Overtopping of Berm Breakwaters Evaluation of Overtopping Formula

Andersen, Thomas Lykke; Burcharth, H. F.

Published in:
Second International Coastal Symposium in Iceland

Publication date:
2005

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
1. INTRODUCTION

The berm breakwater concept is basically rather old, but was not used very much until it was “reinvented” in the early 1980’s, when a slope protection for an airfield runway extending into the sea in the Alutian Islands, Alaska was designed, Rauw (1987). Since then, many berm breakwaters have been built, especially in Iceland. Fig. 1 illustrates the berm breakwater concept.

It is very difficult to destroy a berm breakwater by incoming head-on-waves, unless the structure is overtopped or the berm is too narrow. Overtopping waves can easily damage the rear side of a berm breakwater and an erosion process may start which quickly causes a breach in the breakwater.

Until recently the available information on overtopping of berm breakwaters was very limited and no systematic study existed. However, Lykke Andersen & Burcharth (2004) presented a dimensionless overtopping formula for berm breakwaters based on a large parametric model test study with berm breakwaters. More than 700 tests were performed to derive the formula. The formula was derived for statically and dynamically stable berm breakwaters as well as non-reshaping statically stable berm breakwaters, all with homogenous berms.

The formula presented by Lykke Andersen & Burcharth (2004) is based on tests with initial front slopes 1:1.25 only, and the formula does not include the influence of other slopes. The main purpose of the paper is to give guidelines on how to modify the formula to take into account the front slope and to compare the derived formula with data of other authors.

The following overtopping formula was derived by Lykke Andersen & Burcharth (2004)

\[
Q_* = 4.56 \times 10^3 \cdot H_{w0}^{1.31} \cdot B_0^{2.05} \cdot \exp\left[-13.9 \cdot R_c^{0.40} - 0.92 \cdot G_s^{1.24} - 0.76 \cdot h_b^{1.32} \cdot B_0^{1.24}\right]
\]

where

\[
Q_* = \frac{Q}{\sqrt{g \cdot H_{w0}^3}}
\]

\(H_{w0}\) is the significant wave height at the toe of the structure (frequency domain parameter).
$$R_* = \frac{R}{H_{w0}} ; \ G_* = \frac{G}{H_{w0}} ; \ B_* = \frac{B}{H_{w0}}$$

$$h_{b*} = \frac{3 \cdot H_{w0} - h_b}{3 \cdot H_{w0} + R_*}$$ when $h_b > 3H_{w0}$ use $h_{b*} = 0$. Note $h_b$ is negative when the berm is above water level.

$$H_0T_0 = \frac{H_{w0}}{\Delta \cdot D_{n50}} \sqrt{\frac{g}{D_{n50}} \cdot T_w}$$ no reshaping takes place for $H_0T_0 < 30$. For such cases use $H_0T_0 = 30$.

In Fig. 3 the overtopping formula is evaluated against the data of Lykke Andersen & Burcharth (2004).

The performance of the formula seems good considering the amount of scatter normally related to overtopping formulæ.

### 4. GUIDELINES FOR INITIAL SLOPES OTHER THAN 1:1.25

In case of dynamically stable structures one could still use the formula despite the initial front slopes are different from 1:1.25. This is because for dynamical stable situations the reshaped profiles are identical for the same volume of stones independent on the lower slope, leading to $B$ has to be enlarged by $0.5(b-h_b)(\cot(\alpha_c)-1.25)$ in the formula for a slope different than 1.25.

For front slope above berm different from 1:1.25 it is proposed to enlarge/reduce $B$ and $G_C$ so the distance to the back of the crest is the same as for a slope 1:1.25. That means increasing both $B$ and $G_C$ with the distance $0.5(R_C+h_b)(\cot(\alpha_c)-1.25)$.

For multilayer berm breakwaters it is proposed to use the largest stones when calculating $H_0T_0$ as very little reshaping is allowed and $H_0T_0$ will typically will be around 30 for the largest stones.

### 4. COMPARISON WITH OTHER DATA

Fig. 4-7 shows a comparison between present formula and data by Lissev (1993), Kuhnen (2000), Viggosson et. al. (1993) and Porarinsson (2004).
The agreement between the present formula and the data of Porarinsson (2004) are very good with all data with 90% confidence bands. This demonstrates that the formula could be used for multi-layer berm breakwaters as well. The tests of Porarinsson (2004) are performed in the same flume as the present tests with the same location of measuring incident waves and same software package for data analysis. The two test series are however considered independent as the model was completely different and was constructed and tested by other persons. When comparing to data from other laboratories the agreement is fair when the different ways of measuring waves and overtopping is taken into account.

After publishing the ICCE2004 formula it was found that the $H_0T_0$ parameter is not good to describe reshaping on more stable structures as it overpredicts the influence of the wave period. The deviations for the Viggosson et. al. (1993) can be explained by this and by only measuring total waves.

5. ACKNOWLEDGEMENT

The model test study has partly been financed by the CLASH project EVK3-CT-2001-00058 within the EESD programme of the Fifth Framework Programme of the EU.

6. REFERENCES


Kuhnen, F. 2000. Scour and scour protection around berm breakwaters, Ms. thesis University of Braunschweig, Germany. Carried out at SINTEF, Trondheim, Norway under supervision of Alf Tørum.


