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A Taxonomy for Modeling Flexibility and a Computationally Efficient
Algorithm for Dispatch in Smart Grids

M. K. Petersen, K. Edlund, L. H. Hansen, J. Bendtsen and J. Stoustrup

Abstract— The word flexibility is central to Smart Grid
literature, but to this day a formal definition of flexibility is still
pending. This paper present a taxonomy for modeling flexibility
in Smart Grids, denoted Buckets, Batteries and Bakeries.

We consider a direct control Virtual Power Plant (VPP),
which is given the task of servicing a portfolio of flexible
consumers by use of a fluctuating power supply. Based on
the developed taxonomy we first prove that no causal optimal
dispatch strategies exist for the considered problem. We then
present two heuristic algorithms for solving the balancing task:
Predictive Balancing and Agile Balancing.

Predictive Balancing, is a traditional moving horizon algo-
rithm, where power is dispatched based on perfect predictions
of the power supply. Agile Balancing, on the other hand, is
strictly non-predictive. It is, however, explicitly designed to
exploit the heterogeneity of the flexible consumers.

Simulation results show that in spite of being non-predictive
Agile Balancing can actually out-perform Predictive Balancing
even when Predictive Balancing has perfect prediction over a
relatively long horizon. This is due to the flexibility-synergy-
effects, which Agile Balancing generates. As a further advantage
it is demonstrated, that Agile Balancing is extremely computa-
tionally efficient since it is based on sorting rather than linear
programming.

I. INTRODUCTION

The introduction of renewable energy production into
the existing power system is complicated by the inherent
variability of production technologies, which harvest energy
mainly from wind and sun. This means that it becomes
increasingly challenging to maintain the real-time balance
between production and consumption as the ratio of renew-
able energy production increases. In a Smart Grid system, on
the other hand, the inherent flexibility of consumers, such as
electric vehicles, heat pumps and HVAC-systems, may be
mobilized to play an active part in solving the balancing
task.

The flexibility of a given system is a unique, innate, state-
and time dependent quality. In conversation it is therefore
sometimes said that flexibility is the ability to deviate from
the plan. That characterization of flexibility is very insightful,
but it still leaves us with the problem of defining both the
ability to deviate and the plan.

In this paper we focus on the ability to deviate by
proposing a taxonomy for modeling flexibility. The numerous
constraints that characterize a given flexible system were first
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Fig. 1: Buckets, Batteries and Bakeries is a taxonomy for modeling
flexibility in Smart Grids.

investigated in [19]; in the present paper, however, we have
chosen to focus on the constraints of

I) Power Capacity,
II) Energy Capacity,

III) Energy level at a specific deadline, and
IV) Minimum runtime,

since these are widely found in practical systems.
Our taxonomy is denoted Buckets, Batteries and Bakeries

and precise definitions are given in Section IV. The Bucket,
The Battery and The Bakery are three simple flexibility
models, which are constructed based on the constraints I)
to IV). The first model, denoted the Bucket, is a power and
energy constrained integrator. The Bucket could be used as
a simplified model of a house with a heat pump, which is
used for energy storage. The Battery is also a power and
energy constrained integrator, but with the added restriction
that the unit must be fully charged at a specific deadline.
The Battery could be modeling an electric vehicle, which
must be ready for operation at a specific time. Finally the
Bakery extends the Battery with the additional constraint that
the process must run in one continuous stretch at constant
power consumption. The Bakery could be a commercial
green house, where plants must recieve a specific amount
of light each day. This light must, however, be delivered
continuously to stimulate the photosynthesis of the plants.

The suggested framework is a proper taxonomy in the
sense that we have imposed a hierarchical relationship be-
tween the three models. This means that a Bucket provides a
better quality of flexibility than a Battery, which is again
superior to a Bakery (see Figure 1). Here, better quality
means less restricted, not necessarily more flexible. The
reason for this distinction is that the flexibility of a system
is not just determined by constraints, but also by the specific
parameter values of the system. That is, a “large” Battery



could therefore be said to be more flexible than a “small”
Bucket, even though the Bucket is a better quality flexibility
than the Battery.

Based on the hierarchical relationship between models we
will develop an algorithm, Agile Balancing, which exploits
the heterogeneity of flexible systems. This makes Agile Bal-
ancing robust against prediction errors and computationally
efficient at the same time.

The paper is structured as follows: First, Section II gives
an extensive review of how flexibility is modeled in Smart
Grid literature today. Next, Section III and IV present the
considered optimization problem and the taxonomy. Follow-
ing this, it is proved formally in Section V how causality
[16] relates to the taxonomy. Finally, Section VI and VII
present Predictive Balancing and Agile Balancing and give
comparative simulation examples.

II. STATE-OF-THE-ART

A review of how flexibility is modeled in Smart Grid
literature reveals that the generic models of Buckets, Batteries
and Bakeries are certainly not novel concepts. Several works
have been identified (see Table I), which model flexibility in
ways very similar to a Bucket, a Battery or a Bakery. Most
existing literature, however, focuses on optimized operation
of one particular technology. This means that the advantages
of heterogeneity are not investigated.

In [9] a modeling framework for demand response tech-
nologies is formulated based on Markov Chain processes.
This framework has some similarity to the taxonomy sug-
gested in the present work. The authors of [9] subscribe to
the concept of price-signalling, however; possible synergies
between heterogenous subsystems are therefore not investi-
gated, since these can only really be exploited though direct
control.

The work closest related to the concepts investigated in
this paper, is [16]; in fact, the term laxity, as used in [16], is
almost synonymous with the term agility used in [5]. Only
the Battery-model is investigated [16], however.

In our literature review we have also charted the use of
the assumption of perfect prediction1, which is found to be
quite widespread.

III. PROBLEM FORMULATION

Consider a Virtual Power Plant, which must provide power
to a portfolio of flexible systems by dispatching a fluctuating
power supply. The fluctuating power supply is denoted
PDispatch(k), k = 1, 2, . . . ,K, and the flexible systems are
denoted local units. A portfolio of N local units is denoted
{LUi}i=1,2,...,N . At sample k we let Pi(k) denote the power,
which is dispatched to unit i, and any quantity, which cannot
be dispatched to the portfolio, is denoted S(k). The objective
is to minimize the residual power, that is |S|.

1Paper [13] does assume perfect prediction as indicated in Table I, but
the effects of uncertainty are also investigated.

The problem can be formulated as

min
Pi(·)

∞∑
k=0

|S(k)| (1)

s.t.

PDispatch(k) ∈ R, k = 0, 1, ...,∞ (2)
N∑
i=1

Pi(k) + S(k) = PDispatch(k) (3)

and also subject to the dynamics and constraints of
{LUi}i=1,2,...,N .

IV. TAXONOMY: BUCKETS, BATTERIES AND BAKERIES.
This section defines the Buckets, Batteries and Bakeries-

taxonomy for modeling flexibility in Smart Grids.
Formal definitions of a Bucket, a Battery and a Bakery are

given in Definition 1, 2 and 3 respectively, and the models
are further illustrated in Figure 2, 3 and 4. In the following Ts

denotes the size of the time step, P i and P i denote limits on
consumption rate, Ei and Ei denote limits on energy storage
levels and vi(k) is a boolean-valued variable stating whether
or not a Bakery is running at sample k.

Definition 1 (Bucket):
The dynamics and constraints of a Bucket are

Bucketi(k): Ei(k + 1) = Ei(k) + TsPi(k)

P i ≤ Pi(k) ≤ P i

Ei ≤ Ei(k) ≤ Ei

Ei(0) = Ei,0,

where k = 0, 1, . . . ,∞, i = 1, 2, . . . , NBuckets, P i ≤ 0 ≤ P i

and Ei ≤ Ei,0 ≤ Ei.

Definition 2 (Battery):
The dynamics and constraints of a Battery are

Batteryi(k): Ei(k + 1) = Ei(k) + TsPi(k)

0 ≤ Pi(k) ≤ P i

0 ≤ Ei(k) ≤ Ei

Ei(0) = Ei,0,

Ei(Tend,i) = Ei,

where k = 0, 1, . . . ,∞, i = 1, 2, . . . , NBatteries, Tend,i ∈ N,
0 ≤ P i and 0 ≤ Ei .

Definition 3 (Bakery):
The dynamics and constraints of a Bakery are

Bakeryi(k): Ei(k + 1) = Ei(k) + TsPi(k),

Pi(k) = P ivi(k)

0 ≤ Ei(k) ≤ Ei,

Ei(0) = Ei,0,

Ei(Tend,i) = Ei,

0 ≤
k+Trun,i−1∑

l=k

vi(l)− Trun,i

(
vi(k)− vi(k − 1)

)
,



Reference [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18]
Bucket x x x x x x x x (x)
Battery (x) x (x) x x x x x x x x
Bakery (x) (x) x x x

Perfect Prediction Yes Yes No Yes No No Yes No No Yes Yes Yes Yes1 No Yes No Yes Yes

TABLE I: Review of flexibility modeling in Smart Grid literature.

where k = 0, 1, . . . ,∞, 0 ≤ P i, Ei = P iTrun,i, vi(k) ∈
{0, 1}, i = 1, 2, . . . , NBakeries, Tend,i ∈ N and Trun,i ∈ N.
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Fig. 2: A Bucket is a power and energy constrained integrator.
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Fig. 3: A Battery is a power and energy constrained integrator,
which must be ”charged” to level Ei by time Tend,i.
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Fig. 4: A Bakery is a batch process, which must be finished by
time Tend,i. The process has constant power consumption
and the run time is Trun,i.

V. CAUSALITY

In [16] a dispatch strategy was defined as causal if it
depends only on the information state at time k. The authors
of [16] also proved that an optimal causal dispatch strategy
does not exist for a portfolio of Batteries. It was shown in
[5] that adding the constraint P = E = 0 for a portfolio of
Buckets induces that an optimal causal dispatch strategy does
exist. For the sake of completion this section will prove that
an optimal causal dispatch strategy does not, in general exist
for a portfolio consisting of only Buckets or only Bakeries.

Proposition 1: There does not exist an optimal causal
dispatch strategy for a portfolio of Buckets.

Proof: Proof is done by counterexample. Consider a
portfolio consisting of the following two Buckets

Bucket1: E1(0) = 0,

P 1 = 1, E1 = 1,

P 1 = −1, E1 = −1,

Bucket2: E2(0) = 0,

P 2 = 1, E2 = 3,

P 2 = −1, E2 = −3,

Next define the following dispatch profiles

PA
Dispatch = (0, 2, 2),

PB
Dispatch = (0,−2,−2).

Observe that it is possible to dispatch sequence PA
Dispatch

in such a way that
∑2

k=0 |S| = 0. However, this is only
achievable if P1(0) = −1 and P2(0) = 1. Observe also that
equivalent arguments hold for PB

Dispatch if P1(0) = 1 and
P2(0) = −1. At k = 0 a causal dispatch strategy must offer
allocations based only on information available at time k =
0. Notice, however, that PA

Dispatch(0) = PB
Dispatch(0) and

since optimal dispatch of PA
Dispatch and PB

Dispatch requires
different allocations at time k = 0, a causal dispatch strategy
cannot exist.

Proposition 2: There does not exist an optimal causal
dispatch strategy for a portfolio of Bakeries.

Proof: Proof is done by counterexample. Consider a
portfolio consisting of the following two Bakeries

Bakery1: E1(0) = 0,

P 1 = 1, E1 = 1,

Trun,1 = 1, Tend,1 = 2,

Bakery2: E2(0) = 0,

P 2 = 3, E2 = 3,

Trun,2 = 1, Tend,2 = 2.

Next define the following dispatch profiles

PA
Dispatch = (2, 1),

PB
Dispatch = (2, 3).

Observe that the optimal dispatch of either sequence
PA
Dispatch or sequence PB

Dispatch to the portfolio has∑1
k=0 |S| = 1. However, for PA

Dispatch, this is only achiev-
able if P1(0) = 0 and P2(0) = 3. For PB

Dispatch the



required configuration is P1(0) = 1 and P2(0) = 0. The
argumentation that a causal optimal dispatch strategy does
not exist now follows as in the proof of Proposition 1.

VI. ALGORITHMS

Since we have proven that causal optimal dispatch strate-
gies do not exist, this section will present two heuristic
algorithms for solving problem (1) - (3). The algorithms are
denoted Predictive Balancing and Agile Balancing.

A. Predictive Balancing

A strategy for solving problem (1) - (3) is to use a moving
horizon approach. To do this, we assume perfect prediction
of PDispatch over a certain prediction horizon K, and solve

min
Pi(·)

K∑
k=1

wk|S(k)| (4)

s.t.

PDispatch(k) ∈ R, (5)
N∑
i=1

Pi(k) + S(k) = PDispatch(k), (6)

where wk1
> wk2

if k1 < k2. Adding the impatience weights
wk to the cost function ensures that if the problem cannot
be solved without introducing slack, then the imbalances will
incur as late within the prediction horizon as possible.

B. Agile Balancing

The main objective of the present paper is to investigate
heterogenous systems and we do this by introducing agility
factors for each class of flexibility. The agility factor of
a given unit should express the quality (see [19]) of the
flexibility, which the unit represents.

The authors of the present paper first investigated the
agility attributes of the Bucket-model in [5]. Here agility
factors for the Bucket-model were defined as

Definition 4 (Agility Factor, Bucket):
Let Bucketi(k) denote a Bucket. The agility factor of Bucket
i at sample k is

KBucket
i (k) =

Ei − Ei(k)

TsP i

.

With this definition of the agility factor for the Bucket-
model we obtain that KBucket

i (k) denotes the number of
samples that the Bucket can operate at maximum power
without becoming inactive/full.

Introducing Batteries and Bakeries to the portfolio means
that in addition to balancing PDispatch the Virtual Power
Plant must solve a set of fixed tasks, namely charging the
Batteries and starting the Bakeries in due time. This means
that as a deadline, Tend, approaches, a Battery or a Bakery
can go from being a flexible resource, which can help to
minimize our objective, to being a constraint. We therefore
define agility factors for the Battery- and Bakery models,
which state how close we are (in terms of samples) to being
forced to charge a battery or start bakery:

Definition 5 (Agility Factor, Battery):
Let Batteryi(k) denote a Battery. The agility factor of
Battery i at sample k is

KBattery
i (k) = Tend,i − k − Ei − Ei(k)

TsP i

.

Definition 6 (Agility Factor, Bakery):
Let Bakeryi(k) denote a Bakery. The agility factor of Bakery
i at sample k is

KBakery
i (k) = Tend,i − Trun,i − k.

Notice that the definition of agility factors for the Battery
is the same as the definition of a flexibility factors used in
[16].

As the deadline of a Battery or a Bakery approaches the
Virtual Power Plant can be forced to charge that Battery or
start that Bakery irrespective of whether this is beneficial to
its objective. Forced consumption on LUi at sample k can,
however, be computed based on the agility factors, as

P Battery
Forced,i(k) =

{ 0 KBattery
i > 1

P i(1−KBattery
i ) 1 ≥ KBattery

i > 0

P i KBattery
i = 0

and

P Bakery
Forced,i(k) =

{
0 KBakery

i > 1

P i KBakery
i = 0.

The algorithm Agile Balancing is based on the principle
of flexibility maximization [19], where the worst quality units
are dispatched first at each sample. The idea is simple: At
each sample the Virtual Power Plant will first focus on the
set assignments of charging Batteries and starting Bakeries .
The Virtual Power Plant will solve the most pressing task
first and the unit with the smallest agility factor is the
most critical asset in need of service. At sample k Agile
Balancing therefore dispatches as much power as possible to
the Batteries and Bakeries, but no more than PDispatch(k).
Secondly, Agile Balancing uses the buffer available in the
Buckets to minimize any remaining imbalance.

Since there are no energy requirements on a Bucket,
it can only constitute a resource and never a constraint.
There are both power and energy constraints on a Bucket,
however, meaning that only a limited amount of power can
be dispatched to the Bucket-portion of the portfolio at each
sample. The maximum amount of power, which can be
dispatched to Bucketi at sample k is denoted P Bucket

Reserve,i(k)
and is given as

P Bucket
Reserve,i(k) = min

(
P i,

Ei − Ei(k)

Ts

)
.

At sample k the upper reserve bound on a portfolio contain-
ing NBuckets Buckets is therefore

P Bucket
Reserve(k) =

NBuckets∑
i=1

min

(
P i,

Ei − Ei(k)

Ts

)
.



Furthermore, Agile Balancing handles any dispatch to Buck-
ets by implementing the linear cost function given in [5].
Pseudo-code for Agile Balancing is given in Algorithm 1.

Algorithm 1 :
Agile Balancing

(
{LUi}i=1,2,...,N , PDispatch

)
1: for k = 1 to K do

2: Compute PForced(k) =

3:
∑NBatteries

i=1 P Batteries
Forced,i(k) +

∑NBakeries

j=1 P Bakeries
Forced,j(k).

4: if PForced(k) > PDispatch(k) then

5: P Batteries(k) = P Batteries
Forced (k),

6: P Bakeries(k) = P Bakeries
Forced(k).

7: else

8: Sort Batteries and Bakeries according to increasing
agility factor.

9: Distribute PDispatch(k) to Batteries and Bakeries
in increasing agility factor order and such that
P Batteries(k) + P Bakeries(k) is as large as possible,
but less than or equal to PDispatch(k).

10: end if

11: Define P Buckets(k) = min
(
P Buckets
Reserve(k),

12: PDispatch(k)− P Batteries(k)− P Bakeries(k)
)

.

13: Distribute P Buckets(k) to the Buckets as prescribed in
[5] that is in decreasing agility factor order.

14: Set S(k) = PDispatch(k)

15: −P Buckets(k)− P Batteries(k)− P Bakeries(k).
16: end for

VII. SIMULATION EXAMPLES

This section presents two simulation examples. The first
simulation example compares the performance of Predic-
tive Balancing and Agile Balancing. The second simulation
example investigates the computational efficiency of Agile
Balancing. In all simulations we have Ts = 1 and Ei,0 = 0
for all units. Solutions of problem (4) - (6) are computed by
use of CPlex, [20]. Agile Balancing has been implemented
in C#. Computations are performed on a standard laptop.

A. Predictive Balancing vs. Agile Balancing

This simulation example considers a randomly generated
portfolio of 105 units, where NBuckets = 5 and NBatteries =

NBakeries = 50. All units have E
TsP
≤ 10 and

∑
Portfolio E =

50.
The results of running Predictive Balancing for K = 10

are given in Figure 5. When there is a drop in PDispatch

Predictive Balancing attempts to use the Buckets as buffer to
maintain the balance between supply and demand. Towards

the end of each low-period, however, Predictive Balancing
is forced to use significant slack. This occurs because the
prediction horizon is not sufficiently long, and the problem
could be mended by increasing the prediction horizon. How-
ever, such a modification comes at the price of computation
time, which we will explore later in this section.

The results of running Agile Balancing are presented
in Figure 6. When there is a drop in the power supply
Agile Balancing is poorly prepared and therefore has too
many Bakeries started. Since the Bakeries cannot be shut
down Agile Balancing must utilize the buffer in the Buckets
to maintain the balance. With the given portfolio Agile
Balancing is able to balance supply and demand without
introducing slack until the very end of the simulation.

Computation times and the sum of the absolute value of
the slack variable are given in Table II for K = 10, K = 15
and K = 20. Notice that Predictive Balancing must have
perfect prediction of at least 20 samples to perform better
than Agile Balancing. As the prediction horizon increases, so
does the computation time of Predictive Balancing, however;
notice that even with a prediction horizon of only 10 samples,
Predictive Balancing is almost one hundred times slower
than Agile Balancing. This is because the most computa-
tionally demanding task Agile Balancing must solve is to
sort units according to agility factor. Predictive Balancing,
on the other hand, solves a series of mixed integer programs,
which is far more computationally demanding.

Fig. 5: Power dispatched at each sample for each type of unit by
Predictive Balancing when K = 10.

Comp. Time [s]
∑
|S(·)|

Agile Balancing 0.03 2.48
Predictive Balancing, K = 10 2.5 7.40
Predictive Balancing, K = 15 4.0 4.29
Predictive Balancing, K = 20 5.8 1.92

TABLE II: Computation time and the sum of numerical imbalances
for Predictive Balancing and Agile Balancing.

B. Large Scale Simulations

This simulation example further investigates the com-
putational efficiency of Agile Balancing by considering a



Fig. 6: Power dispatched at each sample for each type of unit by
Agile Balancing.

Dyn. Ag. Buckets Batteries Bakeries Comp. Time
∑
|S(·)|

Yes 33% 33% 33% 3 min. 26 sec. 0
Yes 10% 45% 45% 3 min. 25 sec. 19712
No 33% 33% 33% 1 min. 1 sec. 0
No 10% 45% 45% 1 min. 4 sec. 43264

TABLE III: Computation time and the sum of numerical imbal-
ances for large scale simulation.

randomly generated portfolio of 106 units. All units have
E

TsP
≤ 30.

Figure 7 depicts the simulation results, when one third
of each type of unit is included in the portfolio and in
Figure 8 only 10% Buckets are included in the portfolio.
Computation times and the sum of the absolute value of
imbalances are given in Table III. In Smart Grid discussions
it is often proposed that if only the number of units under
the jurisdiction of a Virtual Power Plant is large enough,
then the-law-of-big-numbers will ensure that the aggregated
behavior of the portfolio will be the same as that of a
traditional power plant (so essentially proposing that a large
portfolio will exhibit Bucket-behavior). However, the second
simulation (Figure 8) is an example of a case where a large
number of units is not in itself enough to warrant that the
load can be balanced. This illustrates that care must be taken
the ensure that the right combination of units is available in
the portfolio.

To further improve the computation time Agile Balancing
has also been implemented without using dynamic agility
factors. This means modifying Algorithm 1 by moving line
8 to the very start of the algorithm (before the for-loop),
such that only one sorting is performed. The results of
these simulations are given in Figure 9, Figure 10 and
Table III. As expected, sorting only once per simulation
gives a significant speed up of the computation time, as
the modified implementation is more than three times faster
than the original. With a portfolio of one third of each
type of units, there is no cost of this speed up in terms
of performance/optimality. With only 10% Buckets in the

portfolio, however, not having dynamic agility factors has a
significant cost in terms of performance.

Fig. 7: Power dispatched at each sample for each type of unit by
Agile Balancing for a portfolio of 1.000.000 units having
one third of each type.

Fig. 8: Power dispatched at each sample for each type of unit by
Agile Balancing for a portfolio of 1.000.000 units with 10%
Buckets, 45% Batteries and 45% Bakeries.

VIII. CONCLUSION

In this paper we have identified a number of common traits
shared by most, if not all, power consuming or -producing
units that can be expected to appear in a future Smart Grid
system. Most literature to date has focused on only one
type of units or one particular technology, although some
references have treated more than one type. We proposed a
taxonomy that allows the division of units into three distinct
categories based on key traits of the unit’s primary purpose
such as minimum runtime, the ability to consume/release
power back to the grid, minimum consumption by a certain
time, etc., in a quantifiable manner.



Fig. 9: Power dispatched at each sample for each type of unit by
Agile Balancing for a portfolio of 1.000.000 units having
one third of each type and not using dynamic agility factors.

Fig. 10: Power dispatched at each sample for each type of unit by
Agile Balancing for a portfolio of 1.000.000 units with
10% Buckets, 45% Batteries and 45% Bakeries and not
using dynamic agility factors.

We have also presented a suboptimal, but extremely com-
putationally efficient dispatch algorithm, denoted Agile Bal-
ancing. One of the main challenges in developing the Smart
Grid is the sheer size of optimization problems involved. This
means that the computation time associated with determining
optimal solutions might be unacceptable in practice. An
optimal solution available two minutes after market gate
closure is far less useful than a suboptimal one available two
minutes before market gate closure; thus, even though Agile
Balancing is not optimal, it might still be the best solution
in practice.
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