Problem-Based and Project-Based Learning in Engineering Education

Merging Models
Kolmos, Anette; de Graaff, Erik

Published in:
Cambridge Handbook of Engineering Education Research

DOI (link to publication from Publisher):
10.1017/CBO9781139013451.012

Publication date:
2014

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 30, 2019
Contents

Editors page xiii
Contributors xv
Foreword xxv
Norman L. Fortenberry
Acknowledgments xxvii

Introduction 1
Aditya Johri and Barbara M. Olds

1. Chronological and Ontological Development of Engineering Education as a Field of Scientific Inquiry 3
Jeffrey E. Froyd and Jack R. Lohmann

PART 1
ENGINEERING THINKING AND KNOWING

2. Learning Theories for Engineering Education Practice 29
Wendy C. Newstetter and Marilla D. Svinicki

3. Situative Frameworks for Engineering Learning Research 47
Aditya Johri, Barbara M. Olds, and Kevin O’Connor

4. The Social Nature of Representational Engineering Knowledge 67
Wolff-Michael Roth
5. Conceptual Change and Misconceptions in Engineering Education: Curriculum, Measurement, and Theory-Focused Approaches 83
 Ruth A. Streveler, Shane Brown, Geoffrey L. Herman, and Devlin Montfort

6. Engineers as Problem Solvers 103
 David H. Jonassen

7. Professional Engineering Work .. 119
 Reed Stevens, Aditya Johri, and Kevin O’Connor

PART 2
ENGINEERING LEARNING MECHANISMS AND APPROACHES

8. Problem-Based and Project-Based Learning in Engineering Education: Merging Models 141
 Anette Kolmos and Erik de Graaff

9. Case Studies in Engineering .. 161
 Claire Davis and Aman Yadav

10. Curriculum Design in the Middle Years 181
 Susan M. Lord and John C. Chen

11. Engineering Design Education: Research, Practice, and Examples that Link the Two .. 201
 Cynthia J. Atman, Ozgur Eris, Janet McDonnell, Monica E. Cardella, and Jim L. Borgford-Parnell

12. Adaptive Expertise and Knowledge Fluency in Design and Innovation .. 227
 Ann F. McKenna

 Kristen Bethke Wendell and Janet L. Kolodner

PART 3
PATHWAYS INTO DIVERSITY AND INCLUSIVENESS

14. Engineering Identity .. 267
 Karen L. Tonso

15. Studying the Career Pathways of Engineers: An Illustration with Two Data Sets .. 283
 Sheri D. Sheppard, Anthony Lising Antonio, Samantha R. Brunhaver, and Shannon K. Gilmartin

16. Retention and Persistence of Women and Minorities Along the Engineering Pathway in the United States .. 311
 Gary Lichtenstein, Helen L. Chen, Karl A. Smith, and Theresa A. Maldonado

17. Social Justice and Inclusion: Women and Minorities in Engineering .. 335
 Donna Riley, Amy E. Slaton, and Alice L. Pawley
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Community Engagement in Engineering Education as a Way to Increase Inclusiveness</td>
<td>357</td>
</tr>
<tr>
<td></td>
<td>Christopher Swan, Kurt Paterson, and Angela R. Bielefldt</td>
<td></td>
</tr>
<tr>
<td>PART 4</td>
<td>ENGINEERING EDUCATION AND INSTITUTIONAL PRACTICES</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Translating Research to Widespread Practice in Engineering Education</td>
<td>375</td>
</tr>
<tr>
<td></td>
<td>Thomas A. Litzinger and Lisa R. Lattuca</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Research-Guided Teaching Practices: Engineering Threshold Concepts as an Approach to Curriculum Renewal</td>
<td>393</td>
</tr>
<tr>
<td></td>
<td>Sally A. Male and Caroline A. Baillie</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Engineering Instructional Development: Programs, Best Practices, and Recommendations</td>
<td>409</td>
</tr>
<tr>
<td></td>
<td>Richard M. Felder, Rebecca Brent, and Michael J. Prince</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Understanding Disciplinary Cultures: The First Step to Cultural Change</td>
<td>437</td>
</tr>
<tr>
<td></td>
<td>Elizabeth Godfrey</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Preparing Engineering Educators for Engineering Education Research</td>
<td>457</td>
</tr>
<tr>
<td></td>
<td>Maura Borrego and Ruth A. Streveler</td>
<td></td>
</tr>
<tr>
<td>PART 5</td>
<td>RESEARCH METHODS AND ASSESSMENT</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Studying Teaching and Learning in Undergraduate Engineering Programs: Conceptual Frameworks to Guide Research on Practice</td>
<td>477</td>
</tr>
<tr>
<td></td>
<td>Lisa R. Lattuca and Thomas A. Litzinger</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Design-Based Research in Engineering Education: Current State and Next Steps</td>
<td>497</td>
</tr>
<tr>
<td></td>
<td>Anthony E. Kelly</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Quantitative and Mixed Methods Research: Approaches and Limitations</td>
<td>519</td>
</tr>
<tr>
<td></td>
<td>Barbara M. Moskal, Teri Reed, and Scott A. Strong</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Framing Qualitative Methods in Engineering Education Research: Established and Emerging Methodologies</td>
<td>535</td>
</tr>
<tr>
<td></td>
<td>Jennifer M. Case and Gregory Light</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Conducting Interpretive Research in Engineering Education Using Qualitative and Ethnographic Methods</td>
<td>551</td>
</tr>
<tr>
<td></td>
<td>Aditya Johri</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>The Science and Design of Assessment in Engineering Education</td>
<td>571</td>
</tr>
<tr>
<td></td>
<td>James W. Pellegrino, Louis V. DiBello, and Sean P. Brophy</td>
<td></td>
</tr>
</tbody>
</table>
PART 6
CROSS-CUTTING ISSUES AND PERSPECTIVES

30. Engineering Communication
 Marie C. Paretti, Lisa D. McNair, and Jon A. Leydens
 601

31. Use of Information Technology in Engineering Education
 Krishna Madhavan and Euan D. Lindsay
 633

32. Global and International Issues in Engineering Education
 Aditya Johri and Brent K. Jesiek
 655

33. Engineering Ethics
 Brock E. Barry and Joseph R. Herkert
 673

34. The Normative Contents of Engineering Formation: Engineering Studies
 Gary Lee Downey
 693

35. Interdisciplinarity in Engineering Research and Learning
 Nancy J. Nersessian and Wendy C. Newstetter
 713

Conclusion: Engineering at the Crossroads: Implications for Educational Policy Makers
 John Heywood
 731

Index
 749