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Abstract: The ASETA project develops theory and methods for robotic agricultural systems.
In ASETA, unmanned aircraft and unmanned ground vehicles are used to automate the task
of identifying and removing weeds in sugar beet fields. The framework for a working automatic
robotic weeding system is presented along with the implemented computer vision systems.
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Co-operation, Trajectory planning

1. INTRODUCTION

The use of pesticides is detrimental to the environment.
However, farmers must treat their fields against weed
infestations to keep their business profitable. The current
practice is to spray the entire field even if the weed
distribution is heterogeneous. This herbicide discharge can
be greatly reduced if the application is targeted only at
actual infestations instead. However, it is required that
the infestations are discovered and identified before they
begin to compete with the crops. Practically, this is not
possible if the weeds have to be surveyed by humans; this
is simply too costly.

The ASETA project (la Cour-Harbo (2010)) is developing
a system for autonomously mapping weeds in fields by
means of robots, airborne and ground-based, fitted with
advanced camera equipment. The airborne robots are
based on small-scale helicopters that provide the system
with multi-spectral aerial images. Using data from the
helicopters, the system identifies infestations in a field
and then dispatches autonomous ground vehicles to the
infestations to exactly identify and localize the weeds.

In this paper, the framework and key technologies for
integrating this system are described.

1.1 Previous Work

In their review of the current state of the art of robotic
weed control systems, Slaughter et al. (2008) report more
than 50% yield loss if weeds are not controlled in row crops.
They further note the problem that the weeds closest to
the crops are the most harmful and that these are also
? This work is supported by the Danish Council for Strategic
Research under grant no. 09-067027 (ASETA). See www.aseta.dk
for more details.

the most difficult weeds to control. The consequence is
that some fields must be hand-hoed, which is costly and
inefficient.

The topic of site-specific weed control is surveyed by
Christensen et al. (2009), where they classify the treatment
of the fields in four levels:

(1) Individual plant treatment
(2) Treatment of grids (several plants)
(3) Subfield treatment
(4) Whole-field treatment

The ASETA project works in the first two levels, focusing
on single plants and smaller patches.

1.2 The ASETA Case

ASETA is working with a system of ground based and
aerial vehicles. Both are unmanned and autonomous.
Through a series of steps, the robots will identify and
localize any weed infestations in a given field. The ASETA
case works with thistle (Cirsium arvense) infestations in
sugar beet fields (Kazmi et al. (2011)).

A theoretical infrastructure of an agricultural decision
support system for robotic site-specific weed management
was proposed by Fernández-Quintanilla et al. (2011). That
work takes a holistic approach and encompass everything
needed to make such a system operational. In their termi-
nology, the ASETA project focus on the subsystem called
the “current year decision system”. This is concerned with
the current state of a field and which treatment to apply
to maximize the immediate yield.



2. METHODS

2.1 Multiscale Imaging

The core idea in ASETA is to use a multiscale imaging ap-
proach. This entails taking aerial images at high altitudes,
and then gradually lowering the altitude, to obtain images
with higher resolution. At some point the ground vehicles
will take over and perform imaging of individual plants.

A simplified process with a single unmanned aircraft
system (UAS) and a single unmanned ground vehicle
(UGV) looks like this:

• An operator defines the bounding polygon of a field.
• The UAS takes images of the field from high altitudes.
• The images are processed, indicating areas of interest

for closer inspection.
• The UAS flies to the indicated ares and obtains

higher resolution images (lower altitude), which are
processed for indications of weed infestations.
• The UGV is dispatched to the areas that need atten-

tion.
• The UGV identifies the exact shape and position of

each piece of weed and reports it to the system.
• The process continues until all weeds in the field have

been mapped.

This multiscale imaging approach saves time because it
quickly directs the UGVs to actual infestations. It also has
the advantage of acquiring overview images of the entire
field in the process. These images can be used for weed
estimates, in the locations, where the UGVs do not go.
However, aerial images are not as precise as ground-based
images. Christensen et al. (2009) deems aerial based sens-
ing fitting for the two coarsest classifications of site-specific
treatment (sub-field and whole-field). They, however, did
not have UASs in mind, but rather piloted aircraft and
satellites; UAS imaging provides even higher resolutions.
By using ground-based sensing to correct and calibrate the
aerial measurements, the aerial images may be used at the
next levels (several plants and single-plant).

2.2 System Architecture

The conceptual structure of a system with one UGV
and one UAS is shown in Fig. 1. It consists of a task
manager that automatically decomposes the task of the
entire system (i.e. to survey a given field) into tasks for
the individual subsystems. The supervisors interpret the
tasks and command the vehicles to move to the indicated
positions, while they keep track of the execution. The data
from the vehicles are processed to update the map of the
field in the database. When such updates occur, the task
manager factors the new information into the plans and
changes the tasks of the vehicles accordingly.

The description of the simplified process above (Sec. 2.1) is
static, in the sense that information only travels from the
UAS to the UGV. The system proposed here follows the
same general idea but is more dynamic because it allows
the vehicles to work in parallel and cooperate.

A short description of the components is given below.
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Fig. 1. The conceptual system of ASETA. The task man-
ager creates tasks for the vehicles. The tasks are han-
dled by the supervisors, which monitor and provide
the vehicles with waypoints in the correct sequence.
The data obtained by the vehicles are processed to
provide updates to the maps in the database.

Task Manager The job of the task manager is to decom-
pose the overall task in such a way that the UGVs and
the UASs perform the execution in the fastest and least
resource demanding fashion.

In essence, what the task manager has to do is solve
a job shop scheduling problem. Because the abilities of
different vehicles are overlapping. E.g. the UAS can quickly
photograph the entire field, albeit at a low resolution. This
is also possible for the UGV; it will take a long time, but
provide a high resolution. So the job is to figure out which
vehicles to use to acquire which images.

Further, the images must be taken at different locations, so
the execution time of a task is not only dependent on the
time it takes to take the photograph, but also the travel
time between the locations. This alludes to a case of the
traveling salesman problem.

So, the task manager is tasked with two cases of combina-
torial optimization. The approach of the ASETA project
is to solve these using genetic algorithms (see section 2.3).

Supervisors The supervisor interprets the tasks given by
the task manager and provides the vehicles with lower-level
commands such as waypoints, reference trajectories or
when to take an image. The primary task of the supervisors
is to ensure that the tasks that are passed on to the vehicles
are executable, but they also function as a standardized
interface between the task manager and the vehicle. This
way, the task manager can ignore the dynamics of the
vehicles when planning.

Vehicle and Helicopter In the ASETA case, the UAS is
based on a small-scale helicopter (Fig. 2) and the UGV
is based on a four wheeled robotic platform (Fig. 3). But,
the general system allows for several, possibly different
vehicles. In this way, the system can be suitable for a range
of different scenarios.



Fig. 2. The UAS, based on a Maxi Joker 3 RC-helicopter,
equipped with a multi spectral camera mounted in a
gimbal device (front), a mini-ITX computer (under-
side), and IMU and GPS (on tail).

Fig. 3. The UGV is based on a the RobuROC4 platform
from Robusoft. It is a skid-steered, four-wheel driven
vehicle with custom onboard computer, sensor suite,
and camera setup.

Image Processing The automatic processing of the image
data provided by the vehicles is essential to the system.
The ASETA project does work in both ground-based
and aerial imaging. The aerial image processing focus
on determining weed patches and and the ground-based
image processing works with the identification of single
plants. These two topics are described in sections 2.4 and
2.5.

Map Database The end product of the entire automation
exercise is to build a map of the field, indicating spots of
weeds. Initially, the database will hold only the outline of
the field, and as the vehicles provide more information, the
maps will be populated.

The ASETA project focus on mapping thistles in sugar
beet fields, but having several other image processing
algorithms and sensors on the vehicles could enable the
system to produce several different maps in the same
run. These maps could include soil nutrition levels, plant
growth stages, pest infestations as well as the weed map.

2.3 Automatic Planning

The goal of the system is to have a complete survey of a
given field. The automatic planner decomposes this goal

into several states, each composed of a location and an
action that the vehicle must take in that location. The
vehicles must visit these locations in a sequence. So in
order to save fuel and time, the planner must find the
shortest path between the coordinates; this is a case of the
traveling salesman’s problem.

The planning is done with a genetic algorithm (GA).
The GA used for the planing is based on the path-
representation described in (Larrañaga et al. (1999)),
and uses the four mutations: Displacement, exchange,
inversion, and insertion (Fogel (1993); Banzhaf (1990);
Michalewicz (1999)).This GA does not guarantee to find
the optimal solution nor to converge to it, however it will
often converge on good candidate solutions. The differ-
ence between the candidate and the optimal solutions is
tolerated, because the environment and vehicle dynamics
incur so much uncertainty that it is unknown whether the
optimal solution in terms of distance is in fact the best.

Although the GA might not converge to the optimal
solution, it must be given some computation time to
arrive at whatever near-optimal solution it is converging
to. It is usually up to the designer of the algorithm to
decide on how much time the algorithm is given, which is
not always easy at design time as the runtime increases
with problem size and is dependent on the quality of the
initial guess. A contribution from the ASETA project is an
adaptive stopping criterion for GAs, that indicates when
the algorithm has reached an acceptably good solution
(Hansen and la Cour-Harbo (2013)).

The distance that the robots travel depends on the plan
that the GA constructs. A simple measure of the solution
quality is the euclidean distance between the points. This
is easily computable but introduces sharp turns that are
not realizable by the vehicles because of kinematic and
dynamic constraints.

Currently, an alternative to the Euclidean distance mea-
sure is being studied under the ASETA project. It bases
the distance measure on Dubins curves, which are com-
posed of line and arc segments. These curves are differ-
entiable and match the vehicle dynamics better, but they
also introduce more computations as well as a continuous
variable in the heading of each waypoint. These two prob-
lems are addressed by using the Euclidean measure first,
and later in the process when the solutions are converging
substitute the distance measures with Dubins measures
for the relevant arcs (i.e. the candidate arcs for the final
solution). This work is based on the alternating algorithm
of Savla et al. (2005) with the considerations of headings
introduced by Ny et al. (2012). The notations and results
of Shkel and Lumelsky (2001) are used to achieve efficient
computations of the Dubins curves.

2.4 Aerial Image Processing

The aerial image processing is based on color analysis. The
fact that different plant species show different colors is
used to discriminate between them. Physiological internal
processes determine the important features for discrimina-
tion (i.e. chlorophyll absorption bands, red edge inflection
point) and can be detected by narrow band multispectral
imaging with a sufficient spatial resolution. Hence, it is
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Fig. 4. Spectral signature of sugar beet (red) and Cirsium
Arvense L./thistle (blue) in the visual-NIR range.
Significant difference is seen around 550, 680, and 940
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Fig. 5. Principal Component Score plot of dataset com-
posed by 80 samples of sugar beet (red) and 80 sam-
ples of thistle (blue) plants. PC1 and PC2 accounting
for the 71.5 % of the variability.

possible to distinguish different plants by identifying the
spectral features where they show the maximum difference
(Vrindts et al. (1998, 2002)). In the ASETA project an
extensive survey of the spectra of thistles and sugar beet
leaves has been conducted under real life conditions, Fig.
4 shows the average spectra of the two species.

One of the first objectives of the ASETA was to investigate
the possibility of discriminating sugar beets and thistles
based on their spectra under field conditions. Principal
component analysis was used to assess the separability of
sugar beets and thistles, and determine the most promi-
nent features (wavebands) that show higher variability.
First results show a great separation when using uncor-
related variables and indicated wavebands centered at
550, 680, 750 and 940 nm as the most significative when
classifying those two species (see Fig. 5).

The aerial vision system used in this research is based on
a multispectral narrow-band filter camera (seen in Fig.
2). The MiniMCA-6 (Tetracam Inc., USA) weighs 695 g

and consists of six individual digital cameras arranged in
a 3 by 2 array and synchronized so they can be triggered
at the same time. Each of the cameras is equipped with
a 1.3 megapixel CMOS sensor. Interchangeable narrow
bandpass filters are placed in front of the optics to block
the unwanted frequencies. The configuration of filters (see
Table 1) is selected to coincide with the wavebands where
the main physiological phenomena are reflected as well as
to allow the calculation of the most important vegetation
indices. For technical reasons, the filters does not match
the frequencies identified in Fig. 4 exactly, but are close
enough for identification purposes.

Table 1. The filters mounted on the Mini MCA
camera

Mini MCA Filters
Wavelength* 488 550 610 675 780 950
Bandwidth* 10 10 10 10 10 40

* nanometers

The multiscale imaging process decribed in section 2.1
is used for quickly gathering information with a low
resolution (approximately 50 mm/pixel), flying at high
altitudes, and for a finer detection at plant level using
higher resolution images (10–20 mm/pixel) taken at low
altitudes.

First, a coarse vegetation map is generated from lower
resolution images using the excess green index (ExG)
which is highly effective in masking out the green objects
from the bare soil background (Meyer et al. (2004)). A
close relation exists between the mean ExG for a certain
area and its vegetation density, and comparisons can be
made within the same image. Regions with high biomass
are ranked by importance (size and density) and geo-
positioned. The traditional ExG is computed using the
red, green, and blue (RGB) channels of an ordinary digital
color camera. In this multispectral approach, the three
channels best corresponding to RGB are used (675, 550,
and 488 nm).

The information is sent to the task manager (see sec-
tion 2.2) to proceed to a closer inspection for crop-weed
discrimination. At low altitudes the spatial resolution in-
creases, and the spectral mixing decreases yielding a high
amount of pure pixels per plant. The crop rows are clearly
seen and detected, and plants in between the rows are
classified as thistles due to their position . Once classified,
a library can be made with the spectral endmembers col-
lected from the purest inter-row thistle pixels. The intra-
row plants are matched with the now known endmembers
and labeled as sugar beets or thistles to produce an aerial
2D weed map.

A continuous feedback is established with the UGV, which
is making a more detailed characterization and estimation
of weed density. This allows an online update of the
relationship of mean ExG value versus plant density for
the coarse aerial imaging and a supervisory update of the
classification at the finer stage, which will improve the
weed map even after the aerial images were taken.



(a) Sugar Beet Leaf (b) Thistle Leaf

Fig. 6. Comparison of leaf shapes and color of target
species.

a

b

Fig. 7. Complex overlapping scenario. Thistle occluding
sugar beet (a) and sugar beet without occlusion (b).

2.5 Ground vision

The analysis of aerial imagery prompts the ground vehicle
for a closer inspection. In the ground based image pro-
cessing, the green color of vegetation is again a first step
since greenness of the plants’ leaves distinguishes them
well against the background soil. However, the ability to
resolve overlapping leaves is limited when using 2D color
imaging as it is difficult to detect whether the edge of a
leaf belongs to the overlapping or the overlapped leaf. Fig.
7 shows two segments of an image. In (a), an overlapping
thistle leaf has occluded the sugar beet leaf. This hides
some of the features of the sugar beet leaf, and the leaf
should therefore be noted as unfit for species classification.
In the (b) segment, the leaf is not occluded and it is better
suited for species classification.

To detect occlusions 3D imaging is better suited than 2D.
Using the depth information, detecting occlusions becomes
trivial. Once a leaf has been qualified for classification,
either 2D or 3D imaging can be used for the further
processing.

For 3D imaging, stereovision is a commonly used tech-
nique, but it suffers from correspondence and efficiency

Fig. 8. Cameras mounted on Ground Vehicle. Swissranger
SR4000 time-of-flight camera (top), PMD CamBoard
time-of-flight camera (bottom left), and Point Grey
Flea RGB camera (bottom right).

problems for close range leaf imaging. For this reason,
stereovision imaging is largely limited to indoor well-lit
conditions, or to an overall plant canopy measurement in
outdoor conditions (McCarthy et al. (2010)).

To overcome these limitations, we are using Time of Flight
(ToF) cameras along with a color camera (Fig. 8) to
achieve a closer depth analysis inside plant canopies. ToF
cameras are active sensors working in the Near Infrared
(NIR) region. They emit infrared light and measure dis-
tances to the objects in the view based on the time it takes
for the light to return.

Because the ToF cameras use NIR light, the reflectance-
transmittance characteristics of the leaf surface in this
spectrum must be taken into account. Any incident light
is partly reflected from the leaf surface, partly absorbed
and the rest is transmitted through the leaf, but only
the reflected portion is interesting in ToF imaging. This
topic has received a great deal of research. Jacquemoud
and Baret (1990) proposed a Reflectance-Transmittance
model for green leaves which show about 51% reflectance,
45% transmittance and 4% absorption for green soyabean
leaves in the NIR region. Indeed, the model shows that
the NIR region provides highest possible reflectance (just
under 50 %) of the frequencies in the visible-NIR spectrum
in the frequency band between 700 nm and 1300 nm. This
fits with our observations of sugar beet and thistles shown
in Fig 4. ToF cameras operating at 850 nm are hence
quite suitable for plant imaging. Further, they produce
depth data at more than 30 fps, while not having the
correspondence or efficiency problems of stereovision.

However, ToF cameras have their own shortcomings.
Other than their low resolution sensors (200x200 max), one
major problem is their saturation under sunlight. In ToF
cameras, integration time (IT) controls the duration for
which the incoming signal is integrated onto the imaging
sensor. IT must be high enough to allow sufficient depth
estimation but less than the saturation threshold. The gap
between these two boundaries of operation depend on the
ambient light and it becomes very narrow under sunlight.



Fig. 9. Comparison of leaf imaging with PMD CamBoard
ToF camera under Room and Sunlight. Two sample
images at IT 800 ms illustrate the difference.

It is one of the research points of the ASETA project to
look into the usefulness of ToF under these conditions.

Fig. 9 shows depth data of a single leaf under room
and sunlight conditions. The graphs show the variation
of depth data of two individual pixels averaged across
several frames, as well as the average of their 20x20 pixel
neighborhood. The pixels were located on the surface of
the leaf. The point where the depth data of the pixels and
the average of the neighborhood starts getting out of sync;
the data is no longer reliable. This fact can render ToF
cameras useless unless a shade is used to cast shadow on
the view. Kazmi et al. (2012) presents a detailed analysis
about leaf imaging with ToF cameras under sunlight,
shadow and room conditions.

In order to classify a plant as either thistle or sugar beet,
the approach is to use shape-features of the leaves (see
Figs: 6(a), 6(b)) along with their relative greenness. To
extract shape boundaries, an algorithm using triangular
decomposition of the image similar to Distasi and Nappi
(1997) is being developed. It is a generic algorithm which
estimates salient regions from the edges of an object. The
color channel from the color camera is mapped onto the
ToF data using stereo-calibration of the two cameras.
When a plant is classified, a feedback will be generated
to update the weed map from aerial imagery.

2.6 Cooperation

In terms of solving the basic tasks for a crop and weed
management system, the automatic planning is capable of
producing the necessary waypoints for this task. However,
the ASETA project attempts to push the intelligence of
such a system further than basic automation and a large
part of that is the cooperation between robots. One of the
things being researched is how robots can cooperate with
very limited communication between them. An example
where this could be relevant is a farmer that has purchased
a simple UAS to do mapping of his fields. After some
time he purchases a newer more advanced UAS and would
like them to help each other mapping the fields. The
simple UAS is unable to do cooperation, but the newer
UAS is capable of assisting with the mapping, simply by
estimating the intentions of the older UAS from, say, ADS-
B beacon data.

Currently the research focuses on how to provide a quanti-
tative estimate of the intentions from simple beacon infor-
mation. This is done using model based baysian filtering
with a short and a long term prediction. As system model,

Task Estimator

Behaviour Model 

Visited
Goals

Probability Field

Model Estimated
State Kalman

Filter

Bx

V Probabilities
Waypoint

ζ

Fig. 10. Waypoint probability estimator.

a probability field mapping is used to assign probabilities
to the individual waypoints depending on where they are
located in relation to the motion of the helicopter. It is
constructed as a dynamic function of two parts; a part
called probability field map, which increases the probabil-
ity for waypoints near the expected future positions of the
helicopter, and a part called a dissipation function that
gradually reduces the probability of all waypoints such
that the waypoints need to stay within the future path
of the helicopter to maintain a high probability.

The measurement model takes the information of which
waypoints the agent previously have visited and from this
attempts to predict the probability for each waypoint. This
probability is then used as the measurement for the kalman
filter which results in the measurement model matrix being
the identity matrix. This prediction is done through a set
of behavioral models, each modeled mathematically based
on a set of assumptions. Examples of such behavioral mod-
els could be different flight patterns like a ”lawnmover”
pattern, a spiral pattern or a nearest neighbor pattern.

3. DISCUSSION

The ASETA project shows that it is plausible to use
mobile robotics in future weed mapping and targeted weed
control. At the time of writing, 8 large-scale test campaigns
has been conducted in order to obtain real life images and
measurements, and test the robotic platforms outside of
lab-conditions. We have found that the data obtained so
far in the campaigns is usable in the agricultural analyses.

While aerial imaging has been used for several years in pro-
duction farming, the new platforms, brings about a range
of new possibilities. Traditional aerial imaging is done
using piloted planes, and the images are orthorectified,
which is a rather time-consuming and expensive process
that must be planed well ahead and is dependent on good
weather conditions. The aerial robotic platforms provides
the images whenever the farmer needs them with less
dependence on weather conditions and external planning.

The ASETA project will continue to integrate the fields of
agricultural image analysis and robotics, and will demon-
strate a working system in 2013.
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