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Abstract—This paper studies linear transmit filter design
for Weighted Sum-Rate (WSR) maximization in the Multiple
Input Multiple Output Broadcast Channel (MIMO-BC). The
problem of finding the optimal transmit filter is non-convex and
intractable to solve using low complexity methods. Motivated
by recent results highlighting the relationship between mutual
information and Minimum Mean Square Error (MMSE), this
paper establishes a relationship between weighted sum-rate and
weighted MMSE in the MIMO-BC. The relationship is used to
propose a low complexity algorithm for finding a local weighted
sum-rate optimum based on alternating optimization. Numerical
results studying sum-rate show that the proposed algorithm
achieves high performance with few iterations.

I. INTRODUCTION

Multiple Input Multiple Output (MIMO) systems have great
potential to achieve high throughput in wireless systems [1]. In
cellular systems, multiple antennas can easily be deployed at
the base station to enhance the system capacity. When Channel
State Information (CSI) is available at the transmitter, the
base station can transmit to multiple users simultaneously to
achieve a linear increase of system throughput in the number
of transmit antennas. This can be done using linear or non-
linear transmission techniques. For the Multiple Input Multiple
Output Broadcast Channel (MIMO-BC), non-linear techniques
have been shown to outperform linear techniques and achieve
channel capacity. The capacity-achieving downlink strategy is
non-linear and uses Dirty Paper Coding (DPC) [2]. However,
practical techniques to implement DPC [3], [4], [5], are in
preliminary states of development and adds implementation
complexity due to non-linear operations at both transmitter and
receivers. This makes linear downlink transmission techniques
(also called beamforming) an attractive alternative because of
their simplicity [6], [7], [8], [9]. Transmit beamforming design
entails finding the linear transmit filter, through which the data
intended for the different users is passed before transmission
on the channel.

This paper focuses on transmit beamforming design to
maximize Weighted Sum-Rate (WSR) subject to a transmit-
power constraint, which is a non-convex and non-trivial prob-
lem. WSR is useful for prioritizing different users and thus
finds different practical applications. For instance the weights

can be chosen according to the state of the packet queues
corresponding to a max-stability service [10] or, by using equal
weights, to maximize sum-rate corresponding to a best effort
service.

A recent paper [11] studies the same problem and proposes
an iterative algorithm based on uplink-downlink Mean Square
Error (MSE)-duality. From a given starting point, the algorithm
converges to a local WSR-optimum. The principle in the algo-
rithm is to iterate between the downlink system and a virtual
uplink system in order to update filter structures, in addition to
solving a Geometric Program (GP) for optimizing the transmit
power distribution. In another recent paper [12], the authors
attempt to solve the WSR problem using concepts from [8],
however their algorithm is a 4-step iterative algorithm, two
of which require solving a GP, which again is iterative and a
Second-Order Cone Program (SOCP) respectively.

This paper takes a different approach to solving the WSR-
problem which leads to an iterative algorithm that is guaran-
teed to converge to a local WSR-optimum. In the same line as
recent results highlighting the relationship between informa-
tion theoretic quantities (mutual information) and MMSE in
single user MIMO channels [13], [14], we have established a
relationship between WSR and Weighted sum-Minimum Mean
Square Error (WMMSE) in the MIMO-BC. By comparing the
gradients of resp. WSR and WMMSE cost functions we are
able to show a simple relationship between the Karush-Kuhn-
Tucker (KKT) conditions of the two problems. Essentially we
show that the WSR-problem can be solved as a WMMSE-
problem with optimized MSE-weights.

Using the derived correspondence we propose an iterative
algorithm for WSR-optimization in the MIMO-BC. The al-
gorithm iterates between WMMSE transmit filter design and
MMSE receive filter computation using well-known closed-
form expressions. In each iteration the MSE weights are
updated using the derived correspondence. Each of the three
steps is solved by evaluating closed-form expressions, and
the proposed algorithm is less complex than state-of-the-art
methods requiring multiple-level iterations. Numerical results
comparing convergence rates and sum-rate performance to
other recently proposed algorithms are presented.

Notation: mij denotes the (i, j)th entry of the matrix M.
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MT/MH/Tr (M) denotes transpose/conjugate transpose/trace
of a vector/matrix M. The dimension of a matrix M is denoted
by the subscript M[Q×P ], where Q is the row dimension.
IK denotes an identity matrix of size K × K. ||v|| denotes
Euclidean-norm of a vector v. E [·] denotes statistical expec-
tation.

II. SYSTEM MODEL AND MAIN OBJECTIVE

A general narrowband point-to-multipoint MIMO system
is considered. There are P transmit antennas and K users,
each with Q receive antennas. The system has in total QK
receive antennas across all users1. The MIMO channel be-
tween the transmitter and user k is described by a matrix
Hk ∈ C

[Q×P ] containing complex-valued channel gains of
the different antenna-pairs. The signal observed at user k at
sample time n can be represented by the complex vector

yk(n) = Hkx(n) + vk(n), (1)

where x(n) ∈ C
[P×1] is the complex-valued transmitted

vector, and vk(n) ∈ C
[Q×1] is a noise vector containing

circularly symmetric white2 Gaussian noise with covariance
Rvkvk

= E

[
vk(n)vk(n)H

]
= IQ. The transmit vector

x(n) is a linearly filtered version of the input data vectors
d1(n), · · · ,dK(n) ∈ C

[Q×1]:

x(n) =
K∑

k=1

Bkdk(n). (2)

The matrices B1, · · · ,BK ∈ C
[P×Q] are the transmit filters

(beamformers). It is assumed that each user has Q parallel
data streams, although some of the streams can have a rate
of zero. Additionally it is assumed that each user receives
Q independent streams such that E

[
dk(n)dH

k (n)
]

= IQ. The
transmit vectors respect a total block power constraint for a
block consisting of N transmissions i.e.

1
N

N∑
n=1

xH(n)x(n) ≤ Etx. (3)

Throughout the analysis it is assumed that N is large such

that 1
N

N∑
n=1

xH(n)x(n) can be replaced by E
[
xH(n)x(n)

]
=∑

k Tr
(
BkBH

k

)
. It is also assumed that the channel changes

in a quasi-static manner, and hence the channel matrices
H1, · · · ,HK are constant for the duration of the block. Fur-
thermore it is assumed that CSI, i.e. H1, · · · ,HK is perfectly
known at the transmitter.

A. Main objective

The main objective is to find the transmit filters B1 · · ·BK

which maximize the weighted sum-rate. This can be written

1Without loss of generality each user is assumed to have Q receive antennas.
Users with fewer antennas can be emulated by nulling the corresponding
channel gains.

2The noise covariance matrix Rvv can be assumed to be white without loss
of generality after an appropriate whitening transform on the channel matrix.

as the minimization problem:

[BWSR
1 , · · · ,BWSR

K ] = arg min
B1,··· ,BK

∑
k

−uRk
Rk (4)

s.t.
K∑

k=1

Tr
(
BkBH

k

)
= Etx,

where uRk
≥ 0 and Rk defines respectively a weight and

the rate for the kth user. Without loss of generality we
have used an equality power constraint rather than the often
used

∑K
k=1 Tr

(
BkBH

k

) ≤ Etx because the WSR optimum
is reached at maximum transmit power. Assuming Gaussian
signaling, the achievable rate for user k is given as

Rk = log det
(
Ik + BH

kHH
kR−1

ṽkṽk
HkBk

)
, (5)

where Rṽkṽk
denotes the effective noise covariance matrix at

user k:

Rṽkṽk
= Ik +

K∑
i=1,i �=k

HkBiBH
i HH

k . (6)

We notice that Rk can be expressed as a function of the error
covariance matrix after MMSE receive filtering. The MMSE-
receive filter at user k is given as:

AMMSE
k = arg min

Ak

E
[||Akyk − dk||2

]
= BH

kHH
k

(
HkBkBH

kHH
k + Rṽkṽk

)−1
. (7)

The MSE-matrix for user k given that the MMSE-receive filter
is applied can be written as [15]:

Ek = E

[(
AMMSE

k yk − dk

) (
AMMSE

k yk − dk

)H
]

=
(
Ik + BH

kHH
kR−1

ṽkṽk
HkBk

)−1
. (8)

We refer to Ek as the MMSE-matrix. Given (5) and (8) the
rate for user k can be written as:

Rk = log det
(
E−1

k

)
. (9)

III. GRADIENT EXPRESSIONS AND KKT CONDITIONS

This section first studies the gradient for the WSR maxi-
mization problem. Next, the gradient for a new optimization
problem, WMMSE, is computed and we are able to show that
there is a simple relationship between the KKT conditions of
the two problems.

A. Gradient of Weighted Sum-Rate Maximization

To investigate stationary points of the problem (4) we
formulate the Lagrangian:

f(B1, · · · ,BK) =
∑

k

−uRk
Rk+λ

(∑
k

Tr
(
BkBH

k

)− Etx

)
.

(12)
We define ∇Bk

f = ∂f
∂B∗

k
as the complex gradient operator.

The gradient is a matrix with the [n,m]th element defined
as: [∇Bk

f ]nm = ∇[Bk]nm
f = ∂f

∂[B∗
k]nm

. From the KKT
conditions a local optimum must satisfy for all k: ∇Bk

f = 0,
and ∇λf = 0.
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∇Bk
f = −ukHH

kR−1
ṽkṽk

HkBkEk +

⎛
⎝ K∑

i=1,i �=k

uiHH
i R−1

ṽiṽi
HiBiEiBH

i HH
i R−1

ṽiṽi
Hi

⎞
⎠Bk + λBk (10)

∇Bk
g = −HH

kR−1
ṽkṽk

HkBkEkWkEk +

⎛
⎝ K∑

i=1,i �=k

HH
i R−1

ṽiṽi
HiBiEiWiEiBH

i HH
i R−1

ṽiṽi
Hi

⎞
⎠Bk + λBk (11)

The gradient w.r.t. the transmit filter Bk is computed by
dividing the summation into different parts. The gradient is
computed element-wise and using the chain rule:

∇[Bk]nm
Rk = Tr

((
∂Rk

∂E−1
k

)T
∂E−1

k

∂[B∗
k]nm

)

= Tr
(
Ekemen

THH
kR−1

ṽkṽk
HkBk

)
= en

THH
kR−1

ṽkṽk
HkBkEkem. (13)

Here en is a unity-vector with one at the nth element and zeros
elsewhere. As ∇[Bk]nm

Rk = [∇Bk
Rk]nm we conclude:

∇Bk
Rk = HH

kR−1
ṽkṽk

HkBkEk. (14)

Next, ∇Bk
Ri is computed. Define first a real-valued scalar

function h which depends on K through S = X +
LKCCHKHLH, where X,L,C are fixed matrices indepen-
dent of K. Using the element-wise derivation method it can
be shown that ∇Kh = LH (∇Sh)LKCCH. Considering S as
the effective noise covariance matrix Rṽiṽi

, we have

∇Bk
Ri = HH

i

(∇Rṽiṽi
Ri

)
HiBk. (15)

Furthermore, we compute

∇Rṽiṽi
Ri = R−1

ṽiṽi
HiBiEiBH

i HH
i R−1

ṽiṽi
. (16)

Combining (15) and (16) we obtain:

∇Bk
Ri = −HH

i R−1
ṽiṽi

HiBiEiBH
i HH

i R−1
ṽiṽi

HiBk. (17)

The results (14) and (17) are finally used to obtain the WSR-
gradient expression of equation (10).

B. Gradient of Weighted Minimum Mean Square Error Mini-
mization

The new optimization problem we investigate is the
WMMSE transmit filter design problem assuming that MMSE
receive filtering is applied:

[BWMMSE
1 , · · · ,BWMMSE

K ] = arg min
B1,··· ,BK

∑
k

Tr (WkEk)

s.t.
∑

k

Tr
(
BkBH

k

)
= Etx.(18)

The matrix Wk ∈ C
[Qk×Qk] is a constant weight matrix

associated with user k. The Lagrangian reads:

g(B1 · · ·BK) =
∑

k

Tr (WkEk) + λ

(∑
k

Tr
(
BkB

H
k

)
− Etx

)
.

(19)
The gradient ∇Bk

g is computed is a similar manner as
∇Bk

f by considering the different parts of the summation.
Firstly,

∇Bk
Tr (WkEk) = −HH

kR−1
ṽkṽk

HkBkEkWkEk. (20)

Secondly,

∇Bk
Tr (WiEi) = HH

i R−1
ṽiṽi

HiBiEiWiEiBH
i HH

i R−1
ṽiṽi

HiBk.
(21)

Combining (20) and (21), we obtain the WMMSE-gradient
expression of equation (11). Notice also that ∇λf = ∇λg =∑

k Tr
(
BkBH

k

)− Etx.

C. Comparison of WSR and WMMSE gradients

Comparing (10) and (11) it is clear that the two prob-
lems are closely related. In fact, for a given set of trans-
mit filters B1, · · · ,BK and corresponding MMSE-matrices
E1, · · · ,EK , the WMMSE-gradient can be made identical to
the WSR-gradient, if the following MSE-weights are selected
for all k:

Wk = ukE−1
k . (22)

Consider next that we have a WSR optimal point, i.e. where
∀k∇Bk

f = 0, ∇λf = 0, and that the set of transmit filters
and corresponding MMSE-matrices at this point are resp.:
BWSR

1 , · · · ,BWSR
K and EWSR

1 , · · · ,EWSR
K . If this set of MMSE-

matrices is used to compute a set of MSE-weights according
to (22), then the KKT-conditions for the WMMSE-problem
are satisfied for the same set of transmit filters, i.e. the point
is also a WMMSE optimal point with BWMMSE

k = BWSR
k ∀k.

The fact that the KKT-conditions of the two problems can
be satisfied simultaneously suggests that it is possible to solve
the WSR-problem through the use of WMMSE and a proper
set of MSE-weights.

IV. ALTERNATING OPTIMIZATION FOR FINDING A LOCAL

WSR-OPTIMUM

The basic idea is to alternate between WMMSE opti-
mization of B1, · · · ,BK and the MSE weight update for
W1, · · · ,WK based on (22). If this iterative process con-
verges, it converges to a fixed point, which is also a stationary
point of the WSR-objective function.

There are various ways to implement such an alternating
optimization process and in particular, the weight matrices
can be updated at different stages. As described above, one
possibility is to update the MSE-weights after each update of
the transmit filters. This method has been tested and gives
good performance. The method we tested requires an inner
loop to perform WMMSE optimization over B1, · · · ,BK

for fixed MSE-weights. Specifically, the inner loop performs
alternating optimization between MMSE-receive filters and
WMMSE transmit filters according to the method described in
[16]. Overall, the disadvantage of this method is the number of
required iterations, since inner iterations has to be performed
for each weight update. Fortunately, it turns out that the
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inner iterations are not needed to obtain an algorithm which
converges to a local WSR-optimum. Therefore we propose
an algorithm which contains a single loop where respec-
tively MSE-weights and transmit/receive filters are updated.
In summary, the proposed algorithm, which we coin Weighted
Sum-Rate maximization Beamforming using Weighted sum-
Minimum Mean Square Error (WSRBF-WMMSE) is:

PROPOSED ALGORITHM: WSRBF-WMMSE
set n = 0
set Bn

k = Binit
k ∀k

iterate
update n = n + 1
I. compute An

k |Bn−1
i ∀i for all k using (7)

II. compute Wn
k |Bn−1

i ∀i for all k using (22),(8)
III. compute Bn|An,Wn using (23),(24)

until convergence
The first step updates the MMSE-receive filters given the

transmit filters from previous iteration. The second step up-
dates the MSE-weights given the transmit filters as a function
of the MMSE-matrix. The third step computes the WMMSE
transmit filters given the receive filters and MSE-weights. The
problem of computing the MMSE transmit filter B[P×QK] =
[B1, · · · ,BK ] for fixed receive filters was treated in [17] for
the unweighed MMSE-case, but the extension to WMMSE
is straightforward. The WMMSE transmit filter structure is
computed as:

B̄ = (HHAHWAH +
Tr
(
WAAH

)
Etx

IP )−1HHAHW, (23)

where W[QK×QK] = diag{W1, · · · ,WK} and
A[QK×QK] = diag{A1, · · · ,AK} are block-diagonal

matrices, and H[QK×P ] =
[
H1

T, · · · ,HK
T]T contains the

different channel matrices stacked row-wise. Similar to the
unweighted MMSE-case [17], the final transmit filter is
computed as:

BWMMSE = bB̄, (24)

where b =
√

Etx

Tr(B̄B̄H) is a gain factor which scales the signal

so as to satisfy the transmit power constraint. Following [17],
BWMMSE is derived under the assumption that all receive filters
are rescaled by 1

b .

A. Convergence analysis

Following the reasoning of section III-C it is clear that if
the proposed algorithm is initialized by BWSR

k ∀k, then after
one iteration it will return the optimal filter again, i.e. Bn

k =
BWSR

k ∀k. Convergence in the general case is proven by proving
monotonic convergence of an equivalent optimization problem,
which is based on expanding the cost −uRk

log det
(
E−1

k

)
to

include the MSE-weights and receive filters as optimization
variables in addition to the transmit filters.

We define Ẽk = E

[
(Akyk − dk) (Akyk − dk)H

]
, the

MSE-matrix. Note that it is different from Ek defined in (8).
Consider the following cost function:

l̃k(Wk,Ak,Bi∀i) = Tr
(
WkẼk

)
(25)

−uRk
log det

(
u−1

Rk
Wk

)− uRk
Q.

and the following objective:

[BWSR
k ∀k] = arg min

Bk∀k,Ak∀k,Wk∀k

∑
k

l̃k(Wk,Ak,Bi∀i)

s.t.
∑

k

Tr
(
BkBH

k

) ≤ Etx. (26)

We first prove that the optimization wrt the transmit filters
Bk using this criterion as the same as the original WSR opti-
mization (4). First we minimize l̃k(Wk,Ak,Bi∀i) w.r.t. Ak

considering weights and transmit filters fixed. The minimizing
value is unique and is denoted as AMMSE

k (Bi∀i) (see eq. (7)).
The variable Ak intervene only in Ẽk and substituting by
AMMSE

k (Bi∀i), Ẽk becomes equal to Ek. Hence, we get a
new cost function for the transmit filters and the weights:

lk(Wk,Bi∀i) = Tr (WkEk)−uRk
log det

(
u−1

Rk
Wk

)−uRk
Q.

(27)
Minimizing lk(Wk,Bi∀i) w.r.t. Wk leads to Wmin

k (Bi∀i) =
uRk

E−1
k (Bi∀i). Substituting Wk in lk(Wk,Bi∀i) by Wmin

k

we get the cost function −uRk
log det

(
E−1

k

)
, which corre-

sponds to the original WSR-cost.
Now, we prove that alternating minimization of the

cost
∑

k l̃k(·) in (26) corresponds to the steps I,II,III of
WSRBF-WMMSE. When Wk∀k is constant, the cost function
is
∑

k Tr
(
WkẼk(Ak,Bi∀i)

)
, so in the alternating minimiza-

tion process: finding Ak given Bn−1
i ∀i gives the same result

as in step I and finding Bk∀k given An
k∀k and Wn

k∀k gives
the same results as step III. Optimization w.r.t. Wk with
Ak and Bi∀i fixed gives Wk = uRk

Ẽ−1
k (An

k ,Bn−1
i ∀i) =

E−1
k (Bn−1

i ∀i). So we have same result as step II.
Due to the alternating minimization process, the cost∑
k l̃k(·) decreases monotonically. Furthermore, assuming that

the minimal value of the cost (max WSR-value) exists, the
cost function is lower bounded. We conclude that we have
convergence to a local optimum. Note that the original WSR-
cost does not necessarily experience a monotonic convergence,
although simulation results show that this is often the case.

V. NUMERICAL EXAMPLES

This section evaluates sum-rate performance for the MIMO
downlink for different system settings using Monte-Carlo
simulation. In all simulations the number of transmit antennas
is fixed to P = 4. The elements of the channel matrices are
generated as i.i.d. Gaussian random variables CN (0, σ2

h) and
the receive noise covariances are normalized, i.e. Rvkvk

= IQ.
Since both noise and data covariance are normalized, we define
SNR as σ2

h.
First we study the convergence properties by comparing

WSRBF-WMMSE to the recently proposed ALGORITHM 1 of
[11] which also converges to a local WSR-optimum. For both
algorithms we choose a simple initialization by the transmit
matched filter, i.e. ∀kBinit

k = bHH
k , where b is selected so as

to satisfy the transmit power constraint. Sum-rate convergence
results for four different scenarios are shown in Figure 1. Over-
all the plots indicate that convergence speed is comparable for
the two methods, although the convergence speed varies for
the individual channel realizations. From a complexity point
of view the proposed algorithm has the advantage that it does
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ALGORITHM 1 [11]
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Fig. 1. Sum-rate maximization convergence examples with P = 4 transmit
antennas and with different combinations of users K and receive antennas Q.
Each combination is simulated for a random channel realization (SNR=20dB).

not require solving a GP in each iteration as ALGORITHM 1
of [11]. Solving a GP3 has a worst-case polynomial time
complexity in the number of variables (KQ) [11].

In the following three simulations we consider sum-rate per-
formance in different MIMO-BC scenarios. Since the WSR-
problem is non-convex, the initialization Binit

k ∀k determines
if the WSR-optimum obtained after iterations will be local or
global. Currently it is unknown how to choose the initialization
such that the global optimum is guaranteed. In our simula-
tions we use two versions of WSRBF-WMMSE: 1) Using
10 random filter initializations and eventually selecting the
best result, and 2) Using the simple transmit matched filter
initialization and allowing only 10 iterations. The first version
is chosen to obtain a high performing solution although there
is no guarantee that the global optimum is found. The second
version is chosen to study the performance of a potentially
practical low complexity solution. The presented results are
averaged over 1000 channel realizations. DPC sum-capacity
reference bounds are produced using ALGORITHM 2 from
[18]. In the first two simulations the number of users is
varied as K = {4, 20} and each user has a single receive
antenna. In the third simulation the number of users is varied
as K = {1, 2, 6} and each user has two receive antennas.

Figure 2 shows the average sum-rate performance in a
K = 4 setting. As performance reference we have used a
Zero-Forcing Beamforming (ZFBF)-based algorithm [9]. This
algorithm tries all combinations of scheduled users, and com-
putes the ZF-filter with the optimal power levels (waterfilling)
for each combination. The combination with highest sum-rate
is selected. The plots show that sum-rate maximization leads
to only a marginal improvement of WSRBF-WMMSE1 as
compared to the ZFBF-based algorithm. WSRBF-WMMSE2
sees a loss at high SNR’s but performs well at SNR’s up to

3We have used Matlab and CVX to solve the GP:
”http://www.stanford.edu/ boyd/cvx/”. Generating the curves for Figure 1
took less than a second for WSRBF-WMMSE, whereas it took approximately
one hour for ALGORITHM 1 of [11].
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Fig. 2. Average sum-rate performance in 1000 random channels with P = 4
transmit antennas and K = 4 single receive antenna users (Q = 1).
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Fig. 3. Average sum-rate performance in 1000 random channels with P = 4
transmit antennas and K = 20 single receive antenna users (Q = 1).

15 dB. In the simulations, it was noticed that at low SNR,
WSRBF-WMMSE allocates all transmit power to the user with
the best channel. This phenomenon is similar to selection of
the best user in the single-antenna degraded-broadcast channel
to maximize sum-capacity [19]. As the SNR increases, more
users are gradually supported simultaneously. To illustrate the
role of the MSE-weights we have included the unweighted
MMSE beamformer which is also computed using alternating
optimization [16]. In fact, the MSE-weight update is the only
difference between WSRBF-WMMSE and the unweighted
MMSE algorithm [16], but as seen by Figure 2 and in the
following Figure 3 the selection of weights at each iteration
is crucial.

Figure 3 shows the sum-rate performance when the system
has 20 users. Due to the system size, it is considered im-
practical to use several random initializations and we focus
only on the algorithm version with fixed initialization. As
a reference we have instead used the ZFBF with Semi-
orthogonal User Selection (SUS) algorithm [9] which uses a
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Fig. 4. Average sum-rate performance in 1000 random channels with P = 4
transmit antennas and K = {1, 2, 6} users with Q = 2 receive antennas.

simplified procedure for finding a good subset of the users
since exhaustive search is considered impractical4. Finding the
best subset of the 20 users is a non-trivial problem, but the
simple initialization by the transmit matched filter combined
with only 10 iterations (WSRBF-WMMSE2) finds a good
solution. Compared to the ZFBF-SUS algorithm, WSRBF-
WMMSE2 clearly performs better in spite of its low complex-
ity. At high Signal-to-Noise Ratio (SNR), WSRBF-WMMSE2
allocates non-zero rates to four users, corresponding to the
rank of the channel. In this way WSRBF-WMMSE2 selects
4 of 20 users, rather than attempting to transmit data to all
20 users. The user selection is done automatically by the algo-
rithm which nulls out some users through the weight update. In
general the algorithm finds the subset of the users which has a
good combination of having high channel gains while simul-
taneously being spatially compatible (nearly orthogonal). In
contrast, the unweighted MMSE-solution (without initial user
selection) transmits data to more than 4 users simultaneously
which results in interference limitation at high SNR’s. Figure 4
shows the sum-rate performance with a varying number of
users where each user has Q = 2 receive antennas. For K = 1,
i.e. the single user case, WSRBF-WMMSE1 achieves capacity
(achieved by waterfilling over channel singular values). The
single user problem is convex and therefore the transmit filter
initialization does not matter. For K = {2, 6}, WSRBF-
WMMSE1 obtains a slope comparable to the DPC capacity
bounds with a loss on the order of 1-2 dB at high SNR.
WSRBF-WMMSE2 performs equally well up to ≈10 dB, but
is degraded by ≈1dB at high SNR. Notice that the ZF-based
solutions [9] are developed only for single antenna receivers
and are therefore not included in the plot.

VI. CONCLUSION

This paper studied beamforming design for the MIMO-
BC to maximize weighted sum-rate. The paper found its
motivation in recent results highlighting a relationship between

4For the ZFBF-SUS algorithm [9], the optimal value of the semi-
orthogonality angle α, used in the SUS procedure, was found.

mutual information and MMSE, and established a simple
relation between weighted sum-rate and weighted MMSE in
the MIMO-BC. As a result, a simple alternating optimiza-
tion algorithm based on well-known transmit/receive MMSE-
designs was proposed for finding a local weighted sum-rate
optimum. Numerical results studying sum-rate show that the
proposed algorithm achieves high performance, even when
initiated by the simple transmit matched filter and allowing
only few iterations. The algorithm is therefore a potential
candidate for practical low complexity transmit beamforming
implementations.
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