
Aalborg Universitet

Network Coding Over The 232

5 Prime Field

Pedersen, Morten Videbæk; Heide, Janus; Vingelmann, Peter; Fitzek, Frank

Published in:
Communications (ICC), 2013 IEEE International Conference on

DOI (link to publication from Publisher):
10.1109/ICC.2013.6654986

Publication date:
2013

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Pedersen, M. V., Heide, J., Vingelmann, P., & Fitzek, F. (2013). Network Coding Over The 232: 5 Prime Field. In
Communications (ICC), 2013 IEEE International Conference on (pp. 2922 - 2927). IEEE (Institute of Electrical
and Electronics Engineers). https://doi.org/10.1109/ICC.2013.6654986

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025

https://doi.org/10.1109/ICC.2013.6654986
https://vbn.aau.dk/en/publications/3b07c32b-67f8-404f-9692-f04dbd06bd15
https://doi.org/10.1109/ICC.2013.6654986

Network Coding Over The 232 − 5 Prime Field
Morten Videbæk Pedersen†, Janus Heide†, Péter Vingelmann∗†, and Frank H. P. Fitzek†

†Department of Electronic Systems, Faculty of Engineering and Science, Aalborg University, Denmark
∗Department of Automation and Applied Informatics, Budapest University of Technology and Economics, Hungary

Abstract—Creating efficient finite field implementations has
been an active research topic for several decades. Many appli-
cations in areas such as cryptography, signal processing, erasure
coding and now also network coding depend on this research to
deliver satisfactory performance. In this paper we investigate
the use of prime fields with a field size of 232 − 5, as this
allows implementations which combines high field sizes and low
complexity. First we introduce the algorithms needed to apply
prime field arithmetics to arbitrary binary data. After this we
present the initial throughput measurements from a benchmark
application written in C++. These results are finally compared
to different binary and binary extension field implementations.
The results show that the prime field implementation offers a
large field size while maintaining a very good performance. We
believe that using prime fields will be useful in many network
coding applications where large field sizes are required.

I. INTRODUCTION

With its introduction by Ahlswede et al. in 2000 [1], Net-
work Coding (NC) has undergone a tremendous evolution,
from simple XOR type coding schemes to newer developments
such as Random Linear Network Coding (RLNC). NC has
shown its potential in a variety of application fields covering
sensor networks, satellite networks and peer-to-peer (P2P)
networks as a short list of examples. The core idea behind NC
schemes is to change the way packets are processed in the
network. NC breaks with the traditional paradigm in packet
switched networks often referred to as store-and-forward. In
this type of network, nodes on the intermediate path of a packet
flow simply receives and forwards the incoming packets. In
NC intermediate nodes in the network may choose to recode
packets before forwarding them. Due to this, networks utilizing
NC are often referred to as compute-and-forward. As shown
with the famous butterfly example [1], this approach can
lead to significant throughput gains. The arithmetic operations
performed by the NC nodes in a network are defined within a
branch of mathematics known as finite fields or Galois fields.
Finite fields define all the commonly used arithmetic oper-
ations i.e. addition, subtraction, multiplication and division.
These arithmetics operations are used in NC when performing
the three core operations namely: encoding, recoding and
decoding. Efficient implementations of finite field arithmetics
are therefore an important prerequisite for any efficient NC
implementation. See [2] for a thorough introduction to the
theory of finite fields.

In both software and hardware, finite fields may be imple-
mented in a number of different ways, and in general one
cannot point out a single superior implementation covering
all possible use-cases [3]. Different applications will often

have different requirements. The finite field implementation
presented in this paper addresses two requirements commonly
seen in NC applications, namely high field sizes and low
algorithmic memory consumption.

A. Field Size

Depending on the network topology, a large field size may
be required to efficiently realize the communication. As stated
by the main theorem of NC given in [4].

Theorem 1 (Main Theorem in Network Coding): Consider
a directed acyclic graph G = (V,E) with unit capacity
edges, h unit rate sources located on the same vertex of
the graph and N receivers. Assume that the value of the
min-cut to each receiver is h. Then there exists a multicast
transmission scheme over a large enough finite field Fq, in
which intermediate network nodes linearly combine their
incoming information symbols over Fq, that delivers the
information from the sources simultaneously to each receiver
at a rate equal to h.

Even in very simple network topologies, choosing a too
small field size can reduce the effectiveness of the coding
by introducing an excess of linearly dependent packets [5].
However, note that increasing the field size in RLNC schemes
also increases the overhead added to each encoded symbol
through the encoding vector. It is therefore undesirable to
increase the field size more than necessary, an overview of
this trade-off is provided in [6].

B. Memory Consumption

On memory constrained devices, algorithms with a limited
memory consumption may be a requirement. Many finite field
implementations used in NC applications rely on different vari-
ants of lookup tables to provide efficient arithmetic operations.
On constrained devices lookup tables may be undesirable as
they occupy valuable space in memory (e.g. on a sensor board)
and can cause severe performance issues due to the typically
limited Central Processing Unit (CPU) cache size [3].

In this paper we will introduce the initial implementation
results utilizing a new scheme based on results from Optimal
Extension Fields (OEFs) and a sub-field mapping algorithm
developed by Crowley et al. [7]. This scheme allows for both
a high field size and a very low memory consumption.

The remainder of the paper is organized as follows. In
Section II OEFs are described. Section III introduces the
algorithm for fast modulo reduction. Section IV introduces
the binary sub-field mapping algorithm. Section V presents
the implementation and measurements of a search algorithm

required by the sub-field mapping algorithm. Section VI
presents an overview of the finite field operations performed
by NC implementations. Section VII presents the obtained
results from an initial implementation. The final conclusions
are drawn in Section VIII.

II. OPTIMAL EXTENSION FIELDS

OEFs were introduced in [8] for use in public-key crypto-
graphic systems. OEFs differ from the traditional binary field
implementations by changing the characteristic of the field.
The general definition of a field is given as Fpm , for which
p is a prime number also called the field characteristic and
m denotes the extension used. Efficient finite field arithmetics
in an OEF are achieved by choosing a characteristic (i.e. a
prime p) close to the word size of the underlying hardware
processor e.g. 8, 16, 32 or 64 bits and creating field extensions
using irreducible polynomials of a special form. This approach
differs from traditional implementations where a binary exten-
sion field is used, i.e. fields with characteristic p = 2. As an
example, a concrete implementation for a 32-bit CPU may
use a binary extension field such as F232 , whereas an OEF
implementation could use F4294967291m , where 4294967291
is the prime number 232−5. Although Bailey et al. envisioned
OEFs to be used in cryptographic systems, we may use their
results to also create efficient prime field implementations for
NC applications.

Before moving on, let us give the definitions describing an
OEF as described in [8]:
• Definition 1. A pseudo-Mersenne prime is a prime num-

ber of the form 2n − c, where log2(c) ≤ 1
2n

• Definition 2. An Optimal Extension Field is a finite field
Fpm such that:

1) p is a pseudo-Mersenne prime.
2) An irreducible bionomial p(x) = xm−ω exists over
Fp.

We observe that there are two special cases of OEF which
yield additional arithmetic advantages, which we will call
Type I and Type II.

• Definition 3. A Type I OEF has p = 2n − 1. A Type I
OEF allows for subfield modular reduction with very low
complexity as we will show later.

• Definition 4. A Type II OEF has an irreducible binomial
xm − 2. A Type II OEF allows speedups in extension
field modular reduction.

In the following we will show how the ideas of OEFs can
be utilized in a NC context. Since most NC systems do not
require the same large fields as certain cryptographic systems,
we will not discuss the construction of extension fields, but
focus on the OEF sub-field which is given as a regular prime
field Fp, where p is a pseudo-Mersenne prime. For this reason
we will refer to this type of finite field as an Optimal Prime
Field (OPF). To implement this in practice, two open questions
must be addressed: How to implement fast modulo reduction
in the chosen prime field p = 2n − c and how to ensure that
arbitrary input data can be represented within the chosen field.

III. FAST SUB-FIELD MODULO REDUCTION

This result originally stems from [9] and was later utilized
in OEFs. In a finite field, the modulo operation is used
to ensure that all arithmetic operations performed in the
field remain “closed”, i.e. adding, subtracting, multiplying or
dividing two field elements must result in an element also in
the field.

To create an efficient prime field implementation, an effi-
cient way of implementing the modulo reduction is therefore
also needed. Given two n-bit integers a, b ∈ Fp we may
handle the addition and subtraction with reduction modulo p
as:

a+ b =

{
a+ b if a+ b < p
a+ b− p if a+ b ≥ p

(1)

a− b =

{
a− b if a− b ≥ 0
a− b+ p if a− b < 0

(2)

For multiplication and division the process is more in-
volved. Division can be considered a multiplication with the
inverse element, therefore it will only be necessary to perform
the modulo reduction after multiplication. The inverse of a
field element can be calculated using the extended Euclidean
Algorithm, see [10]. As with addition and subtraction, we
again consider two n-bit integers a, b ∈ Fp. Recall from
“Definition 1” that p is a pseudo-Mersenne prime of the form
p = 2n − c, where log2(c) ≤ 1

2n. The goal is to calculate the
modulo reduction of the product of two n-bit integers using
only additions, shifts and multiplications. Although this may
sound more complicated than calculating the modulo reduction
using an integer division it will often be faster in practice
due to the high latency of the integer division instruction on
the CPU [11]. In the following the idea behind the modulo
reduction algorithm is presented.

First choose a pseudo-Mersenne prime of the form p =
2n − c, where log2(c) ≤ 1

2n. Calculate the product of the two
n-bit integers a and b:

←− n bits −→

a

b

←− 2n bits −→

a · b h l

The result a ·b can be represented as a n-bit high-half h and
a n-bit low-half l. From this, it can be seen that the product
a · b can be rewritten as:

a · b = h · 2n + l mod p (3)

Rewriting the product as a sum of the low- and high-half,
we see that the factor 2n can be reduced using the chosen
prime p, where p = 2n − c:

2n ≡ c mod 2n − c (4)

Substituting this result into Equation (3) yields:

a · b = h · c+ l mod p (5)

Graphically we may represent the product h · c as:
←− n bits −→

h

← log2 c
bits

→

c

←− n + log2(c) bits −→

h · c h′ l′

Again we represent the result as a high-half added to the
low-half:

h · c = h′ · 2n + l′ mod p (6)

Repeating the reduction step using Equation (4) we may
rewrite the product:

h · c = h′ · c+ l′ mod p (7)

The product h′ · c can now be represented as:
← log2 c

bits
→

h′

c

←− 2 · log2(c) bits −→

h′ · c l′′

Where l′′ can be represented using 2 · log2(c) ≤ n bits.
This is possible since we have chosen c as log2(c) ≤ 1

2n. This
represents the final step in the algorithm as no further high-
half bits are produced. We may note that due to our choice of
c this is guaranteed to happen. By combining the results from
Equation (5) and (7), we may rewrite the multiplication as a
sum of three ≤ n bit integers:

a · b = l + l′ + l′′ mod p (8)

As shown for addition in Equation (1), we only have to
ensure that the sum is below p by subtracting p if necessary.

IV. SUB-FIELD DATA MAPPING

As mentioned, one of the goals of OEFs is to match
the underlying processor word size as closely as possible.
However, in practice this means that the finite field elements
cannot be exactly represented by any common data types i.e.
8, 16, 32 or 64 bits, due to the fact that a prime must be
used. As an example, using a prime field with characteristic
p = 232 − 5, we see that it does not allow the binary
values from 0xfffffffb to 0xffffffff. This would
create problems for most NC applications, where the data
being processed cannot be guaranteed to be within a certain
binary range. Consequently, in this example we require an
encoding/decoding scheme for mapping arbitrary 32-bit data
values into values in the [0, 232−5) range. Using the approach
presented by Crowley et al. [7], this goal may be achieved
with limited computational overhead. The algorithm may be
summarized in the following steps:

1) Choose a data type of n bits to match the processor word
size.

2) Select a pseudo-Mersenne prime of the form p = 2n−c.
3) Partition the input data into blocks of maximum 2t − 1

data words, where t ≤ dn− log2(c)e.
4) For each block, search the data to find a t-bit prefix not

present in the data. Note, that since we have a maximum
block size of 2t − 1, this prefix is guaranteed to exist.

5) Negate the t bit prefix and XOR it with all n-bit words
in the data block. This will ensure that all data values
are representable in the chosen prime field.

6) When no more finite field operations are required, e.g.
after the data block has been transmitted and decoded,
reverse the prefix mapping by performing the XOR again
with the negated prefix on the data.

The outlined algorithm will ensure that all values larger than
the selected prime will be mapped to a value representable
with in the prime field. As an example of how the binary
mapping works, consider the binary representation of the
pseudo-Mersenne prime p = 232 − 5, one way to make sure
that all input values are below the prime is to ensure that at
least a single zero will appear in the top 29 bits, denoted as
the prefix:

0481216202428

1 0 1 1︸ ︷︷ ︸
Prefix location for p = 232 − 5

The binary sub-field mapping algorithm achieves this by
partitioning the input data into blocks with a maximum of
229 − 1 data words. Corresponding to a maximum block size
of approximately 2.1 GB. This block size guarantees that
a 29 bit prefix, s, may be found which does not appear in
any of the data words. Using the prefix s, a binary mask can
be constructed and XOR’ed with the remaining data block
values. The binary mask is simply the negated version of the

prefix. To illustrate how this works, assume we have found a
prefix which does not appear anywhere in our data block:

0481216202428

1 0 0 1 1 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 1 0 1 1 0 0 0︸ ︷︷ ︸
Unused 29-bit prefix

Negate this prefix:
0481216202428

0 1 1 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 0 0 0 0 0 1 1 0 1 0 0 1 1 1︸ ︷︷ ︸
Which value after XOR can give all ones here?

Only the unused 29-bit prefix.

Now notice that the only value for which the XOR with
the negated prefix can produce all binary ones is the prefix
itself - which does not exist in the data block. XOR’ing with
all other input values with the negated prefix is guaranteed to
have at least a single zero bit in the top t bits. Therefore, all
data values in the block will be representable within the prime
field. Note, that XOR’ing will not “corrupt” the input data as
it is a fully reversible operation.

In general the length of a data block will determine the
number of bits necessary to ensure that an unused prefix can
be found. This relationship between the block length b in 32-bit
data words and prefix length t in bits is given by Equation 9.

t = dlog2(b+ 1)e where t ≤ dn− log2(c)e (9)

As an example for a block length of 15 data words it is
given that at least one 4-bit prefix must exist, which does not
appear anywhere in the data.

V. PREFIX SEARCH

One drawback of this solution is that finding the prefix will
require processing of the entire data block. This is however
only necessary once, and may therefore be precomputed
and attached to a storage object as meta-data. However, for
steaming applications data is produced on-the-fly and therefore
the prefix search has to be executed as the blocks are made
available. In the following we will therefore investigate the
added processing overhead of the prefix search. Searching for
the prefix may be accomplished in several ways. Here we
consider a k-pass binary search.

The k-pass binary search performs k iterations over the data
block to find an unused prefix. Utilizing more than a single
iteration reduces the memory consumption but is expected
to increase computational cost of the algorithm. The general
principle of the binary search algorithm is that given a t bit
prefix we may inspect only a subset j of the bits, where j < t
to determine first j-bits of the unused prefix. This can be
achieved by noticing that for every j-bit prefix there can be
at most 2t−j bit patterns. It is given that if the value of a
counter is less than 2t−j , then there must exist a t-bit prefix
with the top j bits which does not appear in the data. Recall
this is guaranteed to happen since we allow at most 2t−1 data

words in a block. Equation 10 gives the relationship between
k, t and j.

j =
⌈ t
k

⌉
[bits] (10)

Utilizing the counters for each prefix the algorithm chooses
a j-bit prefix for which it knows that an unused t-bit prefix
must exist. In case of several candidates any can be chosen.
Using the first j-bit prefix as a filter it continues by counting
the next j-bit prefixes. This process continues until a counter
contains the value 0, when this happens the concatenation of
the chosen j bit prefices will constitute the unused t-bit prefix.
The value k determines the maximum number of iterations
needed. Increasing k reduces the memory requirements as less
counters have to be stored. The total memory requirements can
be calculated as the number of counters needed, multiplied
by the size of each counter (in our implementation we used
uint32_t which is 4 bytes), as given in Equation 11.

binary searchmemory = 2j · 4 [B] (11)

Worthwhile noticing is that even for a generation size of
2048 it is possible to run the prefix search using less than
1000 bytes of memory using the binary search k = 4.

A. Prefix Search Performance

In this section we benchmark the presented prefix search
algorithms. The benchmark measures the time required for the
algorithm to find a missing prefix in a block of random data. In
order to get an impression of the performance of the algorithms
the benchmark have been conducted on the following device:

TABLE I: Specifications of the device used for benchmarking

Device Desktop PC
OS XUbuntu 12.04
CPU Intel(R) Core(TM) i7 920 @ 2.67 GHz
Cache L1 128 KiB, L2 1 MiB, L3 8 MiB
Memory 6 GB DDR3 1066 MHz

In Table II we show the results for the fastest algorithm
Binary search k = 2, these result signify the overhead which
would be added per block due to the prefix search. Depending
on the type of application this could be problematic, e.g. for
live streaming applications the prefix must be found “on-the-
fly” as data is being produced, whereas for static objects such
as files the prefix may be found in advance and attached to
the data as meta-information.

TABLE II: Prefix search time [ms] for Binary search k = 2

Generation size 16 32 64 128 256 512 1024

Time [ms] 0.19 0.23 0.27 0.54 1.09 2.30 5.99

VI. NETWORK CODING ARITHMETICS

In order to quantify the potential performance of different
finite field implementations it is necessary to understand the
statistics of the arithmetic operations performed in NC algo-
rithms. For a Gaussian Elimination decoder and a generation
size g, packet size of f finite field elements and an encoding
vector of v finite field elements we expect the upper bound
for the operations as shown in Table III.

TABLE III: Upper bounds for operations of a Gaussian
Elimination decoder for a single generation

Operation dest[i] = dest[i] - (constant * src[i])

Upper bound O((g2 − g) · (v + f))

Operation dest[i] = dest[i] * constant

Upper bound O(g · (v + f))

Operation invert(value)

Upper bound O(g)

Notice, that the length of the encoding vector is always
v = g, however to make it clearer where the operations are
coming from we will keep using v to denote its length. For
the encoding algorithms we have the upper bound expression
shown in Table IV.

TABLE IV: Upper bound for operations of a standard RLNC
encoder for a single generation

Operation dest[i] = dest[i] + (constant * src[i])

Upper bound O(g2 · f)

To confirm these expressions the following results were
obtained by instrumenting one standard RLNC encoding al-
gorithm and a Gaussian Elimination based RLNC decoding
algorithm (source code available here [12]). Field coefficients
used for the encoding were drawn uniformly.

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000
field element operations per generation [-]

encoder

decoder

RLNC.Binary8 (generation size = 32, packet size = 1400 [B])
dest[i] = dest[i] + (constant * src[i])
invert(value)
dest[i] = dest[i] * constant
dest[i] = dest[i] - (constant * src[i])

49.44 %
0.00 %
1.58 %
48.98 %

Fig. 1: Number of finite field operations needed during en-
coding and decoding of a single generation. The field used
corresponds to the binary extension field F28 , which means
that every field element corresponds to 1 byte.

These results confirm the expectation from the upper bound
expressions given in Table III and IV.

VII. FINITE FIELD ARITHMETICS

This section presents the benchmark results of the suggested
finite field algorithm.

Based on the results from the previous section the majority
of operations performed are the two compound operations:
dest[i] = dest[i] + (constant * src[i])and
dest[i] = dest[i] - (constant * src[i]). These
operations are therefore of key interest when comparing
different finite field implementations for NC algorithms. In
the following we have tested a number of different finite field
implementations (source code available here [13]):

• SimpleOnline{8, 16}: This algorithm computes the result
on-the-fly in F28 and F216 using an iterative algorithm,
without any precomputed lookup table.

• OptimalPrime2325: This corresponds to the algorithm
presented in this paper. Using the prime field F4294967291,
where p = 232 − 5 = 4294967291

• FullTable8: This algorithm utilizes a fully precomputed
lookup table stored in memory to calculate the results in
F28 .

• LogTable{8, 16}: This algorithm uses a reduced lookup
table to calculate the results in F28 and F216 . The
log table minimize memory consumption at the cost of
additional operations for every calculation.

• ExtendedLogTable{8, 16}: This algorithm extends the
lookup table used by the LogTable to calculate the results
in F28 and F216 . The extended lookup table removes a
number of checks necessary in the LogTable algorithm
when moving from exponential to polynomial represen-
tation.

The following figures show the throughput for the arithmetic
operations tested. The benchmark uses two generations each
containing g packets where each packet is 1400 B long. From
each generation two packets are then randomly selected and
the specified operation is performed. In the operations tested
a constant is used for the multiplication, this constant was
randomly generated for each invocation of the operations
under test. For each operation, a number of iterations were
completed so that the total measurement time exceeded a
minimum of 10 ms, this was done to keep inaccuracies due to
timing granularity and other disturbances in the measurements
low. For each operation this was repeated 100 times.

The benchmarks were run on the device specified in Table I
using two different generation sizes: g = 32 and g = 1024.
These numbers were chosen to see how the algorithms were
affected by the working set size (which is the generation size
multiplied by the packet size). The working set size can have a
significant impact on performance due to caching effects [14,
p. 593-673]. In this case we only observe a slight drop in
performance as the working set size increases indicating that
the CPU is able to keep the working set in the cache.

All implementations presented here are written in C++ using
no assembler or compiler intrinsics to further speed up the
computations. However, inspecting the assembly output of the
compiled benchmark does reveal that the compiler was able to
take advantage of vectorized Single Instruction Multiple Data
(SIMD) instructions in some of the arithmetic loops. Although
this boosts performance considerably some functions were not

optimized by the compiler. It is therefore likely that further
performance gains could be achieved by hand-writing some
operations using assembly or vectorized SIMD instructions.

In Figure 2 we see the benchmarks for a generation size of
32. In this case we see that the OPF preforms better than the
alternative implementations. One interesting thing to observe
is that the OPF performs slightly faster in subtraction than
addition. The explanation for this is that addition requires
two checks, one for checking for integer overflow, and one
for checking whether the prime modulo operation must be
performed. For subtraction we only have to check for integer
underflow. Avoiding this additional check yields an approx.
5% performance increase.

0 200 400 600 800 1000 1200
Performance [MB/s]

ExtendedLogTable16

ExtendedLogTable8

FullTable8

LogTable16

LogTable8

OptimalPrime2325

SimpleOnline16

SimpleOnline8

i7
(vectors=32 size=1400 [B])

dest[i] = dest[i] + (constant * src[i])
dest[i] = dest[i] - (constant * src[i])

Fig. 2: Throughput for the compound NC operations for a
generation size of 32.

In Figure 3 we see the benchmarks for a generation size
of 1024. Where the tendency remains the same as for the
generation size of 32.

0 200 400 600 800 1000 1200
Performance [MB/s]

ExtendedLogTable16

ExtendedLogTable8

FullTable8

LogTable16

LogTable8

OptimalPrime2325

SimpleOnline16

SimpleOnline8

i7
(vectors=1024 size=1400 [B])

dest[i] = dest[i] + (constant * src[i])
dest[i] = dest[i] - (constant * src[i])

Fig. 3: Throughput for the compound NC operations for a
generation size of 1024.

As seen the two implementations FullTable8 and
OptimalPrime2325 are by far the fastest. Where the
OptimalPrime2325 on average provides an 18% perfor-
mance increase for addition and an average 23% performance
increase for subtraction when compared to the FullTable8.

VIII. CONCLUSION

In this paper we present our initial investigation of Optimal
Prime Field (OPF) for Network Coding applications. The
results show that OPF looks like a promising addition to
the selection of finite field implementations. Besides good
performance one of the main benefits is the large field size and
the limited memory consumption required by the algorithms.
As mentioned the OPF implementation uses pure C++ code,
and inspecting the compiled assembly we could verify that
the compiler did not optimize all operations using SIMD
instructions. It is therefore likely that even better performance
can be obtained. The main drawback of this approach is the
need for the prefix binary mapping scheme. Further work
should be invested in reducing the overhead added by this.
We expect OPFs to be particularly useful on small embedded
devices, with only KB’s of memory, since these devices cannot
use the lookup table based algorithms.

ACKNOWLEDGMENTS

This work was partially financed by the CONE project
(Grant No. 09-066549/FTP), the Colorcast project (Grant No.
12-126424/FTP) both granted by Danish Ministry of Science,
Technology and Innovation as well as by the collaboration
with Renesas Mobile throughout the NOCE project.

REFERENCES

[1] R. Ahlswede, N. Cai, S. Y. R. Li, and R. W. Yeung, “Network
information flow,” IEEE Transactions on Information Theory, vol. 46,
no. 4, pp. 1204–1216, 2000.

[2] S. Lin and D. J. Costello, Error Control Coding, Second Edition. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 2004.

[3] K. M. Greenan, E. L. Miller, and T. J. E. Schwarz, “Optimizing galois
field arithmetic for diverse processor architectures and applications,” in
MASCOTS, E. L. Miller and C. L. Williamson, Eds. IEEE Computer
Society, 2008, pp. 257–266.

[4] C. Fragouli and E. Soljanin, “Network Coding Fundamentals,” Founda-
tions and Trends in Networking, vol. Vol. 2, Issue 1, pp. 1–133, 2007.

[5] J. Heide, M. V. Pedersen, F. Fitzek, and T. Larsen, “Network coding for
mobile devices - systematic binary random rateless codes,” in Workshop
on Cooperative Mobile Networks 2009 - ICC09. IEEE, Jun. 2009.

[6] J. Heide, M. V. Pedersen, F. H. Fitzek, and M. Médard, “On code
parameters and coding vector representation for practical rlnc,” in IEEE
International Conference on Communications (ICC) - Communication
Theory Symposium, Kyoto, Japan, 5-9 June 2011.

[7] P. Crowley. (2006, Nov.) Gf(232-5). [Online]. Available: http:
//www.lshift.net/blog/2006/11/29/gf232-5

[8] D. V. Bailey and C. Paar, “Optimal extension fields for fast
arithmetic in public-key algorithms,” in Proceedings of the 18th Annual
International Cryptology Conference on Advances in Cryptology.
London, UK: Springer-Verlag, 1998, pp. 472–485. [Online]. Available:
http://portal.acm.org/citation.cfm?id=646763.706317

[9] S. B. Mohan and B. S. Adiga, “Fast algorithms for implementing rsa
public key cryptosystem,” Electronics Letters, vol. 21, 1985.

[10] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to Elliptic Curve
Cryptography. Secaucus, NJ, USA: Springer-Verlag New York, Inc.,
2003.

[11] T. Granlund. (2011, Mar.) Instruction latencies and throughput
for amd and intel x86 processors. [Online]. Available: http:
//gmplib.org/tege/x86-timing.pdf

[12] Steinwurf ApS. (2012) Kodo git repository on github. [Online].
Available: http://github.com/steinwurf/kodo

[13] ——. (2012) Fifi git repository on github. [Online]. Available:
http://github.com/steinwurf/fifi

[14] R. E. Bryant and D. R. O’Hallaron, Computer Systems: A Programmer’s
Perspective, 2nd ed. USA: Addison-Wesley Publishing Company, 2010.

