ZZT-domain Immiscibility of the Opening and Closing Phases of the LF GFM under Frame Length Variations

Pedersen, Christian Fischer; Andersen, Ove; Dalsgaard, Paul

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: October 13, 2023
C.F. Pedersen, O. Andersen, P. Dalsgaard
Dept. of Electronic Systems, Aalborg University, {cfp,oa,pd}@es.aau.dk

ZTZ-domain Immiscibility of the Opening and Closing Phases of the LF GFM under Frame Length Variations

Motivation and contribution

Current research has proposed a non-parametric speech waveform representation (rep) based on zeros of the z-transform (ZTZ) [1]. Empirically, the ZTZ rep has successfully been applied in discriminating the glottal and vocal tract components in pitch-synchronously windowed speech by using the unit circle (UC) as discriminant [1]. Further, similarity between ZTZ reps of windowed speech, glottal flow waveforms, and waveforms of glottal opening and closing phases has been demonstrated [1]. Therefore, the underlying cause of the separation on either side of the UC can be analyzed via the individual ZTZ reps of the opening and closing phase waveforms; the waveforms are generated by the LF glottal flow model (GFM) [1]. The present study demonstrates this cause and effect analytically and thereby supplements the previous empirical works; moreover, it demonstrates that immiscibility is periodically variant under changes in frame lengths; lengths that maximize or minimize immiscibility are presented.

LF glottal flow model (GFM)

Definition 1 LF glottal flow (derivative) model [2]

\[e(t) = E_0 e^{-\mu t} \sin(\omega t), \quad 0 \leq t \leq t_e \]

\[e(t) = E_0 \eta e^{-\mu t} \sin(\omega t - \theta_t), \quad t_e < t \leq t_e + T \]

\[e(t) = 0, \quad t > t_e + T \]

Let \(e_0(t) \), \(e_1(t) \), and \(e_0(t) \) denote the opening, closing, and shut phase respectively. The discretized equivalents of \(e_0(t) \) and \(e_1(t) \) are \(e_0 = (e_0(n))_{n=0}^{N-1} \) and \(e_1 = (e_1(n))_{n=0}^{N-1} \) respectively.

Theorem 1 Cauchy bound [3]

All zeros of a complex polynomial,

\[p(z) = z^n + \sum_{k=0}^{n-1} a_k z^k \]

Lie in the disk \(|z| < \lambda \) where \(\lambda = 1 + \max_{0 \leq \theta < 2\pi} |a_0| \).

Theorem 2 Cauchy bounded annulus [4]

Let \(p(z) \) be a polynomial with zeros \(z_1, ..., z_m \) ordered as \(0 < |z_1| \leq ... \leq |z_m| \). Let \(\lambda_\alpha \) denote the CB of \(p(z) \) and \(\lambda_\beta \) the CB of \(z^m p(1/z) \). Then the following inequalities hold,

\[\frac{1}{\lambda_\alpha} \leq |z| \leq \frac{2^{1/m} - 1}{1 - \lambda_\beta} \lambda_\alpha \]

and

\[(2^{1/m} - 1)\lambda_\alpha \leq |z| \leq \lambda_\beta \]

Thm. 3 and 1 are equivalent, but thm. 3 yield a tighter bound in the present analysis.

Theorem 3 Alternative Cauchy bound [5]

All zeros of a \(n \)th degree complex polynomial,

\[p(z) = z^n + \sum_{k=0}^{n-1} a_k z^k \]

Lie in the disk \(|z| < \lambda_\alpha \) where \(\lambda_\alpha = \max(1, \sum_{k=0}^{n-1} |a_k|) \).

Subscript \(a \) denotes alternative CB.

ZTZ representation of \(e(t) \) (cf. def. 1)

\[z_m = r e^{\mu t}, \quad z_m \neq 0, e^{-\mu t}, \quad m \in \{1; N - 2\} \]

where \(p(x, z) = \sin(k(1 - z)N - \sin(k(N - 1)) \]

\[k = \omega_0/\pi/\mu \]

Lower Cauchy bound of the ZTZ rep.

If \(\lambda_\alpha^{-1}(N) > 1 \) for the ZTZ rep, all zeros lie outside the UC (cf. th. 2). As \(e^{\mu t} \) is just a real scaling of the zeros of \(p(x, z) \), \(\lambda_\alpha^{-1}(N) \) of \(p(x, z) \) can be analysed in isolation heeding

\[e^{\mu t}(h=1) > 1/(\lambda_\alpha^{-1}(N) \Rightarrow \alpha > \ln(\lambda_\alpha(N)) \]

Sampling period \(h = 1 \) (cf. ZTZ rep. above).

The global minima points of \(\lambda_\alpha^{-1}(N) \) are

\[\lim_{N \to \infty} \left| \frac{\sin(k(1 - z)N)}{\sin(kN)} \right| = 1 \]

\[\Rightarrow \lim_{N \to \infty} \lambda_\alpha^{-1}(N) = 0 \]

where \(a = \sqrt{k + qf}\) / \(k = 1 + qt, q \in \mathbb{Z} \).

The global maxima points of \(\lambda_\alpha^{-1}(N) \) are

\[\left| \frac{\sin(k(1 - z)N)}{\sin(kN)} \right| \Rightarrow \lambda_\alpha^{-1}(N) = \frac{\left| \sin(k(1 - z)N) \right|}{\left| \sin(kN) \right|} \]

Numerical experiment

The LF GFM params. are set to common values,

\[b_0 = 0.999086 \]

\[b_1 = 0.003806 \]

\[a_0 = 0.000318 \]

\[a_1 = 0.008080 \]

\[Ec = 1.00000 Pa \]

The global min point is reached at \(N < t_c \ll 1 \); thus, only the opening phase constraints on \(N \) must be considered when choosing a suitable sequence length.

References

