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An efficient formulation of the elasto-plastic constitutive matrix on
yield surface corners

Johan Clausen∗, Lars Andersen and Lars Damkilde
Department of Civil Engineering

Aalborg University, Aalborg, Denmark
e–mail: jc@civil.aau.dk

Summary A formulation for the elasto-plastic constitutive matrices on discontinuities on yield surfaces
is presented, for use in finite element calculations. The formulation entails no rounding of the yield surface
or the plastic potential, as it is done in most other formulations, and therefore exact analytical solutions can
be approached. Computational examples are given with the Mohr-Coulomb, the Modified Mohr-Coulomb
and the Hoek-Brown models.

Introduction

In practical geotechnical engineering most design calculations on soil structures are carried out
with the Mohr-Coulomb material model, with the well-known hexagonal shaped yield criterion in
principal stress space, see Fig. 1b. For clays the Tresca criterion, Fig. 1a, is used, and for rocks and
concrete the Modified Mohr-Coulomb and the Hoek-Brown criteria are often used, see Fig. 1c and
d.

As can be seen from the figure these criteria possess corners and apices, which explicitly have to
be taken into account when formulating the constitutive matrices used for formulating the global
stiffness matrix. This is especially true for 3D-calculations where all the different corner and apex
discontinuities may come into play. One option of dealing with these discontinuities is to perform a
local rounding of the yield criterion and/or the plastic potential, see e.g. [1, 2]. This option seems to
work but the obtained numerical results do no longer converge towards the exact analytical results.
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Figure 1: Examples of yield criteria with corners in principal stress space: a) The Tresca criterion. b) The
Mohr-Coulomb Criterion. c) The Modified Mohr-Coulomb criterion. d) The Hoek-Brown criterion.
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In this paper a formulation is presented that does not include a rounding of the corners or apices. It
is also shown that the numerical solution for a footing on a Mohr-Coulomb soil converges towards
the exact analytical solution.

Constitutive matrix on a surface
When a stress point is located on a yield surface the elasto-plastic constitutive matrix is found as

Dep = D−
DbTaD
aTDb

(1)

where a= ∂ f/∂σσσ , b= ∂g/∂σσσ andD is the elastic constitutive matrix. f and g is the yield function
and the plastic potential, respectively. Note that Dep is singular with respect to b, i.e. Depb= 0.

Constitutive matrix on a corner and an apex
When the stress point is located on a corner the constitutive matrix must be singular with respect
to both b1 and b2. In Fig. 3 a direction vector of a yield surface corner, �̄�� is shown. This can be
regarded as a direction vector of any of the lines defining the yield criteria in Fig. 1. In Fig. 3 the
direction vector of the plastic potential corner, �̄��g, is also shown. From these direction vectors it is
shown in [3] that the doubly singular constitutive matrix on a line in principal stress space can be
expressed as:

D̄ep� =
�̄��(�̄��

g
)T

�̄��
TD̄−1�̄��g

=
(ā1× ā2)(b̄1× b̄2)T

(ā1× ā2)T D̄−1(b̄1× b̄2)
(2)

The overbar indicates the the vectors and matrices are expressed with respect to the principal
coordinates without the shear component terms, i.e. the vectors have three components and the
matrices three by three. The × symbol indicates the cross product. The shear part is added,
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Figure 2: A direction vector, �̄��, of an intersection
line in principal stress space. The corresponding
potential curve direction vector is denoted �̄��

g. An
elastic strain direction vector is denoted ē�. The
vectors b1 and b2 are perpendicular to the di-
rection vector of the plastic potential intersection
line, �̄��g.

D̂ep� =

[
D̄ep�

Ḡ

]
(3)

and the matrix is transformed from the principal
stress coordinate system into the xyz-coordinate
system. In the above equation the hat, ,̂ signifies
that the matrix includes all six by six components
and is expressed in the principal coordinate system.
The matrix Ḡ is the shear part of the elastic consti-
tutive matrix.

There are two different forms of constitutive matrix
on an apex. If the stress point is located on an apex
on the hydrostatic line the constitutive matrix must
be singular with respect to all stress directions, i.e.

D̂epa,1 =Depa,1 = 0 (4)

This is the case on the Mohr-Coulomb apex, the Hoek-Brown apex and one of the Modified Mohr-
Coulomb apices, see Fig. 1. If, on the other hand, the stress point is located on an apex not on
the hydrostatic line it is singular only in the normal directions, i.e. its composition in the principal
coordinates is

D̂epa,2 =

[
0
Ḡ

]
(5)

136



This is the case for stress points located on the Modified Mohr-Coulomb apices outside the hydro-
static line, see Fig 1c.

Improved formulation

The formulations for the constitutive matrices given above works well for two-dimensional models
where the (instant) friction angle is not too high, see e.g. [3, 4]. But for high friction angles and/or
three dimensional problems the above formulations can cause the global stiffness matrix to become
ill-conditioned. This is due to many stress points located on either corners or apices which add
many singularities to the global stiffness matrix. This problem can be mended by adding a small
stiffness in appropriate directions.

Improved formulation on the apex

When the elasticity of the material is linear the implicit stress integration can written in the “return
mapping” formulation,

σ̄σσC = σ̄σσB−Δσ̄σσ p, with σσσB = σσσA+DΔεεε and Δσ̄σσ p = D̄Δε̄εε p (6)

Here σ̄σσC is the updated stress point on the yield surface, σ̄σσB is the elastic predictor stress and
Δσ̄σσ p is the plastic corrector stress, all three expressed in the principal stress space as indicated by
the overbar. The total strain increment is denoted Δεεε and the plastic strain increment in principal
coordinates is Δε̄εε p.

A key point of the elasto-plastic constitutive matrix is that it must be singular in the direction of
the plastic strain increment. A simple method to add a little stiffness in the formulation of Dep on
the apex is given as

D̄epa,mod =
1
α

(
D̄−

D̄T Δε̄εε p(Δε̄εε p)TD̄
(Δε̄εε p)TD̄Δε̄εε p

)
(7)

This matrix is singular in the plastic strain direction and depending on the value of α posesses a
small stiffness in other directions. In the presentation a study on the optimal value of α will be
given.

Improved formulation on a corner

When the updated stress point is located on a corner the basic formulation for the constitutive
matrix is given by Eq. (2). Again a simple formulation that adds a little stiffness is

D̄epc� =
�̄��(�̄��

g
)T

�̄��
T
(D̄c)−1�̄��g

+
1
β

c̄ c̄T

c̄T(D̄c)−1c̄
(8)

The direction vector c̄ is the direction perpendicular to the plastic strain direction, Δε̄ p, and the
line defining the corner, �̄��, see Fig. 2. In the presentation different results indicating the optimal
value of the scalar β will be given. β controls the amount of stiffness that will be added. The Ref.
[5].

Computational example

To assess the validity of the formulation a calculation is carried out with a rough circular footing
resting on a cohesionless Mohr-Coulomb soil with a friction angle of ϕ = 30◦, and a selfweight
of γ = 20 kN/m3. For symmetry reasons only a quarter of the footing is modelled, see Fig. 3a.
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Figure 3: a) A quarter of a circular footing and an example of the element mesh with 7425 degrees of
freedom. b) Results from the bearing capacity calculations compared to the exact value.

The elements are standard ten-node tetrahedrons. A vertical forced displacement is applied to the
footing in steps and the bearing capacity is calculated from the sum of the maximum reaction
forces at the footing nodes divided by the footing area. The exact bearing capacity is found in
Ref. [6]. The result of the calculations can be seen in Fig. 3 for different mesh densities. It is seen
that the calculated values converge toward the exact value. In the presentation results for the other
material models shown in Fig. 1 will be given.

Conclusion

A formulation for elasto-plastic constitutive matrices on corner and apex singularities is given.
The initial formulation is improved in order to make full 3D-calculations stable. It is shown that
finite element calculations based on the formulation converge towards the exact solution.
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