Modal and Mixed Specifications: Key Decision Problems and their Complexities

Adam Antonik1, Michael Huth2\dagger, Kim G. Larsen3, Ulrik Nyman3, Andrzej Wąsowski4\ddagger

1 CNRS, Ecole Normale Supérieure de Cachan, France
2 Department of Computing, Imperial College London, United Kingdom
3 Department of Computer Science, Aalborg University, Denmark
4 IT University of Copenhagen, Denmark

Received 16 October 2009

Modal and mixed transition systems are specification formalisms that allow mixing of over- and under-approximation. We discuss three fundamental decision problems for such specifications: whether a set of specifications has a common implementation, whether a sole specification has an implementation, and whether all implementations of one specification are implementations of another one. For each of these decision problems we investigate the worst-case computational complexity for the modal and mixed case. We show that the first decision problem is \textsc{EXPTIME}-complete for modal as well as for mixed specifications. We prove that the second decision problem is \textsc{EXPTIME}-complete for mixed specifications (while it is known to be trivial for modal ones). The third decision problem is furthermore demonstrated to be \textsc{EXPTIME}-complete for mixed specifications.

1. Introduction

Labeled transition systems are frequently used to define semantics of modeling languages, and then to reason about models in these languages. It often happens that a single transition system cannot serve multiple purposes. For example, an over-approximating transition system can be used to soundly establish safety properties, but not liveness properties. Similarly an under-approximating transition system, can be used to prove liveness, but not safety, properties. A simple remedy for that problem is to use two transition systems in a verification process that requires capturing both viewpoints: one describing an over-approximation, and one describing an under-approximation of the same behavior.

\dagger This research was partially supported by the UK EPSRC projects \textit{Efficient Specification Pattern Library for Model Validation} EP/D50595X/1 and \textit{Complete and Efficient Checks for Branching-Time Abstractions} EP/E028985/1
\ddagger Supported by MT-LAB, VKR Centre of Excellence
This solution introduces a lack of precision, caused by decoupling the states of one abstraction from those of the other, which makes it impossible to verify nested properties typical for recursive logics. For example one cannot prove that a state in which a certain liveness property holds, is unreachable. To deal with the problem, model checkers such as Yasm (Gurfinkel et al., 2006) handle over- and under-approximation in one structure based on a single transition systems.

This idea can be traced back to the late eighties, when Larsen and Thomsen proposed modal transition systems (Larsen and Thomsen, 1988), also known as modal specifications (Larsen, 1989) and mixed specifications (Dams, 1996). Modal specifications combine over and under-approximation in a single transition system, using two transition relations, but a single set of states. Inconsistencies may arise in such specifications, if some behaviour is both required and disallowed. We chose to call the general, possibly inconsistent form of specifications mixed specifications, and the subset that syntactically enforces consistency modal specifications (in modal specifications the required transition relation is included in the allowed transition relation). This naming is a convention that we adopt here for clarity, remarking that this is not always followed in the existing literature.

Mixed specifications have since been applied as suitable abstractions in, among others, program analysis (Huth et al., 2001; Schmidt, 2001), model checking (Godefroid et al., 2001; Börjesson et al., 1993; Gurfinkel et al., 2006), verification (Larsen et al., 1995; Bruns, 1997), solving process algebraic equation systems (Larsen and Xinxin, 1990), compositional reasoning with interface theories (Larsen et al., 2007a), modeling of variability in software product lines (Larsen et al., 2007a; Fischbein et al., 2006) and other model management areas such as model merging (Uchitel and Chechik, 2004; Brunet et al., 2006).

As an example, let us briefly consider a model originating in interface theories, that can be used to explain the motivation of our work. Figure 1 shows an interface of a communication component. This interface models communication components that retry...
transmission at least once after a failure, and that optionally can check the link status upon a failure (to react appropriately). Specifically, the interface specifies five output actions (\texttt{ok}, \texttt{fail}, \texttt{transmt}, \texttt{linkStatus}, \texttt{log}) and five input actions (\texttt{send}, \texttt{ack}, \texttt{nack}, \texttt{up}, \texttt{down}), all enumerated on the rectangular frame. The interior of the frame contains an automaton specifying the desired and allowed behavior. Transitions labeled by \(\square\) are \textit{required} by the interface, transitions labeled by \(\lozenge\) are \textit{allowed} by the interface. Thus assuming that the state labelled 14 is the initial state, the component must await a send request, and then it is obliged to transmit a message, awaiting an acknowledgement. If the acknowledgement arrives (state 19), the component successfully closes the communication notifying the requester \texttt{ok!}, if an error message arrives (state 17) the component needs to retransmit, or alternatively it \textit{may} check the status of the underlying link. After the second attempt to transmit (state 18) the component either disallows failure, or \textit{may} retry again (the \texttt{nack} transition).

Such interface models have been described in (Larsen et al., 2007a) and in (Raclet, 2008). Here let us just mention that the underlying semantic model is that of modal specifications. Thus decision procedures for interfaces often relate to decision procedures for modal specifications. For example, if a component needs to implement several interfaces, the question arises whether the interfaces are consistent. A similar question is whether a certain interface is a proper generalization of another one, i.e. does every component implementing the former also implement the latter. In the present paper we discuss the computational complexity of these questions, formulating them for both “mixed” and “modal” specifications implicitly:

\begin{itemize}
 \item \textbf{C} Is a single specification consistent, i.e. can it be implemented?
 \item \textbf{CI} Is a collection of specifications consistent, i.e. does there exist a common implementation of them?
 \item \textbf{TR} Does one specification thoroughly refine the other, i.e. is every implementation of the former an implementation of the latter?
\end{itemize}

Our results are obtained as follows. First, we argue that all three decision problems are in \textsc{EXPTIME} for modal as well as for mixed specifications. Then we prove three reductions from which we obtain lower bounds:

\begin{enumerate}
 \item We show that the \textsc{EXPTIME}-complete problem of acceptance of an input in a linearly bounded alternating Turing machine reduces to \textbf{CI} for modal specifications. From this we learn that \textbf{CI} is \textsc{EXPTIME}-hard for modal and so for mixed specifications as well.
 \item We show that \textbf{CI} for modal specifications reduces to \textbf{C} for mixed specifications, and so the \textsc{EXPTIME}-hardness of \textbf{CI} renders \textsc{EXPTIME}-hardness of \textbf{C} for mixed specifications.
 \item Finally, we show that \textbf{C} for mixed specifications reduces to \textbf{TR} for mixed specifications, obtaining thus \textsc{EXPTIME}-hardness of \textbf{TR} for mixed specifications from the \textsc{EXPTIME}-hardness of \textbf{C} for mixed specifications.
\end{enumerate}

This reduction chain begins with modal specifications but has to resort to mixed, non-modal specifications for \textbf{C}. Therefore, we are only able to infer that \textbf{CI} is \textsc{EXPTIME}-complete for modal specifications, being unable to reveal any new lower bounds on \textbf{TR} for modal specifications.
The paper proceeds as follows. In Section 2 we give the needed background for appreciating the technical development of the paper. In Section 3 we discuss related work. In Sections 4, 5, and 6 we state the three reductions that render EXPTIME-completeness of CI (for modal and mixed specifications), of C (for mixed specifications), and of TR (for mixed specifications). In Section 7 we put these results into context, and we summarize the paper in Section 8.

2. Background

Let us now formally define the basic models of interest in our study (Larsen, 1989; Dams, 1996; Clarke et al., 1994):

Definition 1. Let \(\Sigma \) be a finite alphabet of actions.
1. A mixed specification \(M \) is a triple \((S, R^\square, R^\Diamond)\), where \(S \) is a finite set of states and \(R^\square, R^\Diamond \subseteq S \times \Sigma \times S \) are the must- and may- transitions relations (respectively).
2. A modal specification is a mixed specification satisfying \(R^\square \subseteq R^\Diamond \); all its must-transitions are also may-transitions.
3. A pointed mixed specification \((M, s)\) is a mixed specification \(M \) with a designated initial state \(s \in S \).
4. The size \(|M|\) of a mixed specification \(M \) is defined as \(|S| + |R^\square \cup R^\Diamond|\).

Remark 1. Throughout this paper references to “mixed” specifications also apply to “modal” ones, as in the last two items of Definition 1 – unless stated otherwise.

Refinement (Larsen, 1989; Dams, 1996; Clarke et al., 1994), called “modal refinement” in (Larsen et al., 2007b), is a co-inductive relationship between two mixed specifications that verifies that one such specification is more abstract than the other. This generalizes the co-inductive notion of bisimulation (Park, 1981) to mixed specifications:

Definition 2. A pointed, mixed specification \((N, t_0) = ((S_N, R^\square_N, R^\Diamond_N), t_0)\) refines another pointed, mixed specification \((M, s_0) = ((S_M, R^\square_M, R^\Diamond_M), s_0)\) over the same alphabet \(\Sigma \), written \((M, s_0) \prec (N, t_0)\), iff there is a relation \(Q \subseteq S_M \times S_N \) containing \((s_0, t_0)\) such that whenever \((s, t) \in Q\) then
1. for all \((s, a, s') \in R^\square_M\) there exists some \((t, a, t') \in R^\square_N\) with \((s', t') \in Q\)
2. for all \((t, a, t') \in R^\Diamond_N\) there exists some \((s, a, s') \in R^\Diamond_M\) with \((s', t') \in Q\)

Deciding whether one finite-state, pointed, mixed specification refines another one is in PTIME, and can be implemented by a standard fixpoint algorithm as used for checking simulation or bisimilarity.

Example 1. Pointed, mixed specification \((M, s_0)\) and pointed, modal specification \((N, t_0)\) in Figure 2 have the same set of implementations \(I(M, s_0) = I(N, t_0)\) (defined shortly) and we have \((M, s_0) \prec (N, t_0)\), given by
\[
Q = \{(s_0, t_0), (s_1, t_1), (s_2, t_2), (s_3, t_2), (s_4, t_3)\}
\]
But we do not have \((N, t_0) \prec (M, s_0)\). To see this, assume that there is a relation \(Q\) with \((t_0, s_0) \in Q\) satisfying the properties in Definition 2. Then from \((s_0, \pi, s_2) \in R^\Diamond_M\) we infer
that there must be some x with $(t_0, \pi, x) \in R_N^\diamond$ and $(x, s_2) \in Q$. In particular, x can only be t_1 or t_2. If x is t_1, then since $(s_2, \pi, s_4) \in R_M^\diamond$ and $(t_1, s_2) \in Q$ there has to be some R_M^\diamond transition out of t_1, which is not the case. If x is t_2, then $(t_2, \pi, t_3) \in R_N^\Box$ and $(t_2, s_2) \in Q$ imply that there is some R_M^\square transition out of s_2, which is not the case. In conclusion, there cannot be such a Q and so $(N, t_0) \not< (M, s_0)$.

Labeled transition systems over an alphabet Σ are pairs (S, R) where S is a non-empty set of states and $R \subseteq S \times \Sigma \times S$ is a transition relation. We identify labeled transition systems (S, R) with modal specifications (S, R, R). The set of implementations $I(M, s)$ of a pointed, mixed specification (M, s) are all pointed labeled transition systems (T, t) refining (M, s). Note that $I(M, s)$ may be empty in general, but is guaranteed to be non-empty if M is a modal specification.

Definition 3. Let (N, t) and (M, s) be pointed, mixed specifications. As in (Larsen et al., 2007b) we define **thorough refinement** $(M, s) \prec_{th} (N, t)$ to be the predicate $I(N, t) \subseteq I(M, s)$.

Refinement approximates this notion: $(M, s) \prec (N, t)$ implies $(M, s) \prec_{th} (N, t)$ since refinement is transitive. The converse is known to be false (Hüttel, 1988; Xinxin, 1992; Schmidt and Fecher, 2007) – contrary to what has been claimed in (Huth, 2005b); Figure 2 provides a counterexample.

We shall now formally define the decision problems informally stated above. Each decision problem has two instances – one for modal and one for mixed specifications.

- **Common implementation** (CI): given $k > 1$ specifications (M_i, s_i), is the intersection $\bigcap_{i=1}^{k} I(M_i, s_i)$ non-empty?
- **Consistency** (C): Is $I(M, s)$ non-empty for a specification (M, s)?
- **Thorough refinement** (TR): Does a specification (N, t) thoroughly refine a specification (M, s), i.e., do we have $I(N, t) \subseteq I(M, s)$?

As far as these decision problems are concerned, the restriction to finite implementations, which follows from restricting our definitions to finite specifications, causes no loss of generality, as already explained in (Antonik et al., 2008b): A mixed specification (M, s) is consistent in the infinite sense iff its characteristic modal μ-calculus formula $\Psi_{(M, s)}$...
(Huth, 2005a) is satisfiable. In general a transition system satisfying a modal µ-calculus formula may be infinite. Due to the small model theorem for µ-calculus (Kozen, 1988), \(\Psi_{(M,s)} \) is satisfiable iff it is satisfiable over finite-state implementations. Hence reasoning about consistency does not require reasoning about infinite structures. We can reason in a similar manner about common implementation and thorough refinement, which justifies the restriction to finite-state implementations. The restriction to finite-state specifications is needed in order to do complexity analysis.

Now we establish an EXPTIME upper bound for our key decision problems for modal and mixed specifications.

Lemma 4. The decision problems CI, C, and TR are in EXPTIME for modal as well as for mixed specifications, in the sum of their sizes.

Proof sketch. Mixed and modal specifications \((M, s)\) have characteristic formulæ \(\Psi_{(M,s)}\) (Huth, 2005a) in the modal µ-calculus such that pointed labeled transition systems \((L, l)\) are implementations of \((M, s)\) iff \((L, l)\) satisfies \(\Psi_{(M,s)}\). The common implementation and consistency problem, CI and C, reduce to satisfiability checks of \(\bigwedge_i \Psi_{(M_i,s_i)}\) and \(\Psi_{(M,s)}\), respectively. The thorough refinement problem of whether \((M, s)\prec_{th}(N, t)\) reduces to a validity check of \(\neg\Psi_{(N,t)} \lor \Psi_{(M,s)}\).

Validity checking of such vectorized modal µ-calculus formulæ is in EXPTIME. One way in which this membership in EXPTIME can be seen is by translating the problem into alternating tree automata. It is well known that a formula \(\Psi_{(M,s)}\) can be efficiently translated (Wilke, 2001) into an alternating tree automata \(A_{(M,s)}\) (with parity acceptance condition) that accept exactly those pointed labeled transition systems that satisfy \(\Psi_{(M,s)}\). Since non-emptiness, intersection, and complementation of languages is in EXPTIME for alternating tree automata, we get our EXPTIME upper bounds if these automata have size polynomial in \(|M|\).

Since the size of \(\Psi_{(M,s)}\) may be exponential in \(|M|\) we require a direct translation from \((M, s)\) into a version of \(A_{(M,s)}\). The formulæ \(\Psi_{(M,s)}\) can be written as a system of recursive equations (Larsen, 1989) \(X_s = \text{body}_s\) for each state \(s\) of \(M\). We can therefore construct all \(A_{(M,s)}\) in a compositional manner: whenever \(X_s\) refers in its body to some \(X_t\), then \(A_{(M,s)}\) has a transition to the initial state of \(A_{(M,t)}\) at that point. This \(A_{(M,s)}\) generates the same language as the one constructed from \(\Psi_{(M,s)}\), by appeal to the existence of memoryless winning strategies in parity games (Zielonka, 1998). The system of equations is polynomial in \(|M|\), and so the compositional version of \(A_{(M,s)}\) is polynomial in the size of that system of equations.

For full details we refer the reader to (Wilke, 2001) and (Larsen, 1989).

Remark 2. Throughout this paper we work with Karp reductions, i.e. many-one reductions computable by deterministic Turing machines in polynomial time. This choice is justified since we reduce problems that are EXPTIME-complete or PSPACE-hard.

3. Related work

In the following we briefly state research directly relevant to this paper.
The workshop paper (Antonik et al., 2008c) contains a sketch of the reduction of ATM\(_{LB}\), i.e. the acceptance of input for a linearly bounded alternating Turing machine, to CI for modal specifications. This reduction was discovered, independently, by Antonik and Nyman in their PhD dissertation work (Antonik, 2008; Nyman, 2008). This reduction constitutes an improvement over the reduction to CI for modal specifications from the PSPACE-complete problem of Generalized Geography, that reduction appeared in (Antonik et al., 2008b) already.

The conference paper (Antonik et al., 2008b) also contains the reductions of C for mixed to CI for modal specifications, and of TR for mixed to C for mixed specifications – but the stronger reduction to alternating Turing machines makes these reductions stronger by transitivity.

The conference paper (Antonik et al., 2008b) also shows that TR for modal specifications is PSPACE-hard. This result is completely orthogonal to the techniques and results reported in this paper.

We refer the interested reader to an invited concurrency column (Antonik et al., 2008a), that provides more motivation and potential applications of the decision problems studied in this paper.

The prime numbers construction in the example of Section 4 has been originally proposed by Antonik, and published in (Antonik, 2008). Only after the fact, we have learned that the same technique has been used by Berwanger and colleagues in two other works, published around the same time (Berwanger et al., 2008; Berwanger and Doyen, 2008). In these papers, the technique of multiplication of small prime numbers is used to (i) show that imperfect information games require exponential strategies and to (ii) reduce imperfect information parity games to imperfect information safety games.

4. Common Implementation

We would like to develop an intuition as to why the CI problem is hard. Before attempting a formal proof of this fact we demonstrate a set of specifications, whose size is exponentially smaller than its smallest common implementation. The succinctness of specifications as a representation in itself does not prove hardness of the problem, but, we think, it makes it quite evident that the problem is hard.

Example 2. The construction used below originates in (Antonik, 2008). Let \(I \) be a finite set of natural indices and, for \(i \in I \) let \(M_i \) be modal specifications consisting of:

- states \(s^j_i, j = 1 \ldots i \), such that \((s^j_i, \pi, s^{j+1}_i) \in R^\Box, R^\Diamond \) for \(1 \leq j \leq i - 1 \) and \((s^j_i, \pi, s^1_i) \in R^\Diamond \).
- an extra deadlock state \(d \), such that \((s^l_i, a_l, d) \in R^\Diamond \) if \(l \in I \setminus \{i\} \), while \((s^i_i, a_i, d) \in R^\Diamond, R^\Box \).

Figure 3 shows an example of specifications \(M_2, M_3 \) and \(M_5 \) for \(I = \{2, 3, 5\} \). Observe that each \(M_i \) is a counter that counts \(i - 1 \) transitions labeled by \(\pi \), allowing the implementation to stop after \(i - 1 \) \(\pi \)-steps (or any multiple of that). In any state \(M_i \) is allowed to make an \(a_l \) transition to a deadlocking state, but only in its topmost state (see figure) it is allowed and required to be able to make an \(a_i \) transition to this state.
A. Antonik, M. Huth, K. Larsen, U. Nyman and A. Wąsowski

It is not hard to see that if we take a collection of M_i models for $i = p_1, \ldots, p_n$, ranging over the first n primes, then any implementation has at least $\prod_{i=1}^{n} p_i > \prod_{i=1}^{n} 2 = 2^n$ states. Thus the size of any common implementation of the family of models for the first n primes is exponential in n. It remains to argue that the total size of the specifications themselves remains polynomial in n.

By a theorem of Chebyshev (Chebyshev, 1852), there exists a constant $\theta > 0$ such that the number of primes less than a given k is at least $\theta k / \log k$. Since for sufficiently large k we have that $\log k < k^{1/2}$, we have that the number of primes is greater than $\theta k^{1/2}$. In order to ensure at least n primes in the range $[0, x]$ it suffices to take x larger than $\left(\frac{n}{\theta}\right)^2$. The total size of M_i specifications corresponding to these numbers is $O(n\left(\frac{n}{\theta}\right)^2) = O(n^3)$. Thus the set of specifications has size polynomial in n, while its common implementations are at least exponential in n. We remark that this construction can be easily adapted to only use a binary alphabet.

In the remaining part of this section, we present a formal reduction, demonstrating EXPTIME-hardness of CI. Let us begin with a definition of the decision problem used in the lower bound proof for common implementation.

An Alternating Turing Machine (Chandra et al., 1981), or an ATM, is a tuple $T = (Q, \Gamma, \delta, q_0, \text{mode})$, where Q is a non-empty finite set of control states, Γ is an alphabet of tape symbols, null $\not\in \Gamma$ is a special symbol denoting empty cell contents,

$$\delta: Q \times (\Gamma \cup \{\text{null}\}) \rightarrow \mathcal{P}(Q \times \Gamma \times \{l, r\})$$

is a transition relation, $q_0 \in Q$ is the initial control state, and $\text{mode}: Q \rightarrow \{\text{Univ}, \text{Ext}\}$ is a labeling of control states as respectively universal or existential. Universal and existential

Fig. 3. Pointed specifications (M_2, s_3^2), (M_3, s_3^1) and (M_5, s_5^1) whose common implementation has at least $2 \cdot 3 \cdot 5 = 30$ states.
states with no successors are called accepting and rejecting states (respectively). Each ATM T has an infinite tape of cells with a leftmost cell. Each cell can store one symbol from Γ. A head points to a single cell at a time, which can then be read or written to. The head can then move to the left or right: $(q', a', r) \in \delta(q, a)$, e.g., says “if the head cell (say c) reads a at control state q, then a successor cell can be q', in which case cell c now contains a' and the head is moved to the cell on the right of c.” The state of the tape is an infinite word over $\Gamma \cup \{\text{null}\}$.

We provide a simple example that we use throughout this paper for sake of illustration.

Example 3. Figure 4 presents an example of an ATM T over a binary alphabet $\Gamma = \{0, 1\}$ where arrows $q \xrightarrow{(a,a',d)} q'$ denote $(q', a', d) \in \delta(q, a)$. The initial control state e is an existential one, and both u_i control states are universal.

Definition 5.

1. Configurations of an ATM T are triples (q, i, τ) where $q \in Q$ is the current control state, the head is on the ith cell from the left, and $\tau \in (\Gamma \cup \text{null})^\omega$ is the current tape state.
2. For input $w \in \Gamma^*$, the initial configuration is $(q_0, 1, w\text{null}^\omega)$.
3. The recursive and parallel execution of all applicable transitions δ from initial configuration $(q_0, 1, w\text{null}^\omega)$ yields a computation tree $T_{(T,w)}$.

We say that ATM T accepts input w iff the tree $T_{(T,w)}$ accepts, where the latter is a recursive definition:

- Subtree $T_{(T,w)}$ with root (q, i, τ) and $\text{mode}(q) = \text{Ext}$ accepts iff there is a successor (q', i', τ') of (q, i, τ) in $T_{(T,w)}$ such that the sub-tree with root (q', i', τ') accepts.
- Subtree $T_{(T,w)}$ with root (q, i, τ) and $\text{mode}(q) = \text{Univ}$ accepts iff for all successors (q', i', τ') of (q, i, τ) in $T_{(T,w)}$ the sub-tree with root (q', i', τ') accepts (in particular, this is the case if there are no such successors).

Example 4. The ATM of Figure 4 accepts the regular language $(0 + 1)^*1(0 + 1)^*$. Observe that u_2 is the only accepting state. Intuitively the part of T rooted in e accepts the prefix $(0 + 1)^*1$ — the semantics of existential states is locally that of states in non-deterministic Turing machines. The part of T rooted in u_1 consumes a series of 0 symbols until 1 is reached, which leads to acceptance. The suffix of the input word after the last

\[
\begin{align*}
(1,1,r) & \rightarrow (0,1,l) & \delta(e,0) &= \{(e, 0, r)\} \\
(1,1,r) & \rightarrow (u_1,1,r) & \delta(e,1) &= \{(e, 1, r), (u_1,1,1, r)\} \\
(0,0,r) & \rightarrow (1,1,r) & \delta(u_1,0) &= \{(u_1,1,1), (u_1,0, r)\} \\
(0,0,r) & \rightarrow (u_2,1,r) & \delta(u_1,1) &= \{(u_2,1, r)\} \\
(0,0,r) & \rightarrow (u_2,0) & \delta(u_2,0) &= \delta(u_2,1) = \{\}\n\end{align*}
\]

Fig. 4. The transition relation of an ATM as a labelled graph and as a function.
Fig. 5. An accepting computation tree $T_{(\langle \langle 0,0,0101\rangle, \rangle)}$ for the ATM T of Example 4.

1 is ignored. Note that the computation forks in u_1 whenever a 0 is seen. However, the top branch would reach the earlier 1 eventually and accept. Figure 5 shows one possible accepting tree for this ATM and the word $0101\null\omega$.

An ATM T is linearly bounded iff for all words $w \in \Gamma^*$ accepted by T, the accepting part of the computation tree $T_{(T,w)}$ only contains configurations $\langle q,i,v\null\omega\rangle$, where the length of $v \in \Gamma^*$ is no greater than the length of w. That is to say, by choosing exactly one accepting successor for each existential configuration in $T_{(T,w)}$, and by removing all the remaining successors and configurations unreachable from the root, one can create a smaller tree that only contains configurations with $\langle q,i,v\null\omega\rangle$ where $|v| \leq |w|$. We refer to such pruned computation trees simply as “computations”.

Our notion of “linear boundedness” follows (Landweber, 1963) and (Laroussinie and Sproston, 2007) in limiting the tape size to the size of the input. This limitation does not change the hardness of the acceptance problem (see below). In addition we assume that linearly bounded ATMs have no infinite computations since any linearly bounded ATM can be transformed into another linearly bounded ATM, which accepts the same language, but also counts the number of computation steps used, rejecting any computation whose number of steps exceeds the number of possible configurations. This is possible because $\text{ASPACE} = \text{EXPTIME}$ (Sipser, 1996, Thm. 10.18).

Fact 1. Consider the formal language

$$\text{ATM}_{\text{LB}} = \{ \langle T, w \rangle \mid w \in \Gamma^* \text{ is accepted by linearly bounded ATM } T \}$$

The problem of deciding whether for an arbitrary linearly bounded ATM T and an input w the pair (T, w) is in ATM_{LB} is EXPTIME-complete (Chandra et al., 1981).

We are now in a position to prove our first EXPTIME-hardness result, for the decision problem of common implementations of modal specifications.

Theorem 6. Let $\{(M_l, s_l)\}_{l \in \{1 \ldots k\}}$ be a finite family of modal specifications over the same action alphabet Σ. Deciding whether there exists an implementation (I, i) such that $(M_l, s_l) \prec (I, i)$ for all $l = 1 \ldots k$ is EXPTIME-hard.
We prove Theorem 6 by demonstrating a PTIME reduction from ATM_{LB}. Given an ATM \(T \) and an input word \(w \) of length \(n \), we synthesize a collection of (pointed) modal specifications

\[
\mathcal{M}_T^w = \{ M_i \mid 1 \leq i \leq n \} \cup \{ M_{\text{head}}, M_{\text{ctrl}}, M_{\text{exist}} \}
\]

whose sum of sizes is polynomial in \(n \) and in the size of \(T \), such that \(T \) accepts \(w \) iff there exists a (pointed) implementation \(I \) refining all members of \(\mathcal{M}_T^w \).

Specifications \(M_i, M_{\text{head}}, M_{\text{ctrl}}, \) and \(M_{\text{exist}} \) model tape cell \(i \), the current head position, the finite control of \(T \), and acceptance (respectively). Common implementations of these specifications model action synchronization to agree on what symbol is being read from the tape, what is the head position, what is the symbol written to the tape, in what direction the head moves, what are the transitions taken by the finite control, and whether a computation is accepting. The achieved effect is that any common implementations of these specifications correspond to an accepting computation of \(T \) on input \(w \). More precisely, any common implementation will correspond to different unfoldings of the structure of the finite control into a computation tree based on the content of the tape cells and the tape head position.

We now describe the specifications in \(\mathcal{M}_T^w \) both formally and through our running example in Figure 4. All specifications in \(\mathcal{M}_T^w \) have the same alphabet. Actions are of the form \((a_1, i, a_2, d) \) and denote that the machine’s head is over the \(i \)th cell of the tape, which contains the \(a_1 \) symbol, and that it shall be moved one cell in the direction \(d \) after writing \(a_2 \) in the current cell. In addition, two special actions, \(\exists \) and \(\pi \), are used to encode logical constraints like disjunction and conjunction. The alphabet for our running example is

\[
\{\pi, \exists\} \cup \{\{0,1\} \times \{1..n\} \times \{0,1\} \times \{l,r\}\}
\]

We remark, that a stricter and more complex reduction to CI of modal specifications over a binary alphabet is possible by encoding actions in binary form.

Encoding Tape Cells. For each tape cell \(i \), specification \(M_i \) represents the possible contents of cell \(i \). It has \(|\Gamma| \) states \(\{p_{(i,a)}\}_{a \in \Gamma} \) and initial state \(p_{(i,w_i)} \), representing the initial contents of the \(i \)th cell. There are no must-transitions:

\[R^\Box = \emptyset \]
The may-transition relation connects any two states:

for all symbols a_1, a_2 in Γ we have \((p(i, a_1), (a_1, i, a_2, _), p(i, a_2)) \in R^\tau\)

Changes in cells other than i are also consistent with M_i:

for all $a \in \Gamma$ if $i \neq j$ with $1 \leq j \leq n$, then \((p(i, a), (_, j, _, _), p(i, a)) \in R^\tau\)

Finally the π and \exists actions may be used freely as they do not affect the contents of the cell:

\((p(i, a), \pi, p(i, a)) \in R^\tau\) and \((p(i, a), \exists, p(i, a)) \in R^\tau\) for any $a \in \Gamma$

There are no more may-transitions in M_i.

Figure 6 presents a specification M_1 for the leftmost cell of an ATM over a binary alphabet.

Encoding The Head. Specification M_{head}, which tracks the current head position, has n states labeled p_1 to p_n — one for each possible position. Initially, the head occupies the leftmost cell, so p_1 is the initial state of M_{head}. There are no must-transitions:

\[R^\Box = \emptyset \]

May-transitions are consistent with any position changes based on the direction encoded in observed actions. More precisely,

for every position $1 \leq i < n$ we have \((p_i, (_, i, _ , _), p_{i+1}) \in R^\tau\)

for every position $1 < i \leq n$ we have \((p_i, (_, i, _ , _), p_{i-1}) \in R^\tau\)

The π and \exists transitions may again be taken freely, but in this case without moving the machine’s head:

\((p_i, \pi, p_i) \in R^\tau\) and \((p_i, \exists, p_i) \in R^\tau\) for each position $1 \leq i \leq n$

There are no more may-transitions in M_{head}. Note that the head of T is only allowed to move between the first and nth cell in any computation. Figure 7 shows specification M_{head} for our running example.

Encoding The Finite Control. Specifications M_{ctrl} and M_{exist} model the finite control of the ATM T. Specification M_{exist} is independent of the ATM T. It is defined in Figure 8. It ensures that a π-transition is taken after every \exists-transition. Specification M_{ctrl} mimics the finite control of T almost directly. Each control state $q_s \in Q$ is identified with a state in M_{ctrl} of the same name. Additional internal states of M_{ctrl} encode existential
Modal and Mixed Specifications: Key Decision Problems and their Complexities

13

∃π((qs, ∃, qs∃)) ∈ Rο ∩ RΩ

Fig. 8. Specification Mexist, which enforces a π-transition after each ∃-transition.

and universal branching:

for each q, a state q, with two ∃-transitions (q, ∃, q, ∃) ∈ Rο ∩ RΩ is added

Dependent on mode(qs), additional states and transitions are created:

— If mode(qs) = Ext: for each 1 ≤ i ≤ n, aold ∈ Γ, and for each transition (qt, anew, d) ∈ δ(qs, aold) add a may π-transition from qs to a new intermediate state uniquely named (qs, aold, i, anew, d, qt), and add a must-transition labeled (aold, i, anew, d) from that intermediate state to qt. Formally:

(qs∃, π,) ∈ Rο

(qs, aold, i, anew, d, qt) ∈ Rο ∩ RΩ

Figure 9 shows this encoding for the state e of our running example.

— If mode(qs) = Univ: for each 1 ≤ i ≤ n, aold ∈ Γ, and for each transition (qt, anew, d) ∈ δ(qs, aold) add a may π-transition from qs to an intermediate state named (qs, aold, i), and add a must-transition labeled (aold, i, anew, d) from the intermediate state (qs, aold, i) to qt. Formally:

(qs∃, π,) ∈ Rο

(qs, aold, i, anew, d, qt) ∈ Rο ∩ RΩ

The initial state of Mctrl is its state named q0, where q0 is the initial state of T. Figure 10 demonstrates the encoding of the state u1 of the ATM in Figure 4. The complete specification Mctrl for our running example is shown in Figure 11.

Notice how the two specifications Mctrl and Mexist cooperate to enforce the nature of alternation. For example, for an existential state, Mctrl forces every implementation to have an ∃-transition, which may be followed by a π-transition. Simultaneously Mexist allows an ∃-transition but subsequently requires a π-transition. Effectively at least one of the π branches from Mctrl must be implemented (which is an encoding of a disjunction).

This concludes the description of all specifications from set MTw in (1). All these specifications are modal by construction. Since the sum of their sizes is bounded by a polynomial in n and in the size of T, the remainder of the proof for Theorem 6 follows from the following lemma:

Lemma 7. For each linearly bounded ATM T and an input w, T accepts w iff the set of modal specifications MTw has a common implementation.

The proof of this lemma can be found in Appendix A. We mention here some points of interest. From an accepting computation tree T(T, w) one can construct a specification
Fig. 9. Encoding for the existential state of the running example, assuming $|w| = 4$.

Fig. 10. Encoding for the universal state u_1 of the running example, assuming $|w| = 4$.

N by structural induction on $T_{(T,w)}$. This N effectively adds to $T_{(T,w)}$ some new states and labeled transitions so that the computation encoded in $T_{(T,w)}$ then interlocks with the action synchronization of specifications in M^T_w. Since N is of the form (S,R,R) it suffices to show that N is a common refinement of all members in M^T_w. This is a lengthy but routine argument.

For the converse, a common implementation of M^T_w is cycle-free by our assumption that T never repeats a configuration. So that pointed common implementation is a DAG
Fig. 11. The entire specification M_{ctrl} for the example of Figure 4 assuming $|w| = 4$.
and we use structural induction on that DAG to synthesize an accepting computation tree of T for input w. This makes use of the fact that the head of T never reaches a cell that was not initialized by input w.

We can now deduce \textsc{EXPTIME}-completeness for the decision problem CI for modal as well as for mixed specifications.

\textbf{Corollary 8.} The decision problem CI is \textsc{EXPTIME}-complete for modal as well as for mixed specifications, in the sum of their sizes.

\textit{Proof.} Theorem 6 states \textsc{EXPTIME}-hardness of CI for modal specifications. Since modal are also mixed specifications, this renders \textsc{EXPTIME}-hardness of CI for mixed specifications, too. From Lemma 4 we know that both instances of CI are in \textsc{EXPTIME}. \hfill \square

\section{5. Consistency for Mixed Specifications}

The decision problem C is of course trivial for modal specifications as all such specifications have implementations by construction. Given a pointed, modal specification $((S,R^2,R^3),s_0)$, one such implementation is (S,R^2,R^3,s_0). In contrast, let us now show that consistency of a single mixed specification is \textsc{EXPTIME}-hard in its size. We achieve this by appealing to Theorem 6, and reducing CI for several modal specifications to the decision problem C for a single mixed specification.

\textbf{Theorem 9.} Consistency of a mixed specification is \textsc{EXPTIME}-hard in its size.

\textit{Proof.} By Theorem 6, it suffices to show how $k > 1$ mixed specifications (M_i,s_i) can be conjoined into one mixed specification (M,c_k) with $|M|$ being polynomial in $\sum_i |M_i|$ such that (M,c_k) has an implementation iff all (M_i,s_i) have a common implementation.

Figure 12 illustrates the construction, which originates in (Larsen et al., 2007b), by showing a conjunction of states s_1, s_2, s_3 up to s_k. In order to conjoin two states s_1 and s_2, two new π-transitions are added from a fresh state c_2 to each of s_1 and s_2. One of the π-transitions is a $R^2 \setminus R^3$ π-transition and the other is a R^3 π-transition. Only two states can be conjoined directly in this way, but the process can be iterated as many times as
6. Thorough Refinement for Mixed Specifications

We show EXPTIME-hardness of the decision problem TR for mixed specifications, by appeal to Theorem 9 and by a reduction of consistency checks to thorough refinement checks.

Theorem 10. Thorough refinement of mixed specifications is EXPTIME-hard in the size of these specifications.

Proof. By Theorem 9, deciding C for a mixed specification is EXPTIME-hard. Therefore it suffices to reduce C for mixed specifications to TR for mixed specifications. Let \((M, s)\) be a pointed, mixed specification over \(\Sigma\). Consider a pointed, modal specification \((N, t)\) over \(\Sigma \cup \{\pi\}\) with \(N = \{\{t\}, \{\}, \{\}\}\), which only has a single state and no transitions. From \((M, s)\) construct the mixed specification \((M', s')\) over \(\Sigma \cup \{\pi\}\) by prefixing \(s\) with a new state \(s'\) and a single transition \((s', \pi, s)\) \(\in R^\wedge M' \setminus R^\Box M'\). This construction is depicted in Figure 13.

We show that \((M, s)\) is consistent iff \(\not\prec_{th}(N, t)\). (It is easily seen, but immaterial to this proof, that the converse \((M', s')\) always holds.)

1° If \((M, s)\) is consistent, then it has an implementation \((L, l)\), from which we get an implementation \((L', l')\) of \((M', s')\) by creating a new state \(l'\) with a transition \((l', \pi, l)\). But then \((M', s')\) has an implementation that is not allowed by \((N, t)\) and so \(I(M', s') \not\subseteq I(N, t)\).

2° Conversely, if \(I(M', s') \not\subseteq I(N, t)\) then there exists an implementation \((L, l')\) of \((M', s')\), which is not an implementation of \((N, t)\) and so \((L, l')\) has a transition \((l', \pi, l)\). Moreover \((L, l)\) refines \((M, s)\) since \((L, l')\) refines \((M', s')\) and \(s\) is the unique successor of \(s'\) in \(M'\). Thus \((M, s)\) is consistent. \(\square\)
Remark 3. Observe that argument 1° above would also work for refinement instead of thorough refinement. However we would not be able to get the second implication for refinement in item 2° above – due to the fact that thorough refinement does not generally imply refinement.

Also note that we have just shown EXPTIME-completeness not only for deciding whether a mixed specification thoroughly refines another mixed specification, but also for deciding whether a mixed specification thoroughly refines a modal specification.

7. Discussion

We first summarize the complexity results obtained in this paper.

Corollary 11. The worst-case computational complexities shown in Table 1 are correct.

Corollary 11 leaves one complexity gap in Table 1, that for TR for modal specifications. We studied this fairly extensively without being able to settle the exact complexity of this decision problem. Recently we have learned that this problem has been determined to be EXPTIME-complete as well (Beneš et al., 2009). It would be of interest to see whether the proof of that result can shed any light on the complexity of the validity problem for formulae given in the vectorized form of (Larsen, 1989), since the latter is one way in which one can reexpress TR for modal and mixed specifications alike.

Interestingly, we can reduce thorough refinement to a universal version of generalized model checking (Bruns and Godefroid, 2000). In loc. cit. Bruns and Godefroid consider judgments GMC(M, s, ϕ) which are true iff there exists an implementation of (M, s) satisfying ϕ. They remark that this generalizes both model checking (when (M, s) is an implementation) and satisfiability checking (when (M, s) is such that all labeled transition systems refine it). This existential judgment has a universal dual (see e.g. (Antonik and Huth, 2009)), VAL(M, s, ϕ) which is true iff all implementations of (M, s) satisfy ϕ, thus generalizing model checking and validity checking. The former judgment is useful for finding counter-examples, the latter one for verification; e.g. both uses can be seen in the CEGAR technique for program verification of (Godefroid and Huth, 2005). Since \((M, s) ≺_{th} (N, t)\) directly reduces to VAL\((N, t, \Psi_{(M, s)})\), it would be of interest to under-

Table 1. Tabular summary of the results provided in this paper.

<table>
<thead>
<tr>
<th>Common impl.</th>
<th>Modal specifications</th>
<th>Mixed specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consistency</td>
<td>EXPTIME-complete</td>
<td>EXPTIME-complete</td>
</tr>
<tr>
<td>Thorough ref.</td>
<td>EXPTIME</td>
<td>EXPTIME-complete</td>
</tr>
</tbody>
</table>
stand the exact complexity of $\text{VAL}(N, t, \varphi)$ for modal specifications (N, t) when φ ranges over characteristic formulae $\Psi_{(M, s)}$ in vectorized form.

8. Conclusion

We have revisited modal and mixed specifications. Such specifications consist of state spaces with two transition relations that can serve as over-approximations and under-approximations (respectively) of transition relations in labeled transition systems. We then discussed three fundamental decision problems for modal and mixed specifications:

— common implementation: do finitely many specifications have a common implementation?
— consistency: does a specification have an implementation?
— thorough refinement: are all implementations of one specification also implementations of another?

For these three decision problems we investigated their worst-case computational complexity for both cases of modal and mixed specifications. In the case of mixed specifications, we showed that all three decision problems are EXPTIME-complete in the sizes of these systems. In the case of modal specifications, we proved the decision problem of common implementation to be also EXPTIME-complete in the size of these systems. (The decision problem of consistency for modal specifications is known to be trivial.) However, for the decision problem of modal specifications for thorough refinement we could not give any new results as our reductions for TR work only for mixed specifications.

Acknowledgments

We thank Nir Piterman for having pointed out to us that the constructions for prime numbers in (Berwanger et al., 2008; Berwanger and Doyen, 2008) are similar to the constructions for prime numbers given in Example 2. We also thank Jiří Srba and Jan Krétiny for sharing with us their recent discovery that TR for modal specifications is EXPTIME-complete.

References

Appendix A. Proof of Lemma 7

We need to argue that if the linearly bounded ATM T has an accepting computation on input w, then the set \mathcal{M}_w^T of constructed modal specifications will have a common implementation; and, conversely, that if this set \mathcal{M}_w^T of modal specifications has a common implementation, then this common implementation witnesses an accepting computation for the linearly bounded ATM T on input w. We will prove each of these directions separately.

A.1. Acceptance implies existence of common implementation

Let the ATM T accept input w. We mean to show that \mathcal{M}_w^T has a common implementation. Since we have assumed that T does not repeat configurations on any computation path, we know that there exists a computation tree $T_{(T,w)}$ demonstrating that T accepts w in an exponentially bounded number of steps.

We shall use $T_{(T,w)}$ to construct a modal specification

$$N = (N_{\text{states}}, R_N, R_N)$$

over Σ, where N_{states} is a set of states, R_N is a transition relation and Σ is the alphabet of specifications in \mathcal{M}_w^T. The argument that N is indeed an implementation of all specifications in \mathcal{M}_w^T will follow shortly after the construction.

Since N has identical must- and may transition relations we shall just refer to transitions for N without mentioning their type. States of N are labeled by configurations of the computation tree $T_{(T,w)}$. More precisely, we distinguish three kinds of states:

- type 1 states, indexed just with a configuration of $T_{(T,w)}$, for example state $n_{(q_0,1,w)}$
- type 2 states, indexed with a configuration and an extra subscript \exists, as in $n_{(q,i,\tau)\exists}$
- type 3 states, indexed with a configuration and an extra subscript π, as in $n_{(q,i,\tau)\pi}$

We construct N in a recursive manner starting from the root of the accepting computation tree. We start by creating the initial state of N_{states}, $\langle q_0,1,w \rangle$ is the configuration of the root node in $T_{(T,w)}$. We shall be adding new successor states and transitions in a top-down fashion while progressing. Our recursive procedure accepts two parameters $((q,i,\tau), n_{(q,i,\tau)})$: a node from $T_{(T,w)}$ and a state from N_{states}. For any pair of parameters $((q,i,\tau), n_{(q,i,\tau)})$ proceed as follows:

- If $\text{mode}(q) = \text{Univ}$ create two new states $n_{(q,i,\tau)\exists}$ and $n_{(q,i,\tau)\pi}$ and a \exists-transition from $n_{(q,i,\tau)}$ to $n_{(q,i,\tau)\exists}$, and a π-transition from $n_{(q,i,\tau)}$ to $n_{(q,i,\tau)\pi}$. Second, for each of the successors $\langle q',i',\tau' \rangle$ of $\langle q,i,\tau \rangle$ create a new state $n_{(q',i',\tau')}$ and a transition from $n_{(q,i,\tau)\pi}$ to $n_{(q',i',\tau')}$ labelled by $\langle \tau_i,i,\tau'_i,d \rangle$ where $d = r$ if $i' = i + 1$ and $d = 1$ otherwise. Then continue recursively for every successor $\langle q',i',\tau' \rangle$ of $\langle q,i,\tau \rangle$, and its corresponding state $n_{(q',i',\tau')}$. See also Figure 14(a).

- If $\text{mode}(q) = \text{Ext}$ create two new states $n_{(q,i,\tau)\exists}$ and $n_{(q,i,\tau)\pi}$ and an \exists-transition from $n_{(q,i,\tau)}$ to $n_{(q,i,\tau)\exists}$ and a π-transition from $n_{(q,i,\tau)}$ to $n_{(q,i,\tau)\pi}$. Second, because

\[\text{we write } \tau_i, \text{ meaning the } i\text{th symbol of the tape state } \tau. \]
(a) Construction for a universal state \(q \). For \(l = 1..k \) we define \(d_l = r \) if \(i_l = i + 1 \) and \(d_l = l \) otherwise.

\[
\langle q, i, \tau \rangle \leadsto n \langle q, i, \tau \rangle
\]

(b) Construction for an existential state \(q \). Here a selected single \(l \in 1..k \) is the index of the accepting successor and \(d_l = r \) if \(i_l = i + 1 \) and \(d_l = l \) otherwise.

\[
\langle q, i, \tau \rangle \leadsto n \langle q, i, \tau \rangle
\]

\[
\exists \pi \langle q_l, i_l, \tau_l \rangle \quad \cdots \quad \exists \pi \langle q_k, i_k, \tau_k \rangle
\]

Fig. 14. Construction of a common implementation \(N \) from fragments of the accepting computation tree \(T \).
of M_{exist} and states of N:

$$Q_1 = \{(x_1, n_{(g_i, i, \tau)}) | n_{(g_i, i, \tau)} \in N_{\text{states}}\} \cup \{(x_2, n_{(g_i, i, \tau)}\overline{\tau}) | n_{(g_i, i, \tau)\overline{\tau}} \in N_{\text{states}}\} \cup \{(x_3, n_{(g_i, i, \tau)\overline{\pi}}) | n_{(g_i, i, \tau)\overline{\pi}} \in N_{\text{states}}\}.$$

We shall argue that Q_1 witnesses a refinement of (M_{exist}, x_1) by $(N, n_{(g_0, 1, w)})$. First, observe that the pair of initial states $(x_1, n_{(g_0, 1, w)})$ of M_{exist} and N are related in Q_1. Second, check that Q_1 fulfills the conditions of Definition 2:

1. We want to show for all pairs $(x, n) \in Q_1$ that for all states x' of M_{exist} if $(x, a, x') \in R_{M_{\text{exist}}}^{\pi}$ then there exists a state $n' \in N_{\text{states}}$ with $(n, a, n') \in R_{N}^{\pi}$ and $(x', n') \in Q_1$. A must-transition occurs in $R_{M_{\text{exist}}}^{\pi}$ only if $x = x_2$. In this case there is exactly one must-transition going to x_3. We see from Q_1 that x_2 is paired only with states of form $n = n_{(g_i, i, \tau)\overline{\pi}}$. By construction of N, the latter state always has a must π-transition to some state $n' = n_{(g_i, i, \tau)\overline{\pi}}$ which gives us that $(x', n') \in Q_1$ by the construction of Q_1.

2. We want to show for all pairs $(x, n) \in Q_1$ that for all states $n' \in N_{\text{states}}$ if $(n, a, n') \in R_{N}^{\pi}$ then there exists a state x' of M_{exist} such that $(x, a, x') \in R_{M_{\text{exist}}}^{\pi}$ with $(x', n') \in Q_1$. This argument is split into three sub-cases.

- If n is of type 1, $n = n_{(g_i, i, \tau)\overline{\pi}}$, then by Q_1’s construction $x = x_1$. By construction of N any may-transition leaving n will be labelled by $\overline{\tau}$ and target a type 2 state $n' = n_{(g_i, i, \tau)\overline{\pi}}$. This can be matched by $(x_1, 3, x_2) \in R_{M_{\text{exist}}}^{\pi}$ and, for $x' = x_2$ we get $(x', n') \in Q_1$ by construction of Q_1.

- If n is of type 2, $n = n_{(g_i, i, \tau)\overline{\pi}}$, then by Q_1’s construction $x = x_2$. By construction of N there is exactly one may π-transition leaving n. It targets a state n' of type 3, so $n' = n_{(g_i, i, \tau)\overline{\pi}}$. This can be matched by $(x_2, \pi, x_3) \in R_{M_{\text{exist}}}^{\pi}$, so take $x' = x_3$ obtaining $(x', n') \in Q_1$ by construction of Q_1.

- If n is of type 3, $n = n_{(g_i, i, \tau)\overline{\pi}}$, then by Q_1’s construction $x = x_3$. By construction of N all possible may-transitions leaving n target type 1 states of the form $n' = n_{(g_i, i, \tau)}$. All these transitions have labels in (a, a, a). These can all be matched by (M_{exist}, x_3), as that specification contains all transitions of type (a, a, a) going from x_3 to x_1. Since x_1 is paired with all states of type 1 in Q_1 this again gives us that $(x', n') \in Q_1$, for $x' = x_1$.

2. For each tape cell $1 \leq i \leq n$ show that $(M_i, p_{(i, w_i)}) \prec (N, n_{(g_0, 1, w)})$. For any selection of i above consider the following relation Q_2^i over the states of M_i and the states of N:

$$Q_2^i = \{p_{(i, r_i)} \in N | n = n_{(g_j, j, \tau)} \text{ or } n = n_{(g_j, j, \tau)\overline{\pi}} \text{ or } n = n_{(g_j, j, \tau)\overline{\tau}} \text{ for } 1 \leq j \leq n\}.$$

First see that the initial states of the two specifications are related in Q_2^i. This is clearly the case since the initial state of each M_i is $p_{(i, w_i)}$, so by definition of Q_2^i it is related to $n_{(g_0, 1, w)}$. It remains to be shown that given $(p, n) \in Q_2^i$ the refinement conditions are preserved.
This condition is vacuously true since M_i's have no must transitions.

We want to show that whenever $(n, a, n') \in R_N^3$ then there exists a state p' of M_i such that $(p, a, p') \in R_{M_i}^3$ with $(p', n') \in Q_2$. With only one exception, whenever N takes a may-transition M_i will be able to match it. The exception is if the label contains as its old tape symbol, a symbol different from the one that M_i has in its current state and where i is the current position of the head in n, so $i = j$. Since the transitions of N are created from a legal computation tree for the ATM T we can conclude that N will never change the content of the tape without writing to it and N will thus never try to read something from a tape cell that is not in that given tape cell. It will also always update the new content of the tape cell correctly and we are thus assured that $(p', n') \in Q_2$.

3 Show that $(M_{\text{head}}, p_1) \prec (N, n_{(q_0, 1, w)})$: The relation Q_3 witnessing this refinement is defined as follows:

$$Q_3 = \{(p, n) \mid n = n_{(q_0, i, \tau)} \text{ or } n = n_{(q_0, i, \tau)}^\pi \text{ or } n = n_{(q_0, i, \tau)}^\exists \}.$$

We first have to ensure that the initial states of the two specifications are in Q_3. This is the case since the initial state of N has $i = 1$, which is Q_3-related to p_1, the initial state of M_{head}. We need to show, that for any given $(p, n) \in Q_3$ the two refinement conditions of Definition 2 are preserved.

(1) This condition is vacuously satisfied since M_{head} has no must transitions.

(2) We need to show that whenever $(n, a, n') \in R_N^3$ then there exists p', a state of M_{head}, such that $(p, a, p') \in R_{M_{\text{head}}}^3$ with $(p', n') \in Q_3$. We just discuss the case when n is of type 3 here, so $n = n_{(q_0, i, \tau)}^\pi$. For the remaining two types the transitions leaving n do not move the head and the preservation of refinement can be concluded directly.

By construction of N whenever $n_{(q_0, i, \tau)}^\pi$ takes a may-transition then this transition is labeled $(_ i _ d)$ targeting a type 1 state $n_{(q', i', \tau')}$, where $i' = i + 1$ if $d = \tau$ and $i' = i - 1$ otherwise. Now by construction of M_{head} the state p_i can match such a transition moving to $p_{i'}$ accordingly. The only case where M_{head} would not be able to match is when N would try to move the head off either end of the tape, but this will never happen since N is constructed from a legal accepting computation tree. Thus we conclude that the refinement condition is preserved.

4 In order to show that $(M_{\text{ctrl}}, q_0) \prec (N, n_{(q_0, 1, w)})$ consider the following binary relation Q_4 on states of M_{ctrl} and N:

$$Q_4 = \{(q_0, n) \mid n = n_{(q_0, i, \tau)} \} \cup$$

$$\{(q_0, i, n_{(q_0, i, \tau)}^\pi) \mid \text{mode}(q_0) = \text{Univ} \} \cup$$

$$\{(q_0, i, n_{(q_0, i, \tau)}^\exists) \mid \text{mode}(q_0) = \text{Ext} \} \cup$$

$$\{(q_0, i, s_{(q_0, i, \tau)}^\pi, \tau_i, i, a_2, d, i_{(q_0, i, \tau)}^\pi) \in R_N^3 \}.$$
First, observe that the initial states of the two specifications are in \(Q_4 \), as \(q_0 \) is the initial state of \(M_{\text{ctrl}} \) and \(n_{(q_0,1,w)} \) is the initial state of \(N \) (see the first summand in the definition of \(Q_4 \)). Second, we need to show that, given a pair \((q,n) \in Q_4\), the two refinement conditions of Definition 2 are preserved.

(1) We need to show that whenever \((q,a,q') \in R_{M_{\text{ctrl}}}^2\) then there exists a state \(n' \in N_{\text{states}}\) such that \((n,a,n') \in R_N^4\) with \((q',n') \in Q_4\). The argument is split in four cases.

- If \(q = q_s \) for some \(q_s \in Q \) (a state of the ATM \(T \)) then there is exactly one must-\(\exists \)-transition leaving it, which targets \(q_s \). This transition can be matched by an \(\exists \)-transition targeting \(n_{(q_s,i,\tau)} \) and \(n_{(q_s,i,\tau)} \exists \). These new target states remain in relation \(Q_4 \), as per the above definition.

- If \(q = q_s \exists \) for some \(q_s \in Q \) (a state of the ATM \(T \)) then the condition is satisfied vacuously. There is simply no must-transition leaving \(q \).

- If \(q \) has the form \((q_s,\tau_i,t)\), where \(q_s \) is a universal state of the ATM \(T \), then \(n \) has the form \(n_{(q_s,i,\tau)} \). But since \(n_{(q_s,i,\tau)} \) was constructed by our recursive procedure from a universal configuration of an accepting computation tree we know that, for all must-transitions leaving \((q_s,\tau_i,t)\) to some state \(q_t \), there will be a matching must-transition in \(N \) leaving \(n_{(q_s,i,\tau)} \exists \) and targeting \(n_{(q_t,v',\tau')} \), which is in relation with \(q_t \) as per the first summand in the definition of \(Q_4 \).

- If \(q \) has the form \((q_s,\tau_i,a_2dq)\), where \(q_s \) is an existential state of the ATM \(T \), then \(n \) has the form \(n_{(q_s,i,\tau)} \). The state \((q_s,\tau_i,a_2dq)\) has exactly one must-transition labeled \((\tau_i,i,a_2,d)\) and targeting \(q_t \). Since \(q_s \) is an existential state, we know that \(n_{(q_s,i,\tau)} \) was constructed from an existential configuration and consequently there is a single must-transition leaving it. This transition is labeled \((\tau_i,i,a_2,d)\) as per construction of the \(Q_4 \) relation (see the last summand). Finally this transition targets \(n' = n_{(q_t,v',\tau')} \). And thus we again have that \((q',n') \in Q_4\).

(2) We want to show that if \((n,a,n') \in R_N^4\) then there exists a state \(q' \) of \(M_{\text{ctrl}} \) such that \((q,a,q') \in R_{M_{\text{ctrl}}}^2\) with \((q',n') \in Q_4\). We split the argument into three cases based on the type of state \(n \).

- If \(n \) is of type 1, so \(n = n_{(q_s,i,\tau)} \) then by construction of \(N \) there is a may-\(\exists \)-transition leaving \(n \) targeting \(n_{(q_s,i,\tau)} \exists \). This is followed by \((q_s,\exists,q_3) \in R_{M_{\text{ctrl}}}^2\) and again gives us that \((q',n') \in Q_4\).

- If \(n \) is of type 2, \(n = n_{(q_s,i,\tau)} \) then by the construction of \(Q_4 \) (see the second summand) \(q \) is of the form \(q_3 \). By the construction procedure of \(N \) there is a single may-\(\pi \)-transition leaving \(n_{(q_s,i,\tau)} \exists \) and targeting \(n' = n_{(q_s,i,\tau)} \pi \).
 - If \(\text{mode}(q_s) = \text{Univ} \), then there is exactly one transition \((q_s,\pi,\tau_i) \in R_{M_{\text{ctrl}}}^2\); its target state is related to \(n_{(q_s,i,\tau)} \pi \) in \(Q_4 \).
 - If \(\text{mode}(q_s) = \text{Ext} \) then there can be many may-\(\pi \)-transitions leaving \(q_s \).
We will choose which one to match with, based on the label of the single transition leaving \(n_{(q_s,i,\tau)} \). We are, so to speak, looking one step ahead. Since \(n_{(q_s,i,\tau)} \) says that the head is in position \(i \) over a tape containing \(\tau \) we choose to match our transition with the transition of \(M_{\text{ctrl}} \) targeting the state whose name matches the prefix “\(q_s\tau i \)”. Such a state always exists by construction of \(M_{\text{ctrl}} \) and it is exactly the state which is related to \(n_{(q_s,i,\tau)} \) in \(Q_4 \) (see the last summand).

For \(n \) of type 3, so \(n = n_{(q_s,i,\tau)} \), we split the argument into two cases based on the mode of \(q_s \) in the ATM \(T \).

First, if \(\text{mode}(q_s) = \text{Univ} \) then there are possibly several may-transitions leaving \(n_{(q_s,i,\tau)} \). Since \(N \) has been created from a legal computation tree, we know that any may transition leaving \(n_{(q_s,i,\tau)} \) and targeting \(n' = n_{(q_s,i',\tau')} \) follows the transition relation \(\delta \) of \(T \). Moreover, by construction of \(M_{\text{ctrl}} \), its state \(q_s\tau_i \) will consequently be able to match this transition arriving in the state \(q_t \) related to \(n' \) in \(Q_4 \).

Second, if \(\text{mode}(q_s) = \text{Exist} \) then there is exactly one may transition leaving \(n_{(q_s,i,\tau)} \) and exactly one may-transition leaving \(q_s\tau_i \). These transitions have the same label and have respective target states \(n_{(q_s,i',\tau')} \) and \(q_i \), which are related in \(Q_4 \).

This concludes the argument that each specification in \(\mathcal{M}_w^T \) is refined by \(N \).

A.2. Existence of common implementation implies acceptance

Let \(\mathcal{M}_w^T \) have a common implementation. We need to show that the ATM \(T \) accepts input \(w \). Given a modal specification

\[
U_{\text{new}} = (U_{\text{states}}, R_{\text{U}}, R_{\text{U}'})
\]

that is a common implementation of \(\mathcal{M}_w^T \) we will construct a computation tree \(T_{(M,w)} \) demonstrating that \(T \) accepts \(w \).

Since \(U_{\text{new}} \) is a common implementation of \(\mathcal{M}_w^T \) we have \(3 + n \) refinement relations:

\[
Q_{\text{ctrl}}, Q_{\text{head}}, Q_{\text{exist}}, Q_1, \ldots, Q_n
\]

— each demonstrating for one of the corresponding specifications \(S \in \mathcal{M}_w^T \) that \(S \prec U_{\text{new}} \).

The construction of \(T_{(M,w)} \) is inductive. Along with the construction, we argue that the nodes of the tree preserve the following property (\(\text{IH} \)):

(1) For every configuration \(\langle q, i, \tau \rangle \) of \(T_{(M,w)} \) there exists a state \(u_x \in U_{\text{states}} \) such that

- (IH1) \((u_x, \pi_1) \in Q_{\text{exist}} \) and
- (IH2) \((u_x, q) \in Q_{\text{ctrl}} \) and
- (IH3) \((u_x, p_i) \in Q_{\text{head}} \), and finally
- (IH4) \((u_x, p(k,\tau_k)) \in Q_k \) for each \(k = 1..n \). (We follow the conventions of Section 4 here. So \(q \) is a name of \(T \)'s state that also uniquely identifies a state of \(M_{\text{ctrl}} \). Specifically we mean that \(q \) represents a label without any special suffixes. Label \(p_i \) is referring to a particular state of \(M_{\text{head}} \), the one representing position \(i \). Similarly \(p(k,\tau_k) \) denotes the state of \(M_k \) that represents that the \(k \)th symbol of \(\tau \) is stored in the \(k \)th cell of the tape.)
For the remainder of the proof, we do a case analysis on the mode of q say — If $u(q,i,\tau)$ is a successor of q,i,τ in $T_{\langle M, w \rangle}$ then it also is a successor of q,i,τ in the ATM T, and conversely (IH6) the tree $T_{\langle M, w \rangle}$ has all the successors of q,i,τ that T has for universal states and at least one of them for all existential states.

Only after discussing the construction of $T_{\langle M, w \rangle}$, and after arguing that the above inductive property holds for it, we shall address the problem of whether $T_{\langle M, w \rangle}$ actually is an accepting computation tree of T, witnessing acceptance of w.

Root (base case): The root of $T_{\langle M, w \rangle}$ is selected to be the configuration $\langle q_0, 1, w \rangle$, where q_0 is the initial control state of T. We need to show that $\langle q_0, 1, w \rangle$ exhibits property IH.

Observe that U_{new} has a distinct initial state u_0. Take u_2 to be this u_0. Since $M_{\text{ctrl}} \prec U_{\text{new}}$ there is a pair $(u_0, q_0) \in Q_{\text{ctrl}}$, fulfilling condition IH1. Since $M_{\text{head}} \prec U_{\text{new}}$ and p_1 is the initial state of M_{head}, we know that $(u_0, p_1) \in Q_{\text{head}}$, fulfilling condition IH3. Since w is the initial content of the tape, and consequently $p(k,w_k)$ is an initial state of M_k, the refinement $M_k \prec U_{\text{new}}$ gives us that $(u_0, p(k,w_k)) \in Q_k$, so IH4 holds for $\langle q_0, 1, w \rangle$. Since $M_{\text{exist}} \prec U_{\text{new}}$ we get that $(u_0, x_1) \in Q_{\text{exist}}$ finishing the base case (IH2).

We shall argue that IH5 and IH6 hold for the root node, when we discuss adding successors below.

Non-root nodes (inductive step): Given a configuration $\langle q, i, \tau \rangle$ for which properties IH1-IH4 hold, we will now construct the next level of $T_{\langle M, w \rangle}$ in such a way that IH5-IH6 hold for $\langle q, i, \tau \rangle$ and IH1-IH4 hold for all its successors.

Before we split into two cases based on modes of states, we shall describe the part of the proof which these two have in common. The induction hypothesis allows us to assume existence of a specific state u_2 of U_{states} and the respective refinement relations. Since state u_2 is related to a state without a π or \exists subscript in M_{ctrl}, that u_2 must implement an \exists transition to a new state, let us call this state u_{\exists}. Because $(u_{\exists}, x_1) \in Q_{\text{exist}}$ we know that $(u_{\exists}, x_2) \in Q_{\text{exist}}$ and thus u_{\exists} must implement a π transition to a new state, say u_{π}. Since all π and \exists transitions in M_{head} and M_1 up to M_n are loops we know that u_{π} is related to the same states as u_2 in these specifications.

For the remainder of the proof, we do a case analysis on the mode of q:

— If $\text{mode}(q) = \text{Exst}$ then we know that (M_{ctrl}, q) has to implement an \exists-transition followed by at least one π-transition reaching a state of the form $\langle q, \pi, a'dq' \rangle$. Also because u_{\exists} is related to q_2, it must be possible to choose u_{π} above such that $(u_{\pi}, \langle q, \pi, a'dq' \rangle) \in Q_{\text{ctrl}}$, but then we know that u_{π} can take a transition labeled (τ, i, a', d) to some state u'_{π} related to q' in Q_{ctrl}.

So if we extend $T_{\langle M, w \rangle}$ at $\langle q, i, \tau \rangle$ with a new child $\langle q', i', \tau[\tau_i \mapsto a'] \rangle$ then the new execution step will follow the semantics of the ATM T satisfying conditions IH1–IH6 — provided that $i' = i + 1$ if $d = r$, and $i' = i - 1$ otherwise.

The argument that IH5-IH6 hold is direct — we have added a successor as required out of all those available in the semantics of T. The arguments that IH1-IH4 hold are more involved, but standard — for each of them a unique successor in $M_{\text{exist}}, M_{\text{ctrl}},$
M_{head} and M_i's can be pointed out by following the transition labeled (τ_i, i, a', d), and then shown to witness fulfillment of the condition for u'_x by inductive hypothesis (from refinement of u_x).

If $\text{mode}(q) = \text{Univ}$ then, since (U_{new}, u_x) is a refinement of (M_{ctrl}, q) and (M_{exist}, x_1), we get that it is possible to choose u_x above so that it refines a state of M_{ctrl} which has a label of the form $(M_{\text{ctrl}}, \langle \tau_i \rangle)$. The refinement relation with M_{head} and M_i ensures that this state is the only successor of q in M_{ctrl} that can be implemented, implying that u_x must implement all the transitions corresponding to the transition relation δ of T. Thus we can extend $T_{(\langle M, w \rangle)}$ with new children $(q', i', \tau'[\tau_i \mapsto a'])$ for all (q', i', τ') such that (M_{ctrl}, q') can be reached from $(M_{\text{ctrl}}, \langle \tau \rangle)$ in one step with a transition labeled (τ, i, a', d). Also $i' = i + 1$ if $d = r$, and $i' = i - 1$ otherwise. Again, it is not hard to see that all newly added successors maintain the inductive hypothesis.

For all of these target states we now have to prove that the induction hypothesis holds.

As all of the target states are reached by a transition in M_{ctrl} we know that there exists a state $u_y \in U_{\text{states}}$ such that $(u_y, q') \in Q_{\text{ctrl}}$. Because of the label on the transition we also know that $(u_y, p_l) \in Q_{\text{head}}$ for $l = i + 1$ if $d = r$, and $l = i - 1$ if $d = l$. This is also ensured to be done in such a way that the tape cell specifications M_1 to M_n again match the content of the tape. We also know, because of all the transitions of type $(_, _, _, _)$ going from x_3 to x_1 in M_{exist}, that $(u_y, x_1) \in Q_{\text{exist}}$. This finishes the proof of the inductive step.

In this way we can recursively construct a pruned computation tree $T_{(\langle M, w \rangle)}$. The constructed tree is finite, because we have argued that it follows the semantics of the ATM T, and T repeats no configuration along a single computation path. Moreover $T_{(\langle M, w \rangle)}$ is accepting as it never is stuck in a rejecting (existential) state.