ZZT-domain Immiscibility of the Opening and Closing Phases of the LF GFM under Frame Length Variations

Pedersen, Christian Fischer; Andersen, Ove; Dalsgaard, Paul

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
ZTZ-domain Immiscibility of the Opening and Closing Phases of the LF GFM under Frame Length Variations

C.F. Pedersen, O. Andersen, P. Dalsgaard
Dept. of Electronic Systems, Aalborg University, (cfp.oa,pdoj@es.aau.dk)

Motivation and contribution
Current research has proposed a non-parametric speech waveform representation (rep) based on zeros of the z-transform (ZTZ) [1]. Empirically, the ZTZ rep has successfully been applied in discriminating the glottal and vocal tract components in pitch-synchronously windowed speech by using the unit circle (UC) as discriminant [1]. Further, similarity between ZTZ reps of windowed speech, glottal flow waveforms, and waveforms of glottal opening and closing phases has been demonstrated [1]. Therefore, the underlying cause of the separation on either side of the UC can be analyzed via the individual ZTZ reps of the opening and closing phase waveforms; the waveforms are generated by the LF glottal flow model (GFM) [1]. The present study demonstrates this cause and effect analytically and thereby supplements the previous empirical works; moreover, it demonstrates that immiscibility is periodically variant under changes in frame lengths; lengths that maximize or minimize immiscibility are presented.

LF glottal flow model (GFM)

Definition 1 LF glottal flow (derivative) model [2]
\[e(t) = E_{e} e^{-\gamma t} \sin(\omega_{m} t), \quad t \leq t \leq t_{e}, \]
\[e(t) = E_{e} e^{-\gamma t} (e^{-\gamma (t-t_{e})} - e^{-\gamma (t_{e}-t)}), \quad t_{e} < t < t_{c}, \]
\[e(t) = 0, \quad t_{c} < t < T. \]
Let \(e(t) \), \(e(t) \), and \(e(t) \) denote the opening, closing, and shut phase respectively. The discretized equivalents of \(e(t) \), \(e(t) \), and \(e(t) \) are \(e^{(n)}_{a} = e^{(n)} \) and \(e^{(n)} = e^{(n)} \) respectively.

Cauchy bound (CB)
Let \(p(a, z) \) denote a univariate polynomial with variable \(z \) \in \mathbb{C} \) and coefficients \(a_{n} = a_{n-1} \in \mathbb{R} \).

Theorem 1 Cauchy bound [3]
All zeros of a complex polynomial,
\[p(a, z) = z^{n} + a_{n-1} z^{n-1} + \ldots + a_{0} \]
lie in the disk \(|z| < \lambda \) where \(\lambda = 1 + \max_{0 \leq k < n} |a_{k}| \).

Theorem 2 Cauchy annular bound [4]
Let \(p(a, z) \) be a polynomial with zeros \(z_{1}, \ldots, z_{n} \) ordered as \(0 < |z_{1}| \leq \ldots \leq |z_{n}| \). Let \(\lambda_{n} \) denote the CB of \(p(a, z) \) and \(\lambda_{n} \) the CB of \(z^{n} p(a, 1/z) \). Then the following inequalties hold,
\[\frac{1}{\lambda_{n}} \leq |z| \leq \left(\frac{2^{1/n} - 1}{\lambda_{n}} \right) \] and
\[(2^{1/n} - 1) \lambda_{n} \leq |z| \leq \lambda_{n} \]
Thm. 3 and 1 are equivalent, but thm. 3 yields a tighter bound in the present analysis.

Theorem 3 Alternative Cauchy bound [5]
All zeros of a \(n \)th degree complex polynomial,
\[p(a, z) = z^{n} + a_{n-1} z^{n-1} + \ldots + a_{0} \]
lie in the disk \(|z| < \lambda_{n} \) where \(\lambda_{n} = \max_{0 < |a_{k}|} k \).
Subscript \(a \) denotes alternative CB.

Zeros of the z-transform (ZTZ)

Definition 2 Zeros of the z-transform
The zeros of the z-transform of a sequence \(x(n) \) \in \mathbb{C} \) \in \mathbb{R} \) are defined as \(z_{1}, z_{2}, \ldots, z_{n} \in \mathbb{C} \) \in \mathbb{C} \) \in \mathbb{R} \) such that \(x(n) = \sum_{n=0}^{\infty} x_{n} z^{-n} = 0 \) for \(1 \leq n \leq m \).
The ZTZ-transformation is denoted as \(\rho : \mathbb{C} \rightarrow \mathbb{C} \),
\[\rho(x(n)) \in \mathbb{C} \] where \(x \) is a polynomial coefficient sequence ordered in descending powers, \(z \) is a sequence of non-zero zeros, and \(k \) is the multiplicity of a zero at zero.

Analysis of opening phase

ZTZ representation of \(e(t) \) (cf. def. 1)
\[z_{m} = e^{\gamma} p(x), \ z_{m} \neq 0, e^{\gamma} \neq 0, \ m \in [1; N - 2] \]
where
\[p(x_{p}, z) = \sin(k) N \sin(k N) z + \sin(k (N - 1)) \]
\[k = \omega_{m} \pi / f_{p} \]
Lower Cauchy bound of the ZTZ rep.
If \(\lambda_{n}^{-1} > 1 \) for the ZTZ rep., all zeros lie outside the UC (cf. th. 2). As \(e^{\gamma} \) is just a real scaling of the zeros of \(p(x_{p}, z) \), \(\lambda_{n}^{-1} \) (of \(p(x_{p}, z) \) can be analysed in isolation heeding
\[e^{\gamma (1/n)} > (1/\lambda_{n}^{-1}) \Rightarrow \alpha > n \ln(\lambda_{n}) \]
Sampling period \(h = 1 \) (cf. ZTZ rep. above). The global minima points of \(\lambda_{n}^{-1} \) (of \(p(x_{p}, z) \) are
\[\lambda_{n}^{-1} \]

Theorem 2 Alternative Cauchy bound (5)
All zeros of a \(n \)th degree complex polynomial,
\[p(a, z) = z^{n} + a_{n-1} z^{n-1} + \ldots + a_{0} \]
lie in the disk \(|z| < \lambda_{n} \) where \(\lambda_{n} = \max_{0 < |a_{k}|} k \).
Subscript \(a \) denotes alternative CB.

Analysis of closing phase

ZTZ representation of \(e(t) \) (cf. def. 1)
\[z_{m} = e^{\gamma} p(x), \ z_{m} \neq 0, e^{\gamma} \neq 0, \ m \in [1; N - 1] \]
where
\[p(x_{p}, z) = (c_{1} - c_{2}) z^{N+1} + (c_{2} e^{-k} - c_{1}) z^{N} + \]
\[(c_{2} e^{-k} - c_{1}) z^{N-1} + (c_{1} e^{-k} - c_{2} e^{-k}) \]
\[c_{1} = e^{-k}, \ c_{2} = e^{-\left(k_{1} - k_{2}\right)}, \ k = \epsilon \]
Upper Cauchy bound of the ZTZ rep.
If \(\lambda_{n}^{-1} < 1 \) for the ZTZ rep., all zeros lie inside the UC (cf. th. 3). The global minimum value of \(\lambda_{n}(N) \) is
\[\lambda_{n}(N) = 1 \]
which is achieved at
\[N = -\ln(2) / (\omega_{m} - e^{-\left(k_{1} - k_{2}\right)}) / \epsilon \approx -\ln(\epsilon) / \epsilon \]
The global max point and value of \(\lambda_{n}(N) \) are
\[\lambda_{n}(0) = e^{-\epsilon} + 1 + \frac{1 - e^{-\left(k_{1} - k_{2}\right)}}{1 - e^{-\epsilon}} \approx 2 \]
Numerical experiment
The LF GFM params. are set as common values,
\[b_{0} = 0.00000000000000000000000000000000 \]
\[b_{1} = 0.00000000000000000000000000000000 \]
\[c_{0} = 0.00000000000000000000000000000000 \]
\[c_{1} = 0.00000000000000000000000000000000 \]
\[\epsilon = 1.000000 \]
Back line: Lower Cauchy bound. Vert. dotted line: A global min point. Vert. and hortz. dotted lines: A global max point and the max value respectively. Grey line lower bound of \(\epsilon \). Grey region exemplifies a feasible neighbourhood for \(N \). When \(\lambda_{n}^{-1}(N) = 0 \Rightarrow \alpha = -\infty \) why \(N \) must be chosen outside a neighbourhood of the global min points.
The illustrated feasible neighbourhood for \(N \)
\[\lambda_{n}^{-1}(N) > \left(\frac{\pi}{\omega_{m} - e^{-\left(k_{1} - k_{2}\right)}} \right) \]

The global min point is reached at \(N < t_{e} << 1 \); thus, only the opening phase constraints on \(N \) must be considered when choosing a suitable sequence length.

References