. The RANS region close to the airfoil is
shielded by the F2 function of the SST model to prevent the switch from
RANS to LES to occur in the boundary layer.

Experiments have shown two effects of an increase in the inflow turbu-
lence intensity. One is to increase the maximum lift, which can be explained
by a higher transport of high-momentum flow to the inner part of the bound-
ary layer caused by the mixing from the turbulence. The other is to move
the laminar-turbulent transition point upstream, which isolated seen will
decrease the maximum lift. The latter effect is observed in the results from
the DES simulations. The increase in momentum in the inner part of the
boundary layer is not captured by the simulations. This is probably due
to the relatively large length scale of the resolved turbulence that it is pos-
sible to resolve in the boundary layer. With the DES model, small scale
turbulence cannot be resolved in the boundary layer, and these small scales
might be responsible for the effect observed in experiments. This indicates
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that it may be necessary to run LES or even DNS to capture the effect, and
these methods are not applicable at industrial Reynolds numbers.

In the literature there are a number of applications of DES where the
wake from one structure impinges on another structure. In these flows
the DES model cannot be expected to predict the correct response of the
boundary layer to the resolved inflow turbulence. The results will reflect
the variations in inflow velocity, but not the physical interference from the
resolved turbulence. Therefore, a word of caution is given for these appli-
cations of DES for bluff body flows with separation.

The computational cost is very high for the DES of the airfoil flow. To
reduce the cost a method is developed to impose the resolved turbulence
immediately upstream of the leading edge of the airfoil. Two methods
are investigated. One is to modify the source terms of the Navier-Stokes
equations and the other is to apply forces with an actuator disc. The best
method is found to be the modification of the source terms, which is also
the easiest method to implement. It is possible to recreate a turbulence field
from a precursor simulation with good accuracy. If synthetic turbulence is
imposed, it is recommended to run the turbulence through a short precursor
simulation. The precursor is very cheap to preform, as the turbulence can
be sampled only five cells from the inlet.

Two methods are developed for generation of synthetic turbulence with
characteristics resembling the atmospheric turbulence. The first generates
the cross-spectral density function of sheared turbulence. It is based on
the rapid distortion theory, which also is the foundation for Manns method
which is adopted by the IEC61400-1 code for load calculations of wind
turbines. The cross-spectral density is defined from a double integral and by
several manipulations with the integrand an analytical solution to the inner
integral is given. This leaves a single dimension for numerical integration.
The saving in computational cost is about a factor of 5 compared to the
double integral.

Finally, a method for generation of synthetic turbulence in arbitrary do-
mains is presented. Like in the two frequently used methods by Mann and
Veers the domain is resolved into a number of points, where the velocity is
determined. The big difference from these methods is that the points are
allowed to move in time. Thereby, it is possible to resolve the turbulence
encountered by section of a rotating blade with relative few points, which
in turn saves computational cost. The method can generate synthetic tur-
bulence with the correct spatial correlation and the correct spectral density
function.



Bibliography

[1] Gilling, L. (2009) TuGen - manual and user’s guide. DCE Technical
Report No. 76, Aalborg University, Aalborg, Denmark.

[2] Gilling, L., Sørensen, N. N., and Davidson, L. (2009) The effect of re-
solved turbulence in detached-eddy simulations of an airfoil. Submitted
to Wind Energy.

[3] Gilling, L. and Sørensen, N. N. (2009) Imposing resolved turbulence in
CFD simulations. Submitted to Wind Energy.

[4] Gilling, L., Pedersen, B. J., and Nielsen, S. R. K. (2009) Three di-
mensional turbulence modeling in shear flow with application to wind
turbines. Submitted to Wind Energy.

[5] Gilling, L., Nielsen, S. R. K., and Sørensen, N. N. (2009) Genaration
of synthetic turbulence in arbitrary domains. 10th ICOSSAR 2009 ,
Osaka, Japan, September 13–17, CRC Press.

[6] McKeough, P. J. (1976) Effects of Turbulence on Aerofoils at High
Incidence. Ph.D. thesis, University of London.

[7] Hoffmann, J. A. (1991) Effects of freestream turbulence of the perfor-
mance characteristics of an airfoil. AIAA Journal , 29, 1353–1354.

[8] Menter, F. R., Langtry, R. B., Likki, S. R., Suzen, Y. B., Huang, P. G.,
and Völker, S. (2006) A correlation-based transition model using local
variables – part I: Model formulation. Journal of Turbomachinery, 128,
413–422, DOI: 10.1115/1.2184352.

[9] Langtry, R. B., Menter, F. R., Likki, S. R., Suzen, Y. B., Huang, P. G.,
and Völker, S. (2006) A correlation-based transition model using local
variables – part II: Test cases and industrial applications. Journal of
Turbomachinery, 128, 423–434, DOI: 10.1115/1.2184353.



46 Bibliography

[10] Spalart, P. R., Jou, W.-H., Strelets, M., and Allmaras, S. R. (1997)
Comments on the feasibility of LES for wings, and on a hybrid
RANS/LES approach. Liu, C. and Liu, Z. (eds.), 1st AFOSR Interna-
tional Conference on DNS/LES , Columbus OH, August, pp. 137–147,
Greyden Press.

[11] Shur, M., Spalart, P. R., Strelets, M., and Travin, A. (1999) Detached-
eddy simulation of an airfoil at high angle of attack. Engineering Tur-
bulence Modelling and Experiments , 4, 669–678.

[12] Strelets, M. (2001) Detached eddy simulation of massively separated
flows. 39th AIAA Aerospace Sciences Meeting and Exhibit , Reno, NV,
January 8–11, AIAA Paper 2001-0879.

[13] Travin, A., Shur, M., Strelets, M., and Spalart, P. R. (2002) Physical
and numerical upgrades in the detached-eddy simulation of complex
turbulent flows. Advandes in LES of Complex Flows , pp. 239–254.

[14] Menter, F. R. and Kuntz, M. (2003) Adaptation of eddy-viscosity tur-
bulence models to unsteady separated flow behind vehilces. Proceeding
Conference on the Aerodynamics of Heavy Vehicles: Trucks, Busses
and Trains .

[15] Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M. K.,
and Travin, A. (2006) A new version of detached-eddy simulation, resis-
tant to ambiguous grid densities. Theoretical and Computational Fluid
Dynamics , 20, 181–195.

[16] Bertagnolio, F., Sørensen, N. N., and Johansen, J. (2006) Profile cata-
logue for airfoil sections based on 3D computations. Tech. Rep. Risø-
R-1581(EN), RISØ National Laboratory, Roskilde.

[17] Hedges, L. S., Travin, A. K., and Spalart, P. R. (2002) Detached-eddy
simulations over a simplified landing gear. Journal of Fluids Engineer-
ing, 124, 413–423, DOI: 10.1115/1.1471532.

[18] Cummings, R. M., Forsythe, J. R., Mortor, S. A., and Squires, K. D.
(2003) Computational challenges in high angle of attack flow prediction.
Progress in Aerospace Sciences , 39, 369–384, DOI: 10.1016/S0376-
0421(03)00041-1.

[19] Greschner, B., Thiele, F., Jacob, M. C., and Casalino, D. (2008) Pre-
diction of sound generated by a rod-airfoil configuration using EASM
DES and the generalised Lighthill/FW-H analogy. Computers and Flu-
ids , 37, 402–412, DOI: 10.1016/j.compfluid.2007.02.013.



Bibliography 47

[20] Paik, J., Sotiropoulos, F., and Porté-Agel, F. (2009) Detached eddy si-
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An implementation of Mann’s method of generating synthetic turbulence is described. A
brief introduction to the method is given prior to some details on the implementation. Sev-
eral tests to verify the implementation follows and finally the use of the program is described.

The code is written in Fortran 90 in a very 77-like form. It is printed in Section 5 and
available for download from:

http://vbn.aau.dk/fbspretrieve/18432733/Fortran_code_for_download.zip

Please note the comment given in Section 5 on page 15. If you have any comments or
questions, please feel free to contact me on my e-mail:

lassegilling@hotmail.com

Disclaimer The program, source code and this document is gives "as is". There are no
known errors, but no warranty is given. In no event shall the author or Aalborg University
be liable for any damages caused.
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1 How it Works

The program is based on the paper by Mann (1998). There are however some points not
addressed in the paper, which are necessary to produce real and divergence free turbulence
fields. These issues will be discussed in the following.

1.1 The Method

The method is based on Fourier transform of wave number vectors. Thereby, the velocity
field consist of the sum of a large number of linear waves as the one illustrated in Figure 1.
If the physical domain is resolved into N1×N2 ×N3 points the wind field will consist of the
sum of N1 ×N2×N3 many linear waves.

kkk

x1

x2

x3

a

”wavefront”

Figure 1: A single linear component of the wind field. kkk is the wave number vector which has the
coordinates of the point in wave number space. The direction and wavelength is given by kkk and the
amplitude a is E(kkk) multiplied by a random number.

To introduce the concept a pseudo algorithm is presented in Algorithm 1. In Section 5 the
code is printed. Below, the matrices are defined.

Algorithm 1: Pseudo algorithm

for all wave number vectors kkk in the domain do
Determine random vector nnn(kkk). nnn must be Gaussian and complex
Determine matrix BBB(kkk), c.f. (13) in Mann (1998)
Determine covariance tensor CCC(kkk)
Determine Fourier-Stieltje vectors dZZZ(kkk) = BBBCCCnnn

end
Make generated field of dZZZ(kkk) ”symmetric”, i.e. dZZZ(−kkk) = dZZZ∗(kkk)
Run three dimensional FFT to get velocity field vvv(xxx) =

∫

eikkk·xxxdZZZ(kkk)
Correct divergence if desired
Write velocities to file and/or do diagnostics

The Fourier-Stieltje vectors are determined from

dZZZ(kkk) = BBBCCC nnn (1)

where

BBB =

⎡

⎣

1 0 ζ1

0 1 ζ2

0 0 ζ3

⎤

⎦ (2)
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CCC =
1
k2

√

E(k)
4π

⎡

⎣

0 k3 −k2

−k3 0 k1

k2 −k1 0

⎤

⎦ (3)

nnn =

⎡

⎣

n1

n2

n3

⎤

⎦ (4)

ζ1 = C1 −
k2

k1
C2 , ζ2 =

k2

k1
C1 +C2 , ζ3 =

k2
0

k2 (5)

C1 =
βk2

1(k
2
0 −2k2

3,0 + βk1k3,0)

k2(k2
1 + k2

2)
(6)

C2 =
k2k2

0

(k2
1 + k2

2)
3/2

arctan

⎛

⎝

βk1

√

k2
1 + k2

2

k2
0 − k3,0k1β

⎞

⎠ (7)

k1 = k1,0 , k2 = k2,0 , k3 = k3,0 + βk1 (8)

k = |kkk| =
√

k2
1 + k2

2 + k2
3 , k0 = |kkk0| =

√

k2
1 + k2

2 + k2
3,0 (9)

β = (kL)−2/3Γ (10)

For kkk = 000 (5)-(7) will be undefined. In this point CCC will be zero so BBB is chosen as the identity
matrix to prevent the program to fail due to division with zero. For k1 = 0 the limit values
of ζ1, ζ2 and ζ3 will be used

lim
k1→0

ζ1 = −β , lim
k1→0

ζ2 = 0 , lim
k1→0

ζ3 = 1 (11)

Each point in the resolved spectral domain is described by a wave number vector kkk. E(kkk) is
the energy spectrum, which gives the energy associated with the linear wave defined by the
wave number vector kkk

E(kkk) = αε2/3L5/3 L4k4

(1+L2k2)17/6
(12)

L defines the length scale and αε2/3 scales the intensity. Γ gives the degree of anisotropy.
These three parameters should be given as input to the program along with the dimensions
of the domain.

To ensure the generated wind field is real the Fourier-Stieltje components must satisfy the
condition

dZZZ(−−−kkk) = dZZZ∗(kkk) (13)

Consequently, only about half of the random numbers can be chosen arbitrarily. For some
special kkk, e.g. kkk = 000, (13) enforces the imaginary part to be zero.

The above equations are based on the assumption that the side lengths of the domain are
large compared to the turbulence length scale. Mann (1998) states that the approximation is
good for dx( j)N( j) < 8L for j = 2,3, where the parentheses in the index cancels the summa-
tion convention.

7



1.2 Periodicity

As the FFT-algorithm assumes the function to be periodic, the generated field will be peri-
odic in all three directions. That is, there will be a correlation coefficient of (nearly) unity
of the velocities on each side of the box.

In most applications this is not desired. To remedy this problem, generate a wind field larger
than the desired domain and discard some of the data. The required size of the generated
wind field depends on the resolution of the domain and the length scale of the turbulence.
For wind turbines the largest of 2D or 8L is recommended, where D is the rotor diameter.

1.3 Incompressibility

The components of the wind field are determined from Fourier transformation of the Fourier-
Stieltje vectors

vvv(xxx) =

∫

eikkk·xxxdZZZ(kkk) (14)

Incompressibility of the wind field requires zero divergence of the field. Using index nota-
tion with the summation convention the condition can be written

∂v j

∂x j
= 0 (15)

By combining (14) and (15) a condition can be imposed on the Fourier-Stieltje vectors

∂v j

∂x j
= i

∫

eikkk·xxxk jdZ j(kkk) = 0 ⇒ k jdZ j(kkk) = 0 (16)

Pre-multiplication of (1) with kkk yields

kkkdZZZ(kkk) =
1
k2

√

E(k)
4π

⎡

⎣

k1k2ζ1 − k2k3 + k2
2ζ2 + k2k3ζ3

k1k3 − k2
1ζ1 − k1k2ζ2 − k1k3ζ3

0

⎤

⎦

T ⎡

⎣

n1

n2

n3

⎤

⎦ (17)

If n1 and n2 are independent random variables (17) will only be zero in the isotropic case
where ζ1 = ζ2 = 0 and ζ3 = 1. If n1 and n2 are chosen to satisfy n2 = n1k2/k1 then (17) will
also be zero in the anisotropic case. This is a poor choice, however, as this will give v3 = 0
in all points.

If a divergence free field is required then the divergence may be corrected as described in
Section 2.2.

1.4 Possible Improvements

Below are some possible improvements listed:

• In the present implementation the entire field of Fourier-Stieltje vectors are generated
from independent random numbers. Then, symmetry is enforced as defined in (13).
This procedure costs a little on the computation time, but it is easier to change the
way symmetry is enforced.
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• The divergence correction can implemented by the TDMA algorithm instead of the
MINRES algorithm for solving the linear equations which might increase computa-
tional speed.

• The approximation for large dimensions of the domain compared to the turbulent
length scale can be avoided, but then the spectral tensor must be obtained by numerical
integration. This integration could be implemented.

2 Additional Features

Below, two features are presented. Both can be used, but they are not required for generating
the velocity fields. The first determines the one-dimensional correlation function which can
be used to verify or describe the field. It produces extra output but does not modify the
generated turbulence field. The latter is a divergence correction method. It produces no
extra output, but makes changes to the velocity field.

2.1 One-Dimensional Correlation Function

In all three directions of the domain the one-dimensional auto-correlation function is de-
termined for all three components. The correlations are averaged over the remaining two
directions.

Further, the average correlation between the three velocity components are determined.

2.2 Divergence Correction

For isotropic field the divergence of the continuous field will be zero. This is not the case for
the discrete representation, however. As was shown in Section 1.3 anisotropic fields are not
divergence free, even in the continuous representation. In this section a method to correct
the divergence to zero will be shown.

The corrected velocity field can be determined from

ṽ j(xxx) = v j(xxx)−
∂p(xxx)

∂x j
(18)

where the function P(xxx) is defined from

∂2 p

∂x2
j

=
∂v j

∂x j
(19)

By this definition ṽ j(xxx) will satisfy (15) identically. The definition of p is recognized as a
Poisson differential equation. For a given numerical differential scheme the equation can be
solved by solving a system of linear equations. Here and in the code the 2nd order central
difference scheme will be used.

The divergence is determined in all points and stored in a vector ddd. It is used as right hand
side in (19). The problem is formulated as a linear system ddd = AAAppp, where AAA is a coefficient
matrix defined from the numerical differential scheme. The linear system is solved by the
MINRES algorithm, which is possible because AAA is symmetric.
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In the MINRES algorithm matrix-vector multiplications are performed repeatedly. For typ-
ical dimensions of the domain the number of points is so large that it would require huge
amounts of memory to allocate the full coefficient matrix. If for instance N1 = 8192 and
N2 = N3 = 32 the coefficient matrix should be of dimension 8,388,608×8,388,608. How-
ever, the matrix is very sparse and has a simple structure.

A subroutine has been written that will take any vector as input and give the product with
the coefficient matrix AAA as output. By utilizing the simple structure of the matrix this has
been implemented in a way that never forms the matrix it self (not even in some kind of
sparse format). The approach has very low demands to memory and is quite fast due to the
efficiency of the MINRES algorithm.

3 Verifications

To check the implementation of the program several tests have been performed. Below some
of the results from these tests are presented.

3.1 Vector Plot

In Figure 2 a vector plot of a generated velocity field is shown. Each cone in the figure
represents a velocity vector. The sizes of the cones are scaled to show the magnitude of the
vectors. It is seen that the field is periodic. Further, it illustrates the spatial correlation as
structures can be seen in the field.

Figure 2: Vector plot of a generated velocity field. The field is isotropic with dx j = 1m, Nj = 64
and L = 25m.
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3.2 Isotropy

In Figure 3 the variances of the three velocity components are shown for 250 uncorrelated
realizations. The generated field and the domain it self is isotropic with Γ = 0, dx1 = dx2 =
dx3 and N1 = N2 = N3. Therefore, the average variances of the three components should
be identical. It is seen that there are large variations from realization to realization but the
average variances are close to identical.
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Figure 3: Variances of the three velocity components determined from the 250 realizations.

3.3 Spectrum

In Figure 4 the one-sided, one-dimensional spectrum of generated v1 components is shown.
The spectrum from the realization has been averaged over the x2-x3-plane. The theoretical
spectrum given by

S11(k1) =
18
55

αε2/3L5/3 1
(

1+L2k2
1

)5/6
(20)

From the figure it is observed, that the agreement is good, but for large wave numbers the
realization gives too low energy, due to aliasing errors, which was also reported by Mann
(1998).
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Figure 4: One-sided, one-dimensional spectrum of the u1-components. The spectrum of the realiza-
tion has been averaged over the y- and z-directions.
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3.4 Correlation

One dimensional correlations are plotted in Figure 5. The computed correlations are com-
pared to the theoretic functions by von Karman

f (r) =
2

Γ
(

1
3

)

( r
2L

)
1
3
K 1

3

( r
L

)

(21)

g(r) =
2

Γ
(

1
3

)

( r
2L

)
1
3

[

K 1
3

( r
L

)

− 2
2L

K 2
3

( r
L

)

]

(22)

where r is the separation distance and Ka(x) is the modified Bessel function of second kind
and order a. f (r) describes the correlation in the direction as the velocity component (e.g.
correlation of v2 in the x2-direction) and g(r) describes the correlation in transverse direc-
tions (e.g. correlation of v2 in the x3-direction). Again, the agreement is good.
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0

0.2

0.4
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1

r/L
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)
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Figure 5: One dimensional correlation function calculated from realizations compared to the theo-
retic von Karman correlation functions of isotropic turbulence. Thick lines are (21) and (22) and thin
are computed from realizations with the feature described in Section 2.1.

3.5 Divergence

The divergence of the vector field vvv is given by (15), and written out in components it reads

div(vvv) =
∂v j

∂x j
=

∂v1

∂x1
+

∂v2

∂x2
+

∂v3

∂x3
≈ Δv1

Δx1
+

Δv2

Δx2
+

Δv3

Δx3
(23)

In Figure 6 the three components are compared to their sum. The derivative are approxi-
mated by their derivatives from the 2nd order difference scheme.

It can be seen that the divergence evaluated by the 2nd order central difference scheme is
non-zero. By applying the algorithm from Section 2.2 the divergence is corrected to zero as
shown on the bottom figure.

4 User’s Guide

The following briefly describes the use of the developed program. The input and output is
described.
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Figure 6: Comparison of the divergence and its three components. On the bottom figure the diver-
gence has been corrected by the algorithm outlined in Section 2.2.

4.1 Input

The program reads 15 parameters from an input file. An example of such an input file is
shown in Figure 7. The filename must be input.inp.

256 N1 (Variable names here are optional)
256 N2
256 N3
1.0 dx1
1.0 dx2
1.0 dx3
33.6 L
0.181 alphaeps
0.0 Gamma
-1 randseed (-1 => randseed generated from current time)
1 write velocities to file
1 print screen output
0 correct divergence
0 write variance to file
0 write correlation to file

Figure 7: Example of input file.

The first 10 lines define parameters and the remaining 5 lines are switches, that should be
either 0 or 1. As stated in the file the names are optional and they are not read by the
program. The order of the inputs must be exactly as in the example and no lines can be
added or deleted. A blank space must separate the variables from the describing text.
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The three first lines define the resolution of the domain in the three directions. These must
be on the form 2n where n is a positive integer. The next three lines define the grid spacing
in the three directions, dx1, dx2, dx3.

L is the turbulent length scale. alphaeps defines αε2/3 which scales the intensity of the
turbulence. Γ (Gamma) is a parameter defining the degree of anisotropy of the turbulence. In
Mann (1998) typical values are given.

The random seed can be set in the input file. The random seed should be an integer. If it
is set to −1, the program will generate a random random seed and write it to an output file.
The generated random seed is based on the current time.

The last five lines define switches that must be 0 or 1. If the program should write out the
velocities to files, the first switch should be set to 1.
The next line defines whether or not the program should write to the screen as the execution
progresses.
The third switch should be set to 1, if the program should correct the divergence of the
discrete field to zero (when evaluated by the second order central difference scheme).
The second to last switch defines whether the program should determine the variances of the
three velocity components to an output file.
The last switch should be set to 1, if the program should determine the correlation of the
velocity field and write it to a number of files. The correlation is plotted in Figure 5.

4.2 Output

Depending on the parameters in the input file the program will write data to the files de-
scribed here.

If the random seed is not specified (randseed is set to −1 in the input file):

• The program generates a random random seed and writes it to randomseed.dat

If the velocity field should be written to files:

• Velocity components are written to u.bin, v.bin and w.bin. The data is written in
(32-bit, real*4) binary form with the 3rd index varying fastest and the 1st varying
slowest. (Example of how to read the data is given below)

If the variances should be computed and written to a file:

• The computed variances will be written to the file variance.dat. The order is σ1,
σ2, σ3

If the correlation should be computed and written to files:

• One-sided, one-dimensional correlation functions are written to files fu.dat, gu2.dat,
gu3.dat, fv.dat, gv1.dat, gu3.dat, fw.dat, gw1.dat and gw2.dat. The file
names corresponds to (21) and (22). The number in the files starting with g is the
direction and the letter is the velocity component

• Average cross-correlation coefficients of the three components is written to the file
correlation.dat. The order is ρ12, ρ13, ρ23

14



Except for the files containing velocity components the data is written formatted to ASCII
files. The data is written in lines and if old files exist when the program is run, it will append
the data from the new realization.

The velocity field can be read with Algorithm 2 (written in Fortran). The part shown is not
complete. It only reads the u components from u.bin and definition of most variables is
omitted here.

Algorithm 2: Algorithm for reading the velocity field from files
real*4, allocatable :: varread(:)

allocate(varread(N1*N2*N3))
allocate(u(N1,N2,N3))
open(16,file=’u.bin’,form=’binary’)
read(16) varread
jj1=0
do j1=1,N1

do j2=1,N2
do j3=1,N3

jj1=jj1+1
u(j1,j2,j3)=varread(jj1)

enddo
enddo

enddo
close(16)

References

Mann, J. (1998). Wind field simulation. Prob. Engng. Mech., 13(4):269–282.

5 The Code

The code is printed in full below, and it can be downloaded from

http://vbn.aau.dk/fbspretrieve/18432733/Fortran_code_for_download.zip

A comment should be given on the FFT subroutine and how it is called. The Fourier-Stieltje
components are Fourier transformed by the subroutine fourn. The subroutine expects a 1D
array but the 3D array stored in dZ(i,:,:,:) is given as input. The trick is that Fortran stores
the components in dZ in the same order as the subroutine expects them. Therefore, the calls
of fourn will give the correct results. On some compilers the difference in dimensions gives
warnings, and unfortunately on some compilers it generates errors. Yet, I have chosen this
approach to save the memory otherwise required to allocate a new 1D variable that contains
all the components. The argument for this choice is that memory often sets a rather strict
limitation for how large fields the code can generate.
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! TuGen.f90
!****************************************************************************
! PROGRAM: TurbulenceSimulation
! PURPOSE: Simulate turbulence field using three dimensional
! inverse Fast Fourier transform
! DATE: May 2008
! WRITTEN by:
! Lasse Gilling, M.Sc., Ph.D.-student
! Department of Civil Engineering
! Aalborg University
! Mail: lg@civil.aau.dk and/or lassegilling@hotmail.com
!****************************************************************************
program TuGen
!****************************************************************************
! Variables
!****************************************************************************
implicit none
integer N1,N2,N3 ! number of points in three directions
real(8) L,alphaeps ! Integral length scale and alpha*eps**(2./3.)
real(8) Gamma ! Parameters defining anisotropy
real(8) dx1,dx2,dx3 ! grid spacing in physical space
integer j1,j2,j3 ! Counters
integer jj1,jj2,jj3 ! ~Counters: Help to make program reader friendly
real(8) dk1,dk2,dk3 ! Wave number increments
real(8) k1,k2,k3 ! Wave number components
real(8) k30 ! Initial wave number component in 3-direction
real(8) k0square, ksquare ! Squared length of wave number vectors
real(8) E ! Von Karman spectral function
real(8) beta ! Beta in (Mann 1998)-article
real(8) B(3,3) ! B-matrix from "Rapid Distorsion Theory"
real(8) B1, B2, B3 ! Coefficients in B-matrix
real(8) C1,C2 ! Parameters used for calculating B-matrix
real(8) C(3,3) ! C-matrix
real(8) H(3,3) ! H-matrix
complex*16 W(3,1) ! Normal distributed complex random numbers
real(8) U1(3,1), U2(3,1) ! Uniform distributed real random numbers
integer seedsize ! Used to set the seed of the random generator
real(8) pi ! Ratio of diameter to circumference in circle
complex*16 S(3,1) ! Helping variable to define elements in dZ
real(8) starttime,endtime ! Used to determine calculation time
integer status, ios ! Used to chech status of the ifft and read
real(8) vars(15) ! Array used for reading input
integer randseed ! seed for rand. gen
integer write_vel,write_screen ! switches: write velocity, write status to screen
integer div_cor,write_var ! correct divergence, write variances
integer write_cor ! write correlation function f(r)
real(8) rho, rho12,rho13,rho23 ! Correlation coef.
real(8) s1_2,s2_2,s3_2 ! Variance of the the generated vel. field
real(8) tke ! Turbulent kinetic energy
integer time_array(8) ! Used for generating randomseed if unspecified
complex*8, allocatable :: dZ(:,:,:,:) ! Fourier-Stieltje coefficients
real(8), allocatable :: v1(:,:,:) ! Velocities in 1 direction
real(8), allocatable :: v2(:,:,:) ! Velocities in 2 direction
real(8), allocatable :: v3(:,:,:) ! Velocities in 3 direction
real(8), allocatable :: f1(:) ! Correlation function, f(r)
real(8), allocatable :: g2(:) ! Correlation function, g(r) , v2-comp
real(8), allocatable :: g3(:) ! Correlation function, g(r) , v3-comp
real(4), allocatable :: VarWrite(:) ! Write velocities to file
logical inpbool ! Check if the input-file exist
!****************************************************************************
! Read input from file
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!****************************************************************************
vars=0d0
! set default control parameters. 1 for yes, 0 for no
vars(10)=-1 ! randseed
vars(11)=1 ! writevel
vars(12)=1 ! write to screen
vars(13)=0 ! divergence cor
vars(14)=0 ! compute variances and write to file
vars(15)=0 ! compute correlations and write til file
inquire(file=’input.inp’,exist=inpbool)
if(.not.inpbool)then
write(*,*) ’ERROR: Cannot find input-file! Simulation aborted’
stop

endif
open(unit=10,file=’input.inp’)
do j1=1,15

read(10,*,iostat=ios) vars(j1)
if(ios.ne.0)then
if(j1.lt.10)then
write(*,*) ’ERROR: Not enough data in input-file! Simulation aborted’
stop

endif
exit

endif
enddo
close(unit=10)
! Set variables
N1=vars(1)
N2=vars(2)
N3=vars(3)
dx1=vars(4)
dx2=vars(5)
dx3=vars(6)
L=vars(7)
alphaeps=vars(8)
Gamma=vars(9)
randseed=vars(10)
write_vel=vars(11)
write_screen=vars(12)
div_cor=vars(13)
write_var=vars(14)
write_cor=vars(15)
! check size of domain
call check2(N1,j1)
if(j1.ne.1)then

print*,’Error: N1 must be on the form 2^n’
stop

endif
call check2(N2,j1)
if(j1.ne.1)then

print*,’Error: N2 must be on the form 2^n’
stop

endif
call check2(N3,j1)
if(j1.ne.1)then

print*,’Error: N3 must be on the form 2^n’
stop

endif
!****************************************************************************
! Initialization
!****************************************************************************
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allocate(dZ(3,N1,N2,N3))
if(write_vel.eq.1)then

allocate(varwrite(N1*N2*N3))
endif
if(write_screen.eq.1)then
write(*,100) ’+----------------------------------------------------------+’
write(*,100) ’| Simulation of incompressible turbulence field has begun |’
write(*,100) ’+----------------------------------------------------------+’
endif
! Start timer
call cpu_time(starttime)
pi=4d0*datan(1d0)
! Set random seed
if(randseed.eq.-1)then

call date_and_time (values=time_array)
randseed=sum(time_array)*(time_array(8)+1)
open(unit=55,file=’randseed.dat’,access=’append’)
write(55,*) randseed
close(55)

endif
call random_seed(SIZE=seedsize)
call random_seed(PUT=[1:seedsize]*randseed)
!****************************************************************************
! Generate the elements of dZ (i.e. the Fourier-Stieltje coefficients)
!****************************************************************************
dk1=2d0*pi/dx1/dfloat(N1)
dk2=2d0*pi/dx2/dfloat(N2)
dk3=2d0*pi/dx3/dfloat(N3)
do j3=1,N3

do j2=1,N2
do j1=1,N1

! -----------------------------------------------------------
! Generate random complex vector W
! -----------------------------------------------------------
! Generate uniformly distributed random numbers
call random_number(U1)
call random_number(U2)
! Box-Muller transformation to make normal distributed random numbers
W=dcmplx(dsqrt(-2d0*dlog(U2))*dcos(2d0*pi*U1),&

dsqrt(-2d0*dlog(U2))*dsin(2d0*pi*U1))
! For ji=0 or Ni/2+1 the imaginary part of W must be zero
if ((((j1.eq.1).or.(j1.eq.N1/2+1)).and.((j2.eq.1).or.(j2.eq.N2/2+1)))&

.and.((j3.eq.1).or.(j3.eq.N3/2+1))) then
W=dcmplx(dble(W),0d0)

end if
! -----------------------------------------------------------
! Determine initial wave number vector
! -----------------------------------------------------------
! Change variable to jj that takes negative values for j.ge.N/2
! - i.e. shift integral range back to [-kmax;kmax[ instead of
! the range in iFFT [0;2*kmax[
if(j1.ge.N1/2)then

jj1=-N1+j1-1
else

jj1=j1-1
endif
if(j2.ge.N2/2)then

jj2=-N2+j2-1
else

jj2=j2-1
endif
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if(j3.ge.N3/2)then
jj3=-N3+j3-1

else
jj3=j3-1

endif
! Set components of initial wave number vector
k1=jj1*dk1
k2=jj2*dk2
k3=jj3*dk3
! -----------------------------------------------------------
! Generate B-matrix to simulate anisotropy
! -----------------------------------------------------------
ksquare=k1**2+k2**2+k3**2
if (ksquare.eq.0d0) then
! C-matrix will be 0 and can be multiplied with anything (except NaN)
beta=0d0

else
beta=Gamma*(dsqrt(ksquare)*L)**(-2d0/3d0)

endif
k30=k3+beta*k1
k0square=k1**2+k2**2+k30**2
! Determine coefficients in B-matrix
if (ksquare.eq.0d0) then

! C-matrix will be 0 - B-matrix can be chosen arbitrarily
B1=0d0
B2=0d0
B3=1d0

elseif (k1.eq.0d0) then ! use limit values for k1->0
B1=-beta
B2=0d0
B3=1d0

else
C1=beta*(k1**2)*(k0square-2*(k30**2)+beta*k1*k30) &
/(ksquare*(k1**2+k2**2))

C2=k2*k0square/(k1**2+k2**2)**(3d0/2d0) &
*datan(beta*k1*((k1**2+k2**2)**0.5d0)/(k0square-k30*k1*beta))

B1=C1-k2*C2/k1
B2=k2*C1/k1+C2
B3=k0square/ksquare

endif
! Assemble matrix
B(1,:)=[1d0,0d0,B1]
B(2,:)=[0d0,1d0,B2]
B(3,:)=[0d0,0d0,B3]
! -----------------------------------------------------------
! Generate C-matrix from initial wave number vector
! -----------------------------------------------------------
C(1,:)=[ 0d0, k30, -k2 ]
C(2,:)=[-k30, 0d0, k1 ]
C(3,:)=[ k2 , -k1 , 0d0]
E=alphaeps*L**(5d0/3d0)*(L**2*k0square)**2/(1d0+(L**2*k0square))**(17d0/6d0)
if (k0square.eq.0d0) then

C=0d0
else

C=C*dsqrt(E/4d0)/pi/k0square*dsqrt(dk1*dk2*dk3)
endif
! -----------------------------------------------------------
! Create element in dZ by multiplication of matrices and vector
! -----------------------------------------------------------
S=matmul(B,matmul(C,W))
dZ(:,j1,j2,j3)=[S(1,1),S(2,1),S(3,1)]
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end do !j1
end do !j2

end do !j3
! Enforce symmetry
do j3=1,N3

do j2=1,N2
do j1=1,N1
! ----------------------------------------------------------------------------
! make all the symmetry conditions reqiured for the velocities to become real
! ----------------------------------------------------------------------------
if (((j2.eq.1).or.(j2.eq.N2/2+1)).and.(((j3.eq.1)&

.or.(j3.eq.N3/2+1))).and.(j1.gt.N1/2+1))then
dZ(:,j1,j2,j3)=conjg(dZ(:,N1-j1+2,j2,j3))

elseif(((j1.eq.1).or.(j1.eq.N1/2+1)).and.((j3.eq.1)&
.or.(j3.eq.(N3/2+1))).and.(j2.gt.N2/2+1))then

dZ(:,j1,j2,j3)=conjg(dZ(:,j1,N2-j2+2,j3))
elseif(((j2.eq.1).or.(j2.eq.N2/2+1)).and.((j1.eq.1)&

.or.(j1.eq.(N1/2+1))).and.(j3.gt.N3/2+1))then
dZ(:,j1,j2,j3)=conjg(dZ(:,j1,j2,N3-j3+2))

elseif((j1.gt.N1/2+1).and.((j2.eq.1).or.(j2.eq.N2/2+1)))then
dZ(:,j1,j2,j3)=conjg(dZ(:,N1-j1+2,j2,N3-j3+2))

elseif((j1.gt.N1/2+1).and.((j3.eq.1).or.(j3.eq.N3/2+1)))then
dZ(:,j1,j2,j3)=conjg(dZ(:,N1-j1+2,N2-j2+2,j3))

elseif((j2.gt.N2/2+1).and.((j1.eq.1).or.(j1.eq.N1/2+1)))then
dZ(:,j1,j2,j3)=conjg(dZ(:,j1,N2-j2+2,N3-j3+2))

elseif((j2.gt.N2/2+1).and.((j3.eq.1).or.(j3.eq.N3/2+1)))then
dZ(:,j1,j2,j3)=conjg(dZ(:,N1-j1+2,N2-j2+2,j3))

elseif((j3.gt.N3/2+1).and.((j1.eq.1).or.(j1.eq.N1/2+1)))then
dZ(:,j1,j2,j3)=conjg(dZ(:,j1,N2-j2+2,N3-j3+2))

elseif((j3.gt.N3/2+1).and.((j2.eq.1).or.(j2.eq.N2/2+1)))then
dZ(:,j1,j2,j3)=conjg(dZ(:,N1-j1+2,j2,N3-j3+2))

! -----------------------------------------------------------------
! The last symmetry-condition is a "mirroring" in a plane
! -----------------------------------------------------------------
! a) the x1-x2-plane

! elseif (j3.gt.N3/2+1) then
! dZ(:,j1,j2,j3)=conjg(dZ(:,N1-j1+2,N2-j2+2,N3-j3+2))

!b) plane defined by x1+x2+x3=0 (Good choise => var1=var2=var3)
elseif((dfloat(j1)/dfloat(N1)+dfloat(j2)/dfloat(N2)&

+dfloat(j3)/dfloat(N3)-3d0/2d0).gt.0d0)then
dZ(:,j1,j2,j3)=conjg(dZ(:,N1-j1+2,N2-j2+2,N3-j3+2))

endif
enddo !j1

enddo !j2
enddo !j3
if(write_screen.eq.1)then
write(*,100) ’| Fourier coefficients have been determined |’
endif
!****************************************************************************
! Do the iFFT
!****************************************************************************
! Next, the Fourier-Stieltje components are Fourier Transformed. The
! subroutine expects a 1D array and dZ(i,:,:,:) is 3D. The trick is that
! Fortran stores the components in dZ in the same order as the subroutine
! expects them. Therefore, the following calls will give the correct results.
! On some compilers the difference in dimensions gives warnings, and
! unfortunately on some compilers it generates errors.
! Yet, I have chosen this approach to save the memory otherwise required to
! allocate a new 1D variable that contains all the components of dZ. The
! argument for this choice is that memory often sets a rather strict
! limitation for how large fields the code can generate.
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call fourn(dZ(1,:,:,:),[N1,N2,N3],3,-1)
call fourn(dZ(2,:,:,:),[N1,N2,N3],3,-1)
call fourn(dZ(3,:,:,:),[N1,N2,N3],3,-1)
if(write_screen.eq.1)then
write(*,100) ’| Velocity field has been generated |’
endif
!****************************************************************************
! Allocate velocities if they are used frequently
!****************************************************************************
if(div_cor+write_cor+write_var.ne.0)then

allocate(v1(N1,N2,N3))
allocate(v2(N1,N2,N3))
allocate(v3(N1,N2,N3))
v1=dble(dZ(1,:,:,:))
v2=dble(dZ(2,:,:,:))
v3=dble(dZ(3,:,:,:))

endif
!****************************************************************************
! Correct divergence to zero (for cds2) - Subroutine not included in this file
!****************************************************************************
if(div_cor.eq.1)then

call div_correction(v1,v2,v3,N1,N2,N3,dx1,dx2,dx3)
! If divergence is corrected the veolcities are written to files here
! - Otherwise v1,v2,v3 may not be allocated and the velocities are written
! later
! write v1-component
if(write_vel.eq.1)then
open(16,file=’u.bin’,form=’binary’)
jj1=0
do j1=1,N1
do j2=1,N2
do j3=1,N3
jj1=jj1+1
varwrite(jj1)=dble(v1(j1,j2,j3))

enddo
enddo
enddo
write(16) varwrite
close(16)

! write v2-component
open(17,file=’v.bin’,form=’binary’)
jj1=0
do j1=1,N1
do j2=1,N2
do j3=1,N3
jj1=jj1+1
varwrite(jj1)=dble(v2(j1,j2,j3))

enddo
enddo
enddo
write(17) varwrite
close(17)

! write v3-component
open(18,file=’w.bin’,form=’binary’)
jj1=0
do j1=1,N1
do j2=1,N2
do j3=1,N3
jj1=jj1+1
varwrite(jj1)=dble(v3(j1,j2,j3))

enddo
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enddo
enddo
write(18) varwrite
close(18)
endif

endif
!****************************************************************************
! Write velocity field to unformatted files
!****************************************************************************
if((write_vel.eq.1).and.(div_cor.ne.1))then
open(16,file=’u.bin’,form=’binary’)
open(17,file=’v.bin’,form=’binary’)
open(18,file=’w.bin’,form=’binary’)
do jj2=1,3
jj1=0
do j1=1,N1
do j2=1,N2
do j3=1,N3
jj1=jj1+1
varwrite(jj1)=dble(dZ(jj2,j1,j2,j3))

enddo
enddo
enddo
write(15+jj2) varwrite

enddo
close(16)
close(17)
close(18)
endif
!****************************************************************************
! Do some diagnostics
!****************************************************************************
if(write_cor.eq.1)then
! Calculate average correlation between v1 and v3 (and v1-v2, v2-v3)

rho12=0d0
rho13=0d0
rho23=0d0
do j3=1,N3
do j2=1,N2
call corrcoef(v1(:,j2,j3),v2(:,j2,j3),N1,rho)
rho12=rho12+rho
call corrcoef(v1(:,j2,j3),v3(:,j2,j3),N1,rho)
rho13=rho13+rho
call corrcoef(v2(:,j2,j3),v3(:,j2,j3),N1,rho)
rho23=rho23+rho

end do
end do
rho12=rho12/dfloat(N2*N3)
rho13=rho13/dfloat(N2*N3)
rho23=rho23/dfloat(N2*N3)
! write results to file
open(50,file=’correlation.dat’)
write(50,111) [rho12,rho13,rho23]
close(50)
! ** Determine correlation function f(r) and g(r) in the x-direction **
allocate(f1(N1))
allocate(g2(N1))
allocate(g3(N1))
f1=0d0
g2=0d0
g3=0d0

22



do j1=1,N1
do j2=1,N2
call corrcoef(v1(1,j2,:),v1(j1,j2,:),N3,rho)
f1(j1)=f1(j1)+rho/dfloat(N2)
call corrcoef(v2(1,j2,:),v2(j1,j2,:),N3,rho)
g2(j1)=g2(j1)+rho/dfloat(N2)
call corrcoef(v3(1,j2,:),v3(j1,j2,:),N3,rho)
g3(j1)=g3(j1)+rho/dfloat(N2)

end do
end do
open(51,file=’fu.dat’,access=’append’)
write(51,111) f1
close(51)
open(51,file=’gv1.dat’,access=’append’)
write(51,111) g2
close(51)
open(51,file=’gw1.dat’,access=’append’)
write(51,111) g3
close(51)
deallocate(f1)
deallocate(g2)
deallocate(g3)
! ** Determine correlation function f(r) and g(r) in the y-direction **
allocate(f1(N2))
allocate(g2(N2))
allocate(g3(N2))
f1=0d0
g2=0d0
g3=0d0
do j2=1,N2
do j3=1,N3
call corrcoef(v2(:,1,j3),v2(:,j2,j3),N1,rho)
f1(j2)=f1(j2)+rho/dfloat(N3)
call corrcoef(v3(:,1,j3),v3(:,j2,j3),N1,rho)
g2(j2)=g2(j2)+rho/dfloat(N3)
call corrcoef(v1(:,1,j3),v1(:,j2,j3),N1,rho)
g3(j2)=g3(j2)+rho/dfloat(N3)

end do
end do
open(51,file=’fv.dat’,access=’append’)
write(51,111) f1
close(51)
open(51,file=’gw2.dat’,access=’append’)
write(51,111) g2
close(51)
open(51,file=’gu2.dat’,access=’append’)
write(51,111) g3
close(51)
deallocate(f1)
deallocate(g2)
deallocate(g3)
! ** Determine correlation function f(r) and g(r) in the z-direction **
allocate(f1(N3))
allocate(g2(N3))
allocate(g3(N3))
f1=0d0
g2=0d0
g3=0d0
do j3=1,N3
do j1=1,N1
call corrcoef(v3(j1,:,1),v3(j1,:,j3),N2,rho)
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f1(j3)=f1(j3)+rho/dfloat(N1)
call corrcoef(v1(j1,:,1),v1(j1,:,j3),N2,rho)
g2(j3)=g2(j3)+rho/dfloat(N1)
call corrcoef(v2(j1,:,1),v2(j1,:,j3),N2,rho)
g3(j3)=g3(j3)+rho/dfloat(N1)

end do
end do
open(51,file=’fw.dat’,access=’append’)
write(51,111) f1
close(51)
open(51,file=’gu3.dat’,access=’append’)
write(51,111) g2
close(51)
open(51,file=’gv3.dat’,access=’append’)
write(51,111) g3
close(51)

endif
111 format(4096(E14.6E2))
if(write_screen.eq.1)then
if(write_vel+write_cor+write_var.ne.0)then
write(*,100) ’| Data has been written to files |’
endif
endif
!****************************************************************************
! Do diagnogstics and write to screen
!****************************************************************************
if(write_var+write_screen.ne.0)then

if(div_cor.eq.1)then
s1_2=sum((v1(:,:,:))**2d0)/dfloat(N1*N2*N3-1)
s2_2=sum((v2(:,:,:))**2d0)/dfloat(N1*N2*N3-1)
s3_2=sum((v3(:,:,:))**2d0)/dfloat(N1*N2*N3-1)
else
s1_2=sum((real(dZ(1,:,:,:)))**2d0)/dfloat(N1*N2*N3-1)
s2_2=sum((real(dZ(2,:,:,:)))**2d0)/dfloat(N1*N2*N3-1)
s3_2=sum((real(dZ(3,:,:,:)))**2d0)/dfloat(N1*N2*N3-1)
endif

endif
if(write_var.eq.1)then
open(52,file=’s.dat’,access=’append’)
write(52,111) [s1_2,s2_2,s3_2]
close(52)
endif
if(write_screen.eq.1)then
tke=0.5d0*(s1_2+s2_2+s3_2)
! some old variables are ’reused’
k1=sum(real(dZ(1,N1/2,:,:)))/dfloat(N2*N3)
k2=maxval(imag(dZ))
j1=randseed
! Determine computation time
call cpu_time(endtime)
k3=endtime-starttime
! Write to screen
write(*,100) ’|----------------------------------------------------------|’
write(*,100) ’| INPUT | CHARACTERISTICS |’
write(*,100) ’|----------------------------+-----------------------------|’
write(*,101) ’| N1 = ’,N1, ’ | Variances of vel. comp.: |’
write(*,102) ’| N2 = ’,N2, ’ | VAR1 = ’,s1_2, ’ |’
write(*,102) ’| N3 = ’,N3, ’ | VAR2 = ’,s2_2, ’ |’
write(*,103) ’| dx1 = ’,dx1, ’ | VAR3 = ’,s3_2, ’ |’
write(*,104) ’| dx2 = ’,dx2, ’ | Turbulent kinetic energy: |’
write(*,103) ’| dx3 = ’,dx3, ’ | tke = ’,tke, ’ |’
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write(*,104) ’| L = ’,L , ’ |-----------------------------|’
write(*,104) ’| alphaeps = ’,alphaeps, ’ | CONTROL |’
write(*,104) ’| Gamma = ’,Gamma, ’ |-----------------------------|’
write(*,105) ’| randseed = ’,j1, ’ | complex = ’,k2, ’ |’
write(*,106) ’| | div = ’,k1, ’ |’
write(*,100) ’|----------------------------------------------------------|’
write(*,107) ’| Time elapsed: ’,k3, ’ sec |’
write(*,100) ’+----------------------------------------------------------+’
endif
!****************************************************************************
! Formats
!****************************************************************************
100 format(A60)
101 format(A13,i11,A36)
102 format(A13,i11,A17,F17.6,A2)
103 format(A13,F15.6,A13,F17.6,A2)
104 format(A13,F15.6,A32)
105 format(A13,i11,A17,ES17.6,A2)
106 format(A41,ES17.6,A2)
107 format(A15,F17.6,A28)
! The end!
end program TuGen
!****************************************************************************
! End program
!****************************************************************************

!****************************************************************************
! subroutine corrcoef: Determine correlation coefficient
!****************************************************************************
subroutine corrcoef(x,y,n,rho)
! Calculate correlation coefficient between vectors x and y
! The algorithm is copy-pasted from Wikipedia but has been translated to fortran
!****************************************************************************
! Variables
!****************************************************************************
implicit none
! inputs:
integer n
real(8) x(n),y(n)
! output:
real(8) rho
! auxiliary
integer i
real(8) sum_sq_x, sum_sq_y, sum_coproduct, mean_x, mean_y
real(8) sweep, delta_x, delta_y, pop_sd_x, pop_sd_y, cov_x_y
!****************************************************************************
! Calculations
!****************************************************************************
sum_sq_x=0d0
sum_sq_y=0d0
sum_coproduct=0d0
mean_x=x(1)
mean_y=y(1)
do i=2,n

sweep=(i-1.0)/i
delta_x=x(i)-mean_x
delta_y=y(i)-mean_y
sum_sq_x=sum_sq_x+delta_x*delta_x*sweep
sum_sq_y=sum_sq_y+delta_y*delta_y*sweep
sum_coproduct=sum_coproduct+delta_x*delta_y*sweep
mean_x=mean_x+delta_x/i
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mean_y=mean_y+delta_y/i
end do
pop_sd_x=sqrt(sum_sq_x/n)
pop_sd_y=sqrt(sum_sq_y/n)
cov_x_y=sum_coproduct/n
rho=cov_x_y/(pop_sd_x*pop_sd_y)
end subroutine
!****************************************************************************
! end subroutine
!****************************************************************************

!****************************************************************************
! subroutine fourn: do n-dimensional fft
!****************************************************************************
SUBROUTINE fourn(fourdata,nn,ndim,isign)
! (C) Copr. 1986-92 Numerical Recipes Software *$3.
! Translated to f90-format by
! Lasse Gilling, Aalborg University.
! April 16, 2008
!****************************************************************************
! Variables
!****************************************************************************
implicit none
integer isign,ndim,nn(ndim)
real(4) fourdata(*)
integer i1,i2,i2rev,i3,i3rev,ibit,idim,ifp1,ifp2,ip1,ip2,ip3
integer k1,k2,n,nprev,nrem,ntot
real tempi,tempr
real(8) theta,wi,wpi,wpr,wr,wtemp
!****************************************************************************
! Calculations
!****************************************************************************
ntot=1
do 11 idim=1,ndim

ntot=ntot*nn(idim)
11 continue
nprev=1
do 18 idim=1,ndim

n=nn(idim)
nrem=ntot/(n*nprev)
ip1=2*nprev
ip2=ip1*n
ip3=ip2*nrem
i2rev=1
do 14 i2=1,ip2,ip1
if(i2.lt.i2rev)then
do 13 i1=i2,i2+ip1-2,2
do 12 i3=i1,ip3,ip2

i3rev=i2rev+i3-i2
tempr=fourdata(i3)
tempi=fourdata(i3+1)
fourdata(i3)=fourdata(i3rev)
fourdata(i3+1)=fourdata(i3rev+1)
fourdata(i3rev)=tempr
fourdata(i3rev+1)=tempi

12 continue
13 continue

endif
ibit=ip2/2

1 if ((ibit.ge.ip1).and.(i2rev.gt.ibit)) then
i2rev=i2rev-ibit
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ibit=ibit/2
goto 1
endif
i2rev=i2rev+ibit

14 continue
ifp1=ip1

2 if(ifp1.lt.ip2)then
ifp2=2*ifp1
theta=isign*6.28318530717959d0/(ifp2/ip1)
wpr=-2.d0*sin(0.5d0*theta)**2
wpi=sin(theta)
wr=1.d0
wi=0.d0
do 17 i3=1,ifp1,ip1
do 16 i1=i3,i3+ip1-2,2
do 15 i2=i1,ip3,ifp2

k1=i2
k2=k1+ifp1
tempr=sngl(wr)*fourdata(k2)-sngl(wi)*fourdata(k2+1)
tempi=sngl(wr)*fourdata(k2+1)+sngl(wi)*fourdata(k2)
fourdata(k2)=fourdata(k1)-tempr
fourdata(k2+1)=fourdata(k1+1)-tempi
fourdata(k1)=fourdata(k1)+tempr
fourdata(k1+1)=fourdata(k1+1)+tempi

15 continue
16 continue

wtemp=wr
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi

17 continue
ifp1=ifp2

goto 2
endif
nprev=n*nprev

18 continue
return
end subroutine
!****************************************************************************
! end subroutine
!****************************************************************************

!****************************************************************************
! Subroutine check2: Check if Nj is on the form 2^n
!****************************************************************************
subroutine check2(Nj,flag)
implicit none
integer Nj,flag
real(8) N

N=float(Nj)
do while (N.gt.1d0)

N=N/2d0
enddo
if(N.eq.1d0)then

flag=1
else

flag=0
endif
end subroutine
!****************************************************************************
! end subroutine
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!****************************************************************************

!****************************************************************************
! SUBROUTINE: div_correction, correct divergence to zero (in the cds2 scheme)
!****************************************************************************
subroutine div_correction(v1,v2,v3,N1,N2,N3,dx1,dx2,dx3)
implicit none
! input
integer N1,N2,N3
real(8) v1(N1,N2,N3),v2(N1,N2,N3),v3(N1,N2,N3)
real(8) dx1,dx2,dx3
! auxiliary
real(8) p(N1*N2*N3),divvec(N1*N2*N3),dP(N1,N2,N3)
integer m,j1,j2,j3
integer j1p,j1m,j2p,j2m,j3p,j3m
!****************************************************************************
! Remove the divergence from the velocity field
!****************************************************************************
m=0
do j3=1,N3
do j2=1,N2
do j1=1,N1
if(j1.eq.1) then; j1p=2; j1m=N1
elseif(j1<N1)then; j1p=j1+1; j1m=j1-1
else; j1m=N1-1; j1p=1
end if
if(j2.eq.1) then; j2p=2; j2m=N2
elseif(j2<N2)then; j2p=j2+1; j2m=j2-1
else; j2m=N2-1; j2p=1
end if
if(j3.eq.1) then; j3p=2; j3m=N3
elseif(j3<N3)then; j3p=j3+1; j3m=j3-1
else; j3m=N3-1; j3p=1
end if
m=m+1
divvec(m)=(v1(j1p,j2,j3)-v1(j1m,j2,j3))/2d0/dx1 &

+(v2(j1,j2p,j3)-v2(j1,j2m,j3))/2d0/dx2 &
+(v3(j1,j2,j3p)-v3(j1,j2,j3m))/2d0/dx3

end do
end do

end do
write(*,100) ’ Starting the iterative procedure to correct the divergence ’
print*, ’-----------------------------------’
call minres(p,divvec,n1,n2,n3,dx1,dx2,dx3)
print*, ’-----------------------------------’
m=0
do j3=1,N3
do j2=1,N2
do j1=1,N1
m=m+1
dP(j1,j2,j3)=p(m)
end do
end do

end do
m=0
do j3=1,N3
do j2=1,N2
do j1=1,N1
if(j1.eq.1)then; j1p=2; j1m=N1
elseif(j1<N1)then; j1p=j1+1; j1m=j1-1
else; j1m=N1-1; j1p=1
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end if
if(j2.eq.1)then; j2p=2; j2m=N2
elseif(j2<N2)then; j2p=j2+1; j2m=j2-1
else; j2m=N2-1; j2p=1
end if
if(j3.eq.1)then; j3p=2; j3m=N3
elseif(j3<N3)then; j3p=j3+1; j3m=j3-1
else; j3m=N3-1; j3p=1
end if
m=m+1
v1(j1,j2,j3)=v1(j1,j2,j3)-(dP(j1p,j2,j3)-dP(j1m,j2,j3))/2d0/dx1
v2(j1,j2,j3)=v2(j1,j2,j3)-(dP(j1,j2p,j3)-dP(j1,j2m,j3))/2d0/dx2
v3(j1,j2,j3)=v3(j1,j2,j3)-(dP(j1,j2,j3p)-dP(j1,j2,j3m))/2d0/dx3
end do
end do

end do
write(*,100) ’ Divergence corrected succesfully ’
100 format(A60)
end subroutine
!****************************************************************************
! End Subroutine
!****************************************************************************

!****************************************************************************
! SUBROUTINE: minres, solve linear system by minres algorithm
!****************************************************************************
subroutine minres(x,b,n1,n2,n3,dx1,dx2,dx3)
implicit none
!****************************************************************************
! Variables
!****************************************************************************
! input
integer n1, n2, n3
real(8) dx1, dx2, dx3
real(8) b(n1*n2*n3)
! output
real(8) x(n1*n2*n3)
! auxiliary
integer k
real(8) r(n1*n2*n3), p(n1*n2*n3), Ap(n1*n2*n3), Ar(n1*n2*n3)
integer M
real(8) alpha, beta, rArnew, rArold, maxtol
!****************************************************************************
! The "matrix-vector multiplication"
!****************************************************************************
M=n1*n2*n3
x=0d0
r=b
p=r
call Amatvec(p,n1,n2,n3,dx1,dx2,dx3,Ap)
rArold=dot_product(r,Ap)
maxtol=abs(rArold)*1d-12
do k=1,M

alpha=rArold/dot_product(Ap,Ap)
x=x+alpha*p
r=r-alpha*Ap
call Amatvec(r,n1,n2,n3,dx1,dx2,dx3,Ar)
rArnew=dot_product(r,Ar)
beta=rArnew/rArold
rArold=rArnew
Ap=Ar+beta*Ap
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p=r+beta*p
print*, ’Iteration nr.: ’, k, ’ Residual: ’, rArold
if (abs(rArold)<maxtol) then

exit
end if

end do
100 format(A60)
end subroutine
!****************************************************************************
! End Subroutine
!****************************************************************************

!****************************************************************************
! SUBROUTINE: Amatvec, Matrix-vector-multiplication
!****************************************************************************
subroutine Amatvec(x,n1,n2,n3,dx1,dx2,dx3,b)
implicit none
!****************************************************************************
! Variables
!****************************************************************************
! input
integer n1,n2,n3
real(8) dx1,dx2,dx3
real(8) x(n1*n2*n3)
! output
real(8) b(n1*n2*n3)
! auxiliary
integer i
real(8) f1,f2,f3
integer m,n1n2
!****************************************************************************
! The "matrix-vector multiplication" b=A*x (by using "black magic")
!****************************************************************************
n1n2=n1*n2
M=n1n2*n3
f1=0.25d0/dx1**2
f2=0.25d0/dx2**2
f3=0.25d0/dx3**2
! (1)
b=-2d0*(f1+f2+f3)*x
! (2)
b([1:2*n1n2])=b([1:2*n1n2])+f3*x((M-2*n1n2+1):M)
! (12)
b([(2*n1n2+1):M])=b([(2*n1n2+1):M])+f3*x([1:(M-2*n1n2)])
! (3)
b([1:(M-2*n1n2)])=b([1:(M-2*n1n2)])+f3*x([(2*n1n2+1):M])
! (13)
b([(M-2*n1n2+1):M])=b([(M-2*n1n2+1):M])+f3*x([1:2*n1n2])
do i=0,(n3-1)

! (4)
b([1:2*n1]+i*n1n2)=b([1:2*n1]+i*n1n2)+f2*x([(n1n2-2*n1+1):n1n2]+n1n2*i)
! (10)
b([(2*n1+1):n1n2]+i*n1n2)=&

b([(2*n1+1):n1n2]+i*n1n2)+f2*x([1:(n1n2-2*n1)]+i*n1n2)
! (5)
b([1:(n1n2-2*n1)]+i*n1n2)=&

b([1:(n1n2-2*n1)]+i*n1n2)+f2*x([(2*n1+1):n1n2]+i*n1n2)
! (11)
b([(n1n2-2*n1+1):n1n2]+i*n1n2)=&

b([(n1n2-2*n1+1):n1n2]+i*n1n2)+f2*x([1:2*n1]+i*n1n2)
end do
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do i=0,(n2*n3-1)
! (6)
b([1:2]+i*n1)=b([1:2]+i*n1)+f1*x([(n1-1):n1]+i*n1)
! (8)
b([3:n1]+i*n1)=b([3:n1]+i*n1)+f1*x([1:(n1-2)]+i*n1)
! (7)
b([1:(n1-2)]+i*n1)=b([1:(n1-2)]+i*n1)+f1*x([3:n1]+i*n1)
! (9)
b([(n1-1):n1]+i*n1)=b([(n1-1):n1]+i*n1)+f1*x([1:2]+i*n1)

end do
end subroutine
!****************************************************************************
! End Subroutine
!****************************************************************************
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The Effect of Resolved Turbulence in Detached-Eddy
Simulations of an Airfoil

Lasse Gilling∗, Niels N. Sørensen†and Lars Davidson‡

Abstract

The effect of resolving inflow turbulence in detached-eddy simulations of airfoil
flows is studied. Synthetic turbulence is generated and run through a precursor
simulation before it is imposed at the inflow boundary condition. The generated
turbulence fields are shown to decay according to experimental data as they are
convected through the domain with the free stream velocity. The subsonic flow
around an NACA 0015 airfoil is studied at Reynolds number 1.6 × 106 and at
various angles of attack before and after stall. Simulations with turbulent inflow
are compared to experiments and to simulations without turbulent inflow. The
results show that the flow is insensitive to the resolved turbulence. This indicates
that it may be necessary to run full LES or DNS to capture the effect of resolved
free stream turbulence in CFD simulations.

1 Introduction

Wind turbines operate in the atmospheric boundary layer and are consequently subjected
to the effects of inflow turbulence. Especially, wind turbines located in a wind farm
experience high turbulence intensities.

McKeough [1] and Hoffmann [2] both studied the effect of inflow turbulence on the
lift and drag of an NACA 0015 airfoil. The Reynolds number in their experiments was
about 250.000 which is quite low compared to a modern wind turbine which typically
operates at Reynolds numbers around 3 to 6 millions. They both found that the main
effect of the turbulence was to postpone stall and extend the linear range of the lift curve.
Recently, LM Glasfiber and Risø-DTU have carried out a series of experiments with the
NACA 0015 airfoil in the LM wind tunnel [3] at Reynolds numbers between 1.6 and 6.0

∗Aalborg University, Department of Civil Engineering, Sohngaardsholsvej 57, 9000 Aalborg, Denmark.
E-mail: lg@civil.aau.dk, Phone: +45 9940 8544
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P.O. Box 49, 4000 Roskilde, Denmark

‡Chalmers University of Technology, Division of Fluid Dynamics, Department of Applied Mechanics,
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million. The experiments and obtained data are described in [4, 5, 6, 7] and basically
they find the same effect as Hoffmann and McKeough.

For wind turbines operating close to stall a better estimation of the maximum lift is
very useful. This paper investigates the possibility of modeling the effect of turbulence
on airfoils by resolving the inflow turbulence in computational fluid dynamics (CFD)
simulations.

Resolving the turbulence in CFD simulations requires the computational domain to
be three-dimensional and an eddy-resolving technique should be applied, i.e. direct nu-
merical simulation (DNS) and large-eddy simulation (LES). At high Reynolds numbers
these techniques are extremely computational expensive, c.f. e.g. [8]. The reason for the
high cost of LES is that even the largest energy carrying eddies in the boundary layer of
the airfoil are very small and consequently the computational mesh must be very fine.

The approach of resolving the eddies in the boundary layer is not affordable for indus-
trial applications. Alternatively, in detached-eddy simulation (DES) the turbulence in
the boundary layer is treated by a Reynolds-averaged Navier-Stokes (RANS) turbulence
model and the turbulence outside the boundary layer is treated by a LES model.

DES was developed for simulating flows around airplane wings [9]. Since then, the
technique has successfully been applied to flows around airfoil sections [10, 11, 12] and
entire wind turbine blades [13]. The full history and future challenges of DES are reviewed
by Spalart in [14]. One of the major problems with the original formulation from 1997
is the grey area between the LES and RANS regions. If the grid is fine enough to switch
to LES mode in the outer part of the boundary layer but not fine enough to resolve
the turbulence the Reynolds stresses become too low. The result is premature separation
which can be induced by grid refinement. This is clearly not desirable and in 2003 Menter
and Kuntz [15] suggested to shield the RANS region by one of the shield functions in the
k − ω SST turbulence model. The problem is further described in [16] where a Delayed
DES (DDES) is introduced based on the Spalart-Allmaras turbulence model [17].

DES has also been applied to a number of flows with multiple bluff bodies where
the wake from the first body impinges on another bluff body. Thereby, the second bluff
body is exposed to inflow turbulence. A number of examples are a multi-element airfoil
simulated in [16], the landing gear simulated in [18], the tail of the fighter aircraft in [19],
the rod-airfoil configuration in [20] and finally, the two wall-mounted cubes in tandem in
[21]. All these examples rely on the DES model to capture the effect of resolved inflow
turbulence. This paper examines this ability of DES through an airfoil flow where free
stream resolved turbulence impinges on the boundary layer.

Resolved inflow turbulence will be imposed in DES of an NACA 0015 airfoil. The
idea is to impose the turbulence at the inlet of the simulation. By using a fine mesh
everywhere in the domain the resolved eddies can be convected from the inlet to the
airfoil where they will impinge on the leading edge. Inside the boundary layer the flow is
treated by a RANS turbulence model, but the unsteady forcing from the LES region will
make the turbulence penetrate the RANS region. Here, the resolved turbulence should
mix the high momentum of the free flow into the boundary layer and thereby increase the
velocity close to the wall. This will increase the resistance against the adverse pressure
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gradient on the suction side, and thereby postpone stall and increase the linear range of
the lift curve.

Below, the numerical methods are described. Next, the technique for generating the
turbulent inflow is presented along with a study of the spatial decay of the generated
turbulence. From the NACA 0015 airfoil simulations the overall effect of resolved turbu-
lence is analyzed in terms of lift and drag along with surface pressure and skin friction
distribution. Also, profiles of velocity and eddy viscosity are shown prior to a discussion
and some concluding remarks.

2 Numerical Methods

The in-house computational fluid dynamics code EllipSys3D [22, 23, 24] is used for the
flow simulations. The code is a multiblock finite volume discretization of the incompress-
ible RANS equations in general curvilinear coordinates for structured meshes. The code
uses a collocated variable arrangement, and Rhie/Chow interpolation is used to avoid
odd/even pressure decoupling. The PISO algorithm is used to enforce pressure/velocity
coupling. Solution for momentum is obtained by the fourth order central difference
scheme and a second order accurate dual time stepping algorithm is used. The code is
parallelized with MPI.

The present version of DES by Strelets [10] uses the two-equation k − ω SST subgrid
model by Menter [25]. The RANS layer close to the airfoil is shielded by the F2 function
of the k − ω SST model as proposed by Menter and Kuntz [15] to reduce the problem of
grid-induced separation. The DES flavor is therefore shielded DES also called DDES.

The laminar-turbulent transition of the boundary layer is modeled by the correlation-
based γ − ˜Reθ model by Menter and coworkers [26, 27]. This model introduces two
additional transport equations, one for intermittency and one for local transition on-
set momentum thickness Reynolds number. The model contains a number of empirical
correlation functions, but two of these are not given in the original papers for propri-
etary reasons. However, in Sørensen [28] these two empirical correlation functions are
determined.

3 Generation of Synthetic Turbulent Inflow

This section describes the chosen method to generate the inflow turbulence synthetically.
The turbulence imposed on the inflow boundary condition should have the correct mo-
ments and spectra and appropriate phase angle between modes. The turbulence will be
imposed on a domain without walls upstream of the airfoil and therefore a wind field
with the correct moments and spectra can be generated synthetically from a theoretical
spectrum. The applied method by Mann [29] is described briefly below. It only gives cor-
rect moments up to second order, and further, the phase information is chosen randomly.
Therefore, a precursor simulation is run to let the flow solver correct these deficiencies.
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3.1 The Mann Method of Generation Synthetic Turbulence

An entire family of methods originates from the paper by Shinozuka and Jan [30], in-
cluding the method of Mann [29] which is used here. For a full description including
all equations interested readers are referred to [29, 31, 32]. The method was designed
for generating a turbulent wind field for engineering load calculations. It is based on
three-dimensional FFT of a set of wave number vectors determined to give the correct
covariance. This results in a three-dimensional and divergence free frozen velocity field
with the correct spatial correlation. It is converted to a time series of inflow boundary
conditions by application of Taylor’s hypothesis. All three components of the velocity
vectors are generated. This is advantageous, compared to the option of only generating
the streamwise components. This will be demonstrated in the following section.

3.2 Demand for Three-Dimensional Velocity Fields

The airfoil should experience homogenous, isotropic turbulence. Some techniques for
generating turbulent inflow only generate the streamwise velocity component and let
the two remaining components be generated by the flow solver. This approach requires a
long upstream domain or a long precursor simulation to allow the velocity field to become
isotropic. If all three components are generated synthetically and imposed on the inflow
boundary the problem diminishes as shown below. In Figure 1 the isotropy of the velocity
field is compared for the two methods.
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Figure 1: Development of the ratio between the standard deviation of a transverse velocity
component and the streamwise velocity component. One simulation has all three velocity
components in the inflow, whereas the other only has the streamwise component. x is
the streamwise coordinate measured from the inflow boundary, and Lb is the width and
height of the domain.

The results presented in Figure 1 are generated by two simulations with identical
computational domains, but different inflow conditions. The domain has 1024× 32 × 32
cubic cells and periodic boundary conditions in the transverse directions. The two sets of
inflow conditions contain the same kinetic energy. One contains three components with
the energy evenly distributed, whereas the other contains all the energy in the streamwise
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component.

As seen from the figure, when the inflow boundary condition only includes one com-
ponent, the turbulence does not become isotropic in this domain, even though it has a
considerable extent in the streamwise direction. In conclusion the inflow boundary con-
dition should contain all three components of the turbulence to minimize the required
length of the precursor domain.

3.3 Application: Spatially Decaying Homogenous Turbulence

Spatial decay of homogenous turbulence is studied to test the synthetic turbulence and
the numerical method. The computational domain is illustrated in Figure 2, where the
first fifth in the streamwise direction is shown. The domain consists of 1280×64×64 cubic
cells. The mean velocity is constant and parallel to the x1 axis. Synthetic turbulence
is superimposed on to the constant mean velocity and set as inflow boundary condition.
Below, the development of resolved turbulent kinetic energy and the energy spectrum are
studied.

Inflow

Outflow

Periodic

Periodic
x1

x2

x3

Figure 2: The first fifth of the precursor domain. The boundaries are colored by the
streamwise velocity component.

When the synthetic inflow boundary condition is imposed on a computational domain,
the turbulence does not decay physically in the first part of the domain. There are two
reasons for this. One is that the appropriate values of the subgrid model parameters
(here k and ω) are not known, and therefore, uniform constant values are imposed on
the boundary. The other reason is that the synthetic turbulence does not possess the
correct phase information, as the phase angles are chosen randomly. During the precursor
simulation these flaws are corrected by the flow solver [33].

In Figure 3 the decay of resolved turbulent kinetic energy is shown and compared to
the empirical expression [34]

k(t) =
1

2
U2

0

(

1

21
+

2

20

) (

U0t

M
− 3.5

)

−1.25

(1)

where U0 is a reference velocity and M is the mesh spacing in the grid used to generate
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the turbulence. The numerical constants have been fitted to match the experimental
data.
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Figure 3: Decay of resolved turbulent kinetic energy.

To show the correct rate of decay the simulations must produce curves with the same
slope as the empirical line. The decay is shown for two cases. One with synthetic inflow
turbulence and one with precursor turbulence. The synthetic turbulence contains the
same resolved kinetic energy and has the same integral length scale as the experiment.
At some x1 station the velocities and subgrid parameters are sampled in the x2-x3-plane
and the time series of samples are stored in a file. These time series are used as time
dependent inflow boundary condition for case of precursor turbulence.

When the synthetic turbulence is used for the inflow boundary condition the decay
is initially too slow, which causes the curve for the synthetic turbulence to lie above the
line from the empirical expression. This is due to a too low eddy viscosity on the inflow
boundary. It is observed that the case with precursor turbulence behaves differently from
case with synthetic turbulence. The curve starts at the point where its inflow turbulence
is sampled. From there it makes a kink before it starts to decay with the correct rate as
the curve is parallel to the empirical slope.

The velocities and subgrid parameters are set on the inflow boundary, so the only
variable which is not identical to the values in the precursor simulation is the pressure.
The incorrect pressure may cause the kink in the kinetic energy decay seen in the two
last cases. Close to the outlet the outflow boundary condition causes the decay to be
incorrect and another kink can be seen on both curves.

The energy spectra from time series sampled at different locations in the two simula-
tions are shown in Figure 4. By Taylor’s hypothesis the sample positions are converted
to instances as in Figure 3. Spalart [35] argues that no eddies spanning less than five cells
can be resolved as it is convected with the mean velocity. Thereby, only a short range
of frequencies can be resolved due to the dimensions of the computational domain. The
width of the domain sets the lower limit and the size of the cells set the upper one. The
domain consists of only 64 cells in the transverse directions, and as seen in the figure it
can only resolve a decade of frequencies. It can be seen that the largest eddies in the
inertial subrange are resolved as the slopes of the spectra computed from the simulations
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are −5/3 for high frequencies.
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Figure 4: Power spectra of turbulence sampled at two positions in the streamwise di-
rection in the simulations using synthetic and precursor turbulence. For comparison the
power spectrum of the synthetic field is shown with the dashed line.

4 Description of Experimental Data

Two sets of experimental data are used for comparison and in this section the experi-
mental configurations are described. The first set of data is from the LM Wind Tunnel
and the second is from Virginia Tech.

The test section of the LM wind tunnel has a cross section of 2.7 × 1.35 m and the
airfoil chord is 0.9 m giving a span of 1.5 chords. The maximum attainable wind speed
is 105 m/s but the data used here is from 26.7 m/s. This gives a chord based Reynolds
number of 1.6 × 106. The lift and surface pressure used here are based on the measured
surface pressure. For low angles of attack the drag is based on velocities measured by
a wake-rake and for high angles of attack on measured surface pressure. Three different
setups were investigated. One without a turbulence grid and two setups with different
grids. The grids were placed about three chords upstream of the leading edge of the airfoil.
They were of bi-planar type and consisted of rectangular metal plates with a thickness in
the cross-stream direction of 3 mm. The first grid (grid 1) had a mesh spacing of 200 mm
giving a solidity of 0.03. The second grid (grid 2) had a mesh spacing of 100 mm giving a
solidity of 0.06. The turbulence characteristics are investigated in [6] and summed up in
Table 1. For further descriptions of the wind tunnel and the experiment see [3, 4, 5, 7].

The test section of the Virginia Tech Low Stability Wind Tunnel has a square cross
section with side length 1.83 m. The chord of the airfoil model is 0.61 m giving a span of
three chords. The data used here is from an experiment with 30 m/s free-stream velocity
and thereby a chord based Reynolds number of 1.2×106. The turbulence grid is bi-planar
and has a mesh size of 305 mm and solidity of 0.31. It was placed 9.5 chords upstream of
the leading edge in the contraction of the wind tunnel. This improves the isotropy of the
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turbulence as investigated by [34]. The experiment is further described in [36, 37]. The
characteristics of the turbulence are given in Table 1.

For comparison the characteristics of the resolved turbulence in the simulations are
also included in Table 1. The turbulence in the simulations is further described in Sec-
tion 5.2.

Wind Tunnel Re Grid Tu Length Scale
LM 1.6 × 106 No grid 0.4% 0.008c
LM 1.6 × 106 Grid 1: M/c = 0.22 1.5% 0.017c
LM 1.6 × 106 Grid 2: M/c = 0.11 1.2% 0.017c
Virginia Tech 1.2 × 106 M/c = 0.50 3.9% 0.13c
Simulations 1.6 × 106 – 0.0% − 4.0% 0.25c

Table 1: Experimental conditions. M is mesh size and c is the airfoil chord. Tu is the
turbulence intensity.

5 Computational Setup

The mesh, boundary conditions and the inflow turbulence will be described below.

5.1 Computational Domain

The geometry of the domain is chosen to match the geometry of the test section of the
LM Wind Tunnel. The mesh is shown in Figures 5 and 6. It is a two dimensional mesh
which has been extruded in the spanwise direction to make a three dimensional mesh. It
consists of an O-mesh near the airfoil and Cartesian blocks to fill the rest of the domain to
match the geometry of the wind tunnel. The Cartesian grid in large parts of the domain
is favorable for the energy conservation. The O-mesh consists of 384 × 64 cells in the
wall-parallel and wall-normal directions, respectively. The spanwise direction is resolved
by 128 cells of constant width. The mesh consists of a total of 21 million cells.

Symmetry boundary conditions are used on the top and bottom of the domain to
limit the flow without having to resolve a wall boundary layer. For the same reason
periodic boundary conditions are imposed on the spanwise boundaries. To investigate
the influence of periodicity vs. symmetry on the spanwise boundaries a few simulations
have been run with symmetry boundary conditions. The conclusion from this analysis is
that the difference in results is negligible. Therefore, all results presented in this paper
use periodic boundary conditions in the spanwise direction.

Velocities, k and ω taken from a precursor simulation are used as time dependant
inflow boundary condition. On the outflow boundary the gradient is assumed to be zero
normal to the outlet, except for pressure which uses a second order extrapolation normal
to the boundary.
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Outflow

Periodicity

Inflow

Symmetry

Figure 5: Three-dimensional view of grid. Only every fourth mesh point is shown. The
angle of attack in the shown mesh is 15o.

Figure 6: Close-up of the two dimensional O-mesh and some neighboring Cartesian cells.
The angle of attack in the shown mesh is 15o.

As in the experiment in the LM Wind Tunnel the spanwise extent of the domain is
1.5 chords and the height is 3 chords. The inflow boundary is located 4 chords upstream
and the outflow boundary is located approximately 25 chords downstream of the airfoil.
The last 64 cells in the streamwise direction are stretched to suppress resolved turbulence
prior to the outflow boundary. The stretching ratio is 5%.
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The size of the cells in the Cartesian mesh (excluding the stretching region) is Δx ×
Δy × Δz ≈ 1.4 × 1.6 × 1.2 when measured in percent of the chord. x, y and z denote
the streamwise, vertical and spanwise directions, respectively. In Figure 7 the sizes of
the cells closest to the airfoil wall are shown. The mesh spacing has been normalized to
wall units for the 16o angle of attack (AOA) flow. Δn+ and Δs+ are mesh spacings in
the wall-normal and wall-parallel directions, respectively. Δz is constant but Δz+ varies
due to changes in the friction velocity. The ratio of Δn+ and Δz+ is nearly constant, as
Δn is nearly constant. The jump close to s/smax = 0.5 is caused by the transition from
laminar to turbulent boundary layer on the suction side close to the leading edge.
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Figure 7: Left: Length, height and width of the first layer of cells measured in wall units.
Right: Definition of coordinates s and n.

In Sørensen [38] the mesh dependence was investigated for a rotor simulation using
the QUICK scheme in the EllipSys3D code. Decent mesh independence was shown for a
mesh of similar resolution in the n and s directions and a much coarser resolution along
the spanwise direction.

5.2 Inflow Boundary Condition

From Table 1 it is seen that the length scale of the turbulence in the LM Wind Tunnel is
very low. In order to resolve an eddy being convected with the free stream a resolution
with at least five cells per eddy diameter is required [35]. To resolve eddies with a
diameter on the order of the integral length scale as in the LM experiment (0.017 chords)
about 300 cells are required per chord. The grid described above has about 100 cells per
chord and consequently about 27 times more cells would be needed to resolve the largest
eddies as in the experiment. Further, the time step should also be decreased to one third.
The computational burden of this resolution is not affordable. Instead the much more
affordable length scale of 0.25 chords is chosen. With this length scale the resolution is
16 cells per length scale.

The intensity of the inflow turbulence is varied by scaling the velocities and subgrid
scale model parameters, which have been sampled from a precursor simulation. Let u′

0,
v′

0, w′

0, k′

0 and ω′

0 denote the values sampled from a precursor simulation. The velocities
are scaled by a common factor, a, to set a given intensity of the resolved inflow turbulence.
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k′

0 ∝ (u′

0)
2 is scaled by a2 and ω′

0 ∝
√

k/L is scaled by a. Hence, the length scales of both
the resolved and subgrid turbulence are constant for all the applied inflow turbulence
fields. The resolved turbulence has an integral length scale of approximately 0.25 chords.
The subgrid kinetic energy ksgs is about one fourth of the resolved kinetic energy kres.

The imposed eddy viscosity scales linearly with the factor a. It ranges from about
0.7 νmol for a resolved turbulence intensity (Tu) of 0.1% to 28 νmol for 4.0% Tu. νmol is
the molecular viscosity. In the simulations without resolved inflow turbulence constant
values of k and ω are set on the inflow boundary to give an eddy viscosity of about
10−3 νmol just upstream of the airfoil.

The duration of the time series sampled from the precursor simulation corresponds
to 9 chord passages. To run simulations longer than this the same inflow field is simply
imposed a number of times.

6 Results

In this section the simulations are compared to the experimental data. Initially, the
time averaged values of lift and drag are presented. Then, the resolved turbulence in the
RANS layer close to the airfoil is investigated. Next, some details of the velocity profiles
close to the airfoil are compared for different turbulence intensities and finally, the effect
on surface pressure and skin friction is shown.

6.1 Lift and Drag

In Figure 8 the computed lift and drag coefficients are compared to the experimental data.
In the experiment by Mish [36, 37] in the Virginia Tech Low Stability Wind Tunnel the
drag coefficient was not measured. In the experiment in the LM Wind Tunnel both
positive and negative AOA were tested. As the airfoil is symmetric, the data from
negative AOA have been mirrored to positive AOA to give an impression of the accuracy
of the experimental data. A small lack of symmetry in the measurements can be seen from
the differences in lift coefficient measured at positive and negative AOA. The inaccuracies
arise because at this low velocity the dynamic pressure is lower than what the pressure
transducers were calibrated for. The wind tunnel of LM Glasfiber has been optimized
for Reynolds numbers in the range 3–6 million and in this range the results are indeed
symmetric [3, 5].

The effect of the turbulence is clearly seen in the results from the LM wind tunnel.
At low angles of attack there are no changes due to the turbulence, but the linear range
of the lift curve is extended and stall is postponed from 15o to 18o. The result is a
significant increase in maximum lift. The turbulence characteristics from the two grids
in the LM tunnel are quite similar as seen in Table 1 and they also give the same lift and
drag coefficients.

The lift measured by Mish agrees quite well with the lift from LM using turbulence
grids, but it appears to give lower maximum lift. Unfortunately, the lift was not measured
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Figure 8: Lift and drag coefficients from simulations and measurements. Turbulence
characteristics in the experiments are shown in Table 1.

between 16o and 20o where the data from LM give maximum lift.

The simulated data show very low dependance of the resolved turbulence at angles
of attack lower than stall. For the stalled flows the simulations show some scatter, and
especially, the simulation at 18o with Tu = 2.0% gives spuriously low lift and high drag.
After stall the flows are very unsteady and give slowly fluctuating lift and drag coefficients
as separation bubbles are formed and shed.

For the angles of attack lower than stall the simulations show good agreement with the
experimental data. Also the lift measured by Mish at 20o is in very good agreement with
the simulations with low turbulence. The drag coefficients are also predicted accurately
up to about 18o.

Although, the simulations agree decently with the measurements the lacking influence
of the resolved turbulence is discouraging. And, even the small effects that can be
observed do not change the results in the same way as in the experiment. In the next
subsection it will be demonstrated that the resolved turbulence does penetrate the RANS
region where it should increase the momentum in the inner part of the boundary layer
and thereby increase the resistance against separation.

6.2 Resolved Turbulence in the RANS Layer

In Figure 9 a) the RANS region is shown in the simulation with AOA = 16o and Tu =
4.0%. It covers the boundary layer. In the simulation the velocities have been sampled
at the four points denoted p1 − p4. The points p1 and p2 are located in the RANS region
while p3 and p4 are located in the LES region of the domain. In the Figures b)-d) the
time series of the three velocity components are shown. It is seen that the forcing from
the LES region causes the solution in the RANS region to be very unsteady.
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The fluctuations in the four points are seen to be highly correlated especially for the
v and w components. Further, from Figure 9 b) it is seen that the highest speed up is at
point two.
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Figure 9: RANS region and time histories of velocities sampled at four points in the
simulation with AOA = 16o and Tu = 4.0%. a) Position of points. The RANS region is
shaded by grey. b-d) Time histories of the three velocity components.

Table 2 shows the distance from the wall in wall units and the standard deviations
of the sampled time series. It is seen that the standard deviations are largest for the u
components close to the wall. Eddies from the free stream are convected and stretched
around the leading edge of the profile and these eddies are sampled by the point p1 located
just above the profile. In turn the fluctuations of the v component are limited by the
presence of the wall and this gives the low standard deviations of the v component in
this point.

Point n+ 100σu/U∞ 100σv/U∞ 100σw/U∞

p1 230 10.4 1.7 5.0
p2 1700 3.5 2.2 4.6
p3 5700 2.7 3.1 3.9
p4 15700 2.5 3.8 3.8

Table 2: Variances of sampled time series plotted in Figure 9

At the inlet where the isotropic turbulence is imposed the turbulence intensity is
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4.0%. The point p4 gives slightly lower standard deviations of the v and w components
with about 3.8% and these values are representative for points far from the influence of
the airfoil. The turbulence is expected to decay slightly from the inlet to the airfoil. In
p4 the u component is still heavily influenced by the presence of the airfoil which causes
the standard deviation to be considerably lower than the values far from the airfoil.

6.3 Mean Velocity Profiles in the Boundary Layer

The resolved turbulence in the boundary layer should increase the velocity in the inner
region of the boundary layer. In Figure 10 the velocity profiles are shown for three
stations along the suction side of the airfoil. The first is located close to the leading edge
at x/c = 0.1. Here a large speed up of the flow is observed and the peak velocity is twice
the free stream velocity. In the inner part of the boundary layer the velocity is increased
slightly and here the velocity is 6% higher with a resolved turbulence intensity of 4%. At
n+ = 100 the velocity increases faster without resolved turbulence and from there the
velocity is highest for the flow without resolved turbulence.

n
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u/U∞
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Tu = 0.1%
Tu = 0.5%
Tu = 2.0%
Tu = 4.0%

x/c = 0.1 x/c = 0.5 x/c = 0.9

0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5
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Figure 10: Velocity profiles at three positions along the suction side of the airfoil for
AOA = 16o.

The second velocity profile is from the middle of the airfoil at x/c = 0.5. Here it is
seen that in the entire boundary layer the velocity is largest in the flow without resolved
turbulence. The higher the free stream turbulence the lower velocity in the boundary
layer. This is exactly the opposite effect as desired.

Finally, the velocity profiles are shown for the station at x/c = 0.9. Here the flow is
separated for all turbulence intensities, and it is seen that the adverse flow is largest for
high resolved turbulence intensities.
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Figure 11 shows the viscosity profiles at the same stations as in Figure 10. At the
first two stations the viscosity in the inner part of the boundary layer is unaffected by
the free stream turbulence. This is due to the transition model which builds up viscosity
in the boundary layer independent from the free stream values. At the outer edge of the
boundary layer the eddy viscosity is influenced by the free stream values and here the
values are dependent on the resolved turbulence. At x/c = 0.1 the peak value for the
high turbulence flow is close to 135νmol which is far higher than the free stream of 28νmol.
From the leading edge the eddy viscosity increases along the airfoil and in the separated
from at x/c = 0.9 high values are reached.
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Figure 11: Viscosity profiles at three positions along the suction side of the airfoil for
AOA = 16o.

6.4 Surface Pressure Distribution and Skin Friction

For 16o angle of attack the time averaged surface pressure distribution is shown in Fig-
ure 12. The simulation results are only shown for some turbulence intensities, but the
differences are very small. The three lines coincide everywhere except at the suction
peak and close to the trailing edge. The suction peak is slightly lower with high resolved
turbulence but the differences are small which was also reflected in the small differences
in lift and drag. The pressure distributions from the simulations agree perfectly with the
result from experiment with turbulence grid in the LM wind tunnel.

The data by Mish also agree nicely with the LM and simulated results. A single
transducer on the suction side close to the leading edge gives a too high pressure (i.e. too
low −cp). This is also the case for the other angles of attack which indicates a problem
with that pressure transducer. The pressure distribution from the experiment without
grid in the LM tunnel shows a much lower suction peak due to a large separated region.
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Figure 12: Surface pressure coefficient for AOA = 16o.

In Figure 13 the skin friction coefficients from the simulations are plotted for 16o

angle of attack. The absolute values are shown because it is not possible to define the
flow direction uniquely on a two-dimensional surface in the three-dimensional simulation.
A clear effect of the turbulence is seen. The transition location moves forward as the
turbulence intensity is increased. On the pressure side of the airfoil the boundary layer is
laminar over the entire airfoil for low turbulence intensities, while transition takes place
for the high turbulence simulations. This shows a clear effect of changing the resolved
turbulence intensity, but actually, the differences are caused by the corresponding changes
in the subgrid kinetic energy.
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Figure 13: Skin friction coefficient for AOA = 16o.

7 Discussion

The results presented above show that the resolved structures do penetrate the boundary
layer. Close to the leading edge a small increase in the velocity in the inner boundary
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layer is found, but it is not sustained along the airfoil. Therefore, the desired resistance
against adverse pressure gradients diminishes and the maximum lift of the airfoil is not
increased with increasing turbulence. Instead a small reduction in the lift is experienced.

In experiments there are two opposite effects of free stream turbulence. One is to in-
crease the momentum inside the boundary layer which will reduce separation and thereby
increase the maximum lift. This principle is applied by vortex generators. The second
effect is to trigger separation from laminar to turbulent boundary layer which will de-
crease the lift and increase the drag. Only the latter effect was successfully modeled in
the simulations and thereby the obtained lift was reduced by the turbulence.

The computational grid is not fine enough to resolve the fine eddies in the boundary
layer and the large eddies from the free stream turbulence did not increase the momentum
as desired. To capture the effect it may be necessary to run the simulations as LES and
resolve the fine eddies in the boundary layer.

This indicates that DES should be used with precaution for flows where the wake
from one bluff body impinges on a second bluff body. There are numerous examples of
these flows in the literature and even though the overall results are in good agreement
with measurements the underlying physics is not modeled correctly.

In an earlier publication [39] the problem with an airfoil in turbulent inflow was
investigated without application of the model for the laminar-turbulent transition of the
boundary layer. Here, it was concluded that the flow was highly sensitive to the intensity
of the resolved turbulence. Our investigations since that paper was published has made it
clear that the observed effects was merely caused by the changes in the subgrid parameters
that follow from a change in the resolved turbulence.

8 Conclusions

A technique for generating synthetic turbulence is presented. The generated field must
contain all three components of the velocities to minimize the need for a long precursor
simulation. It is, however, suggested to run a shorter precursor simulation with the
generated turbulence to allow the incorrect phase information to be corrected. Further,
the subgrid parameters will then adjust to the velocity field and the computational setup.
After the precursor simulation the turbulence can be imposed on the inflow boundary
condition and will then decay according to empirical data.

From the study of the airfoil flow it is concluded that the DES technique cannot
capture the effect of the resolved inflow turbulence. The measurements show that the
effect of increasing the free-stream turbulence is to postpone stall to higher angles of
attack, but this effect was not found in the simulations. Instead LES or DNS should
be applied, but the computational cost of these methods is prohibitively expensive at
industrial Reynolds numbers.
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Imposing Resolved Turbulence in CFD Simulations

Lasse Gilling∗and Niels N. Sørensen†

Abstract

In large-eddy simulations the inflow velocity field should contain resolved tur-
bulence. This paper describes and analyzes two methods for imposing resolved
turbulence in the interior of the domain in CFD simulations. The intended ap-
plication of the methods is to impose resolved turbulence immediately upstream
of the region or structure of interest. Comparing to the alternative of imposing
the turbulence at the inlet there is a large potential to reduce the computational
cost of the simulation by reducing the total number of cells. The reduction comes
from a lower demand for mesh resolution in the upstream part of the domain. The
first method uses a modification of the source terms in the discrete Navier-Stokes
equations. In the second method an actuator is used to impose the turbulence. The
methods are tested and the most accurate is shown to be the approach of modifying
the source terms. None of the two methods can impose synthetic turbulence with
good results, but it is shown that by running the turbulence field through a short
precursor simulation very good results are obtained.

Keywords: CFD, Forcing, Free stream resolved turbulence, Large-Eddy Simulation

1 Introduction

In large-eddy simulations (LES) and direct numerical simulations (DNS) the inflow
boundary condition is less simple than for simulations with the Reynolds-averaged Navier-
Stokes (RANS) equations. For simulations with a turbulent inflow condition the flow field
impinging on the structure of interest should contain resolved eddies. Further, the struc-
ture of interest is often required to be placed far from the inlet to make the results
independent from the exact position. This gives a long stretch of upstream domain in
which an induced mean flow field is determined. When the resolved free stream turbu-
lence is imposed at the inlet boundary condition the resolution in the upstream part of
the domain must be fine enough for the resolved turbulence to be convected to the region
of interest without an unphysical decay. The large number of cells needed makes it a

∗Aalborg University, Department of Civil Engineering, Sohngaardsholsvej 57, 9000 Aalborg, Denmark.
E-mail: lg@civil.aau.dk, Phone: +45 9940 8544

†Risø-DTU National Laboratory for Sustainable Energy, Wind Energy Division, Frederiksborgvej 399,
P.O. Box 49, 4000 Roskilde, Denmark
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very computationally expensive approach. This paper investigates some methods for im-
posing the resolved turbulence in the interior of the computational domain immediately
upstream of the region of interest. Thereby, the resolution upstream of the region of
interest can be coarse because only the mean flow field should be resolved there.

An example of the application is given in Figure 1 taken from [1]. It shows the
vorticity close to an airfoil in a detached-eddy simulation (DES). Upstream of the airfoil
an actuator imposes resolved turbulence on the mean flow field. The resolved turbulence
impinges on the airfoil and influences the solution in the boundary layer. Upstream of
the actuator plane a coarse grid is used.

Stretched

cells

Actuator

Figure 1: Vorticity plot from a DES of an airfoil. From [1].

A similar approach was applied in [2] to simulate the flow past a wind turbine rotor,
which was also modeled by an actuator. Troldborg and co-workers [3, 4] imposed the free
stream turbulence by modifying the source terms of the discrete Navier-Stokes equations.

The most common approach for including free stream turbulence in a CFD simulation
is to impose the turbulence at the inlet, cf. e.g. [5]. In another approach described by
[6] modeled kinetic energy is transferred to resolved turbulence when the modeled energy
is convected into a region with finer mesh resolution. In [7] random forces are used to
generate homogeneous turbulence. Another application of imposing resolved turbulence
is to increase the resolved stresses in the transition region of hydrid LES-RANS. [8] uses
stochastic forcing in the transition region in a LES where the detached-eddy simulation
(DES) is used for wall modeling. A similar problem was faced in [9, 10] in which source
terms are added to the momentum equations to promote the resolved stresses. [11] uses
forcing to quickly generate a fully turbulent flow in a channel.

This paper will concentrate on imposing a given turbulence field and not just some
turbulence field with specified mean, spectra, etc. Specific time series of turbulence will
be imposed in interior of the computational domain. Two different methods for imposing
the turbulence are investigated. The first method is to modify the source terms of the
discrete momentum equations to obtain the desired velocities. In the other method an
actuator model is used to apply forces to a number of cells in the domain to create the
desired turbulence field. For comparison the turbulence field will also be imposed at the
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inlet. These tests will be used as a baseline to access which effects are caused by diffusion,
decay, etc. The requirements for the two investigated methods are

• The turbulence should be added in the interior of the domain.

• It should be superposed to the existing solution, and thereby allow the computa-
tional code to predict the mean flow field.

The scope of this paper is to clearly define the methods and to access their advantages
and disadvantages. First, the numerical setup is described and the models are defined.
Then, results are presented for different turbulence fields and finally, some conclusions
are given.

2 Numerical Methods

The incompressible Navier-Stokes equations are solved using EllipSys3D [12, 13, 14]. It
is a structured, finite volume CFD-code developed at RISØ and Technical University of
Denmark. The PISO-algorithm is used to enforce the pressure-velocity coupling and the
Rhie-Chow interpolation is used to avoid odd/even pressure decoupling. The momentum
equations are solved with the 4th order central difference scheme and a 2nd order accurate
time stepping algorithm is used. The simulations are run as DES [15], but also the
incoming free stream turbulence is resolved. Thereby the model is run in LES-mode in
most of the region of interest except near solid walls. The k − ω SST subgrid model by
Menter [16] is used as in the DES formulation by [17].

When the turbulence is imposed by an actuator a modified version (c.f. [18]) of
the Rhie-Chow pressure correction algorithm is used to avoid numerical wiggles at the
actuator.

3 Methods for Imposing Resolved Turbulence

The turbulence is imposed by modifying the flow in a number of cells. These cells are
located somewhere in the interior of the computational domain. The coordinates of the
N cells are denoted xj where j = 1, 2, . . . , N . A turbulence field u′, v′, w′ is imposed
on the velocity field u, v, w. The velocities u, v, w describe the induced field upstream of
the cells where turbulence is imposed. The turbulence field u′, v′, w′ contains time series
of velocities for each point xj . These disturbances can be turbulence from a precursor
simulation or it can be synthetically generated turbulence.

3.1 Prescribing Velocities at the Inlet

In the baseline tests the turbulence is imposed at the inlet. The fluctuating velocity
field given by the three velocity components u′, v′, w′ is superposed to the mean farfield
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velocities U∞, V∞, W∞

uinlet(t) = U∞(t) + u′(t)
vinlet(t) = V∞(t) + v′(t)
winlet(t) = W∞(t) + w′(t)

⎫

⎬

⎭

(1)

3.2 Modifying Source Terms

By changing the source terms in the discrete Navier-Stokes equations it is possible to
obtain a desired velocity. In each of the cells where the turbulence is imposed the source
terms of the three momentum equations are modified.

At time step t the discrete Navier-Stokes equations are
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where Φ is one of the velocity components, A is a coefficient in the discrete momentum
equation, S is the source term, ρ is the density and V ol is the cell volume. The subscript
p denotes the cell with neighbors indicated by nb. A turbulent correction is added
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Next, the equation is under relaxed and the term of Φt
p on the righthand side is moved

to the left to make the equation more diagonal dominant. We arrive at the discrete
momentum equation is the form it is solved by the flow solver
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+
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+
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−AnbΦ
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p (5)

For typical applications also the velocities in the neighboring cells are modified. These
contributions are added to the last term to give the correction source term that will yield
the desired turbulence field

S ′ =
∑

−AnbΦ
′

p +
∑

AnbΦ
′

nb (6)

Hence, by adding the correction source term in (6) to the discrete momentum equation
the change in Φp of Φ′

p is obtained. The term is absorbed in the source term.
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3.3 Actuator Disc Approach

When the turbulence is imposed by an actuator, a fluctuating force is applied in a number
of cells. Below, the required forces are derived. In Figure 2 the pressure jump and the
velocity change at an actuator is shown. The fluid is accelerated from U∞ to U∞ + u′ by
the pressure jump. The pressure jump required to accelerate the flow is, [19]

Δp =
1

2
ρ

(

(U∞ + u′)
2 − U2

∞

)

(7)

where ρ is the density of the fluid. The pressure is derived from steady one-dimensional
momentum theory using the Bernoulli equation.

U∞

p∞

p

u

u′

Δp

x

x

Actuator

Figure 2: Pressure jump at the actuator and change of velocity at the actuator (dashed
line).

The pressure jump corresponds to a force applied in each computational cell crossed
by the actuator. The magnitude of these forces is

Fc =
1

2
ρAc

(

U∞ +
1

2
u′

)

u′ (8)

where Ac is the area of the actuator crossed by the cell. This can be generalized to include
velocity changes in three dimensions

Fc =
1

2
ρAc

(

U⊥ +
1

2
u′

⊥

)

u
′ (9)

where u
′ and Fc are vectors containing the three components of velocity and force vectors,

respectively. U⊥ is the length of the mean velocity vector orthogonal to the actuator and
u′

⊥
is the corresponding length of the added velocity vector. The forces are imposed in

the cells using the method described by [18].

The above derivation is based on a steady state consideration. When applying a fluc-
tuating velocity field this steady state consideration is not valid. However, the obtained
velocity field is in good agreement with the target velocity field, as will be shown below.
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Under the assumptions of stationary conditions and inviscid flow simple manipulations
with the Navier-Stokes equations show that the changes in the streamwise component
builds up slowly in the region around the actuator as shown in Figure 2. At the ac-
tuator the velocity change is half the final value. For the transverse components the
changes behave like the Heaviside unit step function and are introduced immediately at
the actuator.

4 Results and Discussion

Small simulations are run to test the different methods of imposing the turbulence. At
first, the computational setup is described. Below, three types of fields are imposed. The
first is simple harmonic varying fields which contain the energy at a single frequency.
Then, the more difficult case of precursor turbulence is tested. Here, the imposed field
contains all resolvable frequencies. The precursor simulation ensures that the field satisfies
the Navier-Stokes equations and the continuity condition. Finally, synthetic turbulence
is imposed. This field contains energy on both resolvable frequencies and frequencies too
high for the simulation. Further, incompressibility is only approximately satisfied.

4.1 Computational Setup

For the tests of the different methods a small domain is used. The domain is sketched in
Figure 3 and it contains only cubic cells. The number of cells in the three directions are
Nx ×Ny ×Nz = 128×32×32. In the transverse directions periodic boundary conditions
are used and the height and width of the computational domain is H . The mean flow
U∞ is steady and aligned with the x-axis.

Sample planesActuator

Inlet Outlet

Periodicy

Periodicy

xa x1 x2 x3 . . .x

y

z

H

Figure 3: Computational setup.

The turbulence field is imposed in the entire cross section at x = xa and sampled in
a number of planes located at x = x1, x2, . . . , xn. In each time step the three velocity
components are sampled in all points in the y − z-plane of each sample plane. The
values are stored to a file which then contains time series of the sampled velocities.
These samples are compared to the imposed field to access the method of imposing the
turbulence. The sampled field is denoted ũ, ṽ, w̃.

A total of 11 sample planes are used to show the development of the imposed turbu-
lence behind the actuator. The positions of the sample planes relative to the actuator
normalized by the grid spacing are (xj − xa)/Δx = −10,−5, 0, 2, 5, 10, 15, 20, 30, 40, 60.
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The effect of the boundary conditions is eliminated by using periodic boundary con-
ditions in the transverse directions and imposing a periodic turbulence field in the entire
cross section. Further, the turbulence is imposed some distance from the inlet, so the flow
close to the inlet is undisturbed. The outlet boundary condition uses a simple assump-
tion of zero gradients of the velocity in the flow direction. The assumption is not valid
when the flow is turbulent, and to avoid influence of the boundary the sample planes are
located far from the outlet.

4.2 Harmonics

Simple harmonic fluctuating fields are imposed to test the methods of imposing the
turbulence. Two different types of fields are used. The first contains only a transverse
component of the velocity vector and the field is constant over the cross section area of
the computational domain. It is given by

v′(y, z, t) = v′

0 sin

(

2π
t

T

)

, u′(y, z, t) = w′(y, z, t) = 0 (10)

where t is time, T is the period of the harmonic and v0 is the amplitude.

With the actuator the streamwise component builds up slowly while the transverse
components achieve the full amplitude immediately after the actuator. Therefore, a field
with non-zero streamwise component is also imposed. It is

u′(y, z, t) = u′

0 sin

(

2π
t

T

)

sin
(

2π
y

H

)

v′(y, z, t) = − u′

0H

TU∞

cos

(

2π
t

T

)

cos
(

2π
y

H

)

w′(y, z, t) = 0

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(11)

where u0 is the amplitude of the streamwise component. With application of Taylor’s
hypothesis the temporal variation can be written as a spatial variation under the trans-
formation given by

t = − x

U∞

(12)

When (12) is used in (10) and (11) both fields are seen to be divergence free. Thereby, the
fields can be superposed onto a steady mean flow without compromising the continuity
condition.

In (12) the influence of the imposed streamwise velocities is ignored. The true con-
vection velocity is U∞ + u′ which varies in time and in the three spatial directions. The
variation in convection velocity warps the turbulence as it is convected downstream. This
effect is not included in the simple assumption used in Taylor’s hypothesis. For small
turbulence intensities the difference in convection speed is neglectable and the transfor-
mation (12) can be applied, see e.g. [20].

In Figures 4-6 the amplitude of the sampled oscillations in ṽ is shown for different
CFL numbers and for different periods T . The amplitudes are normalized by the target
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amplitude in (10) and the periods are normalized by the time step Δt0 which gives a CFL
number of unity. The results shown here are similar for the results obtained by imposing
the field given by (11). The velocity field is sampled 20 cells downstream of the point
where the disturbances are imposed.

In Figure 4 the results are shown for the case where the disturbances are imposed at
the inlet boundary condition. It is seen that for the two cases of CFL numbers lower
than unity the lines coincide. In these cases the resolution in space sets the lower limit
for the periods of the harmonic. The normalization of the abscissa is T/Δt0 and gives
the number of cells per wave length of the harmonic, i.e. T/Δt0 = L/Δx where L is
the wave length and Δx is the side length of the cells in the domain. For T/Δt0 > 15
the simulations with low CFL numbers give an amplitude within 2% of the target. With
CFL = 1 the lower limit for the resolvable periods is seen to be higher than for the low
CFL numbers. For periods equal to 20 time steps the amplitude is 85% of the target value
and at 40 the error is 1%. With CFL = 4 the temporal resolution limits the resolvable
periods. At T/Δt0 = 20 only 5 time steps per period is used and this wave dies out before
it reaches the sample plane. For periods larger than 20Δt0 some energy is maintained
and for periods larger than 100Δt0 the error is below 1%.

1

σ̃
v
/σ

′ v

T/Δt0

0
0

0.5

20 40 60 80 100

CFL=0.1

CFL=0.25

CFL=1.0

CFL=4.0

Figure 4: Amplitudes of harmonics given by (10) and imposed at the inlet. The field is
sampled in a plane 20 cells from the inlet.

Figures 5 and 6 show the results obtained from imposing the disturbances by mod-
ifying the source terms and by using the actuator, respectively. The two methods give
nearly similar results to the baseline test where the disturbances are imposed at the inlet.
Hence, both methods give almost perfect results. For the case where turbulence is im-
posed by modifying the source terms it is seen that the obtained amplitudes are slightly
higher than the target for high periods at CFL = 0.1 . The difference is about 2%. For
the remaining CFL numbers the error is well below 1% as in the baseline test.

For the case with the actuator the obtained amplitude is slightly lower than the target
amplitude. The differences are about 4 − 5% at high periods.

Spalart [21] argues that an eddy being convected with a mean velocity cannot be
resolved with less than five cells. Further, the CFL number should be unity in the region
of interest to optimize the value from the computational cost. From Figures 4–6 it is
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Figure 5: Amplitudes of harmonics given by (10) and imposed by modifying the source
terms. The field is sampled 20 cells from the plane where it is imposed.
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CFL=0.25

CFL=1.0

CFL=4.0

Figure 6: Amplitudes of harmonics given by (10) and imposed by the actuator. The field
is sampled 20 cells from the plane where it is imposed.

seen that oscillations with wave lengths less than 5 cells cannot be resolved, and still at
10 cells per wave length the energy loss is significant.

4.3 Turbulence from Precursor Simulation

A synthetic, isotropic turbulence field has been generated by the method of Mann [22]
which is based on the work by Shinozuka and Jan [23]. The generated field is imposed
at the inlet of a domain like the one sketched in Figure 3. In a y − z-plane 20 cells
downstream of the inlet the turbulence field is sampled. This sampled turbulence field
is imposed in the tests presented here. The sampled field satisfies the Navier-Stokes
equations and in the discrete form it is incompressible. Further, since the field is sampled
from a simulation with the same mesh, it is adapted to the mesh.

A total of 4096 time steps have been run and the CFL number is 0.25. The integral
length scale of the synthetic turbulence is 0.5H . The turbulence intensity is 1.2%.

In Figure 7 instantaneous iso-vorticity contours are shown from a simulation where
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the turbulence is imposed by the modification of the source terms. It is seen that the
flow is laminar and steady upstream of the location where the turbulence is imposed.

Inlet Outlet

Source terms modified here

Figure 7: Instantaneous iso-vorticity contours. Precursor turbulence is imposed by mod-
ifying the source terms.

In Figures 8-10 the imposed time series are compared to the time series sampled in
the sample planes. Plotted on the left part of the figures is the ratio of the standard
deviations of the sampled and the imposed field. This is a measure of the intensity
of the generated field. On the plots in the figures to the right is the average correlation
between the sampled and the target time series. This is a measure of the agreement of the
shape of the turbulent structures in the flow with the imposed field. Both the correlation
coefficient and the ratios of standard deviations are plotted against the distance from the
plane where the turbulence is imposed. By use of Taylors hypothesis the sampled time
series are shifted in time for comparison with the imposed time series.
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0.80.8

11

0
0

0
0 2020 4040 6060

Streamwise
Transverse

ρ
u
′
ũ
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Figure 8: Precursor turbulence imposed at the inlet. Comparison of imposed and sampled
time series.

In Figure 8 the results are shown from the simulation where the turbulence is imposed
at the inlet. It is seen that the sampled time series agree quite well with the target time
series. The standard deviations are within 2% of the targets for both the streamwise
and the transverse components. For the first 5 cells closest to the inlet the correlation
coefficient is above 0.99, and further downstream it decreases slowly. The reduction in
standard deviation with distance from the inlet is caused by decay of the turbulence.
The reduction in correlation coefficient is caused by warping of the eddies as discussed
in Section 4.2. The physical decay of the turbulence is low due to a high convection
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velocity U∞ and short distances compared to the decay rate of the turbulence which was
experimentally determined by [24].

The results from the simulation with modified source terms are shown in Figure 9. The
turbulence field is sampled in a number of planes located both upstream and downstream
of the plane where it is imposed as described in Section 4.1. The standard deviation of the
streamwise component is seen to build up slowly and it does not reach its full magnitude
until 15 cells downstream of xa. The transverse and streamwise components give standard
deviations within 1% of the target. 10 to 20 cells downstream of x = xa the correlation
peaks at about 0.99 and in the remaining region the agreement is about as good as in
the baseline test.
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Figure 9: Precursor turbulence imposed by modifying the source terms at x = xa. Com-
parison of imposed and sampled time series.
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Figure 10: Precursor turbulence imposed by an actuator at x = xa. Comparison of
imposed and sampled time series.

Finally, Figure 10 presents results from the actuator. The results are seen to be quite
similar to the ones from the modified source terms. Again, the intensity of the stream-
wise components builds up slowly. It is observed that at the actuator the streamwise
component reaches about half its final magnitude, which is also the theoretical value
as described in Section 3. In agreement with the theory the transverse components are
generated much faster. The obtained intensity is about 7% too low for the streamwise
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component and about 6% too low for the transverse component. The maximum correla-
tion coefficients are about 0.95 and 0.97 for the streamwise and transverse components,
respectively.

The Figures 11-13 compare the power spectra of the sampled time series to the im-
posed time series. The figures contain plots of the three velocity components. For clarity
the u-component has been moved two decades up and the w-component has been moved
two decades down. The indicated cut-off frequency ωcut corresponds to an eddy spanning
five cells. All spectra have been averaged over all points in the y− z-plane. The sampled
time series have been gathered 20 cells downstream of the location where the turbulence
is imposed.

Figure 11 shows results for the baseline test with turbulence imposed at the inlet. The
agreement between the spectra of the sampled and target time series is seen to be very
good. In the entire range of the resolvable frequencies the lines coincide. At frequencies
higher than the cut off frequency both the sampled and the target spectra are seen to
drop off as expected.
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Figure 11: Precursor turbulence imposed at the inlet. Comparison of power spectra of
imposed and sampled time series.

Figure 12 shows excellent agreement from the modified source terms. The agreement
is seen to be as good as the baseline test with turbulence imposed at the inlet.

Finally, the results from the actuator are shown in Figure 13. It shows some deficien-
cies and all three components contain too little energy on all scales. The deficiency is
largest at high frequencies, and in the inertial subrange the errors are small.

In [25] the spatial decay of turbulence was studied using the same numerical method
as used here. The precursor turbulence was imposed at the inlet and good agreement
with the emperical expression found by [24] was found.

4.4 Synthetic Turbulence

In this final series of tests a field of synthetic turbulence is imposed. The field is the
same as was used for the precursor simulation, but here it is imposed directly. The CFL
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Figure 12: Precursor turbulence imposed by modifying the source terms. Comparison of
power spectra of imposed and sampled time series.
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Figure 13: Precursor turbulence imposed by an actuator. Comparison of power spectra
of imposed and sampled time series.

number is 0.25 and the synthetic field is generated so that it contains a new slice of
turbulence every time step. Hence, the streamwise resolution in the synthetic field is four
times finer than in the transverse directions.

When generating synthetic turbulence with the method of Mann [22] all three velocity
components are generated at once. The resulting field is a discrete representation of a
continuous field that is divergence free, but when applying e.g. a second order difference
scheme to evaluate the divergence there are significant errors. The reason for this dis-
crepancy is that the continuous field contains harmonics with very high frequencies and
the discrete representation of these fast harmonics cannot be differentiated with decent
accuracy. Therefore, the discrete representation of the generated field will appear to con-
tradict the continuity condition. Further, the synthetic field contains small eddies with
a wave number lower than what can be resolved in a simulation where the turbulence
is convected with a mean flow velocity. Finally, the generated turbulence have correct
statistical moments up to second order but the phase information is incorrect. When
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the synthetic turbulence is imposed the continuity condition will be enforced by the flow
solver and the high frequency scales will be filtered away by the mesh. For these reasons
the agreement between the sampled and the imposed fields cannot be expected to be as
good as presented for the precursor turbulence.

Figure 14 shows the results from the baseline test where the turbulence is imposed at
the inlet. Close to the inlet the amplitude of the streamwise velocity is seen to be too
high and the transverse component is seen to be too low. Over the first 20 cells they
converge and reach about 0.95 of the target intensity. From there the turbulence decays
slightly. The correlation coefficients shown to the right are significantly lower than unity.
Especially, the streamwise component gives a correlation coefficient of about 0.65 while
the transverse directions give about 0.8−0.85 at a distance of 20 cells from the inlet. The
large difference in streamwise and transverse directions can be attributed to the difference
in resolutions. In the transverse directions a single point in the discrete turbulence field
exists for every cell. In the streamwise (and thereby temporal) direction four points exist
for every cell. Thereby, more information is filtered away in the streamwise direction.
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Figure 14: Synthetic turbulence imposed at the inlet. Comparison of imposed and sam-
pled time series.

0.2

0.4

0.6

0.8

0.5

11

0

0
0

0 2020 4040 6060

Streamwise
Transverse

ρ
u
′
ũ
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Figure 15: Synthetic turbulence imposed by modification of source terms at x = xa.
Comparison of imposed and sampled time series.

Figure 15 shows the results from the simulation where the turbulence is imposed by
a modification of the source terms. The streamwise component gives about 30% too
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low amplitude and the transverse give 5 − 10% too low amplitude. 20 cells from the
location where the turbulence is imposed the correlation coefficients are 0.8 and 0.9 in
the streamwise and transverse directions, respectively. This is a higher correlation for
the streamwise component than in the baseline test, but in turn the intensity is lower.

The results from the simulation with the actuator are shown in Figure 16. The shapes
of the curves are quite similar to the curves from the modified source terms, but here the
intensities are about 5 percent points lower. This gives an intensity of the streamwise
component just over 30% too low and the transverse components are 10 − 15% too low.
The correlation coefficients are also about 5 percent points lower than with the modified
source terms. The correlation coefficients are in the range 0.8 − 0.9.
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Figure 16: Synthetic turbulence imposed by an actuator at x = xa. Comparison of
imposed and sampled time series.

In Figures 17-19 power spectra of the target and sampled time series are shown for
the case of synthetic turbulence. As in Section 4.3 the results are shown for time series
sampled 20 cells downstream of the location where the turbulence is imposed.
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Figure 17: Synthetic turbulence imposed at the inlet. Comparison of power spectra of
imposed and sampled time series.

Figure 17 shows the average power spectra of the time series from the baseline simu-
lation where the turbulence is imposed at the inlet boundary condition. It is seen that in
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most of the resolvable range the spectra of the sampled and target time series coincide.
At the highest resolvable frequencies the energy of the sampled time series drops below
the target. This is exactly the desired behavior. As seen in Figure 14 there is a significant
loss of energy, but the energy is only lost in the frequency range too high to resolve in
the simulation.

In Figure 18 the power spectra are shown from the simulation where the turbulence
is imposed a modification of the source terms. For the two transverse directions the
results are very similar to those described above where all the energy is preserved in the
resolvable range. For the streamwise component there is a significant deficiency at highest
decade of resolvable frequencies. For the lowest frequencies the agreement is good.

u-component

v-component

w-component

ωcut

10−2

10−4

10−6

10−8

10−10

100 101

ω

F
1
(ω

)

−5/3 slope

Sampled
Target

Figure 18: Synthetic turbulence imposed by modification of source terms. Comparison
of power spectra of imposed and sampled time series.
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Figure 19: Synthetic turbulence imposed by an actuator. Comparison of power spectra
of imposed and sampled time series.

Finally, Figure 19 shows the results for the simulation with turbulence imposed by
an actuator. For the transverse components of the velocity vector the deficiency is larger
than for the two other methods. Also for the streamwise component the deficiency is
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larger at all frequencies. The error is almost an entire decade at the largest resolvable
frequencies.

4.5 Required Length of the Precursor Simulation

Comparing the results presented in Sections 4.3 and 4.4 it is clear that both methods give
good results when precursor turbulence is imposed and quite poor results when synthetic
turbulence is imposed. Especially, the method of modifying the source terms gives very
good results, it is consistent and it is easily implemented. Therefore, the computations
in this section will be using the method with the modified source terms.

When running precursor simulations for LES of e.g. atmospheric or channel flows the
precursor simulation can often be more expensive than simulation of the flow of interest,
c.f. [5]. In these cases the turbulence must build up naturally and the boundary layer
must be formed.

In the present application the precursor simulation filters away the unresolvable fre-
quencies of the synthetic turbulence field, forces the discrete representation to satisfy the
continuity condition and adapts the field to the mesh and to the the numerical method.
This type of precursor is extremely cheap. In Section 4.3 the turbulence was sampled 20
cells from the inlet. As will be demonstrated below, the turbulence can be sampled even
closer to the inlet and still be imposed with good accuracy.

From Figures 12 and 18 it is seen that the transverse components can be imposed with
good accuracy both with synthetic and precursor turbulence. The streamwise component
is much more challenging. The turbulence field is recreated poorly with the synthetic
turbulence but with the precursor turbulence the agreement is good. It is clear that
running the turbulence field through a precursor simulation where it is imposed at the
inlet significantly improves the agreement with the target field.

Next, the required length of the precursor simulation is investigated. A precur-
sor simulation is run where the turbulence is sampled in the y − z-plane at xs/Δx =
0.5, 1.5, 2.5, 3.5, 4.5 corresponding to the first five layers of cell centers. These sampled
fields are imposed on five different simulations by the method of modifying the source
terms. The obtained turbulence in these simulations is sampled to access the required
length of the precursor simulation.

Figure 20 shows the power spectra of the time series sampled from the five simulations.
Only the power spectra of the streamwise component are shown. For comparison the
power spectrum of the original synthetic turbulence field is included in the plot. The
spectrum from the simulation with the precursor turbulence sampled in the first layer
of cells is quite similar to the power spectrum from the simulation with the synthetic
turbulence shown in Figure 18. The discrepancy between the sampled field and the
synthetic field arises when the turbulence is imposed inside the domain by the source
terms; the turbulence field sampled from the precursor simulation is nearly identical to
the synthetic field, but it cannot be imposed by modification of the source terms.

To easily distinguish the simulations the results for the four consecutive simulations
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Figure 20: Precursor turbulence imposed by a modification of the source terms. Power
spectra from simulations with turbulence from precursors of different lengths are com-
pared to the same synthetic field.

have been moved downwards by two decades per simulation. The further downstream
the imposed turbulence was sampled in the precursor the better agreement is obtained.
When the turbulence is sampled five cells from the inlet, the agreement with the target
field is as good as the baseline test in Figure 17 where synthetic turbulence was imposed
at the inlet.

Using the precursor where the turbulence is sampled five cells from the inlet gives
exactly the desired results. In the resolvable range of frequencies all the energy is gener-
ated and only energy at higher frequencies is lost. Thereby, the obtained turbulence is a
lowpass filtered version of the synthetic turbulence field with the correct amplitudes of
the oscillations.

In conclusion the synthetic turbulence should be run through a short precursor sim-
ulation before it is imposed inside the domain. The result is a field that contains the
desired energy on all resolvable frequencies.

5 Example of Application

The presented methods can be applied in all cases where inflow turbulence is included
in the simulations. As will be demonstrated here a considerable saving in the number of
cells can be obtained.

In Figure 21 the mesh of an airfoil simulation is shown. The airfoil is located in a
wind tunnel and resolved inflow turbulence is included. The mesh is three dimensional
and consists of a two dimensional mesh extruded in the spanwise direction. Close to
the airfoil an O-mesh is used and the rest of the domain is filled with Cartesian cells.
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The inlet is located four chords upstream of the leading edge and turbulence is imposed
about half a chord upstream of the airfoil. The inlet must be located a good distance
upstream of the airfoil to allow the flow solver to determine the correct induced flow in
the upstream region. The outlet is located far downstream of the airfoil. Figure 1 shows
the instantaneous iso-vorticity close to the airfoil.

c

1.5c

3c

Inlet

Symmetry

Periodicity

Turbulence

Figure 21: The computational mesh from [1]. Every fourth cell is shown.

By imposing the turbulence immediately upstream of the airfoil only a small region
close to the airfoil has to be resolved with a fine mesh. Only in this region the inflow
turbulence is resolved. Upstream of the plane where the turbulence is imposed only the
steady mean flow has to be resolved. This is also the case for the region above and below
the airfoil.

If alternatively the turbulence was imposed at the inlet a fine mesh resolution should
be used everywhere upstream of the airfoil. [1] compares a mesh designed for the tur-
bulence being imposed at the inlet to the mesh shown in Figure 21. Using identical
resolutions close to the airfoil a saving of about 60% in the total number of cells was
obtained by imposing the turbulence immediately upstream of the airfoil. Further, the
resulting surface pressure was the same in the two simulations.

6 Conclusions

Two methods for imposing resolved turbulence in CFD simulations were described and
analyzed. The first method used a modification of the source terms of the discrete
momentum equations. This approach gave the best agreement with the target fields.
Further, the method is easily implemented.

The second method was to impose the turbulence by an actuator. Resolved turbulence
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was generated by applying forces to the cells crossed by the actuator. This approach gave
decent results with the precursor turbulence, but is gave too low energy on the highest
resolvable frequencies.

None of the methods gave good results when imposing synthetic turbulence. However,
it was shown that by running the synthetic turbulence through a short precursor the re-
sults improved significantly. Therefore, it is recommended to run the synthetic turbulence
through a short precursor where the turbulence is sampled 5 to 20 cells downstream of
the inlet where the turbulence is imposed. The method using the modified source terms
is recommended for imposing the resolved turbulence in the domain. This approach gave
the best results and combined with a short precursor the correct energy on all resolvable
frequencies, that can be obtained.

The example of application showed a considerable saving in the required number of
cells without coarsening the mesh in the region of interest.
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Three Dimensional Turbulence Modeling in Shear
Flow with Application to Wind Turbines
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Abstract

In this paper the non-isotropic turbulence in the undisturbed atmospheric bound-
ary layer flow is modeled in terms of the cross-spectral density function. The cross-
spectral density function is determined for the three velocity components for any
spatial separation in the vicinity of the rotor of a wind turbine. The turbulence
field is assumed to be Gaussian, time-stationary and homogeneous over the rotor
area. The approach is based on Townsend’s rapid distortion theory for a frozen
homogeneous, non-isotropic turbulence field in combination with Taylor’s convec-
tion assumption. The core of the theory is the representation of various functions
defining the azimuthal anisotropy of the turbulence field in terms of truncated low
order Fourier series of the azimuthal angle. Then, the cross-spectral density func-
tions may be obtained by solving a limited number of one-dimensional quadratures.
In the numerical example it is demonstrated that the characteristics of turbulence
in shear wind such as non-isotropic variances and the negative correlation between
the along wind and vertical turbulence components can be modeled by the theory.

Keywords: Three-dimensional turbulence, shear flow, wind turbines, cross-spectral
density function.

1 Introduction

Modern wind turbine wings are flexible and hence sensible to dynamic loads such as gusts
caused by the turbulence of the wind field impinging on the rotor disk. The dynamic
response may lead to both fatigue failure and collapse due to the yielding bending stresses
or collision between the deflected blade and the tower. It follows that turbulence must be
taken into consideration at the design of wind turbines. In the IEC 61400-1, Ed. 3.0 design
code of practice for larger wind turbines, [1], the applied turbulence field is prescribed
in terms of a frozen, homogeneous, non-isotropic turbulence field, which is convected
into the rotor according to Taylor’s hypothesis. The spectral turbulence tensor of the
frozen field is taken as Townsend’s solution for homogeneous shear flow based on rapid
distortion theory, [2].

∗Department of Civil Engineering, Aalborg University, Sohngaardsholmsvej 57, 9000 Aalborg, Den-
mark.

†E-mail: lg@civil.aau.dk, Phone: +45 9940 8570, Fax: +45 9940 8552
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The specification of design response in the code is based on Monte-Carlo simulations
using the Mann and Krenk approach [3] of generating synthetic turbulence. A highly
limited number of realizations (six to 15) are generated of the frozen turbulence field
representing the stationary turbulence in a 10 minutes referential period. Next, the
maxima of the structural response are sampled based on numerical time integration of
the dynamic equations of motion. A rather arbitrarily chosen distribution function is
fitted to the sampled values of the local maxima. Finally, this distribution function is
extrapolated to yield the design response as the 50 year return value.

It turns out that the predicted maximal response depends severely on the chosen dis-
tribution function [4, 5]. Actually, the indicated procedure merely focus on the central
part of the distribution, whereas the tail is not determined. Actually, the failure prob-
ability under normal operations is in the order of magnitude 10−7 during the referential
10 minutes period. Therefore, the indicated so-called crude Monte-Carlo method is not
suitable for the estimation of such low failure probabilities.

Low failure probabilities of wind turbines may be estimated by so-called controlled
Monte Carlo simulation methods [6, 7]. These are based on a state vector formulation
of the turbulence field along with a state vector description of the structural system
including control systems (pitch, yaw, rotational speed, etc.), so the integrated system
forms a Markov vector. This rules out spectral representations of the turbulence field such
as the Mann or Sandia models. Instead, a model based on rational filtration of Gaussian
white noise is needed, with the filter parameters calibrated to the cross-spectral densities
in the rotor area. This may be done by means of an ARMA vector model [8].

Veers [9] has suggested the use of empirical cross-spectral density functions for the
time-stationary turbulence components between two points in the rotor plane, as has
long time been the practice in civil engineering [10, 11, 12]. The applied spectra presume
stochastic independence among the three turbulence components, however, with the con-
sequence that the negative correlation between the along-wind and vertical turbulence
components at a certain position is not modeled. Further, the influence of the phase
spectrum is ignored, rendering the coherence functions and hence the cross-spectral den-
sities real. Saranyasoontorn et al. [13] found the coherence of the rapid distortion theory
to match their measurements better. Finally, the rapid distortion theory is employed by
the method of Mann [14] which is recommended by the IEC61400 code. Therefore, it is
chosen as basis for the model derived in this paper.

The idea of the present paper is to obtain an approximate but accurate representation
of the said cross-spectral density functions derived from the code provisions, which form
the basis of the calibration of the filter model of the turbulence process. The calibration
procedure requires calculations of many function values of the spectra, for which reason
a reduction in calculation time is desired.

Another application of the derived cross-spectral densities is generation of synthetic
turbulence with the method in [15]. The method is intended for generating turbulence
in a domain following a section of a rotating wind turbine blade. For CFD simulations
of the flow past a section of a rotating wind turbine blade, the inflow turbulence is
needed. The generated turbulence field should have a high spatial resolution close to the
simulated section, while the turbulence in the rest of the rotor plane is not needed. For
this application the methods of Mann and Krenk [3] or Veers [9] cannot be used. The
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reason is that these methods need to generate turbulence in a much larger domain, than
what is needed, and thereby the demand for computer memory becomes infeasible high.

The obtained solution is based on a representation of the various functions defining
the azimuthal anisotropy in terms of truncated low order Fourier series of the azimuthal
angle. Then, the cross-spectral density functions of the three-dimensional turbulence may
be obtained by numerical solution of a limited number of one-dimensional quadratures. In
a numerical example it is demonstrated that the spectral characteristics of turbulence in
shear wind, such as anisotropic variances and correlation lengths of the three turbulence
components, as well as the negative correlation between the along wind and vertical
turbulence components, can be modeled by the theory.

2 Background and Definitions

In the present section the background for the turbulence model is given. It is based on
the work by Townsend [2] and Mann and Krenk [3].
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Figure 1: Rotational symmetric discretization of rotor area.

2.1 Stochastic Modeling of a Turbulence Field

The mean wind and the turbulence field are described in a Cartesian (z1, z2, z3)-coordinate
system with the origin placed somewhere in the rotor plane. The z1-axis is horizontal,
orthogonal to the rotor plane and oriented towards the nacelle. The z3-axis is vertical and
oriented in the upwards direction, see Figure 1. The three-dimensional turbulence field is
modeled as a zero-mean, Gaussian time-stationary and spatial homogeneous stochastic
process {vj(z, t), (z, t) ∈ R3 × R}, where vj(z, t) specifies the random turbulence in the
coordinate direction j at the time t at the position defined by the position vector z. Then,
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the stochastic field is completely described by the cross-covariance function

κjk(z1, t1; z2, t) = E
[

vj(z1, t1)vk(z2, t2)
]

= κjk(r, τ) = κjk(−r,−τ) (1)

where E[·] denotes the expectation operator, and r = z2 − z1 and τ = t2 − t1 signify the
spatial and temporal separations between the turbulence vectors.

For the spatial discretization shown on Figure 1 the first component r1 of the sepa-
ration vector r attains the value −r0, 0, r0. The cross-spectral density function is related
to the cross-covariance function via the Wiener-Khintchine relation, see e.g. [16]

Sjk(r, ω) =
1

2π

∫

∞

−∞

e−iωτ κjk(r, τ) dτ (2)

Due to the symmetry properties of the cross-covariance function, the double-sided
cross-spectral density function must fulfill the symmetry properties

Sjk(r, ω) = S∗

kj(−r, ω) = S∗

jk(r,−ω) (3)

Taylor’s hypothesis presumes that the fluctuations of the wind field at a given obser-
vation point approximately may be considered merely as the effect of the convection of
a frozen turbulence field with the mean wind field V . Let ṽj(z1, z2, z3) = vj(z1, z2, z3, 0)
denote the turbulence field at the time t = 0, which is taken as the frozen field. Since
the convection takes place in the positive z1-direction this means that the turbulence at
the position (z1, z2, z3) at the time t has been positioned at (z1 − V t, z2, z3) at the time
t = 0. Hence, Taylor’s hypothesis implies the functional relationship

vj(z1, z2, z3, t) = ṽj(z1 − V t, z2, z3) (4)

Then, use of (1) provides the following result for the cross-covariance function

κjk(r, τ) = E
[

ṽj(z1 − V t1i1)ṽk(z2 − V t2i1)
]

= κ̃jk(r1 − V τ, r2, r3) (5)

where i1 is the base unit vector along the z1-axis, and κ̃jk(r) is the cross-covariance
function of the frozen field defined as

κ̃jk(r) = E
[

ṽj(z1)ṽk(z2)
]

(6)

Normally, the correlation structure of the frozen field is defined in terms of the spectral
turbulence tensor Φjk(k) related to the cross-covariance function via the inverse Wiener-
Khintchine relation

κ̃jk(r) =

∫

eik·r Φjk(k) dk (7)

k = [k1, k2, k2] denotes the wave number vector, and the scalar product k · r is evaluated
as k1r1+k2r2+k3r3. In the following derivations it is convenient to introduce the quantity

χjk(k1, r2, r3) =
1

2π

∫

∞

−∞

e−ik1r1 κ̃jk(r1, r2, r3) dr1

=

∫

∞

−∞

∫

∞

−∞

ei(k2r2+k3r3) Φjk(k1, k2, k3) dk2dk3 (8)
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At the derivation of the last statement it has been used that

1

2π

∫

∞

−∞

ei(k′

1−k1)r1 dr1 = δ(k′

1 − k1) (9)

where δ(·) is the Dirac delta function.

Insertion of (5) into (2) and use of (8) provides the following result for the cross-
spectral density function

Sjk(r, ω) =
1

2π

∫

∞

−∞

e−iωτ κ̃jk

(

r1 − V τ, r2, r3

)

dτ

=
e−i ω

V
r1

V
χ∗

jk

(ω

V
, r2, r3

)

(10)

where ∗ denotes complex conjugation.

2.2 Sheared Spectral Turbulence Tensor

Townsend [2] obtained a solution for the double-sided spectral turbulence tensor for neu-
tral atmospheric turbulence in shear flow. The basic assumptions are that the turbulence
components are small compared to the mean wind velocity V , rendering linearization of
the convective acceleration in Navier-Stokes equation possible (leaving ”the rapid terms”),
and that the mean wind over the rotor disk can be assumed to be varying linearly with
height. Hence, the mean wind gradient dV

dz3
evaluated at the hub is assumed to be constant.

Next, the linearized Navier-Stokes equations are transferred to the wave number space,
providing equations for the evolution in time of the Fourier transform of the turbulence
components.

According to the Richardson cascade theory for the decay of grid generated turbu-
lence the energy is generated at large wave numbers, and is transformed to and finally
dissipated at smaller wave numbers in a way that larger vortices only interact with some-
what smaller vortices and so forth. At the same time the turbulence tends to become
increasingly isotropic as sufficiently high scalar wave numbers are reached. In the equilib-
rium range, where the supplied turbulence energy from larger wave number balances the
energy supplied to smaller wave numbers, this observation suggests that the anisotropic
stationary state of vortices in the inertial sub-range of the equilibrium range, may be de-
fined by the wave number vector k = k

(

k0

)

obtained by starting from the wave number
k0 in the isotropic state, and integrating the Navier-Stokes equations backwards in time
during a certain time interval τ = τ(k0), which may be interpreted as the time interval
needed for vortices with the scalar wave number k = |k| to return to isotropy via the
cascade process. In what follows τ = τ(k0) will be referred to as the life time of vortices
in the anisotropic state defined by the wave number k = k

(

k0

)

.

As a consequence of the linearization the anisotropic wave number vector k and the
initial isotropic wave number k0 are linearly related via the mapping, [2]

k = A
(

τ(k0)
)

k0 (11)
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where

A(τ) =

⎡

⎣

1 0 0

0 1 0

−β(τ) 0 1

⎤

⎦ (12)

β(τ) =
dV

dz3

τ (13)

The final result for the anisotropic spectral turbulence tensor may be written as, [2]

Φjk(k) = Bjl(k0)Φlm,0(k0)Bkm(k0) (14)

In (14) the summation convention has been applied for the dummy indices l and m,
ranging from 1 to 3. Φlm,0(k0) denotes the spectral turbulence tensor for homogeneous,
isotropic turbulence of an incompressible fluid given as, [17]

Φjk,0(k0) =
E(k0)

4πk4
0

(

δjkk
2
0 − kj,0kk,0

)

(15)

where δjk denotes the Kronecker delta.

E(k0) is the three-dimensional energy spectral function, for which von Karman sug-
gested the following expression, asymptotically correct at small and at large scalar wave
numbers corresponding to the inertial subrange

E(k0) = ασ2
ṽL

(Lk0)
4

(

1 + (Lk0)2
)

17

6

, α =
55

9

Γ(5
6
)

Γ(1
2
)Γ(1

3
)

(16)

where σṽ and L specify the standard deviation and the correlation length of the isotropic
turbulence. Γ(·) is the gamma function.

Bij(k0) denotes components of the matrix B(t) given as

B(k0) =

⎡

⎣

1 0 B1(k0)

0 1 B2(k0)

0 0 B3(k0)

⎤

⎦ (17)

The non-dimensional functions B1(k0), B2(k0) and B3(k0) define the anisotropy of
the turbulence field and are given as, [2]

B1(k0) = k1,0

k2
0

M2
0

(

k3,0

k2
0

− k3(τ)

k2(τ)

)

+
k2

2,0

k1,0

k2
0

M3
0

arctan

(

M0

(

k3(τ) − k3,0

)

M2
0 + k3(τ)k3,0

)

(18)

B2(k0) = k2,0

k2
0

M2
0

(

k3,0

k2
0

− k3(τ)

k2(τ)

)

− k2,0

k2
0

M3
0

arctan

(

M0

(

k3(τ) − k3,0

)

M2
0 + k3(τ)k3,0

)

(19)

B3(k0) =
k2

0

k2(τ)
(20)
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where

M0 =
√

k2
1,0 + k2

2,0 (21)

In order to close the theory a model for the life time τ(k0) is needed. Mann [18]
discusses several possibilities and recommends

τ(k0) ∝ k
−2/3
0

[

2F1

(

1

3
,
17

6
;
4

3
,−(k0L)−2

)]

−1/2

(22)

which give the following expression for β(k0)

β(k0) = β0 (Lk0)
−2/3

[

2F1

(

1

3
,
17

6
;
4

3
,−(k0L)−2

)]

−1/2

(23)

where β0 is a constant.

Then, the parameters entering the turbulence model consist of the standard devi-
ation σṽ, the correlation length L of the isotropic referential turbulence, and the non-
dimensional parameter β0. σ2

ṽ control the overall kinetic energy of the turbulence field,
L controls the correlation lengths in the turbulence field, and β0 controls the anisotropy
responsible for the negative correlation between ṽ1(z, t) and ṽ3(z, t).

3 Semi-Analytical Solution for the Cross-Spectral Density Func-

tion

A semi-analytical solution for the cross-spectral density function will be derived in the
following three subsections. First, the explicit dependence of the spectra on the wave
number and the turbulence characteristics is derived in terms of a planar integral, which
will be evaluated in polar coordinates. Next, approximations are introduced to allow
analytical integration over the azimuthal angle. Finally, one-dimensional numerical in-
tegration is performed over the modulus to give the cross-spectral density function in
semi-analytical form.

3.1 Integral Representation of the Cross-Spectral Density Function

Insertion of (14) into (8) and use of (11) provides the following solution for χjk(k1, r2, r3),
where the double integral is evaluated in the isotropic wave number space

χjk

(

k1, r2, r3

)

=
∫

∞

−∞

∫

∞

−∞

ei(k2r2+k3r3)Bjl(kn,0) Φlm,0(k1, k2,0, k3,0) Bkm(kn,0) dk2dk3 =

∫

∞

−∞

∫

∞

−∞

e−ik1r3β(τ)ei(k2,0r2+k3,0r3)Bjl(kn,0) Φlm,0(k1, k2,0, k3,0) Bkm(kn,0) dk2,0dk3,0

(24)
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In (24) it has been used that det
(

A(τ)
)

= 1, so dk2,0dk3,0 = dk2dk3. For ease of
notation the index ’0’ referring to quantities in the isotropic wave number space is skipped
in what follows. Further, the evaluation of the double integral in (24) is performed in
polar coordinates, for which reason the following polar representations are introduced

r2 = R cos θ , r3 = R sin θ

k2 = K cos ψ , k3 = K sin ψ

}

(25)

Correspondingly, Bjl and Φlm,0 are now considered as functions of the isotropic scalar

wave number k1 = k1,0 =
√

k2
1 + K2, K and the azimuthal angle ψ. Insertion of (15)

then provides

χjk(k1, R, θ) =
∫

∞

0

e−ik1r3β(τ) E(k)

4πk4

∫ 2π

0

(

eiKR cos(ψ−θ)Bjl(kn)
(

δlmk2 − klkm

)

Bkm(kn)

)

dψ KdK =

∫

∞

0

e−ik1R sin θ β(τ) E(k)

4πk4

∫ 2π

0

eiKR cos(ψ−θ) Djk(k1, K, ψ) dψ KdK

(26)

where the following tensor components have been introduced

Djk(k1, K, ψ) = k2 Bjl(k1, K, ψ)Bkl(k1, K, ψ)−Bjl(k1, K, ψ)kl Bkm(k1, K, ψ)km (27)

where, cf. (17)

D11(k1, K, ψ) =k2
(

1 + B2
1

)

−
(

k1 + B1 k3

)2

=k2
(

1 + B2
1 −

(

γ + B1 δ sin ψ
)2

)

D12(k1, K, ψ) =k2 B1 B2 −
(

k1 + B1 k3

)(

k2 + B2 k3

)

=k2
(

B1B2 −
(

γ + B1 δ sin ψ
)(

δ cos ψ + B2 δ sin ψ
)

)

D13(k1, K, ψ) =k2 B1 B3 −
(

k1 + B1 k3

)

B3 k3

=k2
(

B1B3 −
(

γ + B1 δ sin ψ
)

B3 δ sin ψ
)

D22(k1, K, ψ) =k2
(

1 + B2
2

)

−
(

k2 + B2 k3

)2

=k2
(

1 + B2
2 −

(

δ cos ψ + B2 δ sin ψ
)2

)

D23(k1, K, ψ) =k2 B2 B3 −
(

k2 + B2 k3

)

B3 k3

=k2
(

B2B3 −
(

δ cos +B3 δ sin ψ
)

B3 δ sin ψ
)

D33(k1, K, ψ) =
(

k2 − k2
3

)

B2
3 = k2

(

1 − δ2 sin2 ψ
)

B2
3

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(28)

In the final statements of (28) the following non-dimensional parameters have been
introduced

γ =
k1

k
, δ =

√

1 − γ2 =
K

k
(29)
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Obviously, |γ| ≤ 1. Correspondingly, the dependence of the anisotropy functions
Bj(k1, K, ψ) on ψ follows by insertion of (25) into (18), (19) and (20)

B1(k1, K, ψ) = k1

k2
0

k2
1 + k2

2

(

k3

k2
0

− βk1 + k3

k2
0 + 2βk1k3 + β2k2

1

)

+
k2

2

k1

k2
0

(k2
1 + k2

2)
3/2

arctan

(

√

k2
1 + k2

2βk1

k2
0 + βk1k3

)

=
γ

γ2 + δ2 cos2 ψ

(

δ sin ψ − βγ + δ sin ψ

1 + 2βγδ sin ψ + β2γ2

)

+
δ2 cos2 ψ

γ (γ2 + δ2 cos2 ψ)3/2
arctan

(

√

γ2 + δ2 cos2 ψβγ

1 + βγδ sin ψ

)

(30)

B2(k1, K, ψ) = k2

k2
0

k2
1 + k2

2

(

k3

k2
0

− βk1 + k3

k2
0 + 2βk1k3 + β2k2

1

)

− k2

k2
0

(k2
1 + k2

2)
3/2

arctan

(

√

k2
1 + k2

2βk1

k2
0 + βk1k3

)

=
δ cos ψ

γ2 + δ2 cos2 ψ

(

δ sin ψ − βγ + δ sin ψ

1 + 2βγδ sin ψ + β2γ2

)

− δ cos ψ

(γ2 + δ2 cos2 ψ)3/2
arctan

(

√

γ2 + δ2 cos2 ψβγ

1 + βγδ sin ψ

)

(31)

B3(k1, K, ψ) =
k2

k2 + 2β k1k3 + β2k2
1

=
1

1 + 2βγδ sin ψ + β2γ2
(32)

The idea in the following is to approximate the tensor components Djk(k1, K, ψ) in
terms of truncated low-order Fourier series of the azimuthal angle ψ, from which an
analytical solution to the innermost integral in (26) may be obtained.

3.2 Approximations for Dij(k1, K, ψ)

From this point two approaches are investigated. The first is to introduce an approxima-
tion for the anisotropy functions Bj(k1, K, ψ) in terms of truncated Fourier series in the
azimuthal angle ψ, retaining harmonics up to 2nd order. The Fourier series are required
to attain the exact values for ψ = −π, −π

2
, 0, π

2
, π. Next, these series are inserted in

(28) to obtain a somewhat more involved Fourier series for Dij(k1, K, ψ) using standard
trigonometric identities. This will give an approximation with harmonics up to 6th order.

The second approach is to introduce similar low order truncated Fourier series as
used for Bj(k1, K, ψ) on the components of Dij(k1, K, ψ) directly, which will give an
approximation with harmonics up to 2nd order.
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In the first approach Bj(k1, K, ψ) is approximated by the following series

B1(k1, K, ψ) 	 B1,0(k1, K) + B1,1(k1, K) sin ψ + B1,2(k1, K) cos 2ψ

B2(k1, K, ψ) 	 B2,1(k1, K) cosψ + B2,2(k1, K) sin 2ψ

B3(k1, K, ψ) 	 B3,0(k1, K) + B3,1(k1, K) sin ψ + B3,2(k1, K) cos 2ψ

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(33)

where

B1,0(k1, K) =
1

4

(

B1

(

k1, K,−π

2

)

+ 2B1

(

k1, K, 0
)

+ B1

(

k1, K,
π

2

)

)

B1,1(k1, K) =
1

2

(

B1

(

k1, K,
π

2

)

− B1

(

k1, K,−π

2

)

)

B1,2(k1, K) = −1

4

(

B1

(

k1, K,−π

2

)

− 2B1

(

k1, K, 0
)

+ B1

(

k1, K,
π

2

)

)

B2,1(k1, K) = B2

(

k1, K, 0
)

B2,2(k1, K) =
1

4

(

B2

(

k1, K,
π

2

)

− B2

(

k1, K,−π

2

)

)

B3,0(k1, K) =
1

4

(

B3

(

k1, K,−π

2

)

+ 2B3

(

k1, K, 0
)

+ B3

(

k1, K,
π

2

)

)

B3,1(k1, K) =
1

2

(

B3

(

k1, K,
π

2

)

− B3

(

k1, K,−π

2

)

)

B3,2(k1, K) = −1

4

(

B3

(

k1, K,−π

2

)

− 2B3

(

k1, K, 0
)

+ B3

(

k1, K,
π

2

)

)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(34)

The explicit expressions for the Fourier coefficients are obtained by insertion of (30),
(31), (32) on the right-hand sides of (34). The resulting expressions become rather
lengthy, and will not be indicated. Notice that the indicated truncated series become
exact in the limits γ = 0 and γ = 1. The accuracy of the approximations have been
demonstrated for γ = 1

3
and γ = 2

3
on Figure 2 for the realistic spectral values Lk = 30,

β0 = 4.

The corresponding truncated Fourier series expansions for the tensor components
Djk(k1, K, ψ) are obtained by inserting (33) into (28). These may be written on the form

Djk(k1, K, ψ) 	
6

∑

n=0

(

cjkn(k1, K) cosnψ + sjkn(k1, K) sinnψ
)

(35)

The Fourier coefficients cjkn(k1, K) and sjkn(k1, K) are derived from (28) and (33) by
using trigonometric identities. Several of the coefficients are zero. The results are rather
lengthy and will not be given here.

In the second approach Dij(k1, K, ψ) is approximated directly by truncated Fourier
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Figure 2: Exact results and approximate Fourier series for B1, B2 and B3. Lk = 30 and
β0 = 4. a) γ = 1

3
. b) γ = 2

3
.

series with harmonics up to second order as in (33)

D11(k1, K, ψ) 	 D11,0(k1, K) + D11,1(k1, K) sinψ + D11,2(k1, K) cos 2ψ

D22(k1, K, ψ) 	 D22,0(k1, K) + D22,1(k1, K) sinψ + D22,2(k1, K) cos 2ψ

D33(k1, K, ψ) 	 D33,0(k1, K) + D33,1(k1, K) sinψ + D33,2(k1, K) cos 2ψ

D12(k1, K, ψ) 	 D12,1(k1, K) cosψ + D12,2(k1, K) sin 2ψ

D13(k1, K, ψ) 	 D13,0(k1, K) + D13,1(k1, K) sinψ + D13,2(k1, K) cos 2ψ

D23(k1, K, ψ) 	 D23,1(k1, K) cosψ + D23,2(k1, K) sin 2ψ

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(36)

Hence, Dij(k1, K, ψ) is approximated by

Djk(k1, K, ψ) 	
2

∑

n=0

(

cjkn(k1, K) cosnψ + sjkn(k1, K) sinnψ
)

(37)

For (i, j) = (1, 1), (2, 2), (3, 3) and (1, 3) the non-zero coefficients are

cij0(k1, K) =
1

4

(

Dij

(

k1, K,−π

2

)

+ 2Dij (k1, K, 0) + Dij

(

k1, K,
π

2

))

sij1(k1, K) =
1

2

(

Dij

(

k1, K,
π

2

)

− Dij

(

k1, K,−π

2

))

cij2(k1, K) = − 1

4

(

Dij

(

k1, K,−π

2

)

− 2Dij (k1, K, 0) + Dij

(

k1, K,
π

2

))

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(38)
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and for (i, j) = (1, 2) and (2, 3) the non-zero coefficients are

cij1(k1, K) = Dij (k1, K, 0)

sij2(k1, K) =
1

4

(

Dij

(

k1, K,
π

2

)

− Dij

(

k1, K,−π

2

))

⎫

⎬

⎭

(39)

Both approximations of Dij(k1, K, ψ) will give results close the exact solution for most
values of k1, K and ψ for realistic L and β0.

Far the most combinations of k1 and K will result in Dij(k1, K, ψ) with a strong first
or second order harmonic. However, there are also combinations for small values of kL
that give a less simple variation as shown in Figure 3. In Figure 3(a) both the 2nd and
6th order approximations give results close to the exact solution, and here the 6th order is
better than the 2nd order approximation. In a narrow set of k1 and K the D33(k1, K, ψ)
component varies as shown in Figure 3(b). Here the 6th order gives a large overshoot,
and when integrated as in (26) this will result in too high spectral density function.

Hence, in general the 6th order approximation is closer to the exact solution, but for
some parameters it gives a very inaccurate result. The 2nd order solution is often slightly
less accurate, but it is more stable and gives at least a fair approximation for all combi-
nations of k1 and K. For its simplicity and robustness the second order approximation
defined by (37), (38) and (39) will be used throughout from this point.
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Figure 3: Comparison of 2nd and 6th order approximations to exact solution for
D33(k1, K, ψ). kL = 1 and β0 = 4. a) γ = 0.8 and b) γ = 0.2.

3.3 Analytical Evaluation of Integrals

Based on the derived Fourier series expansion for Dij(k1, K, ψ) the innermost integral in
(26) may be evaluated analytically using the following identities, which have been derived
by simple manipulations with the Bessel integral, [19]

∫ 2π

0

eiKR cos(ψ−θ) cos(nψ) dψ = 2πin cos(nθ)Jn(KR)

∫ 2π

0

eiKR cos(ψ−θ) sin(nψ) dψ = 2πin sin(nθ)Jn(KR)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(40)

Jn(z) denotes the Bessel functions of the order n and the first kind. Then, insertion
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of (37) into (26) provides

χjk(k1, R, θ) 	
2

∑

n=0

(

Cjkn (R, k1, θ) cos(nθ) + Sjkn (R, k1, θ) sin(nθ)

)

(41)

and thereby the following result for the cross-spectral density function is obtained

Sjk(r1, R, θ, ω) =
e−i ω

V
r1

V

2
∑

n=0

(

C∗

jkn

(

R,
ω

V
, θ

)

cos(nθ)+S∗

jkn

(

R,
ω

V
, θ

)

sin(nθ)

)

(42)

where Cjkn and Sjkn denote the following Hankel transforms with respect to K

Cjkn(R, k1, θ) = in
∫

∞

0

e−ik1R sin θ β(τ) E(k)

2k4
cjkn(k1, K) Jn(KR) KdK

Sjkn(R, k1, θ) = in
∫

∞

0

e−ik1R sin θ β(τ) E(k)

2k4
sjkn(k1, K) Jn(KR) KdK

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(43)

The Hankel integrals entering (43) must be carried out numerically.

Especially, the double-sided auto-spectral density functions follow for r1 = R = 0

S(j)(j)(ω) =
1

V
C(j)(j)0

(

0,
ω

V
, 0

)

(44)

where the parentheses around the indices indicate that the summation convention is
abandoned.

4 Numerical Examples

To verify the semi-analytical solution given by (42) it is compared to the exact result
determined by numerical integration of (26). First, the auto-spectra will be shown.
Further, the correlation coefficient between v1(t) and v3(t) is determined along with
the ratios of standard deviations of the three velocity components. These values are
determined for r1 = R = 0. Finally, the cross-spectra are shown for R = L/2.

For each value of k1 the semi-analytical model needs to integrate numerically over
K, while the purely numerical integration of (26) needs to integrate over both K and
ψ. The most costly operation is the many evaluations of Bj(k1, K, ψ) involved in both
approaches. With the semi-analytical model only three values are needed for each set of
(k1, K), namely ψ = π

2
(−1, 0, 1). To obtain accurate results with the purely numerical

integration a minimum of 20 values of Bj(k1, K, ψ) should be evaluated at different ψ
for each combination of (k1, K). The total simulation time for a single cross-spectral
density function is in the order of 20− 40 seconds on a modern desktop computer. If the
rotor plane is resolved into 50 points a total of 2500 auto- and cross-spectra should be
computed, so the total simulation time is several hours. Therefore, a reduction in total
computation time is desired, which can be obtained by use of the semi-analytical model.
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4.1 Auto-Spectral Density

In Figure 4 the double-sided auto-spectra evaluated by (44) is compared to the exact
solution evaluated by numerical integration of (26). The spectra are shown for the
turbulence components v1(t), v2(t) and v3(t) and have been normalized with respect to
the isotropic variance σ2

ṽ . Further, the cross-spectral density S13(ω) between v1(t) and
v3(t) is shown. For r1 = R = 0 all the spectra are real. The spectra are symmetric and
therefore results are only shown for positive frequencies. The dependency of V and L is
eliminated in the normalization.
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L
S

3
3
(ω

)

-
ω

V

σ
2 ṽ
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Figure 4: Exact vs. semi-analytical spectra for β0 = 6.5 and r1 = R = 0.

The agreement between the exact and semi-analytical solution is seen to be good. The
differences between the semi-analytical and exact solution are smaller than the difference
between the exact solution and the model spectra by Simiu and Scanlan [20] shown by
Mann in [14]. Further, it is noticed that S13(ω) is negative for all frequencies. For the
applications outlined in the introduction, the important part of the spectral densities is
the linear region, as the eigenfrequencies of the wind turbine are located in this region.

Using the semi-analytical approach the ratios of standard deviations of the three
velocity components are

σv2

σv1

= 0.71

σv3

σv1

= 0.50

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(45)

for β0 = 6.5. These values match the ratios listed in the IEC 61400-1 code [1]. The
correlation between the along wind and vertical components is

ρṽ1ṽ3
=

∫

∞

∞

S13(0, 0, 0, ω)dω

(
∫

∞

∞

S11(ω)dω

∫

∞

∞

S33(ω)dω

)1/2
= −0.34 (46)

14



4.2 Cross-Spectral Density

In Figure 5 the cross-spectra from (42) and numerical integration of (28) are compared
for a separation distance of R = 0.5L and θ = 1

8
π. Here, all terms of (42) are active

and the spectra contain both real and imaginary parts which are shown in the figure.
The real parts are symmetric functions and the imaginary parts are skew-symmetric
functions of frequency, and therefore the results are only shown for positive frequencies.
The agreement is seen to be good and the differences are seen to be smaller than the
differences reported in [14].
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8
π. Thick lines mark real part and thin lines mark imaginary part.

5 Conclusions

A semi-analytical solution is derived for the cross-spectral density function. Along one
dimension the integral is evaluated analytically leaving a single dimension for numerical
integration. This reduces the computational cost considerably as shown in the numerical
example.

In the numerical example it was verified that the ratios of standard deviations of the
along-wind and transverse directions were identical to the targets set by the IEC 61400-1
code [1]. The auto- and cross-spectra showed good agreement with the exact solution.
Further, the correlation between the along-wind and vertical component was −0.34. In
conclusion, the presented semi-analytical model can generate the cross-spectral densities
of turbulence according to the theory recommended in the IEC61400-1 code at a lower
cost than by using purely numerical integration of the shear spectral tensor.
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1 INTRODUCTION

Recent work investigated the importance of resolv-
ing the inflow turbulence in computational fluid dy-
namics simulations of airfoil flows, c.f. Gilling et al. 
(2009). The applied simulation technique was a 
combination of detached eddy simulation (DES) and 
large eddy simulation (LES). The conclusions from 
the paper includes that the agreement with results 
from an experiment is improved by resolving the in-
flow turbulence in the simulation. The improvement 
is largest close to stall and consequently in the range 
where most wind turbines operate. The paper was 
concerned with a section of a blade in a wind tunnel 
and not a full rotor in the atmospheric boundary 
layer. This was chosen to reduce the computational 
costs.

As described by Connell (1982) a rotating blade 
experiences turbulence with a different auto-
spectrum than the turbulence experienced by a sta-
tionary point. Therefore, it would be interesting to 
examine the aerodynamic performance of a section 
of a blade on a rotor. It is infeasible to use a compu-
tational grid that is fine enough for a LES for the en-
tire wind turbine.

Instead the overset grid method applied by Zahle 
(2006) and Zahle & Sørensen (2007, 2008) can be 
used. Here it is possible to use a coarse background 
grid and a fine grid that follows the blades. The 
background grid resolves only the mean flow and 
very large scales around the entire wind turbine. The 
fine grid moves with the blades and resolves the 
much smaller scales close to the blade. The fine grid 
is not fine enough to run a DES with resolved inflow 

turbulence, as this would require a very large num-
ber of cells. By including an even finer grid that on-
ly covers a limited part of a single blade the resolu-
tion here can be fine enough to run in LES-mode, 
and the effect of inflow turbulence on this section 
can be investigated. The inflow turbulence required 
in such a simulation is shown in Figure 1. 

Figure 1. Example of the inflow turbulence for the LES part of 
the computational domain. Each of the cones represents a ve-
locity vector. The resolution here is only 4 × 4 in the x2-x3-
plane. U is the mean wind velocity. 
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This paper is concerned by generating the synthet-
ic inflow turbulence in a domain as shown in the 
figure. The IEC61400-1 gives two different ways of 
generating the turbulent velocity field. One is the 
method by Mann (1994, 1998) and the other is the 
Sandia method by Veers (1984). Both methods are 
intended for generating turbulence in a domain cov-
ering the entire rotor plane.

For the application outlined above the turbulence 
is only needed in a small fraction of the rotor area. 
By only generating the velocity field in the points 
where it is needed considerable savings can be ob-
tained.

In the present work a homogenous, isotropic ve-
locity field is generated in an arbitrary domain. The 
domain is resolved into a number of discrete points. 
The points are allowed to move in time, which is the 
main difference from the Sandia method. Thereby, 
velocity fields like the one shown in Figure 1 can be 
generated, and the domain consists of only 16 points 
moving in time.   

The cross- and auto-spectra are obtained from 
cross- and auto-correlation by the Wiener-Khinchin 
relations. That makes it possible to generate the ve-
locity vectors only in the points where they are 
needed. The generated field will have the correct 
cross- and auto-spectra in all three directions.

In this paper the method for generating the syn-
thetic turbulence is outlined. The description is fol-
lowed by a comparison with the Mann and Sandia 
methods. Examples of generated velocity fields and 
their spectra and correlation are presented prior to 
the conclusions.

2 THE METHOD

The velocity field is generated in a number of points 
moving in time xi(t) in three-dimensional space. 
There are N points and i=1,2,…,N. The orientations 
of the axes are defined in Figure 1. In each of the 
points a three dimensional velocity vector vi(t) is 
generated.
 Only homogenous and isotropic velocity fields are 
considered. The correlation tensor of two velocity 
vectors in a frozen field separated by the vector r is 
defined as 

)()()( rxxr jiij vvR  (1) 

for i,j=1,2,3. The overbar is used to denote ensemble 
average. For isotropic turbulence the components of 
the correlation tensor can be determined by, c.f. 
Connell (1982) 
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where r=[r1,r2,r3] is the separation vector, r=|r| is the 
separation distance, Ra is the spatial correlation be-
tween components in the r direction and Rl is the 
spatial correlation in the directions perpendicular to 
r. For isotropic turbulence von Karman (1948) 
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where L is a length scale, 2 is the variance of the 
turbulence,  is the gamma function and Kv is the 
modified Bessel function of second kind and the or-
der v. The method presented here is not limited to 
this choice of correlation functions.
 By applying Taylor’s hypothesis the separation in 
time is transformed to separation along the mean 
wind direction. The separation vector r is therefore 

321321 ,,,, xxtUxrrrr  (5) 

where the orientations of U, x1 and t are given in 
Figure 1. 

A correlation matrix K(t) = K(x(t)) is assembled 
to contain the auto- and cross-correlation for all 
points xi(t)
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 (6) 

where xi,t = xi(t) is the coordinates to the i'th point in 
the domain at the time t. It has the dimensions 3N × 
3N.

The spectral matrix S(f) is determined from the 
Wiener-Khinchin relation 

tetf ftj d)()( 2KS  (7) 

where f is frequency and j is the imaginary unit 
number.  

As in the Sandia method the phase information is 
discarded in the spectral matrix S(f). This will not 
affect the correlation of the generated turbulence. 
Consequently, S(f) is symmetric and H(f) is real. 
Now, it is possible to factorize S(f) by using an ei-
genvalue decomposition to give a matrix H(f) satis-
fying

)()(*)( T fff HHS  (8) 
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The velocities are determined from the Fourier 
transform  

)(d)()( 2 ffeti
ftj WHv  (9) 

where dW(f) is a vector of independent, complex 
Gaussian random numbers with zero mean and stan-
dard deviation 2-1/2.

When the correlation tensor is given by (2)-(4) the 
generated turbulence will be isotropic. In principle it 
is straightforward to simulate sheared velocity fields 
as in the method of Mann, as only (2)-(4) should be 
substituted for anisotropic expressions. However, to 
the knowledge of the authors, the correlation tensor 
of a sheared velocity field has not been given in ana-
lytical form in the literature. 

3 COMPARISON TO THE MANN AND SANDIA 
METHODS

3.1 The Sandia method 

The method outlined above has many similarities 
with the Sandia method. The difference is in how the 
spectral matrix is determined. In the Sandia method 
the spectral matrix is determined analytically from a 
coherence function ij(f,r). If the three directional 
components of the wind field are assumed to be un-
correlated the entries in the spectral matrix is deter-
mined from  

)()(),()( 22
fSfSrffS iijjijij  (10) 

where Sii is the auto-spectrum in the i’th point. This 
spectral matrix is factored, multiplied by complex 
random numbers and Fourier transformed as in the 
method of this paper.  
 With the Sandia method the rotor plane is re-
solved into a number of points where the three com-
ponents of the velocity vectors are determined. 
There is no restriction on how the points can be dis-
tributed over the rotor plane, so the points can be 
clustered e.g. in the projection of the spiral in Figure 
1 on the x2-x3-plane.
 Veers (1988) introduced a modification to the me-
thod intended for generating a velocity field for an 
aero-elastic simulation of a rotor. Instead of generat-
ing the velocity vectors in all points at all time steps 
it is possible to determine the velocities only at the 
instances where the blade passes each point. This 
approach can also be used to generate a velocity 
field as shown in Figure 1.  The drawback of this 
modification is that the full spectral matrix still has 
to be stored. 

3.2 The Mann method 

 In the method of Mann a three-dimensional frozen 
velocity field is generated based on the rapid distor-
sion theory of Townsend (1976). All three direction-
al velocity components can be generated. The me-
thod is based on the method of Shinozuka & Jan 
(1972) and uses three-dimensional fast Fourier trans-
form. Consequently, the points in the discrete do-
main must be equidistantly spaced and it is not poss-
ible to cluster points in the areas where the velocity 
field is needed.

The velocity field is periodic in all three direc-
tions. Therefore, the transverse dimensions of the 
domain should be larger than the structure of interest 
to avoid an unphysical high correlation from one end 
of the structure to the other.
 The Mann method can generate anisotropic veloc-
ity fields that resemble the atmospheric turbulence 
better than the isotropic turbulence fields generated 
by the Sandia method and the method of this paper. 
When the Mann method is used for generating iso-
tropic velocity fields the fields are divergence free, 
which is also the case for the present method. 

3.3 Memory requirements 

The computational time required for generating a ve-
locity field by the three methods is within a few 
seconds to less than an hour depending of the size of 
the problem. Therefore, the computational time is 
not a severe limitation for either of the methods. In 
Example 1 (see Section 4.1) the computational time 
is given for a small example generated with the 
present method.  

The memory requirement depends linearly on the 
size of the system matrix and can be a severe limita-
tion as will be shown in Example 1. For the method 
of this paper the number of entries is 

tel NNN 23  (11) 

where Nt is the number of time steps. For the Mann 
and Sandia methods velocities are generated in a 
domain covering the entire rotor area. Let the num-
ber of points in these methods be M. Now, the num-
ber of entries in the system matrix of the Sandia me-
thod is 

tSandia NMN 23  (12) 

The factor 3 can be deleted if the three velocity 
components are allowed to be uncorrelated. For the 
Mann method the number of entries is 

tMann MNN 3  (13) 

 In applications where only a small number of 
points in the rotor plane are of interest N will be 
much smaller than M. In these applications, it is seen 
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that the method described in this paper has much 
lower memory requirements than the Sandia method. 
If N2 is smaller than M the present method will also 
have lower memory requirements than the Mann 
method. An example of this is given in Example 1 
below.
 If the limitation on computer memory does not al-
low using a resolution of the synthetic turbulence as 
fine as the LES grid interpolation can be used. This 
does not resolve the small eddies in the generated 
turbulence which then will be a poor approximation 
to the atmospheric turbulence. If a very coarse reso-
lution is used the airfoil will experience the synthetic 
turbulence as a variation in mean wind rather than 
real turbulence. 

4 EXAMPLES

Below three examples of the use of the model is giv-
en. One generates turbulence in a domain like the 
one shown in Figure 1 and the computational cost is 
compared to the cost of the Mann method. The 
second example generates turbulence along a single 
rotating blade. The spectrum of velocities sampled at 
the tip is compared to the spectrum from Connell 
(1988) and the correlation of velocities along the 
blade is compared to (4). Finally, the versatility of 
the method is shown by generating the turbulence 
field experienced by a wind turbine with accelerat-
ing rotational speed. 

4.1 Example 1: Overlapping mesh domain 

Turbulence is generated in a domain resembling the 
one shown in Figure 1. The cross section of the do-
main is 1 m × 1 m and the radius of the spiral is 40 
m. Turbulence is created for a single revolution of 
the rotor. The cross section is resolved into 8 × 8 
points. The resolution in time is 512 points for the 
3.9 s revolution time giving a time step of 7.7 × 10-3.
The length scale of the turbulence is L = 42 m. 

In Figure 2 the generated velocity field is illu-
strated at three different instances. It is observed that 
the generated velocity vectors have a high correla-
tion due to the short separation distance between 
them.  

The system matrix used in this example contains 
(3 × 82) 2 × 512 = 19 × 106 entries corresponding to 
72 MB of ram if the entries are stored in single pre-
cision.

To generate a velocity field by the method of 
Mann it would be necessary to generate a field cov-
ering the entire rotor. To obtain the resolution in this 
example it would be required to use M = 1024 × 
1024 points in the rotor plane giving 537 × 106 en-
tries in the system matrix. It would require 4.3 GB 
ram in single precision as these entries are complex. 

Figure 2. Realization of turbulence generated in Example 1. 
The hub is located at x2 = x3 = 0. Three time steps of the gener-
ated turbulence are shown. The separation time is 0.2 s. The 
cones are oriented in the directions of the velocity vectors and 
scaled by their lengths. 

The computational time for the present example 
is about 3.5 minutes on a standard modern laptop. 
The algorithm has been implemented in MATLAB 
without special attention to computational efficien-
cy.

4.2 Example 2: A single blade 

In this example turbulence is created along a single 
blade rotating with the rotor. The first two revolu-
tions of the generated spiral are shown in Figure 3. 
In total there are 26 revolutions in 1024 time steps. 
The mean wind speed is 15 m/s.  

The length of the blade is 50 m and the turbulence 
length scale is 42 m.  

Figure 3. Realization of turbulence along a single rotating 
blade generated in Example 2.
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In Figure 4 the correlation of the streamwise ve-
locity component v1 along the blade is compared to 
Rl(r) given in (4).

Figure 4. Correlation of streamwise velocities along the blade. 
Rl(r) is given in (4). 

In Figure 5 the power spectrum of streamwise ve-
locity sampled along the tip of the blade is shown 
and compared to the spectrum by Connell (1982) 
and the von Karman spectrum at a stationary point. 

Figure 5. Power spectral density for turbulence sampled along 
the tip of the blade in Example 2.  is circular frequency. 

4.3 Example 3: Full wind turbine 

The final example serves to show the versatility 
of the method. Here, turbulence is generated along 
the path a wind turbine covers while the rotational 
speed is accelerated.

The domain contains stationary points and points 
rotating with variable angular velocity. The generat-
ed turbulence has the correct correlation in space 
and time.  

Figure 7. Realization of turbulence generated in Example 3. 
Wind field encountered by a wind turbine. The rotor starts at 
rest and accelerates.

5 CONCLUSIONS

The proposed method can generate synthetic turbu-
lence with the correct correlation in space and the 
correct auto-spectrum.  

The velocity field is generated only in the points 
where it is needed. This gives a saving in memory 
requirement compared to the Mann and Sandia me-
thods. This is a clear advantage and the reduced 
memory requirement allows a finer resolution of the 
turbulence field as the memory requirement often 
sets the limit on the resolution. A fine resolution is 
needed in a LES of the flow past a blade. 

The presented method reduces to the Sandia me-
thod for applications where the full turbulence field 
covering the entire rotor area is needed.

In the present form only isotropic turbulence can 
be generated. For the application outlined in the in-
troduction the effect of anisotropy is considered to 
be of little importance. 
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