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Abstract —Pulse width modulation, present in most drives, 
gives rise to harmonics in the current and this generates radial 
forces that cause vibrations in the motor shell. This paper 
derives an analytical expression for the estimation of the 
spectrum of the radial force in a machine with an air gap, based 
on the spectrum of the applied voltage. The measurements show 
that the spectral components are caused mainly by the 
modulation, which agrees with the results from the analytical 
solution. A method to determine the dominant frequency 
components from the radial force spectrum based on current 
measurements is also presented.  

I. INTRODUCTION 

 
Noise from an electric machine may arise due to 

mechanical, aerodynamic, electronic and magnetic sources 
[1]. The magnetic source and the mechanical structure 
interact due to the magnetic forces and the frequency 
response of the mechanical structure [2, 3]. It is well known 
that the normal components of the current dependent forces 
are significantly larger than the tangential components [2].  

The standard approach for vibration analysis is to use DFT 
on the measured signals, rather than an analytical solution to 
find the spectra. The drawback of using DFT is that it is 
limited by its inputs: windowing will introduce sidelobes in 
the frequency domain, and aliasing will introduce non-
existing frequency components. The magnitude of the signal 
will be influenced by the limits of the analogue to digital 
conversion, the physical setup of the measurements, and 
external noise. An analytical solution is not affected by the 
previously mentioned factors in its prediction of the spectral 
components. 

A previous analytical approach for treating pulse width 
modulation (PWM) effects on AC-drives was presented in 
[4], however radial forces were not considered in that paper. 
The radial forces were considered also regarding harmonics 
in the magnetic air gap flux in [5], without an evaluation of 
the effects from PWM. However, at low speed, switching 
frequency is the dominant source of the acoustic noise 
generated by the machine [6, 7]. The effects from PWM were 
considered with regards to the radial force in [6], but the 
authors did not treat analytically the relationship between 
PWM and radial force. Radial force prediction and 
calculation for a PWM driven asynchronous motor using 
finite-element method (FEM) can be found in [8-10]. A very 
comprehensive overview of harmonic analysis of PWM is 
described in [11], where the focus is on the voltage spectrum 
and not radial force spectrum. 

From vibration and acoustic noise point of view it is 
important to know the origin of the individual frequency 
components from their spectra, to avoid/minimize the 
excitation of the resonances of the entire drive system. 
Although in this paper the complex construction of a rotating 
machine was simplified to a coil, the simulations using finite-
element method (FEM) and measurements show very good 
coincidence on the vibration spectra with an asynchronous 
motor. Based on the above-mentioned simplification, this 
paper introduces an analytical method for determining the 
frequency components of the normal force spectra caused by 
PWM. The method is based on the analytical description of 
the PWM-generated line to line voltage. A graphical 
presentation of the analytical solution is then compared to the 
measurements on a simplified setup and on an induction 
motor.  

II. ANALYTICAL DETERMINATION OF THE FORCE SPECTRA 

Based on [11], the line to line voltage spectrum of a there 
phase asymmetrical regularly sampled sine-triangle 
modulation can be expressed as: 
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where: Vdc – DC-link voltage; M – Modulation index; ωo – 
Modulated frequency; ωc – Carrier frequency; J – Bessel 
function; m - Carrier frequency component; n -  sideband 

harmonics of the carrier frequency; 0

c
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ω
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for 

asymmetrical regular sampled PWM 
Using equation (1) the analytical form of the spectrum of 

the normal force can be approximated. The normal force f in 
a not saturated coil is given by: 
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 where ψ – magnetic flux, μ0 – magnetic permeability, A -
cross sectional area of the magnetic path, N – number of wire 
turns, L – inductance, k – constant in time;  

Since all the parameters in an ideal coil are constant, (noted 
as k in (2)) they can be ignored and thus represents a 
normalized spectra.  



The flux can be expressed in function of the line voltage, 
ignoring nonlinearities and the phase resistances: 

 ( ) ( )llt V t dtψ ∫  (3) 

Expressing the flux by integrating the voltage equation (1)
in function of time: 
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Substituting the flux equation (4) in (2), the force equation 
becomes: 
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Recalling the amplitude values of the fundamental and the 

harmonic components from the force equation: 
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The force equation becomes: 
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In case of other modulation methods like space vector 

modulation (SVM), third-harmonic reference injection or 

discontinuous PWM (DPWM), equation (6) will be expanded 
with further harmonic components as they are described in 
[11]. 

Expanding the square and by using the trigonometric 
identities, (7) is transformed into:  
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Comparing the voltage equation (1) with the force equation 

(8), it can be concluded that: 
1. the frequency of the fundamental force component will 

have double the frequency compared to the fundamental in 
the voltage spectrum 

2. Since the force is proportional to the squared voltage, 
this gives rise to a convolution in the frequency domain. The 
second, the third, and the fourth line from equation (8) are the 
result of this convolution.  



III. SIMPLIFIED EXPERIMENTAL SETUP FOR E
THE VIBRATION SPECTRA 

 
To isolate the effect of the PWM on the

from the vibrations caused by the complex
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current with a spectrum like white noise e
the frequency components, giving the 
mechanical structure to them in term of
transfer function from phase current to shell 
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To calculate the normal force in t
laminated iron core of the coil, FEM
shown in Fig. 2. Stepping through 
look up table was generated. Since v
acceleration on the shell of the coil, a
is proportional to the vibrations. 
spectrum is thus equal to the 
spectrum.  

IV. EXPERIMENTAL VA

For experimental tests, the 2.2 k
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Fig. 5 The normalized vibration spectra on the frame of the coil: (a) 
analytical calculated spectra, (b) spectra derived using the current to force 
look-up table, (c) analytical calculated spectra adjusted with the transfer 
function of the mechanical structure, (d) Simulation using force look-up 
table adjusted with the transfer function of the mechanical structure (e) 

measured spectra 

Fig. 8 presents the calculated and measured spectra for the 
asynchronous motor. For the spectra given by the analytical 
calculations (Fig. 8 (a)), the current – to – vibration transfer 
function of the motor has been considered. The prediction of 
the force spectra in the asynchronous motor using (2) is 
shown in Fig. 8 (b). Using (2) with the measured phase 
current from the rotating asynchronous motor as input, the 
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Fig. 6 Zoom in vibration spectra of the coil at 5kHz: (a) analytically 
calculated spectra, (b) vibration spectra using force look-up table, (c) 

measured vibration spectra  
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Fig. 7 Zoom in vibration spectra of the coil at 10kHz: (a) analytically 
calculated spectra, (b) vibration spectra using force look-up table, (c) 

measured vibration spectra  
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Fig. 8 The normalized spectra of vibrations on the motor shell: (a) 
analytically calculated spectra, (b) vibration spectra using force look-up 

table, (c) measured vibration spectra  
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Fig. 9 Zoom in vibration spectra on the motor shell at 5kHz: (a) analytically 
calculated spectra, (b) vibration spectra using force look-up table, (c) 

measured vibration spectra  
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Fig. 10 Zoom in vibration spectra on the motor shell at 10 kHz: (a) 
analytically calculated spectra, (b) vibration spectra using force look-up 

table, (c) measured vibration spectra  

 

equivalent force in the air gap of an imaginary coil was 
calculated and normalized. The spectrum of the force was 
calculated using DFT with a Hanning windowing function, 
the same as was used in vibration measurements on the motor 
shell. 

As it can be seen on Fig. 8, the predicted spectra from both  
the analytical solution and from the FEM model, shows good 
agreement with the measured acceleration on the shell of the 
induction motor. 

Although the mechanical structure of the motor is 
completely different from the structure of the coil used for 
FEM model, the spectra of the vibration around the switching 
frequency shows very good match.  

The magnitude of vibrations on the motor and coil are 
influenced by mechanical parameters [12], measurement 
errors, and limitations of the DFT, but the main spectral 
components from the analytical solution fits the measured 
results as it is shown on the zoomed spectra. The resolution 
of the measurements for the zoomed spectra was increased; 
this is the reason why the base level of the full spectra is 
higher than the base level of the zoomed spectra. 

V. CONCLUSIONS 

New methods for predicting the spectral components of the 
normal force in a machine with an air gap have been 
presented in this paper. This prediction was achieved using a 
simplified setup. One solution is to analytically calculate the 
spectral components of the vibrations based on the analytical 



solution of the line to line voltage generated by PWM. The 
second solution to predict the vibrations spectra is based on 
the measured phase current of the motor, which is fed into a 
current to force look-up table of the simplified system.  

The measurements show that the dominant spectral 
components in an asynchronous motor are caused mainly by 
the modulation, which agrees well with the results obtained 
from the analytical solution and simulation based on the 
current to force look-up table. The advantage of the analytical 
method is that it allows isolating spectral components caused 
by the PWM even in mechanically complex drive system. 
The method can be applied to other than sin-triangular PWM 
strategies to evaluate their performance in terms of radial 
force. The experiments show that vibrations caused by the 
PWM are dominant irrespective if the PWM was applied to 
the coil or the induction motor. 
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