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CRACK TIP PARAMETERS FOR GROWING CRACKS IN 
LINEAR VISCOELASTIC MATERIALS 
Rune Brincker 
University of Aalborg, Sohngaardsholmsvej 57, DK-9000 Aalborg, 
Denmark 

Abstract 

In this paper the problem of describing the asymptotic fields around a slowly growing 

crack in a linearly viscoelastic material is considered. It is shown that for plane mixed 

mode problems the asymptotic fields must be described by 6 parameters: 2 stress 

intensity factors and 4 deformation intensity factors . In the special case of a constant 

Poisson ratio only 2 deformation intensity factors are needed. Closed form solutions 

are given both for a slowly growing crack and for a crack tha t is suddenly arrested at a 

point at the crack extension path . Two examples a re studied; a stress boundary value 

problem, and a d isplacement boundary value problem. The results show that t he s t ress 

intensity factors and the displacement intensity factors do not depend explicitly upon 

the velocity of the crack tip. 

1. Introduction 

Most of the engineering materials suffer from rate sensit ivity. This means that the 

engineering strength will depend on the s train rate or on the duration of the load. 

For polymers this rate sensitivity is st rong and of great importance when the material 

s trength becomes an important design parameter, for instance when polymers are used 

in composite structures and adhesive joints. 

However, a lso t radional st ructural materials like wood and concrete show a significant 

rate sensivi ty that cannot be explained by dynamic effects alone. For instance it is well 

known that the long-term strenght of wood in codes is usually prescibed as about 60 

% of the short-term strength . 

Rate sensitivi ty problems have been treated by modelling t he dynamic fracture process, 

or by modelling t he time dependency of the material on a microscopic level or by 

continuum mechanical theories, Knauss (1). 

In this paper we will restrict ourselves to the quasi-stat ionary case (dynamic effect can 
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be ignored) and to a continuum mechanical description of the fracture process. This 

means that the fracture process is modeled by voids or cracks growing in the body 

when external forces are applied. 

Since the late sixties much work has been done to model the time dependent fracture by 

slow crack growth in a viscoelastic solid, Schapery, [2 - 4], Knauss et al, [5,6], McCartney 

[7- 9] and Christensen [10,11]. However, the theories were applied to simple problems 

where the solutions for stress and strain were easy to obtain. Some solutions have been 

published for a single crack growing or closing in an infinite sheet, Graham [12,13], and 

a solution for stresses and displacements around a crack growing in an infinite strip 

has been published by Mueller [15]. However, only a few solutions are awailable, and 

general solution techniques do not seem to be developed. 

In this paper a new technique is outlined for the determination of the stress and defor­

mation field around a crack growing slowly in a linearly viscoelastic body. The solu­

tions are general with respect to boundary conditions and material proporties (general 

isotropic linear viscoelasticity), but quasi-static and isothermal conditions are assumed. 

In the first section it is shown that in the case af a plane mixed mode crack problem, 

six parameters are needed to descibe the stress and displacement fields around the 

crack tip. The crack tip parameters are defined, and solutions for the stationary crack 

problems are given. 

In the next section general solutions are obtained, both for growing cracks and cracks 

that are suddenly arrested at a point on the crack extension path. 

Finally, in the last sections two examples are given. The examples are illustrating the 

use of the technique, and the obtained solutions are compared to solutions from the 

literature. 

2. Definition of the Crack Tip Parameters 

In fracture mechanics the state of stress and strain around a crack tip is described 

by a limited number of constants. In the case of a crack in a linear elastic material 

it can be shown that the state of stress and strain in the vicinity of the crack is 

completely determined by two constants, the so-called stress intensity factors Kf and 

K?,, Williams [16], Rice [17] . 

In general the stress intensity factors will be functions of the elastic constants and of 

the time 

(1) 

where J-L is the shear modulus and K is the modulus of compression, Sokolnikoff, [18]. 

The most common way to obtain viscoelastic solutions is to derive the desired solu­

tions from the corresponding elastic problem by the so-called correspondence principle, 
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Lee [19]. The correspondence principle is based on the fact that the equations for 

the viscoelastic and the corresponding elastic problem (same geometry, same bound­

ary conditions) become identical if the viscoleastic equations are Laplace transformed 

and the elastic constants 2j-l and 3K are replaced by the complex functions sR; ( S) 
and. sR2 ( S), where Ri ( s) and R2 ( S) are the Laplacetranformed isotropic relaxation 

functions, Christensen [20]. Using the correspondence principle, the viscoelastic stress 

intensity faktors K"Y for a stationary crack are given by 

(2) 

where 

R~*(s) (3) 

and where .Ct-+s {.} and .Ct'2s {.} ts the Laplace transformation and the m verse 

Laplace transformation, respectively. 

These viscoelastic stress intensity factors, however, do not uniqely define the crack tip 

fields, since in the viscoelastic case there is not a one-to-one relationship between the 

stress field and the strain field. In this case the strain field or the displacement field 

must be described by its own state variables. In the elastic case the displacement field 

is given by 

e ( 0) = fr{ ~ (O)Ke >..(2J-L, 3"') h (O)Ke} ( 4) 
U 0 r, y 2; 2J-l 9o{3 {3 + 2J-l o/3 {3 

where (r, 0) is the polar coordinates, 9a{3(0) and ha{3(0) are well-known angular 

functions and >..(2J-L, 3K) = (3 - 4v) for plane strain and >..(2J-L, 3K) = (3 - V )/(1 + 
v) for plane stress, V being the Poisson ratio, Rice [17]. From eq. (4) it is seen, that 

if the following quantities are defined 

1 { 1 .c-;-+t sR~(s) K~*(sRr(s),sR;(s),s)} 

.c-l {>..(sR~(s),sR~(s)) Ke*( R*() R*() )} 
s-+t sRi ( s) o s 1 s 's 2 s ' s 

(5) 

then the viscoeleastic displacement field - and therefore also the strain field - is uniquely 

defined . The parameters cl' c2' Dl and D2 are necessary and sufficient to describe 

the displaments at the timet. 

This means, that in the viscoelastic case six parameters are needed to describe the 

plane state of stress and strain, namely two stress intensity factors, K1 and K2, and 

the four displacment intensity factors, cl' c2' Dl and D2 . In the viscoelastic case 

the asymptotic solutions for the stress and the displacement fields are then given by 
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( B ) - K-r(t) ' (B) 
C1ap r, 't - ~ JoP-r 

U 01(r, B, t) = ff{g 01p(B)Cp(t) + h01 p(B)Dp(t)} 
(6) 

Where J 01p-y( B), g01p( B) and h01p( B) are all known functions of the angle B only, 

Rice [17]. It is not difficult to see, that in the 3-dimensional case one extra stress 

intensity factor and one more deformation factor are needed to descibe the stress and 

deformation fields. 

3. General Solutions for the Crack Tip Parameters 

In this paragraph general solutions for the six crack tip parameters defined m the 

preceeding section are derived. 

A general viscoelastic boundary value problem over the region n is considered, Chris­

tensen [20]. The boundary conditions are given by 

no on ano 

ni(t) on ani(t) 
(7) 

where an ° is the external boundary and ani ( t) is the inner boundary. The inner 

boundary ani(t) is assumed to be a monotonicly increasing function of time describing 

a slow crack growth along an arbitrary crack extension path IT, see figure 1. The 

boundary conditions no on ano and ni(t = 0) on ani(t = 0) are arbitrary, 

whereas the boundary ani(t) \ ani(t = 0) is assumed to be traction free. 

Figure 1. The linear viscoelastic boundary value problem. 

j 

J 
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I 
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Two coordinate systems are used. A local (YI, Y2) coordinate system moving with the 

crack tip, and a fixed (XI, X2) coordinate system situated at a material fixed point 

P on the propagation path. The crack is assumed to be at the point P at the time 

t = t', where the coordinate systems coincide. 

Our problem is to find the asymptotic solutions (y~ + y~ --+ 0) for the stress field 

a Ot/3 and the displacement field UOt and express the asymptotic fields by the intensity 

factors defined above. First we will derive the solutions for the stress intensity factors 

for the moving crack tip at the time t = t', i.e. at the time when the crack tip is at 

the point P on the crack extension path IT. 

The solutions will be derived using the correspondence principle. In this case, however, 

when the boundaries are changing, the classical proof of the correspondence principle 

is no longer valid. Graham [12,14) has given a proof in the case of changing bound­

aries which can be used directly on symmetrical crack extension problems. However, 

following the basic ideas in Grahams proof it is not difficult to extend the proof to the 

case of non-symmetrical crack extension problems. A general proof is given in Brincker 

[21). Also the use of the principle becomes more complicated when the the boundaries 

are changing. Escpecially in this case it becomes complicated, because an elastic solu­

tion in the local ( Yl , Y2) coordinate system cannot be used since the correspondence 

principle is only valid when a solution for a fixed material point is used. This implies 

that the elastic solution used in the correspondence principle must be expressed in the 

( X1, X2) coordinate system. This complicates the problem. 

It proves convenient to consider a modified boundary value problem. The solution to 

the auxiliary problem is denoted a~.B' U~ and the boundary conditions are taken as 

B 0 on ano 
Bi(t) on an'i(t) 

(j~,an.a = aOt,an,a on ani(t') \ an'i(t) 

(8.a) 

(B. b) 

(8.c) 

where the the boundary region an'i(t) is equal to ani(t) fort < t' and equal to 

ani(t') fort ~ t'. From the boundary conditions (8) it appears that the solution 

aOt,a, UOt to the original problem and the solution a~13 , U~ to the auxiliary problem 

are identical for t ~ t'. The auxiliary problem can be considered as a crack growth 

problem, where the crack growth history is equal to the crack growth history for the 

original problem fort ~ t', but where the crack is arrested at the point P and becomes 

stationary for all times t > t. 

The six crack tip parameters will therefore be identical at all times t ~ t', i.e. also 

at t = t' . Besides, the solution to the auxiliary problem illustrates how the crack tip 

parameters will develop with time if the crack tip is arrested at the point P . 

The advantage of using the auxiliary problem, is that everything becomes much simpler 

because the auxiliary problem is formulated as a stationary crack problem with the 

crack tip situated at the point P. 
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First let us determine a stress intensity factor K for the stationary crack tip at the 

point P. The intensity factor can be written as 

(9) 

Here K 0 (t) is the contribution from the boundary conditions on the exterior boundary 

alone, i.e. application of boundary condition (8.a) and the other boundaries being 

traction free. The other term K'i ( t) is the contribution from the boundary conditions 

on the interior boundary alone (conditions (8.b) and (8.c)), the exterior boundary 

being traction free. It should be noticed that the two terms are not independent if the 

boundary conditions involve any explicit conditions in displacements. 

The two contributions K 0 
( t) and K'i ( t) are now found applying the correspondence 

principle. The elastic solution for the contribution K 0
( t) is assumed to be of the form 

(10) 

1.e. the dependence on the elastic constants 21-l and 3K and the dependence on the 

time t introduced by the boundary conditions are assuned to be described by two 

independent factors. In the general case the contribution must be expressed in terms of 

a series or an integral where each term in the series or the integrant can be written as 

an expression like eq. (10) where the first factor is a Green's function for the boundary 

loads depending on 21-l and 3K, and where the second factor is the load intensity 

depending on the timet. For reasons of simplicity, however, only the simple form (10), 

is used which covers almost all practical cases. 

Applying the correspondence principle to eq. (10) yields 

(11) 

If we introduce the function 

(12) 

then by the differentiation theorem and the convolution theorem of the Laplace theory, 

Doetsch (25] 

(13) 

where A ko {.} is a Stieltjes convolution with the kernel A ko( . ). 

J 
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This contribution was easy to obtain. The other contribution K'i(t), however, IS 

somewhat more difficult to determine. We will write the contribution as 

(14) 

where K"i(t) is the contribution from the boundary condition (8.c) alone, i.e. the 

rest of the boundary being traction free. Again the two terms may be dependent or 

independent according to the nature of the boundary conditions. 

The corresponding elastic solution satisfies the condition 

K"ie(t) = 0 j t' ~ t < 00 (15) 

The corresponding viscoelastic quantity K"i ( t) is simple to determine if the following 

theorem from the theory of elasticity is used: 

Theorem: Consider a boundary value problem over a region with a finite number 

of holes . If the boundary conditions are given as prescibed stresses on all boundaries, 

and if the resultant force vanishes on each of the boundaries, then the stress solution 

will be independent of the elastic constans. 

A special proof based on complex function theory is given in Muskhelishvili (22], but a 

simpler proof based on integral equations is given in Brincker (21]. 

It is seen that the theorem can be applied to the considered boundary value problem. 

Since the elastic solution K"ie ( t) is equal to zero fort' ~ t < 00 as stated by eq. (15) 

and since the solution does not depend on the elastic constants 211 and 3K according 

to the above theorem, then, by application of the inverse Laplace transform, 

K"i ( t) = 0 ; t' ~ t < oo (16) 

which is an important result. Now, the contribution K"i ( i) for 0 ~ t < t' will be 

determined. It is known that 

K(t) 0 j 0:::; t < t' (17) 

and from eq. (9) and eq. (14) 

(18) 

where the contribution K 0 (t) is given by eq. (13). Following the same ideas as when 

deriving the expression for K 0 (t) 

(19) 
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Using eq. (16) and (1 7) an expression for the contribution K"i (t) valid for all times 

is now obtained 

(20) 

where ~( . ) is the Heaviside unit function. Now the final result is obtained by applying 

eq. (9) and (14) , together with eq. (20), 

K (t ) - K 0 (t) + Ki (t ) + K"i(t) 

- ~(t - t') (K 0 (t) + Ki(t)) 

and then by using eq. (13) and (19) 

(21) 

(22) 

This is the solution for the stress intensity factor K ( t) for the auxiliary problem, i.e. 

for the crack at the time t' when the crack arrives at the point P and for t > t', when 

the crack is arrested at the point P. The stress intensity factor K(t) for the original 

problem at the time t = t' is then given by 

and if t he crack t ip is arrested at the point P at the t ime t = t', t hen the development 

af K at times greater than t' is given by 

(24) 

Now the solution for the stress intensity factor K is obtained for a linear viscoelastic 

crack problem under general loading conditions both for a steadily growing crack and 

for a crack that is suddenly arrested at a certain point a the crack extension path. 

However, the solution for the corresponding deformation intensity factors C and D 
remanins to be obtained. T he elast ic solution for the crack tip at the point P for the 

auxiliary problem can be written , see eq. (5) 

ac (2p, 3K) Ke (2p, 3K , t ) 

ad(2p , 3K) Ke (2p, 3K, t ) 
(25) 

where a c(2p , 3K) = 1/(2v) and ad (2p, 3K) = A.(2p,3K)/(2p). To these expres­

sions the correspondence can be applied directly, and the deformation intensity factors 

for the auxiliary problem are then given by 
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C(t) 

D(t) 

Ac{K(t)} 

Ad{K(t)} 

9 

(26) 

where K( t) is the viscoelastic stress intensity factor given by eq. (22) and A c and 

Ad are Stieltjes convolutions with the kernels A c (.), Ad (.) defined by their Laplace 

transforms 

(27) 

Similarly to eq. (23) and (24), the deformation intensity factors for the original problem 

at the time t = t' and the development of the intensity factors if the crack tip is arrested 

at the point P at the time t = t' are given by 

C(t') lim Ac{K(t)} t > t' 
t-+t1 

D(t') - lim Ad{K(t)} t > t' 
t-+t1 

(28) 

C(t) - Ac{K(t)} t > t' 

D(t) Ad{K(t)} t > t' 
(29) 

and the problem of determining the crack tip parameters for a growing crack under 

general loading is finally solved. 

4. Solutions for Prescibed Stresses 

A boundary value problem over n = n(t) with prescribed stresses, where the loads on 

the exterior boundary ana and the loads on the interior ani each form an equilibrium 

system is now condsidered. 

The material is linear viscoelastic, but for simplicity, Poisson's ratio l/ will be assumed 

to be constant, which yields the following constitutive equation 

1 l/ 

CJii = 1 + v R{ €ij + 1 - 2v Dij€kk} (30) 

where R{.} is a Stieltjes convolution with the relaxation kernel R(. ). The kernel func­

tion R(.) corresponds to Young's modulus E in the elastic case, and the corresponding 

creep function C(.) can be found from the condition, Christensen [20] 
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s2C*(s)R*(s) = 1 (31) 

First the stress intensity factor K for the considered crack tip is to be obtained. Using 

eq. (10) and (19) and the theorem in the preceding section 

Koe(t) = akobko(t) 

Kie(t) = akibki(t) 
(32) 

where the factors ako and aki are independent of the elastic constants. It is assumed 

that the crack is arrested at the point P at the time t = t'. Then from eq. (22) 

K(t) = ~(t- t')Ke(t) (33) 

where 

(34) 

On the basis of this result it can be concluded that the stress intensity factor for 

a growing crack in the case of prescribed stresses does not depend in any way on 

the crack growth history, but has the same value as in the elastic case, i.e. as for 

the corresponding elastic problem. Also, this result can easily be achieved by direct 

application of the correspondence principle, Graham [13]. 

Now the corresponding values for the deformation intensity factors C and D are to be 

obtained. From eq. (5) 

(35) 

where pc(v) and pd(v) are known functions and where E is Young's modulus . Com­

bining this with eq . (26) and (33) yields 

C(t) 

D(t) 

pc(v) C{~(t - t')Ke(t)} 

pd(v) C{~(t - t')Ke(t)} 

where C {.} is a Stieltjes convolution with the kernel C( . ). 

(36) 

We see that the deformation intensity factors C and D are directly proportional, which 

means that in this case (v = constant), the asymptotic fields around the crack tip 

are completely described for each mode by two quantities only, for example the stress 

intensity factor K and the deformation intensity factor C, i .e. in the mixed mode case 

four parameters are needed to describe the crack tip fields. 
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4. A Specific Solution for Prescibed Displacements 

A specific boundary value problem with prescribed displacements will now be consid­

ered. In this case the region f2 = f2(t) is an infinite strip at a width of 2h. A crack is 

growing at a constant velocity V from the left to the right, se figure 2, and the boundary 

conditions are given by 

U2 - Uo ~(t) j O'J2 = 0 

u2 - uo ~(t) ; a12 = 0 
(37) 

The crack surfaces ani are traction-free. The problem is well known from the literature. 

The stationary elastic problem has been studied by Rice [24], and the viscoelastic 

problem has been studied by Mueller [6,15]. 

aQo x2 

/ 

aQi Q 
/ 

-·--·-·-
;%; V x, 

/((/////////////////////(///////////////, -cr,2=o I 
+u2=-u0~(t) 

Figure 2. Crack growth in an infinite strip. 

h 

h 

Again we will assume Poissons ratio to be constant and use the constitutive equation 

(30). All shearing mode parameters Kt' c2, D2 vanish because of the symmetry of 

the problem. The stress intensity factor Kt is then obtained using the results of section 

3. While the crack surfaces are traction-free, .Kie = 0 for all t. The contribution Kfe 
may be found in Rice [24] or in a handbook, for example in Tada [23], 

(38) 

where pk(v) = uo/Vh for plane stress and pk(v) = uo/((1 - v2 )Vh) for plane 

strain. We see that the elastic solution is of the form given by eq. (10). If we assume 
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that the crack tip is arrested at the point P at the time t = t', then, from eq. (22), 

Kt(t) pk(v) ~(t- t') R{~(t)} 

pk(v) ~(t- t') R(t) 

If the crack is moving at the arbitrary time t = t', then from eq. (23) 

Kt (t') lim l(v) ~(t- t') R(t) ; t > t' 
t-+t1 

l(v) R(t') 

(39) 

(40) 

Again it is noted that the stress intensity factor does not depend upon the crack growth 

history or the velocity of the crack tip, but only on the time that has elapsed since the 

application of the loads. The result is in agreement with the solution found by Mueller 

[15]. 

As in the preceding example, the deformation intensity factors are proportional, since 

Poissons ratio is assumed to be constant, and only one of them, say C1 , will be obtained. 

Similar to eq. (36) we get from eq. (26) and (39) 

( 41) 

Using the identity (31) and some properties of the Heaviside function~( . ) it is not 

difficult to see that 

C{~(t - t') R(t)} ~(t - t') C(t - t') R(t') 

so that 

Ct(t) = pc(v) l(v) C(t - t') R(t') 

Again, if the crack is moving at the arbitrary time t = t', then, from eq. (28), 

pc(v) pk(v) C(O+) R(t') 

pc(v) C(O+) Kt (t') 

(42) 

( 43) 

(44) 

Note that the deformation intensity factor only depend on the velocity of the crack tip 

through on on-off dependency. This result might seem surprising. Mueller, [15] analysed 

the deformations around a growing crack in the infinite strip, and found a solution for 

the crack opening that was dependent upon the crack tip velocity. However, he did 

not express the solution by the properties of the asymptotic displacement field, but 

derived an equation for the total displacements. The dependency of the velocity found 

by Knauss might therefore be caused by far field properties of the displacement field. 

This is indicated by the fact that his solutions for the crack opening do not correspond 
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to a squareroot dependency on the distance from the crack tip, but is clearly influenced 

by higher order terms. 

Hovever, the result given by eq. (44) should not be surprising as only the asymptotic 

fields are considered. When the crack is moving, no matter how slow the crack growth 

is, all points at the crack extension path will experience infinite rates just prior to arrival 

of the crack tip. This justifies the result that only the material properties corresponding 

to infinite rates (the intial value of the creep function C(O+ )) influence the asymptotic 

deformation fields . 
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